(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

23.03.2016 Bulletin 2016/12

(51) Int Cl.:

G04C 5/00 (2006.01)

(21) Numéro de dépôt: 14185638.5

(22) Date de dépôt: 19.09.2014

(84) Etats contractants désignés:

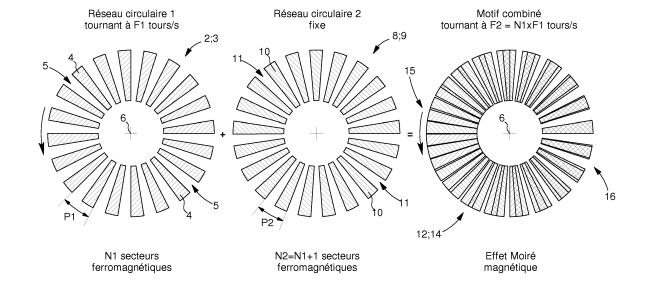
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

(71) Demandeur: The Swatch Group Research and Development Ltd.
2074 Marin (CH)

(72) Inventeur: Di Domenico, Gianni 2000 Neuchâtel (CH)


(74) Mandataire: Surmely, Gérard et al ICB Ingénieurs Conseils en Brevets Faubourg de l'Hôpital 3 2001 Neuchâtel (CH)

(54) Echappement magnétique horloger et dispositif régulateur de la marche d'un mouvement horloger

(57) L'échappement magnétique horloger (12), respectivement le dispositif régulateur comportant un tel échappement comprennent un premier réseau circulaire (3) formé de N1 lignes magnétiques (4) et un deuxième réseau circulaire (9) formé de N2 lignes magnétiques (10), le nombre N2 étant différent du nombre N1. Les premier et deuxième réseaux sont superposés de manière à définir un motif combiné (14) présentant un effet Moiré magnétique. Le motif combiné est couplé magnétiquement à au moins un aimant d'un résonateur pour

cadencer la marche d'un mouvement horloger mécanique. La première structure magnétique est portée par une roue d'échappement et peut tourner relativement à la deuxième structure magnétique fixe avec une fréquence angulaire F1. Le motif combiné tourne avec une fréquence angulaire F2 supérieure et égale à la fréquence angulaire F1 multipliée par le nombre N1 et divisée par le nombre ΔN égal à ce nombre N1 moins le nombre N2, soit F2=F1 ·N1/ ΔN .

Fig. 1

25

30

40

45

Description

Domaine technique

[0001] La présente invention concerne le domaine des dispositifs régulateurs de la marche d'un mouvement horloger. En particulier, la présente invention concerne les échappements horlogers du type magnétique dont les fonctions usuelles sont l'entretien d'un mode de résonance d'un résonateur, notamment une oscillation ou une rotation continue d'une partie inertielle de ce résonateur, et le cadencement d'un rouage compteur. Dans le cadre de la présente invention, l'échappement magnétique assure ces deux fonctions au moyen d'une roue d'échappement comprenant une structure magnétique, laquelle est couplée magnétiquement à au moins un aimant porté par une partie du résonateur subissant le mouvement de résonance.

1

Arrière-plan technologique

[0002] Les dispositifs de régulation de la vitesse d'une roue, nommé aussi rotor, par un couplage magnétique, aussi nommé accouplement magnétique, sont connus depuis de nombreuses années. L'application horlogère est aussi connue. De nombreuses demandes de brevet relatives à ce domaine ont été déposées par la société Horstmann Clifford Magnetics pour des inventions de C. F. Clifford. On citera notamment les documents FR 1.113.932 et US 2,946,183. Il est aussi connu du modèle d'utilité japonais JPS 5263453U (demande No JP19750149018U) un échappement magnétique du même type avec un couplage magnétique direct entre un résonateur et une roue d'échappement formée par un disque supportant deux pistes magnétiques annulaires coaxiales. Ces deux pistes sont sensiblement contiguës et comprennent chacune des zones magnétiques formées par des plaquettes individuelles en matériau à haute perméabilité magnétique qui sont agencées régulièrement avec une période angulaire donnée, les plaquettes de la première piste étant décalées ou déphasées d'une demi-période relativement aux plaquettes de la seconde piste. Entre les plaquettes sont prévues des zones amagnétiques, c'est-à-dire des zones à faible perméabilité magnétique. On obtient ainsi des zones à haute perméabilité magnétique distribuées alternativement d'un côté et de l'autre d'un cercle correspondant à la position de repos (position zéro) d'au moins un aimant porté par l'extrémité d'une branche d'un résonateur du type diapason. L'aimant du résonateur est couplé magnétiquement à ces deux pistes déphasées de sorte qu'il est alternativement attiré par les zones magnétiques de la première piste et de la deuxième piste. La roue d'échappement tourne ainsi avec une vitesse de rotation telle qu'elle avance d'une période angulaire des deux pistes à chaque oscillation du résonateur. La roue d'échappement fournit l'énergie nécessaire à l'entretien de l'oscillation de la branche du résonateur portant

l'aimant de couplage magnétique et ce résonateur commande ou règle la vitesse de rotation de cette roue d'échappement, laquelle est proportionnelle à la fréquence de résonance. On a donc un échappement magnétique associé à un résonateur qui forment ensemble un dispositif régulateur de la marche d'un rouage compteur d'un mouvement horloger.

[0003] On remarquera que les dispositifs régulateurs du type magnétique mentionnés précédemment sont prévus dans l'art antérieur pour des résonateurs ayant un seul degré de liberté pour chaque partie subissant un mouvement de résonance. En général, on agence le résonateur de manière que l'aimant, porté par un organe subissant un mouvement de résonance, oscille selon une direction sensiblement radiale, c'est à-dire sensiblement orthogonale aux deux pistes magnétiques annulaires. Dans ce cas, les réalisations mentionnées de l'art antérieur présentent l'avantage d'avoir une réduction de fréquence entre la fréquence de l'oscillation du résonateur et la fréquence de rotation (en tours /s) de la roue d'échappement portant la structure magnétique. Aucun mobile pivoté ne tourne ou n'oscille à une fréquence de l'ordre de grandeur de la fréquence de résonance. Le facteur de réduction est donné par le nombre de périodes angulaires des pistes magnétiques annulaires.

[0004] Dans le cas de ces résonateurs à un seul degré de liberté, l'avantage susmentionné, découlant d'une réduction de fréquence entre l'oscillation du résonateur et la rotation de la roue d'échappement, a un corolaire qui pose un problème pour la force du couplage magnétique. En effet, pour augmenter la réduction de fréquence il est nécessaire d'augmenter le nombre de périodes des pistes magnétiques. Pour un diamètre donné de la roue d'échappement, une augmentation du nombre de périodes a pour conséquence une diminution de surface des zones magnétiques des pistes annulaires. Comme l'aimant du résonateur s'étend sur une distance angulaire inférieure à une demi-période des pistes annulaires, les dimensions de cet aimant doivent aussi diminuer lorsque la réduction de fréquence augmente. On comprend donc que la force d'interaction magnétique entre le résonateur et la roue d'échappement diminue; ce qui limite le couple pouvant être appliqué à la roue d'échappement et augmente donc le risque de perte de la synchronisation entre ce résonateur et cette roue d'échappement. Par synchronisation, on comprend ici une relation proportionnelle déterminée entre la fréquence de résonance et la fréquence de rotation de la roue d'échappement.

[0005] On remarquera finalement que des dispositifs régulateurs horlogers du type magnétique comprenant un résonateur à deux degrés de liberté, en particulier un résonateur dont la partie inertielle a une trajectoire en translation décrivant sensiblement un cercle, en tournant continument dans un même sens, ne sont pas connus. Un besoin de concevoir des échappements du type magnétique pour de tels résonateurs à deux degrés de liberté, avec une réduction au niveau du couplage magnétique, existe toutefois dans le domaine de l'horloge-

rie. Ce besoin paraît même crucial lorsque le résonateur fonctionne avec une relativement haute fréquence de résonance, par exemple des résonateurs dont l'organe résonant tourne à une fréquence supérieure à dix tours par seconde (10 tours /s = 10Hz). En effet, un couplage mécanique, qui consisterait à relier un tel organe résonant à un mobile, aurait pour conséquence d'entraîner en rotation ce mobile à la fréquence de résonance. Un mobile pivoté à une fréquence de rotation supérieure à cinq ou six tours par seconde pose un problème majeur de perte d'énergie par frottement et un problème d'usure au niveau des paliers.

Résumé de l'invention

[0006] La présente invention a pour but de répondre aux besoins identifiés dans le domaine des dispositifs régulateurs horlogers, en particulier pour les résonateurs à deux degrés de liberté avec un mouvement de résonance circulaire, et de trouver une solution au problème lié à la faible interaction magnétique dans le cas des résonateurs à un seul degré de liberté associé à un échappement magnétique connu présentant une grande réduction de fréquence.

[0007] A cet effet, la présente invention a pour objet un échappement magnétique équipant un mouvement horloger mécanique et comprenant une roue d'échappement entraînée par un dispositif moteur et associée à un résonateur de ce mouvement horloger mécanique, cette roue d'échappement comprenant une première structure magnétique définissant, dans une plage radiale non nulle de cette roue d'échappement, un premier motif périodique avec une première période angulaire P1 telle que 360°/P1 est égal à un premier nombre entier N1, l'échappement magnétique comprenant au moins un aimant monté sur le résonateur et couplé magnétiquement à la roue d'échappement de manière que, lorsque le mouvement horloger mécanique fonctionne, cet aimant présente un mouvement de résonance périodique à une fréquence de résonance et que la roue d'échappement tourne avec une fréquence proportionnelle à cette fréquence de résonance. L'échappement magnétique comprend en outre une deuxième structure magnétique parallèle à la première structure magnétique et définissant, dans ladite plage radiale, un deuxième motif périodique ayant une deuxième période angulaire P2 telle que 360°/P2 est égal à un deuxième nombre entier N2 différent du nombre entier N1, la différence en valeur absolue |∆N| entre les nombres N1 et N2 étant un nombre inférieur ou égal à N/2, soit $|\Delta N| \le N/2$, N étant le nombre inférieur des nombres N1 et N2. Les première et deuxième structures magnétiques sont agencées de manière que, lorsque le mouvement horloger fonctionne, la première structure magnétique a une rotation relativement à la deuxième structure magnétique à une première fréquence angulaire relative F1_{rel}. Le premier motif périodique et le deuxième motif périodique sont sélectionnés de manière qu'ils génèrent dans ladite plage radiale, en projection

sur une surface géométrique parallèle aux première et deuxième structures magnétiques, un motif combiné définissant en alternance au moins le nombre $|\Delta N|$ de première(s) zone(s) avec une première proportion de surface magnétique et au moins ce nombre $|\Delta N|$ de deuxième(s) zone(s) avec une deuxième proportion de surface magnétique qui est inférieure à la première proportion, et que le motif combiné tourne relativement à la deuxième structure magnétique avec une deuxième fréquence angulaire relative F2_{rel} égale à la première fréquence angulaire relative F1_{rel} multipliée par le nombre N1 et divisée par la différence ΔN entre les nombres N1 et N2, soit F2_{rel} = F1_{rel}·N1 / ΔN où ΔN = N1-N2.

[0008] On comprend par fréquence angulaire le nombre de tours par seconde, correspondant à l'inverse de la période temporelle du mouvement périodique.

[0009] Dans une variante préférée, l'aimant présente un axe d'aimantation perpendiculaire à la surface géométrique dudit motif combiné.

[0010] Dans un mode de réalisation préféré, le motif combiné définit un motif combiné périodique présentant en alternance le nombre $|\Delta N|$ de première(s) zones et ce nombre $|\Delta N|$ de deuxième(s) zones, une quelconque première zone et une deuxième zone adjacente définissant une période angulaire P3 de ce motif combiné périodique dont la valeur est égale à 360° divisé par le nombre $|\Delta N|$, soit P3 = 360 ° $/|\Delta N|$.

[0011] Dans un mode de réalisation perfectionné, l'échappement magnétique selon l'invention comprend un deuxième aimant monté sur le résonateur et supporté par ladite partie résonnante ou par une autre partie résonnante du résonateur. Ce deuxième aimant est agencé relativement au premier aimant de l'autre côté des première et deuxième structures magnétiques, de manière qu'il est aligné avec le premier aimant selon une direction sensiblement parallèle à l'axe de rotation et qu'il présente un mouvement de résonance périodique semblable à celui du premier aimant à la fréquence de résonance.

40 **[0012]** Dans une première variante, le deuxième aimant à un axe d'aimantation parallèle à celui du premier aimant et de sens opposé. Dans une deuxième variante, le deuxième aimant à un axe d'aimantation parallèle à celui du premier aimant et de même sens.

[0013] Dans une variante avantageuse du mode de réalisation perfectionné, l'échappement magnétique comprend une troisième structure magnétique définissant un motif périodique sensiblement identique au motif périodique défini par la première ou deuxième structure magnétique et superposé à celui-ci, cette troisième structure périodique étant solidaire en rotation avec cette première ou deuxième structure magnétique, dans le cas où cette dernière subit une rotation. Les deux structures magnétiques ayant un même motif périodique sont situées respectivement d'un côté et de l'autre de la structure magnétique présentant un motif périodique différent. [0014] Dans une variante avantageuse, la deuxième structure magnétique est fixe relativement au mouve-

45

20

35

40

45

50

55

ment horloger, la première fréquence angulaire relative F1_{rel} définissant la fréquence angulaire de la roue d'échappement relativement à ce mouvement horloger. [0015] La présente invention concerne également un premier dispositif régulateur de la marche d'un mouvement horloger comprenant un échappement magnétique selon l'invention et un résonateur dont une partie résonnante supportant ledit aimant subit, lors du fonctionnement du mouvement horloger, une oscillation selon un degré de liberté. Le résonateur est agencé de manière que le centre de l'aimant dans sa position de repos est sensiblement situé, pour toute position angulaire de la roue d'échappement, sur un cercle de position zéro qui est centré sur l'axe de rotation de la roue d'échappement et qui est traversé par le degré de liberté de la partie résonante du résonateur. Le motif combiné périodique défini par l'échappement magnétique est situé d'un premier côté du cercle de position zéro projeté perpendiculairement dans la surface géométrique, la région annulaire des première et deuxième structures magnétiques, définie par ladite plage radiale, étant couplée magnétiquement à l'aimant dans une première alternance de chaque période de ladite oscillation de manière que, pour chaque période de cette oscillation, le motif combiné périodique tourne d'une distance angulaire égale à sa période angulaire P3.

[0016] Dans un mode de réalisation préféré du premier dispositif régulateur, le motif combiné périodique est un premier motif combiné périodique et la plage radiale est une première plage radiale, les première et deuxième structures magnétiques définissant respectivement, dans une deuxième plage radiale non nulle de la roue d'échappement située de l'autre côté du cercle de position zéro relativement à la première plage radiale, un troisième motif périodique et un quatrième motif périodique qui génèrent un deuxième motif combiné périodique présentant en alternance le nombre $|\Delta N|$ de troisième(s) zone(s), avec une troisième proportion de surface magnétique supérieure à ladite deuxième proportion, et ce nombre |∆N| de quatrième(s) zone(s) avec une quatrième proportion de surface magnétique qui est inférieure aux première et troisième proportions, ce deuxième motif combiné périodique ayant ladite période angulaire P3. Le deuxième motif combiné périodique est décalé angulairement de la moitié d'une période angulaire P3 relativement au premier motif combiné périodique, ce deuxième motif combiné périodique tournant également avec la fréquence angulaire relative F2_{rel} du premier motif combiné périodique, la région annulaire des première et deuxième structures magnétiques, définie par la deuxième plage radiale, étant couplée magnétiquement à l'aimant dans une deuxième alternance de chaque période de ladite oscillation.

[0017] Dans une variante particulière, les premier et deuxième motifs combinés périodiques sont sensiblement contigus.

[0018] La présente invention concerne également un deuxième dispositif régulateur de la marche d'un mou-

vement horloger comprenant un échappement magnétique selon l'invention et un résonateur ayant une partie résonnante supportant ledit aimant, ce résonateur étant agencé de manière que cette partie résonante est soumise à une force de rappel radiale relativement à l'axe de rotation de la roue d'échappement lorsque le centre de l'aimant s'éloigne de cet axe de rotation, et de manière que le centre de cet aimant décrive sensiblement un cercle, centré sur ledit axe de rotation, à une fréquence angulaire de résonance lorsqu'il est éloigné de cet axe de rotation et que cet aimant est entraîné en rotation avec un couple sensiblement constant. La région annulaire des première et deuxième structures magnétiques, définie par ladite plage radiale, est couplée magnétiquement à l'aimant de manière que cet aimant est entraîné en rotation par un couple d'interaction magnétique résultant du motif combiné tournant lorsqu'un couple moteur, dans une plage utile du couple moteur, est fourni à la roue d'échappement, la fréquence angulaire du motif combiné étant asservie à la fréquence angulaire de résonance dans cette plage utile du couple, laquelle est sélectionnée de manière que le couple d'interaction magnétique reste inférieur à un couple d'interaction magnétique maximal et que le cercle décrit par le centre de l'aimant a un rayon compris dans la plage radiale pour tout couple moteur de cette plage utile.

[0019] Dans une variante préférée, le résonateur est agencé et la plage utile du couple moteur sélectionnée de manière que l'aimant soit entièrement superposé au motif combiné pour tout couple moteur de cette plage utile.

[0020] D'autres caractéristiques particulières de l'invention seront exposées ci-après dans la description détaillée de l'invention.

Brève description des dessins

[0021] L'invention sera décrite ci-après à l'aide de dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

- La Figure 1 représente schématiquement en plan deux structures magnétiques intervenant dans un premier mode de réalisation d'un échappement magnétique selon l'invention et leur superposition pour former ce premier mode de réalisation;
- La Figure 2 représente schématiquement en plan deux structures magnétiques intervenant dans un deuxième mode de réalisation d'un échappement magnétique selon l'invention et leur superposition pour former ce deuxième mode de réalisation;
- La Figures 3A et 3B montrent, en coupe partielle, un échappement magnétique selon l'invention respectivement dans une première position d'un aimant de cet échappement magnétique et dans une deuxième position de cet aimant;

- La Figure 3C montre un graphe schématique de la variation d'énergie potentielle magnétique de l'échappement magnétique représenté aux Figures 3A et 3B;
- La Figure 4 représente schématiquement un premier mode de réalisation d'un premier dispositif régulateur selon l'invention;
- La Figure 5 représente schématiquement, en coupe, un deuxième mode de réalisation du premier dispositif régulateur selon l'invention;
- La Figure 6 montre deux coupes partielles et un graphe, respectivement similaires à ceux des Figures 3A, 3B et 3C, relatives à un troisième mode de réalisation d'un échappement magnétique selon l'invention;
- La Figure 7 montre deux coupes partielles et un graphe, respectivement similaires à ceux des Figures 3A, 3B et 3C, relatives à un quatrième mode de réalisation d'un échappement magnétique selon l'invention;
- La Figure 8 représente schématiquement, en coupe, un troisième mode de réalisation du premier dispositif régulateur selon l'invention;
- La Figure 9 représente schématiquement une variante de réalisation du dispositif régulateur de la Figure 8;
- La Figure 10 représente schématiquement, en plan, un premier mode de réalisation d'un deuxième dispositif régulateur selon l'invention;
- La Figure 11 représente schématiquement une variante de réalisation du dispositif régulateur de la Figure 10; et
- La Figure 12 représente schématiquement, en coupe, un deuxième mode de réalisation du deuxième dispositif régulateur selon l'invention.

Description détaillée de l'invention

[0022] A la Figure 1 est montré partiellement la construction d'un premier mode de réalisation d'un échappement magnétique 12 équipant un mouvement horloger mécanique et comprenant une roue d'échappement formée d'une première structure magnétique 2 définissant, dans une surface annulaire, un premier réseau circulaire 3 ayant un premier nombre entier N1 (N1= 20 dans l'exemple représenté) de lignes 4 en matériau magnétique séparées par des lignes 5 définies par du vide ou une matière sensiblement amagnétique. Ce premier réseau circulaire a ainsi une première période angulaire

P1 égale à 360°/ N1. L'échappement magnétique 12 comprend en outre une deuxième structure magnétique 8 définissant un deuxième réseau circulaire 9 ayant un deuxième nombre entier N2, différent du nombre N1, (N2=21 dans l'exemple représenté) de lignes 10 en matériau magnétique séparées par des lignes 11 définies par du vide ou une matière sensiblement amagnétique. Ce deuxième réseau circulaire a ainsi une deuxième période angulaire P2 égale à 360°/N2. Dans la variante particulière représentée, les lignes 4 s'étendent sensiblement sur la moitié de la première période angulaire P1 et les lignes 10 s'étendent sensiblement sur la moitié de la deuxième période angulaire P2. Par matériau magnétique, on comprend un matériau à haute perméabilité magnétique, en particulier un matériau ferromagnétique. [0023] La différence en valeur absolue |∆N| entre les nombres N1 et N2 est ici égale un (|AN| = 1). De manière générale, il est prévu que la différence en valeur absolue |∆N| entre les nombres N1 et N2 est inférieure ou égale à N/2, soit $|\Delta N| \le N/2$, N étant le nombre inférieur des nombres N1 et N2. Dans une variante préférée, il est prévu que le nombre |\Delta N| soit inférieur ou égal à N/3, soit $|\Delta N| \le N/3$.

[0024] Les premier et deuxième réseaux circulaires sont montés de manière parallèle à relativement faible distance l'un de l'autre. Ils sont agencés de manière que, lorsque le mouvement horloger fonctionne, le premier réseau a une rotation relativement au deuxième réseau, autour de l'axe de rotation 6 de la roue d'échappement, à une première fréquence angulaire F1. Dans l'exemple donné, la deuxième structure magnétique est fixe relativement au mouvement horloger de sorte que la fréquence F1 est celle du premier réseau circulaire dans le mouvement horloger (définissant un référentiel fixe). Les premier et deuxième réseaux circulaires génèrent dans une surface annulaire (ayant donc une plage radiale non nulle), en projection dans un plan géométrique parallèle à ces réseaux circulaires, un motif combiné 14 définissant une première zone 15 avec une forte proportion de surface magnétique et une deuxième zone 16 avec une moindre proportion de surface magnétique. Ce qui est remarquable, c'est que le motif combiné 14 tourne avec une deuxième fréquence angulaire F2 qui est en valeur absolue N1 fois supérieure à la première fréquence angulaire F1 pour le cas particulier de l'exemple donné où le nombre $|\Delta N|$ = 1. Ainsi, avec un premier réseau circulaire 3 ayant vingt lignes, comme représenté à la Figure 1, le motif combiné tourne vingt fois plus vite que ce réseau 3. On remarquera que la densité de surface magnétique dans le motif combiné varie sensiblement linéairement entre 50% et 100%. Par proportion de surface magnétique, on comprend le rapport entre les surfaces définies par le matériau magnétique des premier et deuxième réseaux circulaires dans une zone donnée du motif combiné et la surface totale de cette zone.

[0025] Par analogie à l'effet Moiré optique, la génération du motif combiné avec des zones ayant différentes proportions de surface magnétique est considérée ici

40

20

25

30

40

45

50

55

comme un effet Moiré magnétique. De manière générale, en prévoyant une différence de lignes $|\Delta N|$ entre les deux réseaux, |\(\Delta N \)| étant la différence en valeur absolue entre le nombre N1 et le nombre N2, on obtient en alternance un nombre |∆N| de première(s) zone(s) avec une première proportion de surface magnétique et un nombre $|\Delta N|$ de deuxième(s) zone(s) avec une deuxième proportion de surface magnétique qui est inférieure à la première proportion. Le motif combiné tourne avec une deuxième fréquence angulaire F2 égale à la première fréquence angulaire F1 multipliée par le nombre N1 et divisée par la différence ∆N = N1-N2, soit F2 = F1·N1 /∆N. Dans le cadre de la présente invention, la première structure magnétique forme une roue d'échappement. On notera que le nombre ΔN peut être positif ou négatif. Dans le cas où il est positif, le motif combiné tourne dans le même sens que la roue d'échappement. Dans le cas où le nombre ΔN est négatif, le motif combiné tourne dans le sens inverse à celui de la roue d'échappement; ce qui correspond mathématiquement à une fréquence négative. L'échappement magnétique 12 comprend encore au moins un aimant fixé au résonateur et couplé aux premier et deuxième réseaux circulaires, comme ceci sera exposé par la suite.

[0026] A la Figure 2, un échappement magnétique 24 selon un deuxième mode de réalisation est représenté partiellement. Le premier réseau circulaire 3 est similaire à celui de la Figure 1, mais il s'étend sur une distance radiale supérieure. La deuxième structure magnétique 18 forme deux réseaux circulaires concentriques 19 et 20 qui s'étendent dans des surfaces annulaires contiguës respectives. Ces deux réseaux ont un même nombre N2 de lignes magnétiques 21 et 22, séparées par des lignes définies par du vide ou une matière sensiblement amagnétique, et ont donc une même période P2. Ils sont décalés angulairement d'une demi-période P2/2 et présentent ainsi un déphasage de 180°. Dans cet exemple, N2 = N1+2. En superposant les deux structures magnétiques 2 et 18, on obtient, en projection dans un plan géométrique parallèle, un premier motif combiné 25 qui s'étend dans une surface annulaire extérieure et un deuxième motif combiné 26 qui s'étend dans une surface annulaire intérieure. Ces deux motifs combinés sont contigus et tournent ensemble à la deuxième fréquence angulaire F2, soit F2 = (F1·N1) / (-2). Comme le nombre $|\Delta N|$ = 2, chaque motif combiné présente en alternance deux zones avec une forte proportion de surface magnétique et deux zones avec une plus faible proportion de surface magnétique.

[0027] Etant donné le déphasage entre des réseaux circulaires 19 et 20, les deux motifs combinés 24 et 26 ont également un déphasage de 180°. De manière générale, l'alternance de zones avec une forte proportion de surface magnétique et de zones avec une moindre proportion de surface magnétique définit un motif combiné périodique ayant une période angulaire P3 dont la valeur est égale à 360° divisé par la valeur absolue de la différence |ΔN| entre les nombres N1 et N2, soit P3 =

360° / |\Dans l'exemple de la Figure 2, les deux motifs combinés 25 et 26 ont chacun une période P3 = 360°/2 = 180°. On remarquera que la réalisation de la Figure 2 est un cas particulier avec un seul réseau circulaire sur la roue d'échappement qui s'étend dans une surface annulaire correspondante aux deux surfaces annulaires concentriques des deux réseaux circulaires de la deuxième structure magnétique. Dans une variante, la première structure magnétique comporte aussi deux réseaux circulaires distincts et de même période P1. Par exemple, ces deux réseaux circulaires ont un décalage angulaire de P1 / 4 et les deux réseaux circulaires de la deuxième structure magnétique ont un décalage angulaire de P2 / 4. On remarguera encore que, dans une variante, les deux réseaux circulaires de la première structure magnétique ont des périodes différentes P1 et P2 et également ceux de la deuxième structure magnétique, en inversant les périodes P1 et P2 entre les deux structures magnétiques.

[0028] Comme montré aux Figures 3A et 3B, l'échappement magnétique 24 comprend au moins un aimant 32 monté sur le résonateur et couplé magnétiquement aux deux structures magnétiques superposées de manière que, lorsque le mouvement horloger mécanique fonctionne, cet aimant présente un mouvement de résonance périodique à une fréquence de résonance. Selon l'invention, l'aimant en interaction magnétique avec les deux structures magnétiques subit un mouvement qui est associé avec le motif combiné résultant, lequel peut tourner beaucoup plus vite que la roue d'échappement. Aux Figures 3A et 3B est représenté partiellement en coupe l'interaction magnétique d'un aimant 32 avec les deux réseaux circulaires 3 et 19 de la Figure 2. L'aimant présente un axe d'aimantation perpendiculaire à la surface géométrique du motif combiné. A la Figure 3A, l'aimant est situé au-dessus d'une première zone du motif combiné ayant une forte proportion de surface magnétique. Dans cette première zone, les deux réseaux sont décalés angulairement de sorte qu'ils forment ensemble un chemin magnétique relativement continu pour les lignes de champ 34A de l'aimant ; ce qui a pour conséquence de diminuer la réluctance magnétique pour l'aimant. A la Figure 3B, l'aimant est situé au-dessus d'une deuxième zone du motif combiné ayant une moindre proportion de surface magnétique. Dans cette deuxième zone, les deux réseaux sont sensiblement superposés de sorte que le chemin magnétique pour l'aimant dans ces réseaux est interrompu par les espaces vides ou formés d'un matériau amagnétique prévus entre les lignes magnétiques. On comprend que les lignes de champ 34B de l'aimant au niveau des deux réseaux doit traverser les espaces vides ou régions amagnétique. La réluctance magnétique est donc augmentée relativement à la situation de la Figure 3A. Il résulte de cette variation de réluctance magnétique une variation de l'énergie potentielle magnétique E_{pot} qui est montrée par le graphe 36 à la Figure 3C. Cette variation de l'énergie potentielle magnétique E_{pot} engendre une force sur

20

25

40

45

50

l'aimant permettant de l'entraîner en rotation et/ou d'entretenir un mouvement de résonance en utilisant deux pistes magnétiques annulaires concentriques.

[0029] A la Figure 4 est représenté un premier mode de réalisation d'un dispositif régulateur 40 selon un premier type. Ce dispositif régulateur comprend un échappement magnétique 24 tel que décrit à la Figure 2. Les deux structures magnétiques superposées 2 et 18 engendrent deux motifs combinés périodiques 25 et 26, déphasés de 180°, comme indiqué précédemment. Le résonateur 42 est formé par un diapason à deux branches 43 et 44. Aux extrémités libres de ces deux branches sont respectivement fixés deux aimants 46 et 48 avec une aimantation axiale. Dans leur position de repos, les centres des deux aimants sont situés sur un cercle 50, définissant un cercle de position zéro. Ce cercle 50 est choisi de manière qu'il est confondu avec le cercle séparant les deux motifs combinés contigus. De manière similaire aux dispositifs mentionnés dans l'arrière-plan technologique, les deux motifs combinés forment deux pistes magnétiques avec une variation périodique de l'énergie potentielle de l'oscillateur, formé du diapason 42 et de l'échappement magnétique. Chaque aimant oscille selon un degré de liberté sensiblement radial. Il est attiré alternativement par les zones de faible réluctance magnétique des deux pistes magnétiques. Au-dessus de chaque piste, les aimants accumulent de l'énergie potentielle magnétique et freinent la roue d'échappement. En traversant le cercle de position zéro, ils recoivent chacun une impulsion servant à entretenir la résonance étant donné qu'ils expérimentent un saut de potentiel magnétique grâce au décalage angulaire des deux motifs combinés périodiques 25 et 26. Ainsi, dans un référentiel tournant lié à la roue d'échappement, les aimants suivent une trajectoire 50 correspondant à une oscillation selon le degré de liberté de chaque aimant.

[0030] Concernant le rapport de réduction entre la fréquence d'oscillation F_{osc} du diapason et la fréquence de rotation F1 de la roue d'échappement portant la première structure magnétique (dans le cas où la deuxième structure magnétique ne tourne pas), on a d'une part la fréquence de rotation F2 des motifs combinés 25 et 26 qui est égale F1·N1 / Δ N (Δ N étant la différence entre N1 et N2). D'autre part, la fréquence d'oscillation Fosc est égale à F2·AN. On obtient une relation $F_{osc} = F2 \cdot \Delta N = F1 \cdot N1$ quel que soit ∆N. Ainsi, le rapport de réduction est indépendant du nombre AN. On peut tirer avantage de ce fait en sélectionnant ΔN petit, notamment $|\Delta N| = 2$ ou 4. L'invention est remarquable car on peut avoir des motifs combinés périodiques avec une relativement grande période pour un grand rapport de réduction, et permettre ainsi d'utiliser des aimants de grandes dimensions ayant une relativement grande zone d'interaction magnétique avec les structures magnétiques définissant les motifs combinés, sans nécessiter une diminution du rapport de réduction. Pour que les aimants du diapason oscillent de manière symétrique par rapport à l'axe de rotation 6, le nombre ΔN est un nombre pair. A la Figure 4, $\Delta N = -2$.

[0031] A la Figure 5 est représenté un deuxième mode de réalisation d'un dispositif régulateur 60 selon l'invention comprenant un échappement magnétique 24A formé par une première structure magnétique 2 définissant le premier réseau circulaire 3, cette structure 2 étant montée sur un arbre et tournant autour d'un axe de rotation L'échappement magnétique est formé en outre par une deuxième structure magnétique 18 définissant deux réseaux circulaires déphasés comme exposé ci-avant en relation avec les Figures 2 et 4. Ce deuxième mode de réalisation se distingue du précédent par le fait que la partie résonnante 68 du résonateur 70 comprend deux aimants 32 et 62 agencés respectivement des deux côtés des deux structures magnétiques et formant l'échappement magnétique 24A. Une telle configuration résout un problème du premier mode de réalisation par le fait que, dans la mesure où les deux structures magnétiques sont sensiblement situées à égale distance des aimants respectifs qui leur font face, les forces d'attraction axiales sur les deux aimants par les structures magnétiques se compensent mutuellement en majeure partie. Il en va de même pour les forces d'attraction exercées par les deux aimants sur l'ensemble des deux structures magnétiaues.

[0032] Les deux aimants sont fixés aux extrémités d'un organe amagnétique ayant une forme en U. Le résonateur est représenté avec un ressort schématique. La partie résonnante 68 peut par exemple être fixée à une extrémité libre d'un diapason. Le fonctionnement est similaire à celui du premier mode de réalisation. Chaque aimant est couplé magnétiquement aux réseaux circulaires de la manière exposée précédemment. Ils sont alignés axialement de manière à être tous deux à la perpendiculaire du cercle de position zéro. La structure 18 est fixe et supportée par un disque 66 formé d'un matériau amagnétique. Un évidement latéral est prévu dans ce disque pour permettre à la partie résonnante 68 de passer sous la structure 18. On remarquera que dans la variante montrée, les structures magnétiques 2 et 18 présentent chacune une partie annulaire intérieure et une partie annulaire extérieure qui relient les lignes des réseaux circulaires 3, 19 et 20.

[0033] Dans la variante représentée, les deux aimants ont une aimantation axiale de sens opposé. Cette configuration est avantageuse car elle permet d'amplifier l'interaction magnétique comme on peut le voir à la Figure 6. La première image (∆x=0) est une coupe similaire à celle de la Figure 3B alors que la seconde image ($\Delta x=0.5$ -P3) est une coupe similaire à celle de la Figure 3A. Dans la seconde image, comme les deux réseaux circulaires superposés font substantiellement écran entre les deux aimants, l'interaction magnétique est en première approximation environ égale au double de celle pour le cas d'un seul aimant. Par contre, dans la première image, les deux aimants se repoussent dans les espaces vides entre les lignes magnétiques. Cette force de répulsion augmente l'énergie potentielle magnétique Epot. La courbe 74 de E_{pot} a un profil semblable à celui de la courbe

20

25

30

40

45

50

36 de la Figure 3C. Cependant, une simulation informatique a permis d'établir que l'amplitude de la courbe périodique 74 est a priori d'un ordre de grandeur supérieur à l'amplitude de la courbe périodique 36.

[0034] Dans une variante représentée à la Figure 7, les deux aimants ont une aimantation axiale de même sens. Les lignes des réseaux circulaires sont prévues ici plus épaisses. On observe sur le graphe de l'énergie potentielle magnétique que la courbe 76 de E_{pot} est à l'inverse de la courbe 74. En effet, étant donné que dans cette variante le flux magnétique entre les deux aimants est sensiblement canalisé axialement, une zone de forte proportion de surface magnétique d'un motif combiné présente une plus grande réluctance magnétique pour les deux aimants que dans le cas où ils sont en face d'une zone de moindre proportion de surface magnétique. L'amplitude de la courbe périodique 76 est a priori dans la configuration représentée environ la moitié de celle de la courbe périodique 74.

[0035] Un troisième mode de réalisation d'un dispositif régulateur 80 du premier type est représenté à la Figure 8. Les éléments communs avec la réalisation de la Figure 5 ne seront pas décrits à nouveau en détail. Le dispositif régulateur comprend un résonateur 70 et un échappement magnétique 24B formé par une première structure magnétique 2A, définissant un premier réseau circulaire semblable au réseau 3 de la Figure 2, et par une deuxième structure magnétique 18A définissant deux réseaux circulaires concentriques correspondant aux réseaux 19 et 20 de la Figure 2. On notera que, dans le présent cas, ce sont les deux réseaux circulaires concentriques qui forment la roue d'échappement et qui tournent autour de l'axe 6, la structure 2A étant montée fixe dans le mouvement horloger. Ce troisième mode de réalisation se distingue essentiellement du précédent en ce qu'il comprend une troisième structure magnétique 82 définissant un quatrième réseau circulaire qui s'étend, comme le premier réseau, dans une surface annulaire comprenant les deuxième et troisième réseaux déphasés de la structure 18A. Cette troisième structure est solidaire de la première structure 2A, le quatrième réseau circulaire étant identique au premier réseau circulaire et leurs lignes magnétiques sont superposées axialement (pas de décalage angulaire entre les deux réseaux). Les premier et quatrième réseaux étant respectivement situés d'un côté et de l'autre de la structure magnétique 18A formant les deuxième et troisième réseaux.

[0036] La structure magnétique 18A comprend une partie annulaire centrale qui est continue. Entre les deuxième et troisième réseaux est prévue une partie intermédiaire annulaire qui est continue, de préférence en matériau magnétique. De plus, on a également prévu une partie périphérique annulaire continue. Les trois parties annulaires continues permettent d'avoir une structure magnétique 18A en une seule pièce avec les lignes magnétiques des deux réseaux fixées aux deux extrémités. Pour que les zones annulaires continues ne perturbent pas le fonctionnement de l'échappement magné-

tique, on prévoit que les réseaux circulaires s'étendent sur une longueur radiale sensiblement supérieure à celle des aimants oscillant. Cette structure 18A est prise dans un moyeu amagnétique 86 monté sur l'arbre de la roue d'échappement. Les deux structures fixes 2A et 82 comprennent respectivement deux parties périphériques annulaires continues qui sont reliées par une entretoise amagnétique 84. Ce mode de réalisation résout un problème restant dans le deuxième mode de réalisation. En effet, les deux structures magnétiques superposées sont attirées l'une vers l'autre à cause du flux magnétique des aimants. Grâce à la superposition des trois structures magnétiques, ces forces d'attraction s'annulent en majeure partie si la structure magnétique intermédiaire est située sensiblement au milieu des deux autres. On remarquera que diverses variantes sont envisageables. Dans une première variante, les deux réseaux déphasés concentriques sont prévus dans les première et troisième structures magnétiques alors que la deuxième structure magnétique forme un seul réseau circulaire étendu. Dans une autre variante, il est prévu que les première et troisième structures extérieures sont montées sur l'arbre de la roue d'échappement et sont solidaires en rotation, alors que la deuxième structure intermédiaire est montée fixement dans le mouvement horloger.

[0037] On décrira rapidement une variante de réalisation à l'aide de la Figure 9. Ce dispositif régulateur 90 se distingue par le fait que l'échappement magnétique 24C comprend deux structures magnétiques 2B et 82A, situées de part et d'autre d'une roue d'échappement, qui sont reliées au mouvement horloger par deux supports amagnétiques 94 et 96 centraux respectivement fixés dans deux ponts 95 et 97, et par le fait que les deux réseaux circulaires intermédiaires 19 et 20 sont doublés et agencés des deux côtés d'un disque amagnétique 92 formant la roue d'échappement.

[0038] Un premier mode de réalisation d'un deuxième dispositif régulateur de la marche d'un mouvement horloger sera décrit à l'aide de la Figure 10. Le dispositif régulateur 100 comprend un échappement magnétique 12 tel que décrit à l'aide de la Figure 1, à la seule différence que les réseaux circulaires superposés ont plus de lignes magnétiques et donc une moindre période angulaire. Toutefois, comme à la Figure 1, la différence de lignes magnétiques $|\Delta N|$ est égale à un ($|\Delta N|$ = 1). Une roue d'échappement (non représentée entièrement) porte l'une des deux structures magnétiques formant le motif combiné 14 et tourne autour de l'axe central 6 des réseaux circulaires définis par ces deux structures magnétiques. Le dispositif régulateur comprend en outre un résonateur 102 dont une partie résonante comprend un aimant 104. Ce résonateur a deux degrés de liberté avec un mode de résonance dans lequel l'aimant 104 suit sensiblement une trajectoire circulaire avec une fréquence angulaire de résonance, sans tourner sur lui-même. A cet effet, ce résonateur est agencé de manière que, lorsque le centre de l'aimant s'éloigne de l'axe de rotation 6, sa partie résonante est soumise à une force de rappel

20

25

40

45

radiale relativement à l'axe de rotation 6, cette force de rappel étant de préférence angulairement isotrope et radialement linéaire pour que le dispositif régulateur soit isochrone. Ainsi, le résonateur est agencé de manière que le centre de l'aimant 104 suit sensiblement une trajectoire circulaire, centrée sur l'axe de rotation, avec une fréquence angulaire de résonance F_{res} lorsqu'il est éloigné de cet axe de rotation et que cet aimant est entraîné en rotation avec un couple sensiblement constant. On remarquera que la trajectoire peut aussi être elliptique dans ce système sans nuire à l'isochronisme. Dans ce dernier cas, on veillera à ce que l'aimant reste au moins en partie superposé au motif combiné qui est formé par les réseaux magnétiques circulaires superposés. Un tel résonateur est représenté schématiquement à la Figure 10 par un aimant 104 relié à deux ressorts 106 et 108 qui sont orthogonaux et qui ont sensiblement un même coefficient d'élasticité, ces deux ressorts étant montés respectivement sur les supports 110 et 112 qui glissent sans frottement respectivement dans deux rails orthogonaux 114 et 116 ; ce qui est schématisé par des chariots à roulettes qui n'ont théoriquement pas d'inertie. La somme vectorielle des forces radiales des ressorts génère une force de rappel (force centripète) permettant à la partie inertielle du résonateur de suivre une trajectoire sensiblement circulaire ou elliptique.

[0039] Ensuite, la région annulaire des première et deuxième structures magnétiques, définissant le motif combiné 14 avec une première zone 15 ayant une forte proportion de surface magnétique et une deuxième zone 16 ayant une moindre proportion de surface magnétique, est couplée magnétiquement à l'aimant 104 de manière que cet aimant est entraîné en rotation par un couple d'interaction magnétique résultant du motif combiné tournant à la fréquence angulaire ω. Le motif combiné tourne lorsqu'un couple moteur, dans une plage utile du couple moteur, est fourni à la roue d'échappement, la fréquence angulaire du motif combiné ω étant asservie à la fréquence angulaire de résonance F_{res} dans cette plage utile du couple, cette dernière étant sélectionnée de manière que le couple d'interaction magnétique susmentionné reste inférieur à un couple d'interaction magnétique maximal et que ledit cercle décrit par ledit centre du l'aimant a un rayon compris dans la plage radiale du motif combiné 14 pour tout couple moteur de cette plage utile. L'interaction magnétique dans ce résonateur a pour effet de synchroniser la fréquence angulaire ω de la roue d'échappement à la fréquence de résonance F_{res} du résonateur. Le motif combiné 14 engendre une variation de l'énergie potentielle E_{pot} dans le résonateur, en fonction de la position angulaire relative de l'aimant et de ce motif combiné, entre une énergie minimale lorsque l'aimant est au-dessus de première zone 15 et une énergie maximale lorsqu'il est au-dessus de la deuxième zone 16. Le gradient angulaire de cette énergie potentielle engendre une force d'entraînement tangentielle sur l'aimant. Pour éviter une perte de la synchronisation, on veillera à ce que le couple de freinage exercé par l'aimant sur la roue d'échappement reste inférieur au couple maximal d'interaction magnétique dépendant de la valeur maximale du gradient de l'énergie potentielle $\mathsf{E}_{\mathsf{pot}}$.

[0040] Dans une variante préférée, le résonateur est agencé et la plage utile du couple moteur sélectionnée de manière que l'aimant 104 soit entièrement superposé au motif combiné 14 pour tout couple moteur de cette plage utile.

[0041] La Figure 11 montre une variante de réalisation du dispositif régulateur de la Figure 10. Les éléments déjà décrits ci-avant ne le seront à nouveau. Cette variante se distingue de la précédente par le fait que l'échappement magnétique 24A est formé par deux réseaux circulaires superposés avec une différence en valeur absolue |ΔN| entre leurs nombres de lignes magnétiques respectives égal à deux, soit $|\Delta N| = 2$, de manière similaire à la réalisation de l'un des deux motifs combinés de la Figure 2. Ainsi, le motif combiné 25A présente en alternance deux zones 15A ayant une forte proportion de surface magnétique et deux zones 16A ayant une moindre proportion de surface magnétique. Etant donné que la différence d'énergie potentielle magnétique entre les valeurs extrêmes est sensiblement égale à celle de la variante précédente, mais que cette différence intervient sur une plage angulaire deux fois plus petite, la force magnétique maximale d'interaction magnétique est sensiblement deux fois plus forte. Par contre, le rapport entre la fréquence angulaire du motif combiné 25A et la fréquence de rotation de la roue d'échappement portant l'un des deux réseaux magnétiques circulaires est égale à la moitié du rapport de la variante précédente. Ainsi, la plage utile du couple moteur est augmentée mais le rapport de multiplication entre la fréquence de la roue d'échappement et la fréquence de résonance est diminué. On remarquera que l'aimant 104 présente un décalage angulaire α inférieur à 90° et en particulier inférieur à 45°, ce décalage angulaire variant en fonction du couple résultant de l'interaction magnétique entre l'aimant 104 et le motif combiné 25A.

[0042] La Figure 12 représente schématiquement un deuxième mode de réalisation du deuxième dispositif régulateur selon l'invention. Ce dispositif régulateur 130 est une réalisation particulière implémentant les caractéristiques physiques mentionnées dans la description précédente du premier mode de réalisation. Le résonateur 132 est formé par une barrette 134 élastiquement déformable selon deux degrés de liberté définissant sensiblement une portion de sphère, cette barrette étant encastrée dans un socle 136. Cette barrette porte à son extrémité libre un aimant 104A. L'échappement magnétique 12A est similaire à celui décrit aux Figures 2 et 10. Il comprend une première structure magnétique 2A, formant un premier réseau circulaire 3A dont les lignes magnétiques 4A s'étendent dans une première surface tronconique, et une deuxième structure magnétique 8A, formant un deuxième réseau circulaire 9A dont les lignes magnétiques 10A s'étendent dans une deuxième surface tronconique parallèle à la première surface tronconique.

55

20

25

30

35

40

On obtient comme déjà décrit un motif combiné 14A semblable au motif combiné 14 mentionné précédemment. La première structure magnétique 2A est montée sur un arbre 138 qui est guidé en rotation par deux roulements à billes agencés dans un pont 142. La deuxième structure magnétique est fixe et agencée sur un support amagnétique 146. La structure 2A comprend une partie annulaire intérieure continue qui relie les lignes magnétiques 4A et la structure 8A comprend une partie annulaire extérieure continue qui relie les lignes magnétiques 10A. A une extrémité de l'arbre 138 est prévue une partie tronconique 140 formant une butée circulaire centrale pour l'aimant 104A, cette butée étant agencée pour qu'au moins la majeure partie de cet aimant demeure superposée au motif combiné 14A lorsqu'aucun couple moteur n'est fourni à la roue d'échappement formée ici par la première structure magnétique 2A, l'arbre 138 et un pignon 144. Ce pignon est associé à un rouage de comptage d'un mouvement horloger mécanique au travers duquel il reçoit un couple moteur fourni par un dispositif moteur (non représentés).

[0043] Finalement, de manière générale, l'invention concerne un mouvement horloger mécanique comprenant un dispositif régulateur, un rouage compteur cadencé par ce dispositif régulateur et un dispositif moteur entraînant le rouage compteur et entretenant un mode de résonance du dispositif régulateur. Ce mouvement horloger est caractérisé par le fait qu'il comprend un échappement magnétique selon l'invention ou un dispositif régulateur selon l'invention.

Revendications

Echappement magnétique équipant un mouvement horloger mécanique et comprenant une roue d'échappement entraînée par un dispositif moteur et associée à un résonateur de ce mouvement horloger mécanique, cette roue d'échappement comprenant une première structure magnétique définissant, dans une plage radiale non nulle de cette roue d'échappement, un premier motif périodique avec une première période angulaire P1 telle que 360°/ P1 est égal à un premier nombre entier N1, l'échappement magnétique comprenant au moins un aimant monté sur le résonateur et couplé magnétiquement à la roue d'échappement de manière que, lorsque le mouvement horloger mécanique fonctionne, cet aimant présente un mouvement de résonance périodique à une fréquence de résonance et que la roue d'échappement tourne avec une fréquence proportionnelle à cette fréquence de résonance ; caractérisé en ce que l'échappement magnétique comprend une deuxième structure magnétique parallèle à la première structure magnétique et définissant, dans ladite plage radiale, un deuxième motif périodique ayant une deuxième période angulaire P2 telle que 360°/P2 est égal à un deuxième nombre

entier N2 différent du nombre entier N1, la différence en valeur absolue |\Delta N| entre les nombres N1 et N2 étant un nombre inférieur ou égal à N/2, soit |∆N| <= N/2, N étant le nombre inférieur des nombres N1 et N2 ; en ce que les première et deuxième structures magnétiques sont agencées de manière que, lorsque le mouvement horloger fonctionne, la première structure magnétique a une rotation relativement à la deuxième structure magnétique à une première fréquence angulaire relative F1 _{rel} ; et **en ce que** le premier motif périodique et le deuxième motif périodique sont sélectionnés de manière qu'ils génèrent dans ladite plage radiale, en projection sur une surface géométrique parallèle aux première et deuxième structures magnétiques, un motif combiné définissant en alternance au moins ledit nombre $|\Delta N|$ de première(s) zone(s) avec une première proportion de surface magnétique et au moins ce nombre |ΔN| de deuxième(s) zone(s) avec une deuxième proportion de surface magnétique qui est inférieure à ladite première proportion, et que le motif combiné tourne relativement à la deuxième structure magnétique avec une deuxième fréquence angulaire relative F2_{rel} égale à ladite première fréquence angulaire relative F1_{rel} multipliée par ledit nombre N1 et divisée par la différence ΔN entre les nombres N1 et N2, soit $F2_{rei} = F1_{rel} \cdot N1 / \Delta N$ où $\Delta N = N 1 - N2$.

- Echappement magnétique selon la revendication 1, caractérisé en ce que ledit aimant présente un axe d'aimantation perpendiculaire à ladite surface géométrique dudit motif combiné.
- 3. Echappement magnétique selon la revendication 1 ou 2, caractérisé en ce que ledit motif combiné définit un motif combiné périodique présentant en alternance ledit nombre |ΔN| de première(s) zones et ce nombre |ΔN| de deuxième(s) zones, une quelconque première zone et une deuxième zone adjacente définissant une période angulaire P3 de ce motif combiné périodique dont la valeur est égale à 360° divisé par le nombre |ΔN|; soit P3 = 360° / |ΔN|.
- 4. Echappement magnétique selon la revendication 3, caractérisé en ce que ledit premier motif forme un premier réseau circulaire avec des lignes en matériau magnétique séparées par des lignes définies par du vide ou une matière sensiblement amagnétique, et ledit deuxième motif forme un deuxième réseau circulaire également avec des lignes en matériau magnétique séparées par des lignes définies par du vide ou une matière sensiblement amagnétique.
- 55 5. Echappement magnétique selon la revendication 4, caractérisé en ce que lesdites lignes en matériau magnétique dudit premier réseau circulaire s'étendent sensiblement sur la moitié de ladite première

10

15

20

25

30

35

40

45

50

55

période angulaire P1 et lesdites lignes en matériau magnétique dudit deuxième réseau circulaire s'étendent sensiblement sur la moitié de ladite deuxième période angulaire P2.

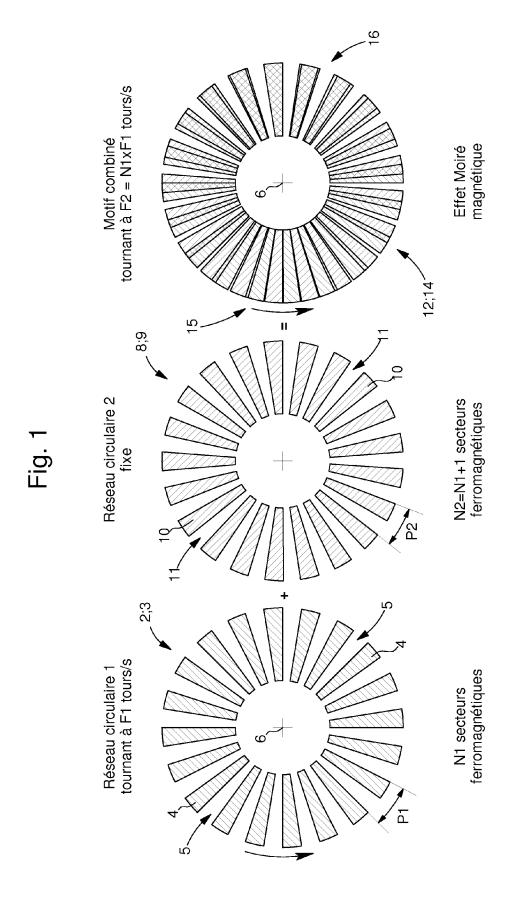
- Dispositif régulateur de la marche d'un mouvement horloger comprenant un échappement magnétique selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il comprend un résonateur dont une partie résonnante supportant ledit aimant subit, lors du fonctionnement du mouvement horloger, une oscillation selon un degré de liberté ; en ce que le résonateur est agencé de manière que le centre dudit aimant dans sa position de repos soit sensiblement situé, pour toute position angulaire de la roue d'échappement, sur un cercle de position zéro qui est centré sur l'axe de rotation de la roue d'échappement et qui est traversé par ledit degré de liberté de ladite partie résonante du résonateur ; et en ce que ledit motif combiné périodique est situé d'un premier côté du cercle de position zéro projeté perpendiculairement dans ladite surface géométrique, la région annulaire des première et deuxième structures magnétiques, définie par ladite plage radiale, étant couplée magnétiquement audit aimant dans une première alternance de chaque période de ladite oscillation de manière que, pour chaque période de cette oscillation, le motif combiné périodique tourne d'une distance angulaire égale à sa période angulaire P3.
- 7. Dispositif régulateur selon la revendication 6, ledit motif combiné périodique étant un premier motif combiné périodique et ladite plage radiale étant une première plage radiale ; caractérisé en ce que les première et deuxième structures magnétiques définissent respectivement, dans une deuxième plage radiale non nulle de la roue d'échappement située de l'autre côté dudit cercle de position zéro relativement à la première plage radiale, un troisième motif périodique et un quatrième motif périodique qui génèrent un deuxième motif combiné périodique présentant en alternance ledit nombre |ΔN| de troisième(s) zone(s), avec une troisième proportion de surface magnétique supérieure à ladite deuxième proportion, et ce nombre $|\Delta N|$ de quatrième(s) zone(s) avec une quatrième proportion de surface magnétique qui est inférieure aux première et troisième proportions, ce deuxième motif combiné périodique ayant ladite période angulaire P3 ; et en ce que le deuxième motif combiné périodique est décalé angulairement de la moitié d'une période angulaire P3 relativement au premier motif combiné périodique, ce deuxième motif combiné périodique tournant également avec ladite deuxième fréquence angulaire relative F2_{rel}, la région annulaire des première et deuxième structures magnétiques, définie par ladite deuxième plage radiale, étant couplée magnétique-

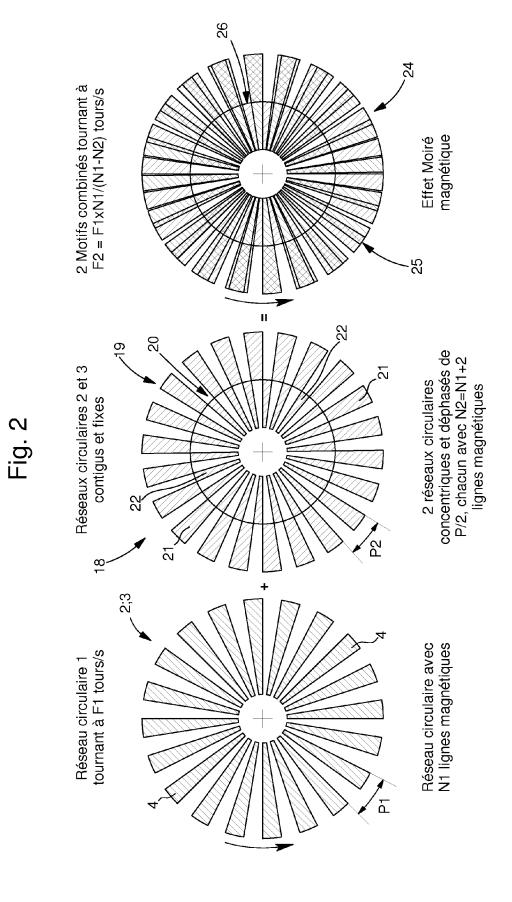
ment audit aimant dans une deuxième alternance de chaque période de ladite oscillation.

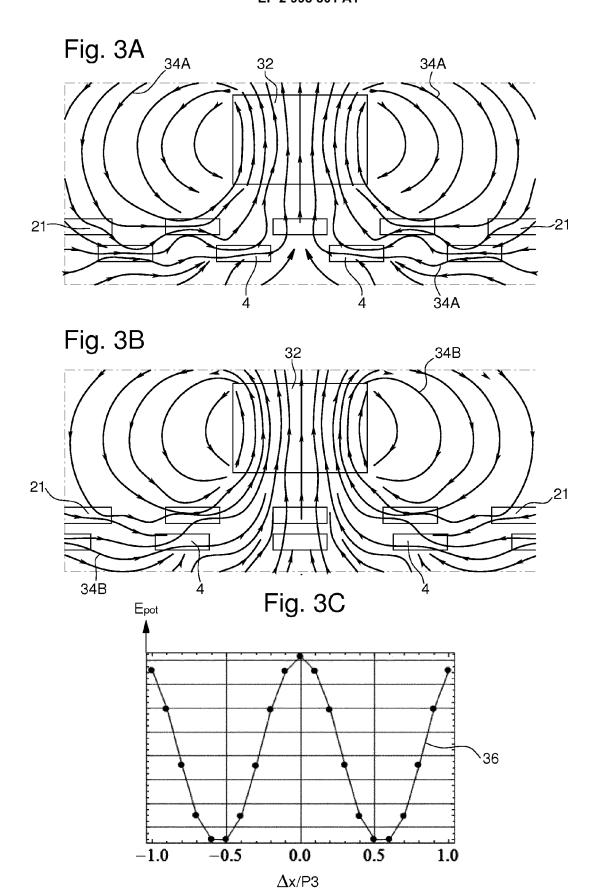
- 8. Dispositif régulateur selon la revendication 7 dépendante de la revendication 4, caractérisé en ce que ledit troisième motif périodique forme un troisième réseau circulaire avec des lignes en matériau magnétique séparées par des lignes définies par du vide ou une matière sensiblement amagnétique, et ledit quatrième motif périodique forme un quatrième réseau circulaire également avec des lignes en matériau magnétique séparées par des lignes définies par du vide ou une matière sensiblement amagnétique, les troisième et quatrième réseaux circulaires ayant une période angulaire respectivement égales aux première et deuxième périodes angulaires P1 et P2.
- 9. Dispositif régulateur selon la revendication 8, caractérisé en ce que lesdits premier et deuxième motifs combinés périodiques sont sensiblement contigus; et en ce que les premier et troisième réseaux circulaires ou les deuxième et quatrième réseaux circulaires forment ensemble un même réseau circulaire qui s'étend au moins sur les première et deuxième plages radiales.
- 10. Dispositif régulateur selon l'une quelconque des revendications 7 à 9, caractérisé en ce que ledit résonateur est formé par un diapason à deux branches, ledit aimant formant un premier aimant fixé à l'extrémité libre d'une première branche, ce résonateur comprenant en outre un deuxième aimant fixé à l'extrémité libre de la seconde branche ; et en ce que le nombre |ΔN| est un nombre pair.
- 11. Dispositif régulateur selon la revendication 10, caractérisé en ce que le nombre $|\Delta N|$ est égal à deux, soit $|\Delta N| = 2$.
- 12. Dispositif régulateur de la marche d'un mouvement horloger comprenant un échappement magnétique selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend un résonateur ayant une partie résonnante supportant ledit aimant, ce résonateur étant agencé de manière que cette partie résonante est soumise à une force de rappel radiale relativement à l'axe de rotation de la roue d'échappement lorsque le centre de l'aimant s'éloigne de cet axe de rotation, et de manière que le centre de cet aimant suit sensiblement une trajectoire circulaire ou elliptique, centrée sur ledit axe de rotation, à une fréquence angulaire de résonance lorsqu'il est éloigné de cet axe de rotation et que cet aimant est entraîné en rotation avec un couple sensiblement constant ; et en ce que la région annulaire desdites première et deuxième structures magnétiques, définie par ladite plage radiale, est couplée

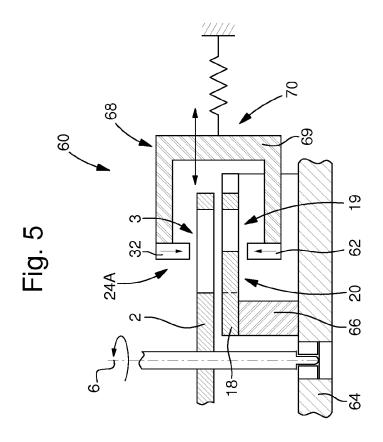
20

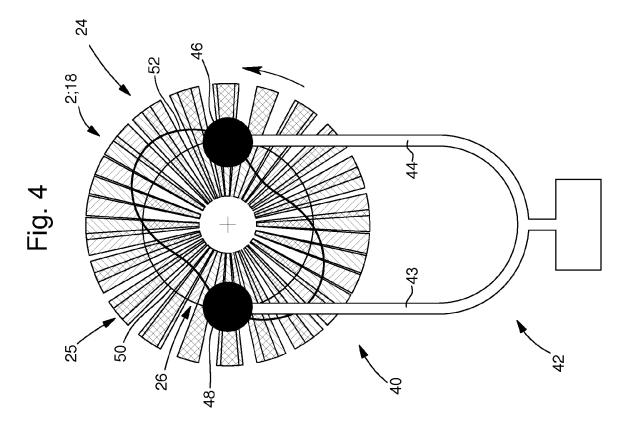
35


40


45


magnétiquement audit aimant de manière que cet aimant est entraîné en rotation par un couple d'interaction magnétique résultant dudit motif combiné tournant lorsqu'un couple moteur, dans une plage utile du couple moteur, est fourni à ladite roue d'échappement, la fréquence angulaire du motif combiné étant asservie à ladite fréquence angulaire de résonance dans cette plage utile du couple, laquelle est sélectionnée de manière que ledit couple d'interaction magnétique reste inférieur à un couple d'interaction magnétique maximal et que ladite trajectoire du centre dudit aimant a un rayon compris dans ladite plage radiale pour tout couple moteur de cette plage utile.


- 13. Dispositif régulateur selon la revendication 12, caractérisé en ce que le résonateur est agencé et ladite plage utile du couple moteur sélectionnée de manière que ledit aimant soit entièrement superposé audit motif combiné pour tout couple moteur de cette plage utile.
- 14. Dispositif régulateur selon la revendication 12 ou 13, caractérisé en ce que ledit nombre $|\Delta N|$ est égal à un ou deux, soit $|\Delta N|$ = 1 ou $|\Delta N|$ = 2.
- 15. Dispositif régulateur selon l'une quelconque des revendications 12 à 14, caractérisé en ce qu'il comprend une butée circulaire centrale pour ledit aimant, cette butée étant agencée pour qu'au moins la majeure partie de cet aimant demeure superposée audit motif combiné lorsqu'aucun couple moteur n'est fourni à ladite roue d'échappement.
- 16. Dispositif régulateur selon l'une quelconque des revendications 6 à 15, ledit aimant étant un premier aimant; caractérisé en ce que ledit échappement magnétique comprend un deuxième aimant monté sur ledit résonateur et supporté par ladite partie résonnante ou par une autre partie résonnante du résonateur, ce deuxième aimant étant agencé relativement au premier aimant de l'autre côté des première et deuxième structures magnétiques, de manière qu'il est aligné avec le premier aimant selon une direction sensiblement parallèle audit axe de rotation et qu'il présente un mouvement de résonance périodique semblable à celui du premier aimant à ladite fréquence de résonance.
- 17. Dispositif régulateur selon la revendication 16, caractérisé en ce que le deuxième aimant a un axe d'aimantation parallèle à celui du premier aimant et de sens opposé.
- 18. Dispositif régulateur selon la revendication 16, caractérisé en ce que le deuxième aimant a un axe d'aimantation parallèle à celui du premier aimant et de même sens.


- 19. Dispositif régulateur selon l'une quelconque des revendications 16 à 18, caractérisé en ce que ledit échappement magnétique comprend une troisième structure magnétique définissant un motif périodique sensiblement identique au motif périodique défini par la première ou deuxième structure magnétique et superposé à celui-ci, cette troisième structure périodique étant solidaire en rotation avec cette première ou deuxième structure magnétique, dans le cas où cette dernière subit une rotation, les deux structures magnétiques ayant un même motif périodique étant situées respectivement d'un côté et de l'autre de la structure magnétique présentant un motif périodique différent.
- 20. Dispositif régulateur de la marche d'un mouvement horloger selon l'une quelconque des revendications 6 à 19, caractérisé en ce que ladite deuxième structure magnétique est fixe relativement au mouvement horloger, ladite première fréquence angulaire relative F1_{rel} définissant la fréquence angulaire de ladite roue d'échappement relativement à ce mouvement horloger.
- 25 21. Mouvement horloger mécanique comprenant un dispositif régulateur, un rouage compteur cadencé par ce dispositif régulateur et un dispositif moteur entraînant le rouage compteur et entretenant un mode de résonance du dispositif régulateur, caractérisé en ce que ce dispositif régulateur comprend un échappement magnétique selon l'une quelconque des revendications 1 à 5
 - 22. Mouvement horloger mécanique comprenant un dispositif régulateur, un rouage compteur cadencé par ce dispositif régulateur et un dispositif moteur entraînant le rouage compteur et entretenant un mode de résonance du dispositif régulateur, caractérisé en ce que ledit dispositif régulateur est un dispositif régulateur selon l'une quelconque des revendications 6 à 20.

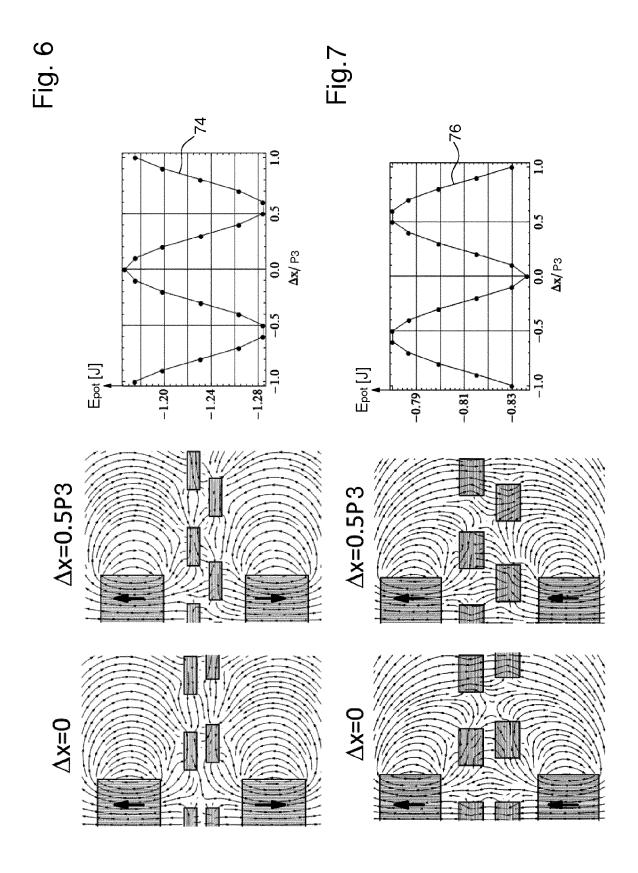


Fig. 8

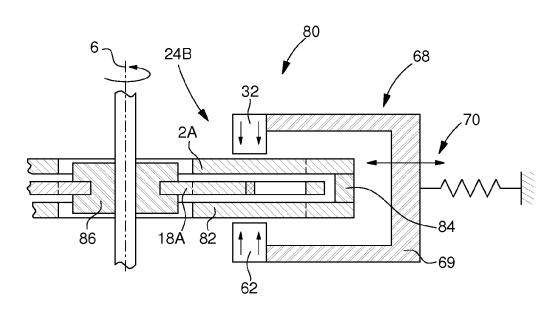
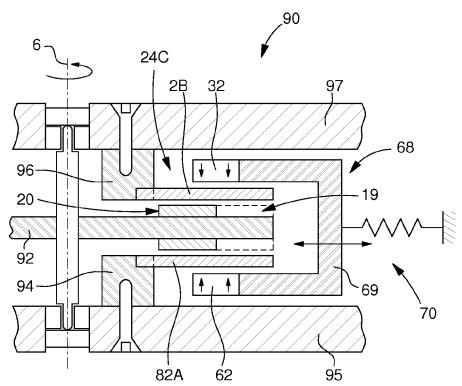
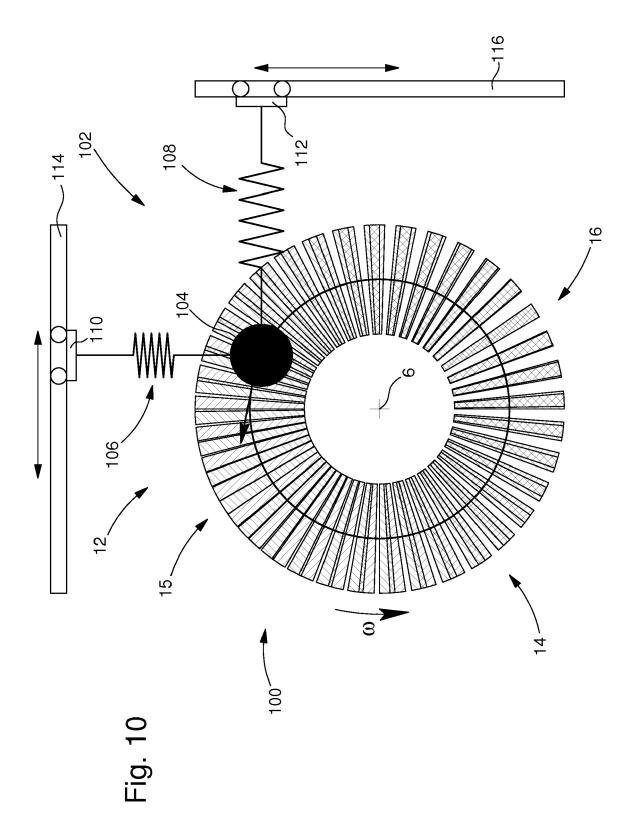
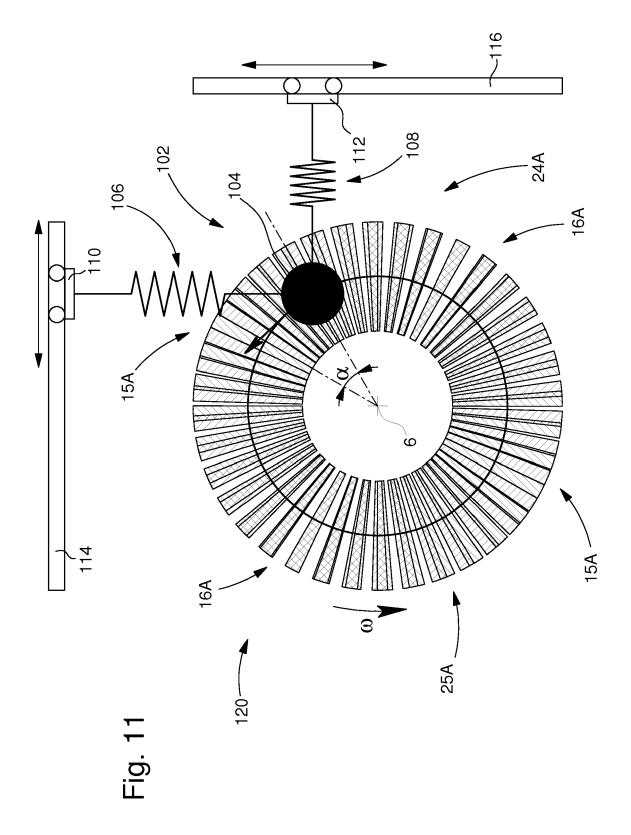
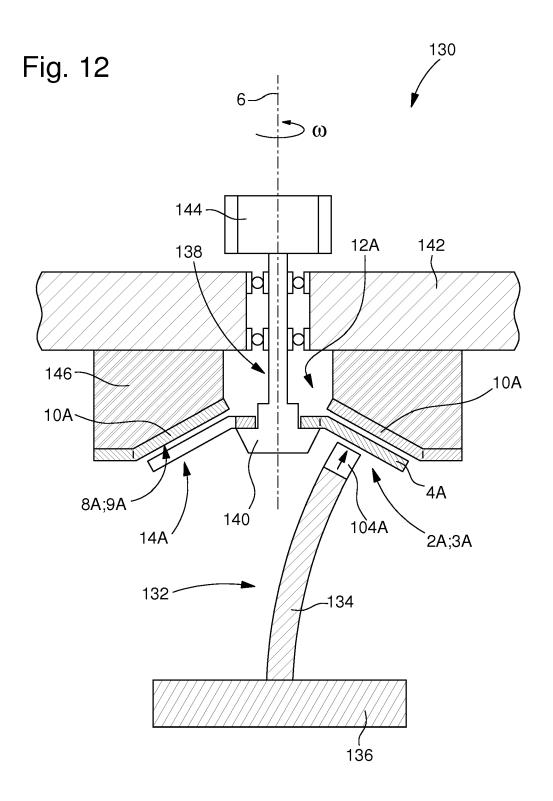






Fig. 9

DOCUMENTS CONSIDERES COMME PERTINENTS

Citation du document avec indication, en cas de besoin,

FR 2 132 162 A1 (HORSTMANN MAGNETICS LTD) 17 novembre 1972 (1972-11-17) * page 1 - page 13; figures 1-6 *

des parties pertinentes

Catégorie

Α

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 14 18 5638

CLASSEMENT DE LA DEMANDE (IPC)

DOMAINES TECHNIQUES RECHERCHES (IPC)

G04C H02K G04B

Examinateur

Cavallin, Alberto

INV. G04C5/00

Revendication concernée

1-22

5

10

15

20

25

30

35

40

45

50

1

EPO FORM 1503 03.82 (P04C02)

55

La Haye	
CATEGORIE DES DOCUMENTS CITE	s

Le présent rapport a été établi pour toutes les revendications

X : particulièrement pertinent à lui seul Y : particulièrement portinent

Lieu de la recherche

- A : particulièrement pertinent a un seu
 y : particulièrement pertinent en combinaison avec un
 autre document de la même catégorie
 A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

T : théorie ou	principe à	. la base de	e l'inventior
	ما ما ما ما ما		نا ماريمر منممير

- & : membre de la même famille, document correspondant

Date d'achèvement de la recherche

12 août 2015

EP 2 998 801 A1

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

5

10

15

20

25

30

35

40

45

50

55

EP 14 18 5638

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

12-08-2015

	Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
	FR 2132162	A1	17-11-1972	CH CH DE FR GB	460972 A4 586927 B5 2214919 A1 2132162 A1 1361672 A	31-08-1976 15-04-1977 12-10-1972 17-11-1972 30-07-1974
EPO FORM P0460						
EPO						

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

EP 2 998 801 A1

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

- FR 1113932 [0002]
- US 2946183 A [0002]

- JP S5263453 U [0002]
- JP 19750149018 U [0002]