[Technical Field]
[0001] The present disclosure relates to a composition for treating and preventing an ischemic
injury. More particularly, it relates to a composition containing a peptide derived
from a telomerase, which is effective in treating and preventing an ischemic injury.
[Background Art]
[0002] An ischemic injury refers to a tissue injury caused by restriction in blood supply
to organs requiring blood supply such as the heart, brain, kidneys, etc. (myocardial
infarction, cerebral infarction, renal infarction, etc.), leading to dysfunction of
the organs and increased mortality rate. The ischemic injury causes fatal complications
of the heart, brain, kidneys, etc., increases the risk of acute rejection in organ
transplantation and, in the long term, decreases the survival rate of the transplanted
organ.
[0003] Substantial shortage of oxygen supply due to ischemia induces a pathological condition
known as hypoxia. Prolonged ischemia and hypoxia can lead to functional loss of tissue
and even cell death. Various spontaneous and iatrogenic pathological conditions induce
ischemia and hypoxia. Non-limiting examples include vascular obstructive disease,
coronary thrombosis, cerebrovascular thrombosis, aneurysm rupture, systemic hemorrhage,
crush injury, sepsis, severe skin burn, vascular ligation surgery (e.g., spinal ischemia
following thoracoabdominal aneurysm surgery), cardiopulmonary bypass, organ transplantation,
cardiopulmonary collapse (sudden cardiac death), suffocation, etc.
[0004] In general, ischemia and hypoxia caused thereby are treated by restoring blood and
oxygen supply to a normal level by increasing systemic oxygen supply or removing the
cause of vascular occlusion. When compared with the situation where ischemia or hypoxia
is prolonged, it is expected an improved result may be obtained by restoring blood
supply. However, during the restoration of blood and oxygen supply, cell death or
functional loss may be additionally induced apart from the damage caused by ischemia
or hypoxia.
[0005] The additional damage induced during the restoration of blood and oxygen supply is
known as reperfusion injury. The paradoxical tissue injury caused by reperfusion injury
appears to be similar to an acute inflammatory condition resulting from the adherence
of inflammatory cells to the reperfused tissues, activation of the inflammatory cells
and subsequent generation of free radicals [
Granger et al. Ann. Rev. Physiol., 57, 311-332, (1995)]. The generation of free radicals and other cytotoxic biomolecules within the reperfused
tissue can induce cell death by activation of necrotic or apoptotic pathway.
[0006] Ischemic-reperfusion (IR) tissue injury occurring during organ transplantation results
in deferred restoration of organ function after the organ transplantation and this
often is an undesired prognostic sign in the maintenance of the function of the transplanted
organ in the long term due to inflammatory tissue response. The initial ischemic-reperfusion
injury occurring incidentally with the transplantation of organs, particularly kidneys,
can lead to subsequent organ failure and transplant rejection.
[0007] Recently, renal ischemic-reperfusion injury (IRI) has been newly identified as one
of acute inflammatory responses in which the inflammatory cells of both the innate
immune system and the acquired immune system are involved.
[0008] A flap refers to a skin or tissue which is lifted from a site of the body and moved
to another site, which includes a blood vessel that allows survival of the tissue.
Flap surgery is used for lost soft tissue, chronic wound, etc. that cannot be treated
with, for example, skin grafting. It is a surgical method the most frequently used
in plastic and reconstructive surgery. In particular, it is advantageous in that primary
reconstruction is possible through transplantation of various complex tissues including
bone, tendon, muscle, nerve, etc., thereby allowing fast restoration. In the flap
surgery, the survival rate of the flap is very important in the treatment of ischemic-reperfusion
injury. Accordingly, a method of stably improving the flap survival rate will be very
useful.
[0009] As described, an effective method for treating the frequently occurring ischemic-reperfusion
injury is not readily available. Therefore, an effective method for preventing and
treating ischemic-reperfusion injury will be valuable.
[Disclosure]
[Technical Problem]
[0010] The inventors of the present disclosure have made efforts to develop a composition
effective in treating and preventing ischemic-reperfusion injury and have completed
the present disclosure.
[0011] The inventors of the present disclosure have found out that a peptide derived from
a telomerase may have excellent effect of treating and preventing ischemic-reperfusion
injury.
[0012] The present disclosure is directed to providing a composition effective in treating
and preventing ischemic-reperfusion injury.
[Technical Solution]
[0013] In an aspect, the present disclosure provides a composition for treating and preventing
an ischemic injury, containing a peptide comprising an amino acid sequence of SEQ
ID NO 1, a peptide having 80% or more sequence identity with the amino acid sequence
or a peptide which is a fragment thereof.
[0014] In an exemplary embodiment of the present disclosure, the fragment may comprise three
or more amino acids.
[0015] In an exemplary embodiment of the present disclosure, the ischemic injury may be
caused by one or more selected from a group consisting of ischemic-reperfusion injury,
vascular disease, coronary thrombosis, cerebrovascular thrombosis, aneurysm rupture,
systemic hemorrhage, crush injury, sepsis, skin burn, vascular ligation surgery, cardiopulmonary
bypass, organ transplantation, cardiopulmonary collapse (sudden cardiac death) and
suffocation.
[0016] In an exemplary embodiment of the present disclosure, the ischemic injury may be
caused by ischemic-reperfusion injury.
[0017] In an exemplary embodiment of the present disclosure, the ischemic-reperfusion injury
may be selected from a group consisting of cerebrovascular ischemic-reperfusion injury,
renal ischemic-reperfusion injury, hepatic ischemic-reperfusion injury, ischemic-reperfusion
cardiomyopathy, ischemic-reperfusion skin injury, gastrointestinal ischemic-reperfusion
injury, intestinal ischemic-reperfusion injury, gastric ischemic-reperfusion injury,
ischemic-reperfusion lung injury, pancreatic ischemic-reperfusion injury, ischemic-reperfusion
skeletal muscle injury, ischemic-reperfusion abdominal muscle injury, ischemic-reperfusion
limb injury, ischemic-reperfusion colitis, mesenteric ischemic-reperfusion injury
and asymptomatic ischemic-reperfusion injury.
[0018] In an exemplary embodiment of the present disclosure, the ischemic-reperfusion injury
may be caused by organ transplantation.
[0019] In an exemplary embodiment of the present disclosure, the ischemic-reperfusion injury
may occur in the kidneys.
[0020] In an exemplary embodiment of the present disclosure, the ischemic-reperfusion injury
may occur in a flap.
[0021] In an exemplary embodiment of the present disclosure, the peptide may be derived
from human telomerase.
[0022] In an exemplary embodiment of the present disclosure, the composition may be a pharmaceutical
composition.
[0023] In an exemplary embodiment of the present disclosure, the composition may be a food
composition.
[0024] In another aspect, the present disclosure provides a method for treating and preventing
an ischemic injury, including administering the above-described composition to a subject
in need thereof.
[Advantageous Effects]
[0025] A peptide comprising an amino acid sequence of SEQ ID NO 1, a peptide having 80%
or more sequence identity with the amino acid sequence or a peptide which is a fragment
thereof has a superior effect of treating and preventing an ischemic injury. Accordingly,
a composition containing the peptide may be effectively used for an ischemic injury,
particularly for ischemic-reperfusion injury caused by organ transplantation, etc.
[Brief Description of Drawings]
[0026]
Fig. 1 shows a result of measuring blood urea nitrogen (BUN) and creatine levels 24
hours after ischemic reperfusion.
Fig. 2 shows a result of staining renal tissue with periodic acid-Schiff (PAS) stain
24 hours after ischemic reperfusion.
Fig. 3 shows a result of conducting renal tissue injury scoring 24 hours after ischemic
reperfusion.
Fig. 4 shows a result of staining renal tissue with TUNEL stain 24 hours after ischemic
reperfusion.
Fig. 5 shows a result of measuring TUNEL-positive cells stained with TUNEL stain 24
hours after ischemic reperfusion.
Fig. 6 shows a result of evaluating infiltration of innate immune cells by immunohistologically
staining renal tissue with F4/80 (macrophage maker) and Gr-1 (neutrophil maker) 24
hours after ischemic reperfusion.
Fig. 7 shows a result of measuring F4/80 (macrophage maker)- and Gr-1 (neutrophil
maker)-positive cells in renal tissue 24 hours after ischemic reperfusion.
Figs. 8-10 show inhibited secretion of inflammatory cytokines in renal tissue 24 hours
after ischemic reperfusion.
Fig. 11 shows a procedure of inducing ischemic-reperfusion injury for evaluation of
a flap survival rate.
Fig. 12 shows a result of measuring the flap survival rates of a PEP1-treated group
and a saline-treated group 7 days after induction of ischemic reperfusion.
Fig. 13 shows digital images obtained using the ImageJ program.
[Best Mode]
[0027] The present disclosure can be modified and embodied in various ways. Hereinafter,
the present disclosure will be described in more detail through exemplary embodiments.
However, the following examples are not intended to be limitative of the present disclosure.
Rather, the present disclosure can be variously changed based on the appended claims.
It is to be understood that the present disclosure includes any change, equivalent
or substitute that falls within the technical idea and scope of the present disclosure.
In the description, details of well-known features and techniques may be omitted to
avoid unnecessarily obscuring the presented embodiments.
[0028] Telomere is known as a repetitive sequence of genetic material found at the ends
of chromosomes that prevent chromosomes from damage or merging onto other chromosomes.
The length of the telomere is shortened at each cell division, and after a certain
number of cell division, the telomere length is extremely shortened to the extent
in which the cell stops dividing and dies. On the other hand, the elongation of telomeres
is known to extend the life span of a cell. For an example, cancer cells excrete an
enzyme called telomerase, which prevents shortening of telomeres, thus resulting in
proliferation of cancer cells. The inventors of the present disclosure have identified
that a peptide derived from telomerase is effective in treating and preventing ischemic-reperfusion
injury and have completed the present disclosure.
[0029] In an exemplary embodiment of the present disclosure, a peptide of SEQ ID NO 1, a
peptide which is a fragment of the peptide of SEQ ID NO 1 or a peptide having 80%
or more sequence identity with the peptides includes a peptide derived from telomerase,
specifically human (Homo sapiens) telomerase.
[0030] The peptides disclosed herein may include peptides comprising an amino acid sequence
at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%,
at least 98%, at least 99% of sequence homology with the peptide of SEQ ID NO 1 or
a fragment thereof. Moreover, the peptides disclosed in the present invention may
include peptides having differences from SEQ ID NO: 1 or a fragment thereof in at
least one amino acids, at least 2 amino acids, at least 3 amino acids, at least 4
amino acids, at least 5 amino acids, at least 6 amino acids, or at least 7 amino acids.
[0031] In one embodiment of the present invention, changes in amino acids include modifications
of peptide's physical and chemical characteristics. For example, amino acid modification
can be performed for improving thermal stability of the peptide, altering substrate
specificity, and changing the optimal pH.
[0032] The term "amino acid" herein includes not only the 22 standard amino acids that are
naturally integrated into a peptide but also the D-isomers and modified amino acids.
Therefore, in a specific embodiment of the present invention, a peptide herein includes
a peptide having D-amino acids. On the other hand, a peptide may include non-standard
amino acids such as those that have been post-translationally modified. Examples of
post-translational modification include phosphorylation, glycosylation, acylation(including
acetylation, myristorylation, plamitoylation), alkylation, carboxylation, hydroxylation,
glycation, biotinylation, ubiquitinylation, modification in chemical properties (e.g.
β-removing deimidation, deamidation) and structural modification (e.g. formation of
disulfide bridge). Also, changes of amino acids include the changes of amino acids
that occur due to chemical reaction during the combination process with cross-linkers
for formation of a peptide conjugate, such as changes in an amino group, carboxyl
group or side chain.
[0033] A peptide disclosed herein may be a wild-type peptide that has been identified and
isolated from natural sources. On the other hand, when compared to SEQ ID NO: 1 or
its fragments, the peptides disclosed herein may be artificial variants that comprise
one or more amino acids substituted, deleted and/or inserted. Amino acid alteration
in wild-type polypeptides - not only in artificial variants - comprises protein folding
and/or conservative substitutions of amino acids that do not influence activities
significantly. Examples of conservative substitutions may be within the groups of
basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid
and aspartic acid), polar amino acids (glutamine and asparagines), hydrophobic amino
acids (leucine, isoleucine, valine and methionine), aromatic amino acids (phenylalanine,
tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, and threonine).
The amino acid substitutions that do not generally alter the specific activities are
known in the art. Most common occurring alterations are Ala/Ser, Val/Ile, Asp/Glu,
Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn,
Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly, and the opposite alterations thereof. Other examples
of conservative substitutions are shown in the following table 2.
[TABLE 2]
| Original amino acid |
Examples of residue substitution |
Preferable residue substitution |
| Ala (A) |
val; leu; ile |
Val |
| Arg (R) |
lys; gln; asn |
Lys |
| Asn (N) |
gln; his; asp, lys; arg |
Gln |
| Asp (D) |
glu; asn |
Glu |
| Cys (C) |
ser; ala |
Ser |
| Gln (Q) |
asn; glu |
Asn |
| Glu (E) |
asp; gin |
Asp |
| Gly (G) |
ala |
Ala |
| His (H) |
asn; gln; lys; arg |
Arg |
| Ile (I) |
leu; val; met; ala; phe; norleucine |
Leu |
| Leu (L) |
norleucine; ile ; val; met; ala; phe |
Ile |
| Lys (K) |
arg; gin; asn |
Arg |
| Met (M) |
leu; phe; ile |
Leu |
| Phe (F) |
leu; val; ile; ala; tyr |
Tyr |
| Pro (P) |
ala |
Ala |
| Ser (S) |
thr |
Thr |
| Thr (T) |
ser |
Ser |
| Trp (W) |
tyr; phe |
Tyr |
| Tyr (Y) |
trp; phe ; thr; ser |
Phe |
| Val (V) |
ile; leu; met; phe; ala; norleucine |
Leu |
[0034] The substantial modification of the biological properties of peptides are performed
by selecting significantly different substitution in the following efficacies: (a)
the efficacy in maintaining the structure of the polypeptide backbone in the area
of substitution, such as sheet or helical three-dimensional structures, (b) the efficacy
in maintaining electrical charge or hydrophobicity of the molecule in a target area,
or (c) the efficacy of maintaining the bulk of the side chain. Natural residues are
divided into groups by general side chain properties as the following:
- (1) hydrophobicity: Norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilicity: cys, ser, thr;
- (3) acidity: asp, glu;
- (4) basicity: asn, gin, his, lys arg;
- (5) residue that affects chain orientation: gly, pro; and
- (6) aromaticity: trp, tyr, phe.
[0035] Non-conservative substitutions may be performed by exchanging a member of the above
classes with that of different classes. Any cysteine residues that are not related
to maintaining the proper three-dimensional structure of the peptide can typically
be substituted with serine, thus increasing the oxidative stability of the molecule
and preventing improper cross-linkage. Conversely, improvement of stability can be
achieved by adding cysteine bond(s) to the peptide.
[0036] Another type of amino acid variants of peptides are those having a changed pattern
of peptide glycosylation. The term "change" herein means deletion of at least one
carbohydrate residues that are found in a peptide and/or addition of at least one
glycosylated residues that do not exist within a peptide
[0037] Glycosylation in peptides are typically N-linked or O-linked. The term "N-linked"
herein refers to that carbohydrate residues are attached to the side chain of asparagine
residues. As tripeptide sequences, asparagine-X-serine and asparagine-X-threonine
(wherein the X is any amino acid except proline) are a recognition sequence for attaching
a carbohydrate residue enzymatically to the side chain of asparagine. Therefore, with
the presence of one of these tripeptide sequences in a polypeptide, the potential
glycosylation sites are created. "O-linked glycosylation" means attaching one of sugar
N-acetylgalactosamine, galactose, or xylose to hydroxyl amino acids. The hydroxyl
amino acids are most typically serine or threonine, but 5-hydroxyproline or 5-hydroxylysine
can be used.
[0038] Addition of glycosylation site to a peptide is conveniently performed by changing
an amino acid sequence to contain the tripeptide sequence mentioned above (for N-linked
glycosylation sites). These changes may be made by addition of at least one serine
or threonine residues to the first peptide sequence, or by substitution with those
residues (for O-linked glycosylation sites).
[0039] In the present disclosure, "ischemic injury" refers to a damage occurring as a result
of restriction in blood supply and hence shortage of oxygen supply to organs requiring
blood supply such as the heart, brain, kidneys, etc., which can lead to dysfunction
of tissues and cell death. The cause of an ischemic injury includes vascular disease,
coronary thrombosis, cerebrovascular thrombosis, aneurysm rupture, systemic hemorrhage,
crush injury, sepsis, severe skin burn, vascular ligation surgery (e.g., spinal ischemia
during thoracoabdominal aneurysm surgery), cardiopulmonary bypass, organ transplantation,
cardiopulmonary collapse (sudden cardiac death), suffocation, etc., but is not limited
thereto.
[0040] In the present disclosure, the "ischemic injury" also includes ischemic-reperfusion
injury that may occur, for example, during organ transplantation. The ischemic-reperfusion
injury includes cerebrovascular ischemic-reperfusion injury, renal ischemic-reperfusion
injury, hepatic ischemic-reperfusion injury, ischemic-reperfusion cardiomyopathy,
ischemic-reperfusion skin injury, gastrointestinal ischemic-reperfusion injury, intestinal
ischemic-reperfusion injury, gastric ischemic-reperfusion injury, ischemic-reperfusion
lung injury, pancreatic ischemic-reperfusion injury, ischemic-reperfusion skeletal
muscle injury, ischemic-reperfusion abdominal muscle injury, ischemic-reperfusion
limb injury, ischemic-reperfusion colitis, mesenteric ischemic-reperfusion injury,
asymptomatic ischemic-reperfusion injury, etc., but is not limited thereto.
[0041] The ischemic-reperfusion injury can occur frequently during organ transplantation.
For example, it is known that gradual functional loss and dysfunction of a transplanted
kidney is associated with ischemic-reperfusion injury and the activation of the innate
immune system by the ischemic reperfusion tissue injury is one of the important causes.
[0042] The peptide having a sequence of SEQ ID NO 1, the peptide which is a fragment of
the peptide having the sequence of SEQ ID NO 1 or the peptide having 80% or more sequence
identity with the peptide according to the present disclosure are advantageous in
that they exhibit a high in-vivo stability because of low toxicity. The peptide of
SEQ ID NO 1 is derived from telomerase and consists of 16 amino acids.
[0043] The peptide described in SEQ ID NO: 1 is same as the following table 1. The "name"
in Table 1 below was used for distinction of peptides. In one aspect, the peptide
of SEQ ID NO:1 is the entire peptide of a human telomerase. In a different specific
embodiment of the present invention, the peptide having a sequence of SEQ ID NO 1,
the peptide which is a fragment of the peptide having the sequence of SEQ ID NO 1
or the peptide having 80% or more sequence identity with the peptide according to
the present disclosure includes "synthetic peptides" synthesized by selecting and
synthesizing a peptide corresponding to the pertinent position within the telomerase.
SEQ ID NO: 2 is the amino acid sequence of the entire telomerase.
[0044] In an aspect, the present disclosure provides a composition for treating and preventing
an ischemic injury, containing a peptide comprising an amino acid sequence of SEQ
ID NO 1, a peptide having 80% or more sequence identity with the amino acid sequence
or a peptide which is a fragment thereof as an active ingredient.
[0045] In one embodiment of the present invention, the composition may contain 0.1 µg/mg
to 1 mg/mg, specifically 1 µg/mg to 0.5 mg/mg, more specifically 10 µg/mg to 0.1 mg/mg
of a peptide comprising amino acid sequence of at least one of SEQ ID NO: 1, a peptide
comprising a amino acid sequence at least 80% sequence homology with the above-mentioned
sequences, or a fragment of the above-mentioned peptides. When the peptide is contained
in the above-mentioned ranges, both of safety and stability of the composition can
be satisfied and the ranges are appropriate in terms of cost-effectiveness.
[0046] In one embodiment of the present invention, the composition may have applications
with all animals including human, dog, chicken, pig, cow, sheep, guinea pig, and monkey.
[0047] In an exemplary embodiment, the present disclosure provides a pharmaceutical composition
for treating and preventing ischemic-reperfusion injury, containing a peptide comprising
an amino acid sequence of SEQ ID NO 1, a peptide having 80% or more sequence identity
with the amino acid sequence or a peptide which is a fragment thereof as an active
ingredient.
[0048] In one embodiment of the present invention, the pharmaceutical composition may be
administered through oral, rectal, transdermal, intravenous, intramuscular, intraperitoneal,
in the bone marrow, epidural or subcutaneous routes.
[0049] Forms of oral administration may be, but not limited to, tablets, pills, soft or
hard capsules, granules, powders, solution, or emulsion. Forms of non-oral administration
can be, but not limited to, injections, drips, lotions, ointments, gels, creams, suspensions,
emulsions, suppository, patch, or spray.
[0050] In one embodiment of the present invention, the pharmaceutical composition, if necessary,
may contain additives, such as diluents, excipients, lubricants, binders, disintegrants,
buffers, dispersants, surfactants, coloring agents, aromatics or sweeteners. In one
embodiment of the present invention, the pharmaceutical composition may be manufactured
by conventional methods of the industry in the art.
[0051] In one embodiment of the present invention, the dose of the active ingredient of
the medical composition may vary according to the patient's age, sex, weight, pathology
and state, administration route, or prescriber's judgment. Dosage based on these factors
may be determined within levels of those skilled in the art, and the daily dose, for
example, may be, but not limited to, 0.1 µg / kg / day to 1 g / kg / day, specifically
1 µg / kg / day to 10 mg / kg / day, more specifically the 10 µg / kg / day to 1 mg
/ kg / day, more specifically the 50 µg / kg / day to 100 µg / kg / day. In one embodiment
of the present invention, the pharmaceutical composition may be administered, but
not limited to, 1 to 3 times a day.
[0052] In an exemplary embodiment, the present disclosure provides a food composition for
treating and preventing ischemic-reperfusion injury, containing a peptide comprising
an amino acid sequence of SEQ ID NO 1, a peptide having 80% or more sequence identity
with the amino acid sequence or a peptide which is a fragment thereof as an active
ingredient.
[0053] In one embodiment of the present invention, food composition is not limited to specific
forms, but, for example, may be tablets, granules, powder, liquid, and solid forms.
Each form may be formed with ingredients commonly used in the industry appropriately
chosen by those skilled in the art, in addition to the active ingredient, and may
produce a synergic effect in combination of other ingredients.
[0054] Decision for dosage on the above-mentioned active ingredient is within the level
of those skilled in the art, and daily dosage, for example, may be 1 µg / kg / day
to 10 mg / kg / day, more specifically the 10 µg / kg / day to 1 mg / kg / day, more
specifically the 50 µg / kg / day to 100 µg / kg / day, but not limited to these numbers
and can vary according to age, health status, complications and other various factors.
[0055] The terms used herein is intended to be used to describe the embodiments, not to
limit the present invention. Terms without numbers in front are not to limit the quantity
but to show that there may be more than one thing of the term used. The terms "comprising",
"having", "including" and "containing" shall be interpreted openly (i.e. "including
but not limited to").
[0056] Mention of a numerical range is used instead of stating separate numbers within the
range, so unless it is explicitly stated, the range should be construed as if all
the numbers within the range are separately described herein. The end values of all
the ranges are included in the range and can be combined independently.
[0057] Unless otherwise noted or clearly contradicting in context, all methods mentioned
herein can be performed in a proper order. The use of any one embodiment and all embodiment,
or exemplary language (e.g., "such as", "like ∼"), unless included in the claims,
is used to more clearly describe the present invention, not to limit the scope of
the present invention. Any language herein outside of the claims should not be interpreted
as a necessity of the present invention. Unless defined otherwise, technical and scientific
terms used herein have meanings ordinarily understood by a person skilled in the art
that the present invention belongs to.
[0058] The preferred embodiments of the present invention include the best mode known to
the inventors to perform the present invention. Variations in the preferred embodiments
can become clear to those skilled in the art after reading the statements above. The
present inventors hope that those skilled in the art can use the variations adequately
and present invention be conducted in other ways than listed herein. Thus, the present
invention, as allowed by the patent law, includes equivalents, modifications and variations
thereof, of the key points of the invention stated in the appended claims. In addition,
all possible variations within any combination of the above-mentioned components are
included in the present invention, unless explicitly stated otherwise or contradicting
in context. Although the present invention is described and shown by exemplary embodiments,
those skilled in the art will understand well that there can be various changes in
the form and details without departing from the spirit of the invention and range,
defined by the claims below.
[0059] In the following examples, the effect of a peptide having a sequence of SEQ ID NO
1 (PEP 1) of preventing and treating an ischemic injury was investigated b administering
the peptide to ischemic-reperfusion injury portions induced by renal and rectus abdominis
myocutaneous flaps and confirming the effect of inhibiting renal injury and improving
flap survivability.
[0060] Hereinafter, the present disclosure will be described in detail through examples
and test examples. However, the following examples and test examples are for illustrative
purposes only and it will be apparent to those of ordinary skill in the art that the
scope of the present disclosure is not limited by the examples and test examples.
[Mode for Invention]
Example 1: Synthesis of peptide
[0061] The peptide of SEQ ID NO: 1 was synthesized according to the conventionally known
method of solid phase peptide synthesis. More specifically, the peptide was synthesized
by coupling each amino acid from C-terminus through Fmoc solid phase peptide synthesis,
SPPS, using ASP48S (Peptron, Inc., Daejeon ROK). Those peptides with their first amino
acid at the C-terminus being attached to a resin were used as follows:
NH
2-Lys(Boc)-2-chloro-Trityl Resin
NH
2-Ala-2-chloro-Trityl Resin
NH
2-Arg(Pbf)-2-chloro-Trityl Resin
[0062] All the amino acids to synthesize the peptide were protected by Fmoc at the N-terminus,
and the amino acid residues were protected by Trt, Boc, t-Bu (t-butylester), Pbf (2,2,4,6,7-pentamethyl
dihydro-benzofuran-5-sulfonyl) that can be dissolved in an acid. Examples include
the followings:
Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Pro-OH, Fmoc-Leu-OH, Fmoc-Ile-OH,
Fmoc-Phe-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Gln(Trt)-OH,
Fmoc-Trp(Boc)-OH, Fmoc-Met-OH, Fmoc-Asn(Trt)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ahx-OH, Trt-Mercaptoacetic
acid.
[0063] HBTU[2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetamethylaminium hexafluorophosphate] / HOBt
[N-Hydroxybenzotriazole] /NMM [4-Methylmorpholine] were used as the coupling reagents.
Piperidine in 20% DMF was used to remove Fmoc. In order to remove the protection from
residues or to separate the synthesized peptides from Resin, cleavage cocktail [TFA
(trifluoroacetic acid) /TIS (triisopropylsilane) / EDT (ethanedithiol) / H
2O=92.5/2.5/2.5/2.5] was used.
[0064] The peptide synthesis was performed by using solid phase scaffoled with the repetition
of the following processes: starting with the amino acid protection, separate reaction
of each amino acid, washing with solvents, and deprotection. Each peptide was synthesized
by using the solid phase scaffold combined to starting amino acid with the amino acid
protection, reacting the corresponding amino acids separately, washing with a solvent
and deprotected, and repeating the processes. Upon the release from the resin, the
synthesized peptides were purified by HPLC, validated by Mass Spectrometry, and freeze-dried,
and verify for synthesis by MS, and then freeze-dried.
[0065] The purity of the prepared peptide was found to be 95% or higher by high-performance
liquid chromatography.
[0066] Specific peptide synthesis process is described as the following based on the synthesis
process of PEP 1 which has SEQ ID: NO. 1.
- 1) Coupling
The amino acid (8 equivalent) protected with NH2-Lys(Boc)-2-chloro-Trityl Resin, and coupling agent HBTU(8 equivalent)/HOBt(8 equivalent.)/NMM(16
equivalent) melted in DMF were mixed together, and incubated at room temperature (RT)
for 2 hr. Following the incubation, the reaction mixture was subjected to the sequential
washes of DMF, MeOH, and DMF.
- 2) Fmoc deprotection
Piperidine in 20% DMF was added and incubated at RT for 5 minutes 2 times, then sequentially
washed with DMF, MeOH, and DMF.
- 3) Making the basic framework of peptide, NH2-E(OtBu)-A-R(Pbf)-P-A-L-L-T(tBu)-S(tBu)-R(Pbf)L-R(Pbf)-F-I-P-K(Boc)-2-chloro-Trityl
Resin) by repeating the above mentioned-reactions 1) and 2).
- 4) Cleavage: Cleavage Cocktail was added to the completely synthesized peptide, thus
separating the synthesized peptide from the resin.
- 5) Pre-chilled diethyl ether was added into the obtained mixture, and then centrifugation
was used to precipitate gathered peptide.
- 6) After purification by Prep-HPLC, the molecular weight was confirmed by LC/MS and
lyophilized to produce in a powder form.
Example 2: Confirmation of PEP1's effect of inhibiting renal injury in renal ischemic-reperfusion
injury model
Test Example 1: Induction of ischemic reperfusion
[0067] A renal ischemic-reperfusion injury mouse model was established by inducing ischemic
reperfusion by bilaterally clamping renal pedicles for 30 minutes and restoring blood
flow 30 minutes later by removing the clamps. Test groups were divided into an administered
group (PEP 1), a control group (PBS without PEP 1), and a sham group (no bilateral
clamping). PEP 1 was subcutaneously injected at a concentration of 1000 nmol/kg 30
minutes before and 12 hours after the induction of ischemic reperfusion.
[0068] C57BL/6 mouse (8 weeks old; Charles River Laboratories, Wilmington, MA) was used
to induce renal ischemic-reperfusion injury. After blocking blood flow by clamping
the renal pedicles with vascular forceps and inducing ischemia for 28 minutes, reperfusion
was performed.
[0069] The peptide PEP 1 was diluted in PBS to a concentration of 1000 nmol/kg and intraperitoneally
(i.p.) injected twice 30 minutes before and 12 hours after the ischemic reperfusion.
The test was conducted for the administered group (PEP 1), the control group (PBS),
and the sham group (no ischemic reperfusion).
Test Example 2: PEP 1's effect of preventing IRI-induced renal failure
[0070] Blood was taken 24 hours after the ischemic reperfusion and the levels of blood urea
nitrogen (BUN) and creatine as renal toxicity markers were measured. Renal tissue
was taken and prepared into paraffin blocks for immunohistochemical and histological
studies. Then, proteins were extracted and the levels of cytokines were measured.
The concentrations of creatine and BUN were measured using an autoanalyzer (Technicon
RA-1000; Bayer, Tarrytown, NY).
[0071] As a result, the PEP 1-administered group showed significantly decreased BUN and
creatine levels as compared to the PBS control group (Fig. 1).
Test Example 3: PEP 1's effect of preventing renal tissue injury
[0072] Renal tissue was stained with periodic acid-Schiff (PAS) stain according to the protocol
of the manufacturer (Polysciences, Inc., Warrington, PA, USA) 24 hours after the ischemic
reperfusion. After the staining, renal tissue injury was evaluated through renal tissue
injury scoring. The PEP 1-administered group showed remarkably decreased renal tissue
injury as compared to the PBS control group (Fig. 2 and Fig. 3).
Test Example 4: Effect of inhibiting renal apoptosis
[0073] Renal apoptosis was evaluated by staining renal tissue with TUNEL stain 24 hours
after the ischemic reperfusion. Renal paraffin sections were stained with TUNEL using
a TUNEL staining kit (Roche Applied Science, Indianapolis, IN, USA).
[0074] As a result, the PEP 1-administered group showed remarkably decreased TUNEL-positive
cells as compared to the PBS control group, indicating that PEP 1 inhibits the cell
death of the renal tissue (Fig. 4 and Fig. 5).
Test Example 5: Effect of inhibiting filtration of innate immune cells in renal tissue
[0075] Infiltration of innate immune cells was evaluated by immunohistologically staining
renal tissue with F4/80 (macrophage maker) and Gr-1 (neutrophil maker) 24 hours after
the ischemic reperfusion. Specifically, macrophage-specific antibody (F4/80; Abcam,
Cambridge, MA) was used to immunochemically stain infiltrating macrophages and neutrophils
in paraffin sections.
[0076] The PEP 1-administered group showed remarkably decreased infiltration of macrophages
and neutrophils into renal tissue as compared to the PBS control group (Fig. 6 and
Fig. 7).
Test Example 6: Effect of inhibiting secretion of inflammatory cytokines
[0077] Protein was extracted from renal tissue 24 hours after the ischemic reperfusion and
the levels of IL-6, MCP-1 and TNF-α were measured according to the cytometric bead
array method. Mouse IL-6, MCP-1, TNF-α ELISA kits were purchased from R&D Systems
and the test was conducted according to the manufacturer's protocol.
[0078] As a result, the PEP 1-administered group showed significantly decreased IL-6 and
MCP-1 levels as compared to PBS control group, whereas no significant difference was
observed for TNF-α (Figs. 8-10).
[0079] As described above, the PEP 1's effect of preventing renal ischemic-reperfusion injury
was evaluated by testing renal failure (BUN and creatine), renal tissue injury (tubular
injury), renal apoptosis, immune cell infiltration and secretion of cytokines in renal
tissue.
[0080] The PBS control group showed increased serum BUN and creatine levels and increased
renal tissue injury as compared to the sham group. In contrast, the PEP 1-administered
group showed significantly decreased BUN and creatine levels and decreased renal tissue
injury and renal apoptosis as compared to the control group. Also, the PEP 1-administered
group showed inhibited infiltration of inflammatory cells (neutrophils and macrophages)
and significantly inhibited secretion of inflammatory cytokines (interleukin-6 and
monocyte chemotactic protein-1) in the kidneys as compared to the PBS control group.
Example 3: PEP 1's effect of improving rectus abdominis myocutaneous flap survivability
in ischemic-reperfusion injury model
Test Example 1: Induction of ischemic reperfusion
[0081] A rat model of ischemic-reperfusion injury was established by acquiring 5 cm x 5
cm skin flaps from the abdomen of Sprague-Dawley rats (weighing 180-230 g), administering
PEP1 or saline, inducing local ischemia through clamping and then restoring blood
flow 7 hours later by removing the clamps (see Fig. 11).
[0082] Test groups were divided into an administered group (PEP 1), a control group (PBS
without PEP 1), and a sham group (no ischemic-reperfusion injury induced). PEP 1 (10
mg/500 µL) or PBS (500 µL) was intramuscularly injected 30 minutes before and 1, 2,
3, 4, 5 and 7 days after the induction of ischemic reperfusion.
Test Example 2: PEP1's effect of improving flap survivability
[0083] Flap survivability was measured 7 days after the induction of ischemic reperfusion.
The flap survival rate was measured through analysis of digital images using the imageJ
program.
[0084] As a result, the flap survival rate of the PBS-treated group was 34.69% ± 16.44%
and the PEP1-treated group showed improved flap survival rate of 58.88% ± 11.44% (see
Fig. 12). A statistical significance (p < 0.05) was found between the groups.