CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of Provisional Application Serial No.
61/360,676 entitled "VOLITIONAL CONTROL OF PROSTHETIC AND ORTHOTIC LOWER LIMB DEVICES USING
MYOELECTRIC SIGNALS", filed July 1, 2010, which is herein incorporated by reference
in its entirety.
FIELD OF THE INVENTION
[0002] The present invention relates to control of jointed mechanical devices, and more
specifically to systems and methods for controlling jointed mechanical devices based
on surface electromyography.
BACKGROUND
[0003] Although prosthetic knee joints for transfemoral prostheses have traditionally been
energetically passive devices, powered, semi-autonomous knee joints have recently
started to emerge in the research community and on the commercial market. Typically,
passive knee prostheses can only react to mechanical energy imparted by the amputee,
while powered knee prostheses have the ability to act independently of mechanical
energy from the user. As such, the nature of the user communication with the powered
prosthesis and control of the powered prosthesis is substantially different from the
control of a traditional, energetically passive prosthesis.
[0004] Various methods have been proposed for the control of powered knee prostheses. These
approaches typically utilize instrumentation on at least one of the prosthesis or
a sound leg. Such instrumentation can include inertial measurement sensors (accelerometers
and/or gyroscopes) at the foot, shank or thigh of the prosthesis and/or sound side.
Additionally, joint angular position, velocity and torque sensors for ankle, knee
and hip joints of the prosthesis and/or sound side can also be used as instrumentation
for prosthesis control. Further, ground force detecting load cells or load switches
can also be used to detect events such as heel strike or toe-off. This instrumentation
is used to form knee joint angle trajectories or impedances for the powered knee prosthesis
during activities involving the prosthesis. For example, while standing, walking,
or transitioning between sitting and standing.
[0005] In general, activities such as standing, walking, or transitioning between sitting
and standing all involve physical input and/or energy exchange between the residual
limb and prosthesis. Therefore, most conventional methods rely on some form of physical
input from the user for communication with the powered knee prosthesis. That is, although
the user need not provide the energy for movement, as is the case with traditional
dissipative knee prostheses, the user must still provide some physical input that
can be measured by instrumentation on the prosthesis and/or sound leg. Such physical
inputs include measuring weight bearing on the prosthesis, torque and/or acceleration
from the affected-side hip joint, movement of the sound-side leg, to name a few.
[0006] An important class of movement, however, which does not involve any significant physical
input from the user, is the task of non-weight-bearing or volitional control of knee
movement while sitting or standing. That is, people regularly shift their body while
sitting, which involves significant movement of the knee joints. Such movement has
both physiological and practical purposes. Regarding the former, weight shifting during
sitting is known to play an important role in ensuring healthy circulation of blood
in weight-bearing tissues during sitting. Regarding the latter, sitting in confined
areas, such as in automobiles, airplanes, theatres, and classrooms, often requires
shifting of body position (particularly of the knee joints) in order to accommodate
a particular ergonomic space and/or the movement of other individuals into or out
of that space. Such movement is referred to herein as volitional control of the knee
joint during non-weight-bearing activity. Note that such volitional control is also
useful in non-weight-bearing standing, such as when flexing the knee to look at the
bottom of a shoe, or when placing the foot on an elevated surface (such as a chair)
to tie or untie, or don or doff a shoe. In the case of a traditional, energetically
passive prosthesis, an amputee typically achieves "volitional" control functionality
by manipulating the prosthetic knee leg with his or her hands.
SUMMARY
[0007] The various embodiments present systems and methods for the volitional control of
the knee joint during non-weight-bearing activity which utilizes a pair of surface
electromyogram (EMG) electrodes (on the ventral and dorsal aspects of the thigh, respectively),
such as that integrated into the amputee's socket interface. Such an approach can
be integrated with the impedance-based weight-bearing controllers for standing, walking,
and transitioning between sitting and standing in order to provide volitional control
of the knee joint during non-weight-bearing activity.
[0008] Researchers have investigated the use of surface EMG for the control of lower limb
prostheses and orthoses. In the case of passive knee prostheses, Some groups have
developed a prosthesis with an electrically activated knee flexion lock, and used
surface EMG from the residual limb of a transfemoral amputee to trigger the engagement
and disengagement of the lock. Other groups developed a computer-controllable passive
knee prosthesis based on an electrically modulated brake, and utilized surface EMG
from three sites on the residual limb of a transfemoral amputee for gait mode recognition,
which in turn was used to switch the prosthesis into the appropriate gait mode. Yet
other groups utilized surface EMG from multiple electrodes on transfemoral amputees
to classify movement intents while walking. With regard to using EMG for the real-time
control of a powered knee prosthesis, one group has attempted to use surface EMG from
the quadriceps and hamstrings to control the motion of a hydraulically actuated powered
knee prosthesis during walking. However, this group concluded that use of such an
approach during gait would be challenging, due in part to difficulty in obtaining
reliable EMG measurement, "due to noise pick up and movement artifact." Other groups
have used surface EMG measured from the lower leg for the control of powered ankle
joints in transtibial prostheses, or powered joints in ankle-foot-orthoses (AFOs).
For example, one group has proposed the use of EMG measured from the lower leg to
control the assistive pressure in a pneumatically actuated AFO. Another group has
proposed a control system for an assistive exoskeleton with powered hip and knee joints,
in which the assistive torque from the exoskeleton is proportional to the measured
EMG from the associated flexion or extension muscle group. However, the methods and
techniques described above do not disclose utilizing EMG for the volitional control
of knee or ankle joint motion in a powered prostheses.
[0009] In contrast, the various embodiments of the invention concern systems and methods
for controlling jointed mechanical devices, such as prostheses and orthoses, based
on surface electromyography. In particular, providing volitional control of powered
joints. In a first embodiment, a myoelectric controller for a weight bearing member
having at least one powered joint is provided. The myoelectric controller includes
a velocity reference module for receiving myoelectric control signals from a user
during a non-weight bearing mode for the powered joint and generating a velocity reference
for the powered joint based on the myoelectric control signals. The controller further
includes a volitional impedance module for generating a torque control signal for
actuating the powered joint based at least on the velocity reference.
[0010] In a second embodiment of the invention, a method for controlling at least one powered
joint in a weight bearing member is provided. The method includes the step of receiving
myoelectric control signals from user during a non-weight bearing mode for the powered
joint. The method also includes generating a velocity reference for the powered joint
based on the myoelectric control signals. The method further includes generating a
torque control signal for actuating the powered joint based at least on the velocity
reference.
[0011] In a third embodiment of the invention, a jointed mechanical device is provided.
The device includes a weight bearing member comprising at least one powered joint.
The device also includes a controller for actuating the powered joint. In the device,
the controller is configured for actuating the joint in at least one of a semi-autonomous
weight bearing mode and a non-weight bearing mode for actuating the powered joint
responsive to myoelectric control signals.
[0012] In a fourth embodiment of the invention, a computer-readable medium is provided,
storing instructions for controlling a computing device to control a powered joint.
The instructions include instructions for receiving myoelectric control signals from
user during a non-weight bearing mode for the powered joint, generating a velocity
reference for the powered joint based on the myoelectric control signals, and generating
a torque control signal for actuating the powered joint based at least on the velocity
reference.
[0013] Thus, a control approach is provided that not only provides the above-mentioned benefits
of volitional control for amputees, but also provides such volitional control in a
manner that the trajectory tracking performance is close to that observed in intact
or sound joints.
[0014] The present invention also relates to the following points:
- 1. A myoelectric controller for a weight bearing member having at least one powered
joint, comprising:
a velocity reference module for receiving myoelectric control signals from a user
during a non-weight bearing mode for the at least one powered joint and generating
a velocity reference for the at least one powered joint based on the myoelectric control
signals; and
a volitional impedance module for generating a torque control signal for actuating
the at least one powered joint based at least on the velocity reference.
- 2. The myoelectric controller of point 1, wherein the volitional impedance module
generates the torque control signal using a model based on a behavior of a spring
and dashpot element.
- 3. The myoelectric controller of point 1, wherein the velocity reference module is
further configured for generating the velocity reference based on an intent of the
user derived from the myoelectric control signals.
- 4. The myoelectric controller of point 3, further comprising a classification module
for determining the intent of the user based on the myoelectric control signals.
- 5. The myoelectric controller of point 4, wherein the classification module determines
the intent of the user based on one of quadratic discriminant analysis of the myoelectric
control signals and linear discriminant analysis of the myoelectric control signals.
- 6. The myoelectric controller of point 1, wherein the velocity reference module is
further configured for generating the velocity reference based on a principal component
analysis of the myoelectric control signals.
- 7. The myoelectric controller of point 1, further comprising a pre-processing module
for receiving raw myoelectric signals from the user and processing the raw myoelectric
signals to yield the myoelectric control signals.
- 8. The myoelectric controller of point 7, wherein the pre-processing module is configured
for processing the raw myoelectric signals using at least one of amplification, filtering,
or rectification.
- 9. The myoelectric controller of point 1, wherein the volitional impedance module
generates the torque control signal based on an equilibrium point derived from the
velocity reference.
- 10. The myoelectric controller of point 9, further comprising a conversion module
for determining the equilibrium point based at least one of the velocity reference
or an initial angle of the at least one powered joint.
- 11. The myoelectric controller of point 1, wherein the at least one powered joint
comprises a plurality of powered joints, and further comprising a selector module
for alternating an active one of the plurality of powered joints.
- 12. The myoelectric controller of point 11, wherein the selector module alternates
the active one of the plurality of powered joints when the myoelectric control signals
exceed a pre-determined threshold.
- 13. The myoelectric controller of point 11, wherein the selector module is further
configured for generating a signal for notifying the user as to which of the plurality
of powered joints is active.
- 14. A method for controlling at least one powered joint in a weight bearing member,
comprising:
receiving myoelectric control signals from a user during a non-weight bearing mode
for the at least one powered joint;
generating a velocity reference for the at least one powered joint based on the myoelectric
control signals; and
generating a torque control signal for actuating the at least one powered joint based
at least on the velocity reference.
- 15. The method of point 14, wherein the torque control signal is generated using a
model based on the behavior of a spring and dashpot element.
- 16. The method of point 14, wherein the velocity reference is further based on an
intent of the user determined based on the myoelectric control signals.
- 17. The method of point 16, wherein the intent is determined based on one of quadratic
discriminant analysis of the myoelectric control signals and linear discriminant analysis
of the myoelectric control signals.
- 18. The method of point 14, wherein the velocity reference is generated based on a
principal component analysis of the myoelectric control signals.
- 19. The method of point 14, further comprising:
receiving raw myoelectric signals from the user; and
processing the raw myoelectric signals to yield the myoelectric control signals.
- 20. The method of point 19, wherein the processing of the raw myoelectric signals
is performed using at least one of amplification, filtering, or rectification.
- 21. The method of point 14, wherein the torque control signal is generated based on
an equilibrium point derived from the velocity reference.
- 22. The method of point 21, further comprising determining the equilibrium point based
at least one of the velocity reference or an initial angle of the at least one powered
joint.
- 23. The method of point 14, wherein the at least one at least one powered joint comprises
a plurality of powered joints, and further comprising a selector module for alternating
an active one of the plurality of powered joints.
- 24. The method of point 23, wherein the selector module alternates the active one
of the plurality of powered joints when the myoelectric control signals exceed a pre-determined
threshold.
- 25. The method of point 23, wherein the selector module is further configured for
generating a signal for notifying the user as to which of the plurality of powered
joints is active.
- 26. A jointed mechanical device, comprising:
a weight bearing member comprising at least one powered joint; and
a controller for actuating the at least one powered joint,
wherein the controller is configured for actuating the at least one powered joint
in at least one of a semi-autonomous weight bearing mode or a non-weight bearing mode,
the actuating of the at least one powered joint responsive to a myoelectric control
signals.
- 27. The jointed mechanical device of point 26, wherein the controller generates a
torque control signal for actuating the at least one powered joint during the non-weight
bearing mode using a model based on a behavior of a spring and dashpot element and
a velocity reference.
- 28. The jointed mechanical device of point 26, wherein the controller receives raw
myoelectric signals from a user and processes the raw myoelectric signals to yield
the myoelectric control signals.
- 29. The jointed mechanical device of point 26, wherein the weight bearing member comprises
one of a limb prosthesis and a limb orthosis.
- 30. The jointed mechanical device of point 26, wherein the weight bearing member comprises
a lower limb prosthesis, and wherein the at least one joint comprises at least one
of a knee joint or an ankle joint.
- 31. The jointed mechanical device of point 26, wherein the non-weight bearing mode
comprises sitting or non-weight bearing standing.
- 32. The jointed mechanical device of point 26, wherein the weight bearing member comprises
a plurality of powered joints, wherein the controller further comprises a selector
configured for alternating between the plurality of powered joints if the myoelectric
control signals exceed a pre-determined threshold.
- 33. The jointed mechanical device of point 32, further comprising at least one feedback
device for notifying a user as to which of the plurality of powered joints is currently
selected.
- 34. The jointed mechanical device of point 33, wherein the feedback device comprises
at least one vibration motor.
- 35. The jointed mechanical device of point 31, wherein the weight bearing member comprises
one of a lower limb prosthesis or a lower limb orthosis, and wherein the plurality
of powered joints comprise a knee joint and an ankle joint.
- 36. A computer-readable medium storing instructions for controlling a computing device
to control at least one powered joint, the instructions comprising:
receiving myoelectric control signals from a user during a non-weight bearing mode
for the at least one powered joint;
generating a velocity reference for the at least one powered joint based on the myoelectric
control signals; and
generating a torque control signal for actuating the at least one powered joint based
at least on the velocity reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015]
FIG. 1 shows a block diagram of a myoelectric volitional impedance controller for
controlling a powered knee joint in accordance with an embodiment.
FIG. 2 shows a block diagram of a myoelectric volitional impedance controller for
controlling a powered knee joint and a powered ankle joint in accordance with an embodiment.
FIG. 3A is an x-y plot of extension and flexion reference signals for a first amputee
subject showing classification using quadratic discriminant analysis (QDA) and linear
discriminant analysis (LDA)methods in accordance with the various embodiments.
FIG. 3B is an x-y plot of extension and flexion reference signals for a second amputee
subject showing classification using QDA and LDA methods in accordance with the various
embodiments.
FIG. 3C is an x-y plot of extension and flexion reference signals for a third amputee
subject showing classification using QDA and LDA methods in accordance with the various
embodiments.
FIG. 4A is an x-y plot of actual measurements and PCA projections of extension reference
signals for the first amputee subject in FIG. 3A.
FIG. 4B is an x-y plot of actual measurements and PCA projections of flexion reference
signals for the first amputee subject in FIG. 3A.
FIG. 5 is a schematic illustration of an exemplary powered transfemoral prosthesis
that can be configured for using a control system in accordance with the various embodiments.
FIGs. 6A-6D show x-y plots of EMG-controlled powered prosthesis knee position for
trajectories A-D, respectively, of the third amputee subject in FIG. 3C.
FIG. 7A-7D show x-y plots of sound-side knee position for trajectories A-D, respectively,
of the third amputee subject in FIG. 3C.
DETAILED DESCRIPTION
[0016] The present invention is described with reference to the attached figures, wherein
like reference numerals are used throughout the figures to designate similar or equivalent
elements. The figures are not drawn to scale and they are provided merely to illustrate
the instant invention. Several aspects of the invention are described below with reference
to example applications for illustration. It should be understood that numerous specific
details, relationships, and methods are set forth to provide a full understanding
of the invention. One having ordinary skill in the relevant art, however, will readily
recognize that the invention can be practiced without one or more of the specific
details or with other methods. In other instances, well-known structures or operations
are not shown in detail to avoid obscuring the invention. The present invention is
not limited by the illustrated ordering of acts or events, as some acts may occur
in different orders and/or concurrently with other acts or events. Furthermore, not
all illustrated acts or events are required to implement a methodology in accordance
with the present invention.
[0017] As described above, in a traditional, energetically passive prosthesis, an amputee
can achieve volitional control functionality by manipulating the prosthetic knee leg
with his or her hands. However, since a powered knee prosthesis has the capability
to move itself, such artificial manipulation should not be required for volitional
movement of the knee joint. Nonetheless, since such volitional movements do not involve
significant physical input from the amputee, conventional control approaches do not
provide an effective means of communication with the prosthesis for this purpose.
[0018] In view of the limitations of conventional control approaches and conventional prostheses,
the various embodiments provide a new method for the volitional control of the knee
joint during non-weight-bearing activities. More generally, the various embodiments
provide systems and methods controlling jointed mechanical devices, such as prostheses
and orthoses, during non-weight bearing activities based on a volitional impedance
control framework. For example, in the case of a leg prosthesis, this allows a transfemoral
amputee to control the motion of a powered knee prosthesis during non-weight-bearing
activity (e.g., while sitting.). The control is based on an impedance framework wherein
the joint exhibits programmable joint stiffness and damping characteristics. Knee
movement is provided by commanding the joint stiffness equilibrium angle. The time
rate of change of this angle (which is the desired angular velocity set-point) is
provided by measurement of the surface EMG, using a pair of surface electromyogram
(EMG) electrodes. In one embodiment, the electrodes can be on the ventral and dorsal
aspects of the thigh. For example these electrodes can be integrated into the amputee's
socket interface so as to measure the surface EMG of the hamstring and quadriceps
muscle groups. However, rather than directly associate the hamstring EMG with knee
flexion and the quadriceps with knee extension, which would require the user to artificially
isolate contraction of these muscle groups, the various embodiments incorporate a
combination of pattern classification and principal component projection to align
the measured EMG with the user's desire to flex or extend the knee joint. The resulting
control approach provides trajectory tracking performance close to that of intact
knee joints, thus providing an approach for effective control of knee joint motion
during non-weight-bearing activity. Further, this approach can be integrated with
existing impedance-based weight-bearing controllers for standing, walking, and transitioning
between sitting and standing. For example, this approach can be integrated into the
controller described in
U.S. Patent Application No. 12/427,384 to Goldfarb et al, filed April 21, 2009, the contents of which are herein incorporated in their entirety.
[0019] Although exemplary embodiments will be described primarily with respect to providing
volitional control for a prosthesis including at least a powered knee, the various
embodiments are not limited in this regard. Rather, the framework described herein
can be used for volitional control of any type of powered joint in a prosthesis or
an orthosis.
[0020] The use of surface EMG for the control of lower limb prostheses and orthoses has
been widely investigated. In the case of passive knee prostheses, one existing approach
provides a prosthesis with an electrically activated knee flexion lock that uses surface
EMG from the residual limb of a transfemoral amputee to trigger the engagement and
disengagement of the lock. A similar approach includes a computer-controllable passive
knee prosthesis based on an electrically modulated brake, and utilizes surface EMG
from three sites on the residual limb of a transfemoral amputee for gait mode recognition,
which in turn was used to switch the prosthesis into the appropriate gait mode. More
recently, surface EMG from multiple electrodes on transfemoral amputees has been utilized
to classify movement intents while walking. However, with regard to using EMG for
the real-time control of a powered knee prosthesis, only limited investigation into
the use of surface EMG from the quadriceps and hamstrings to control the motion of
a hydraulically actuated powered knee prosthesis during walking has occurred. Further,
such research concluded that use of such an approach during gait would be challenging,
due in part to difficulty in obtaining reliable EMG measurement, "due to noise pick
up and movement artifact."
[0021] Other conventional control methodologies using surface EMG measured from the lower
leg have been generally directed to the control of powered ankle joints in transtibial
prostheses or control of powered joints in ankle-foot-orthoses (AFOs). With regard
to the former, one approach provides for using a real-time state-based controller
for the powered ankle based on physical input (rather EMG input) from the user and
which utilizes EMG measured from the lower leg to switch between gait modes. With
regard to powered AFOs, one approach uses EMG measured from the lower leg to control
the assistive pressure in a pneumatically actuated AFO. Additionally, a control system
for an assistive exoskeleton with powered hip and knee joints has been proposed, in
which the assistive torque from the exoskeleton is proportional to the measured EMG
from the associated flexion or extension muscle group. However, none of these approaches
utilize EMG for the volitional control of knee joint motion in a powered knee prosthesis.
VOLITIONAL CONTROL OF POWERED KNEE
A. Volitional Control Structure
[0022] In a first exemplary embodiment, a control framework is provided for volitional control
of the knee with a joint output impedance similar to that of the native limb. As such,
rather than using the measured EMG to prescribe joint torque, angle, or angular velocity,
the presented framework utilizes measured EMG to prescribe the angular velocity of
an equilibrium point of joint impedance that consists of the combination of a joint
stiffness and damping. In this manner, the knee moves to a desired position with a
joint output stiffness and damping prescribed by the controller, thus presumably moving
in a more natural manner (relative to a high-output-impedance position controller),
and resulting in a more natural interaction between the user, prosthesis, and environment.
[0023] The structure of the proposed volitional controller is shown in FIG. 1. FIG. 1 shows
a block diagram of a myoelectric volitional controller 100 for controlling a powered
knee joint in a prosthesis 102 based on EMG signals from a user 104 in accordance
with an embodiment. In this controller, a real-time intent recognizer, such as the
one described in
U.S. Patent Application No. 12/427,384 to Goldfarb et al, filed April 21, 2009, or in
Varol, H.A., Sup, F., and Goldfarb, M. Multiclass Real-Time Intent Recognition of
a Powered Lower Limb Prosthesis. IEEE Transactions on Biomedical Engineering, vol.
57, no. 3, pp. 742-751, 2009 would be used to switch between this (volitional) controller and other weight-bearing
control structures.
[0024] With reference to FIG. 1, the controller 100 operates as follows. First, during a
non-weight bearing activity, based on an intent recognizer (not shown), EMG signals
(EMG
1, EMG
2) are received by controller 100 from the residual limb of the user 104. Thereafter,
a pre-processing module 106 processes the EMG signals. The pre-processed signals are
then used for generation of reference velocity (i.e., the joint angular velocity reference,
ω
emg). As shown in FIG. 1, ω
emg is generated by a velocity reference generation module 108 based on the pre-processed
the EMG signals, the current angle for the joint (θ
k), the derivative or rate of change of angle for the joint (
θ̇k), and the user's intent to flex or extend the knee. The intent can be obtained from
a flexing extending classification module 110. Thereafter, an equilibrium point joint
angle
θemg can be obtained from ω
emg using conversion module 112. The equilibrium point joint angle,
θk, and
θ̇k can then be used in a volitional impedance controller module 114 to generate a joint
torque command (τ) for the prosthesis 102 to cause motion of the knee joint. Additionally,
θk and
θ̇k are updated based on the torque command. The control process then repeats. It should
be noted though that since
θk and
θ̇k are the measurements of the knee angle and velocity of the prosthesis, the update
is not done computationally, rather it is a physical process. The operation of these
various modules is described below in greater detail.
B. Volitional Impedance Controller
[0025] In the various embodiments, EMG is used to generate an angular velocity command (as
is commonly the case in upper extremity myoelectric control) rather than a position
command, so that the user contracts the residual limb musculature only to move the
joint and can relax when maintaining any given knee joint angle. Specifically, the
joint torque command at controller module 114 can be given by a model mimicking the
behavior of a spring and dashpot element. For example, one model in accordance with
the various elements can be:

where the equilibrium point θ
emg is given by module 112 using

where
k is the prescribed joint stiffness,
b is the prescribed joint damping coefficient, θ is the knee joint angle, and
θo is the initial angle when the control system switches to the volitional (non-weight
bearing) controller and ω
emg is the angular velocity reference generated from the quadriceps and hamstring EMG,
as described in the following section.
C. Reference Velocity Generation
[0026] The controller module 114 utilizes the measured surface EMG from the quadriceps and
hamstring groups to generate a joint angular velocity reference, ω
emg, to drive the joint angular impedance equilibrium point,
θemg, and thus to drive the motion of the knee. One method for doing so at module 108
would be to use

where
eh and
eq represent the measured (i.e., rectified and filtered) EMG from the hamstring and
quadriceps muscles, respectively, and
kh and
kq are simple gains. Equation (3) also assumes that an appropriate dead-band is applied
to the measured EMG, to avoid "jitter" in the angular velocity reference command.
Equation (3) is similar to the method used for the control of myoelectric upper extremity
prostheses.
[0027] However, as shown below, use of equation (3) provided only marginal performance in
the proposed volitional controller. Specifically, as described subsequently (and indicated
in FIGs. 3A-3C), two of the three amputee subjects on which the approach was implemented
demonstrated a significant degree of co-contraction when attempting to contract either
the hamstrings or quadriceps in an isolated manner. With sufficient training, these
subjects could possibly be trained to avoid co-contraction. Co-contraction, however,
is a natural neuromuscular response (particularly in the lower limb musculature).
As such, in an effort to render the proposed controller as natural as possible, in
the various embodiments, the controller is trained to properly interpret co-contraction,
rather than train the subjects to avoid it. Therefore, as indicated in the control
structure of FIG. 1 and described below, the controller 100 first utilizes pattern
classification to classify the user's intent with regard to flexion or extension of
the knee, then utilizes a projection operator to extract the desired magnitude of
the joint angular velocity reference from the measured EMG data.
D. Flexion-Extension Classification
[0028] As described above, rather than train the subjects to avoid co-contraction while
commanding flexion or extension of the knee, the various embodiments utilize a pattern
classification approach to distinguish user intent to flex or extend the knee. In
one embodiment, module 110 can be implemented using a quadratic discriminant analysis
(QDA) classifier to distinguish between the user's intent to flex or extend. A linear
discriminant analysis (LDA) classifier can also applied to the classification problem
in other embodiments, although the QDA was chosen due to improved classification accuracy
(based on the mean accuracy obtained with a five-fold cross-validation for each subject),
and because the QDA is not significantly more complex (or computationally expensive)
than the LDA classifier. Specifically, QDA uses the quadratic decision boundary of
the form
c1 +
c2eh +
c3eq +
c4e2h +
c5eheq +
c6e2q = 0 to classify the sample consisting of the processed EMG data from the two channels,
eh and
eq, to the extension (ω
E) and flexion (ω
F) classes where the coefficients
ci, i=1, 2, ..., 6, are generated during the training of the QDA classifier. Details of
the LDA and QDA methods can be found in several pattern classification references.
Further, this embodiment utilizes a database of EMG (versus intent) data to parameterize
the flexion/extension classifier, as described below.
E. EMG Measurement and Preprocessing
[0029] In the various embodiments, the electrodes can be implemented in various ways. For
example, as described above, surface EMG electrodes can be embedded into the prosthesis
socket. In another implementation, separate surface electrodes can be placed on the
amputee to acquire EMG signals from the residual quadriceps and hamstring muscles
of the amputee subjects. To improve acquisition of such signals, the signals from
each muscle group can amplified, filtered, and/or rectified at module 106. In other
words, the EMG preprocessing attempts to discern an envelope of the raw EMG signal.
[0030] In the various embodiments, each EMG signal is acquired from a single bipolar electrode.
Such signals are generally very small in magnitude and can have both positive and
negative values when the muscle contracts. An instrumentation amplifier can then be
used to increase the voltage levels of these signals. Thereafter, high pass filtering
can be applied to remove the baseline noise and rectification can be done to remove
the negative values. Finally, the signal can be low pass filtered to create an envelope
of the signal. This way, the muscle contraction EMG signals will be converted to a
unidirectional multilevel signal in expense of some phase delay due to the filtering.
In other words, the preprocessing is done to convert the noisy raw EMG data to a less
noisy form that is more suitable for controls and pattern recognition.
[0031] For example, in one embodiment, the signal can be processed using an instrumentation
amplifier with a gain of 200 and filtered using an analog second order low pass filter
with 5 Hz cutoff frequency. The filtered signals can then be digitized for use. For
example, using a computer running MATLAB Real Time Workshop with a digital-to-analog
converter card and operating at 1000 Hz sampling frequency. The digital signals can
then be further processed using additional signal processing. For example, signals
can be processed using a first order high-pass filter with 20 Hz cutoff frequency,
a rectifier, and a first order low-pass filter with 2 Hz cutoff frequency.
F. EMG Intent Database Generation
[0032] Classifier training database generation can be performed by recording EMG data associated
with an amputee. For example, in one embodiment, a training database can be generated
for an amputee by recording 100 seconds of EMG data for knee flexion and 100 seconds
for knee extension. For ease of the subject, a one-minute rest in between the recordings
can be provided. Thus the entire training session can be configured to last less than
five minutes. To generate a complete set of training data for each flexion/extension
class, each subject can be asked to visualize extending the knee on the amputated
side at 0, 25, 50, 75 and 100 percent of full effort, several times for durations
ranging from 1 to 5 seconds, over the total data collection period of 100 seconds
at a 100 Hz sampling frequency. The extension data can be recorded first, followed
by a rest period of approximately one minute, followed by the same procedure for flexion
data. All EMG data can be normalized into the interval [0, 1]. The data can be additionally
thresholded at 20% maximum effort, such that samples in the interval [0, 0.2] are
effectively removed from the database and in order to mitigate baseline EMG noise
and muscular tonicity. Based on this thresholded database, the QDA classifier can
be parameterized to classify each subject's preprocessed EMG as intent to either flex
or extend the knee joint.
G. Reference Velocity Magnitude
[0033] The QDA essentially provides a probabilistic optimal separation boundary of the EMG
data to the flexion and extension classes. Within a given class (in this case flexion
or extension), the "magnitude" of the data is the projection along the principal axis
of that class. In the control approach described herein, this projection can be generated
via principal component analysis (PCA), which essentially projects the two-dimensional
EMG data along a principal (either flexion or extension) axis. Using the data belonging
to each class, two 2x2 PCA projection matrices
WE and
WF can be computed. In the real-time implementation, one of these projection matrices
can be used to extract the "magnitude" information, based on the result of QDA classification
as follows:

[0034] The magnitude of the angular velocity reference for the joint impedance set-point,
ω
emg, can therefore be the PCA-based projection of the two-dimensional EMG data along
the principal axis of either the flexion or extension data. Details of PCA can be
found in several references. The projected EMG data can be scaled between zero and
maximum reference velocity to generate the desired angular velocity reference. The
maximum reference velocity can be determined as the maximum reasonable angular velocity
command for volitional control of the knee joint.
[0035] In contrast with (3), which obtains a reference angular velocity (for the volitional
control impedance set-point) by projecting data along a hamstring/quadriceps set of
measurement axes, the approach combining QDA classification with PCA projection of
the two-dimensional EMG data establishes a probabilistically optimal linear transformation
from a hamstring/quadriceps set of axes to a flexion/extension set of axes (based
on the training dataset). As such, the subject need not be trained to isolate the
contraction of individual muscle groups, but rather is free to co-contract the hamstring
and quadriceps groups in a natural manner when intending knee flexion or extension.
II. VOLITIONAL CONTROL OF POWERED KNEE AND POWERED ANKLE
A. Volitional Control Structure
[0036] Although the volitional control structure above describes how to provide volitional
control of a powered knee joint, volitional control of a powered knee and a powered
joint is desirable in many circumstances. In particular, volitional control of both
the knee and ankle allows more natural motion and provides the user the option to
manipulate the foot. Accordingly, in some embodiments, a control framework can be
provided that is intended to provide volitional control of both the knee and ankle
joints with a joint output impedance similar to that of the native limb. As such,
rather than using the measured EMG solely to prescribe joint torque, angle, or angular
velocity, the presented framework can utilize measured EMG to prescribe the angular
velocity of an equilibrium point of joint impedance that consists of the combination
of a joint stiffness and damping. In this manner, the knee can move to a desired position
with a joint output stiffness and damping prescribed by the controller, thus presumably
moving in a more natural manner (relative to a high-output-impedance position controller),
and resulting in a more natural interaction between the user, prosthesis, and environment.
[0037] The structure of the volitional controller for knee and ankle joints is shown in
FIG. 2. FIG. 2 shows a block diagram of a myoelectric volitional controller 200 for
controlling a prosthesis 202 having powered knee joint or a powered ankle joint in
accordance with an embodiment. In many respects, the controller 200 operates in a
substantially similar fashion to controller 100 in FIG. 1. That is, during a non-weight
bearing activity, based on an intent recognizer (not shown), EMG signals (EMG
1, EMG
2) are received by controller 200 from the residual limb of the user 204. Thereafter,
a pre-processing module 206 processes the EMG signals. The pre-processed signals are
then used for generation of reference velocities for the knee or the ankle joints
(i.e., one of joint angular velocity references,
ωknee_emg and ω
ankle_
emg, respectively). As shown in FIG. 2, the one of ω
knee_emg and
ωankle_emg is generated by a velocity reference generation module 208 based on the pre-processed
EMG signals, the user's intent to flex or extend the knee, a user selection of a joint,
and a corresponding current angle for the joint to be controlled (
θkne or θank), the derivative or rate of change of angle for the joint to be controlled (
θ̇kne or
θ̇ank). The intent can be obtained from a flexing extending classification module 210.
The user selection can be based on detection of co-contraction or a "twitch" using
module 211. Thereafter, an equilibrium point joint angle for the one of the knee (
θkne_emg) or the ankle (
θank_emg) can be obtained from a corresponding one of
ωknee_emg and ω
ankle_emg using conversion module 212. The one equilibrium point joint angle can then be used
in a volitional impedance controller module 214 to generate a joint torque command
(τ) for the prosthesis 102 to cause motion of the knee or ankle joint. Additionally,
the resulting values for
θkne,
θkne,
θank,
θ̇kne, and
θ̇ank are updated. The control process then repeats. The operation of these various modules
is described below in greater above and below, as necessary.
B. Volitional Impedance Controller
[0038] Controller module 214 here operates in a manner substantially similar to that of
controller module 114 in FIG. 1. Again, it is noted that the EMG is used to generate
an angular velocity command (as is commonly the case in upper extremity myoelectric
control) rather than a position command, so that the user contracts the residual limb
musculature only to move the joint and can relax when maintaining any given knee joint
angle. Specifically, the joint torque command at controller module 214 is given by:

where the knee and ankle equilibrium points
θkne_emg and
θank_emg are given by

where
kkne and kank are the prescribed joint stiffnesses,
bkne and bank are the prescribed joint damping coefficient,
θkne and θank are the knee and ankle joint angles, and θ
o_kne and
θo_ank are the initial knee and ankle angles when the control system switches to the volitional
(non-weight bearing) controller.
ωkne_emg and
ωank_emg are the knee and ankle angular velocity references generated from the quadriceps
and hamstring EMG, as described in the following section.
C. Active Joint Selection using Twitch
[0039] In this embodiment, two unidirectional EMG channels are used to generate two bidirectional
joint velocity references, one for the ankle joint and one for the knee joint of the
prosthesis. In one embodiment, one bidirectional signal for one of the joints is generated
at a single instant. In order to achieve this, a short duration co-contraction (twitch)
of the both EMG electrode sites can be utilized to select the active joint. A twitch
can be detected when the filtered and rectified EMG signals on both channels exceed
a threshold for a short duration of time. Once a twitch is detected the active joint
of the prosthesis can be toggled. One of the two tactors (e.g. cellphone vibration
motor) on the residual limb (or in the socket as shown in FIG. 5 below) can then be
activated for a short duration to notify the user which joint is active.
D. Flexion-Extension Classification
[0040] Once the active joint is selected, the user intent to flex or extend can be detected
using a pattern classification algorithm in module 210, as described above with respect
to module 110 in FIG. 1. For example, such algorithms can include linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVM)
or artificial neural networks (ANN). In order to generate the flexion extension classification
boundaries (or functions) a database of different intensity flexion and extension
EMG data from hamstring and quadriceps muscles need to be collected, as described
above. This data can then be used to train the pattern classifiers.
D. Reference Velocity Magnitude
[0041] Once the user intent to flex and extend is inferred, the joint velocity reference
magnitude can be obtained at module 208 as a function of the filtered EMG signals.
One possible way to generate the velocity references might be to use principal component
analysis to project the two dimensional filtered EMG signals to the one dimensional
principal component.
III. EXPERIMENTAL IMPLEMENTATION
A. EMG-Based Reference Velocity Generation
[0042] The proposed volitional knee joint controller of FIG. 1 was implemented on three
transfemoral amputee subjects. The subjects were all male, between the ages of 20
and 60, and between 3 months and 4 years post amputation. Two of the subjects were
unilateral transfemoral amputees, while one subject (subject 3) was a bilateral amputee,
with a transfemoral amputation on one leg and a transtibial on the other. In all cases,
all subjects were characterized by a prosthetic knee on one limb and an intact knee
on the other. FIGs. 3A-3C shows the EMG intent databases corresponding to each subject.
In particular, FIG. 3A is an x-y plot of extension and flexion reference signals for
a first amputee subject (subject 1) showing classification using QDA and LDA methods
in accordance with the various embodiments. FIG. 3B is an x-y plot of extension and
flexion reference signals for a second amputee subject (subject 2) showing classification
using QDA and LDA methods in accordance with the various embodiments. FIG. 3C is an
x-y plot of extension and flexion reference signals for a third amputee subject (subject
3) showing classification using QDA and LDA methods in accordance with the various
embodiments.
[0043] These databases, as described above, correspond to 100 seconds of flexion data at
various degrees of (muscular) effort, and 100 seconds of extension data, also at various
degrees of effort. Note that the
xq axis represents the measured, preprocessed, normalized, and thresholded EMG for the
quadriceps group, while the
xh axis represents the EMG measured for the hamstring group. As seen in FIGs. 3A-3C,
two of the three subjects (subjects 1 and 3) demonstrated a significant amount of
muscular co-contraction when intending volitional movement of the prosthetic knee.
Interestingly, subject 1 primarily demonstrated significant co-contraction during
intent to extend the knee, while subject 3 primarily demonstrated significant co-contraction
during intent to flex the knee. For all subjects, the LDA and QDA boundaries between
classes along with the pseudo-classification boundary described by (3) are shown in
the figures. Recall that, based on a five-fold cross-validation of classification
accuracy, QDA classification in general provided higher classification accuracies,
and therefore was used in the control experiments to classify intent to flex or extend
the knee. Specifically, the mean accuracies of the classifiers over 5 CV-fold for
each of the three subjects are 0.99, 0.80 and 0.86 for the LDA and 1.0, 0.86 and 0.90
for the QDA. Note that, particularly in the cases of subjects 1 and 3, the simple
thresholding approach (described by (3)) entails a considerable amount of erroneous
"classification" of intent, even in the case of large amplitude EMG (
xi > 0.3). In contrast, the QDA classification boundaries entail little to no classification
error, particularly in large amplitude EMG.
[0044] Once intent to flex or extend the knee is known, the magnitude of the angular velocity
for the impedance set-point is obtained by projecting the corresponding data point
onto its principal axis via PCA. A representative example of the corresponding PCA
projections for subject 1 is shown in FIGs. 4A and 4B. FIG. 4A is an x-y plot of actual
measurements and PCA projections of extension reference signals for the first amputee
subject in FIG. 3A. FIG. 4B is an x-y plot of actual measurements and PCA projections
of flexion reference signals for the first amputee subject in FIG. 3A. In the figures,
the
xp axis corresponds to the PCA projection of the flexion and extension data along the
principal component of that data. As such, the angular velocity for the impedance
set-point of the volitional knee joint controller can be given by:

where α is the maximum desired set-point velocity (corresponding to maximum muscular
effort),
γ is the value at which the normalized EMG is thresholded (in this case
γ = 0.2),
xp is the PCA projection along the principal axis. For the actual samples,
xq and
xh denote the normalized EMG signals for the quadriceps and hamstrings muscles, respectively.
For the PCA projections,
xp and
xs denote the first principal and second principal components, respectively.
B. Volitional Trajectory Tracking of a Powered Knee Prosthesis
[0045] The volitional knee controller of FIG. 1 was implemented on each of the three amputee
subjects with the powered transfemoral prosthesis 500 shown in FIG. 5 and described
in detail in
U.S. Patent Application No. 12/427,384 to Goldfarb et al, filed April 21, 2009, the contents of which are herein incorporated in their entirety. However, the various
embodiments are not limited to any particular design of a prosthesis. Thus, other
designs can be used with the various embodiments.
[0046] As shown in FIG. 5, prosthesis 500 includes a knee actuation unit 502 for actuating
a knee joint 514, an ankle actuation unit 504 for actuating an ankle joint 508, and
an embedded system 506 housing, for example, a battery and the controller module or
system. Both the knee joint 514 and ankle joint 508 can incorporate integrated potentiometers
for joint angle position. The ankle actuation unit can include a spring 505. One 3-axis
accelerometer is located on the embedded system 506 and a second is located below
the ankle joint 508 on the ankle pivot member 510. A strain based sagittal plane moment
sensor 512 can located between the knee joint 514 and the socket connector 516, which
measures the moment between a socket 524 and the prosthesis 500. Prosthesis also includes
a foot 518 designed to measure the ground reaction force components at the ball 520
of the foot and heel 522. Each of heel 522 and ball 520 incorporates a full bridge
of semiconductor strain gages that measure the strains resulting from the respective
ground contact forces. The prosthetic foot can be designed to be housed in a soft
prosthetic foot shell (not shown).
[0047] As noted above, The prosthesis used in these experiments also contains a powered
ankle, although the ankle was not explicitly commanded in these experiments, but rather
remained in a "neutral" configuration. In order to characterize the effectiveness
of the volitional controller for purposes of moving the knee joint, an experiment
was developed which required each subject to track various types of knee joint angle
movements. During these experiments, each amputee was presented with a computer monitor
that showed in real-time a desired knee angle, along with the knee angle of the powered
prosthesis, as measured by the joint angle sensor on the prosthesis.
[0048] Prosthesis sockets with embedded EMG electrodes for each subject were not available
for these experiments. Normally, such EMG electrodes would be disposed similarly to
the configuration illustrated in FIG. 5 in order to correspond with locations of the
residual portions of the hamstring and/or quadriceps on an amputee. That is, referring
back to FIG. 5, the socket 524 for prosthesis 500 would be configured to include electrodes
526 positioned along inner surfaces of socket 524 and at locations such that the user's
hamstring and/or quadriceps would come into contact with electrodes 526. Signals from
electrodes 526 would then be provided to the embedded system 506. Additionally, to
allow the embedded system 506 to provide feedback to the user as to which joint is
active, a tactor 528, coupled to embedded system 506, would be embedded into socket
524, as described above.
[0049] However, since the various embodiments of the volitional controller are intended
for non-weight-bearing activity such as sitting, the subjects did not wear the powered
prosthesis during the knee control experiments, but rather the subjects were seated
in a chair and the powered knee prosthesis was mounted to a bench immediately next
to the subject. The prosthesis was mounted in an orientation that was consistent with
the seated position of the subjects.
[0050] Aside from the QDA and PCA parameters extracted from the EMG intent database, all
subjects utilized the same set of volitional control parameters for the powered prosthesis.
Specifically, the stiffness of the impedance controller was selected as
k = 1.0 Nm/deg, the damping as
b = 0.01 Nm/deg/s, the maximum set-point velocity
α = 50 deg/s. These parameters were selected experimentally to provide an acceptable
bandwidth of motion, while maintaining a natural appearance of motion and a stable
interaction with obstacles in the environment (e.g., the leg of a chair).
[0051] In order to characterize volitional control of various types of motion, four different
desired trajectories were constructed (referred herein as trajectories
A through
D). The trajectory
A joint angle tracking task consisted of set point trajectories requiring the subject
to quickly change the knee angle in 8 to 45 degree increments and to hold it for 5
to 10 seconds. Trajectory B consisted of sloped trajectories, which were intended
to measure the subject's ability to move the prosthesis at different constant velocities.
Trajectories
C and
D consisted of sinusoidal waves at 0.2 and 0.33 Hz, respectively (i.e., five-second
and three-second periods, respectively), which were intended to measure the subject's
ability to move the leg up and down smoothly at continuously varying velocities. Trajectories
A and
B lasted for a total duration of 160 and 180 seconds, respectively, while trajectories
C and
D lasted for a total duration of 60 seconds each.
[0052] For each amputee subject, three sessions of experiments were conducted, each on a
different day, with each successive session approximately one week apart. During the
experimental sessions, the amputee spent approximately one hour practicing the tracking
of the four trajectories (
A through
D), during which the various trajectories were presented to the amputee in an arbitrary
order. After completion of the third session (i.e., after approximately one hour of
practice in the third session), the subject's performance was evaluated in a single
set of performance tests, consisting of one trial each of trajectories
A through
D. Representative trajectory tracking performance data corresponding to subject 3, whose
average performance was between that of subjects 1 and 2, is shown in FIGs. 6A-6D.
FIGs. 6 show x-y plots of EMG-controlled powered prosthesis knee position for trajectories
A-D, respectively, of the third amputee subject in FIG. 3C.
[0053] The root-mean-square (RMS) trajectory tracking error for all amputee subjects for
each of the four trajectories is summarized in Table I. As seen in the table, the
average RMS tracking error across all subjects and all trajectories was 6.2 deg.
TABLE I
RMS ERROR FOR EMG CONTROL OF POWERED KNEE |
|
Subject 1 EMG |
Subject 2 EMG |
Subject 3 EMG |
EMG Control Avg. |
Trajectory A |
6.8 |
8.2 |
8.0 |
7.7 |
Trajectory B |
2.5 |
3.9 |
3.7 |
3.4 |
Trajectory C |
4.4 |
7.2 |
5.3 |
5.6 |
Trajectory D |
8.4 |
8.3 |
7.1 |
7.9 |
Subject Avg. |
5.5 |
6.9 |
6.0 |
6.2 |
B. Comparison to Intact Knee Trajectory Tracking
[0054] In order to provide context for the trajectory tracking data summarized in Table
I, corresponding experiments were conducted to assess the ability of each amputee
to track the same set of knee joint angle trajectories with his sound knee. These
experiments were conducted in a single session, since familiarization with the prosthesis
and volitional impedance controller was not necessary (i.e., each subject was already
quite familiar with the movement control of his sound knee). As such, each subject
spent approximately 15 minutes practicing each set of trajectories, until each was
comfortable with his ability to track the trajectories. Once sufficiently comfortable,
each subject's performance was evaluated in a single set of performance tests, consisting
of one trial each of trajectories
A through
D. Movement of the subjects' sound knee was measured by using a knee brace instrumented
with a goniometer. The knee brace did not impose any significant constraints on knee
movement. Representative data corresponding to subject 3 (whose prosthetic side data
is shown in FIGs. 6A-6D) is shown in FIGs. 7A-7D. FIGs. 7A-7D shows x-y plots of sound-side
knee position for trajectories A-D, respectively, of the third amputee subject in
FIG. 3C. The RMS trajectory tracking error for sound side knee angle tracking for
all subjects for each of the four trajectories is summarized in Table II.
TABLE II
RMS ERROR FOR VOLITIONAL CONTROL OF INTACT KNEE |
|
Subject 1 Sound |
Subject 2 Sound |
Subject 3 Sound |
Sound Side Avg. |
Trajectory A |
6.1 |
6.8 |
7.6 |
6.8 |
Trajectory B |
1.4 |
1.8 |
3.1 |
2.1 |
Trajectory C |
4.6 |
6.1 |
6.4 |
5.7 |
Trajectory D |
4.5 |
6.4 |
7.7 |
6.2 |
Subject Avg. |
4.2 |
5.3 |
6.2 |
5.2 |
[0055] As seen in Table II, the average RMS tracking error across all subjects and all trajectories
for sound knee tracking was 5.2 deg. Recall from Table I that the average RMS tracking
error across all subjects and all trajectories for the EMG-based prosthesis knee tracking
was 6.2 deg, thus indicating a difference in tracking error between the prosthetic
and intact knee joints of one degree. As such, as indicated collectively by the tracking
data, the ability of the amputee to control non-weight-bearing knee joint motion of
the powered prosthesis (with the EMG-based impedance controller) is nearly as good
as their ability to control non-weight-bearing knee joint motion in their intact knee.
Further, the performance differences were fairly invariant with respect to movement
type. Specifically, the average RMS errors for trajectory
A (steps) were 7.7 deg and 6.8 deg, respectively, for the prosthetic and intact joints,
and thus the difference in average error was 0.9 deg. The average RMS errors for trajectory
B (ramps) were 3.4 deg and 2.1 deg, respectively, for the prosthetic and intact joints,
and thus the difference in average error was 1.3 deg. For trajectory C (the slower
sinusoid), the average RMS errors were 5.6 deg and 5.7 deg, respectively, for the
prosthetic and intact joints, and thus the tracking performance for the slower sinusoid
was essentially the same for the prosthetic and intact joint control. Finally, for
trajectory D (the faster sinusoid), the average RMS errors were 7.9 deg and 6.2 deg,
respectively, for the prosthetic and intact joints, and thus the prosthesis controller
demonstrated 1.7 deg more error on average than the intact joint.
[0056] The resulting control approach shows that the resulting volitional control provides
trajectory tracking performance close to that of their respective intact knee joints,
thus indicating that the approach provides effective control of knee joint motion
during non-weight-bearing activity.
[0057] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example only, and not
limitation. Numerous changes to the disclosed embodiments can be made in accordance
with the disclosure herein without departing from the spirit or scope of the invention.
Thus, the breadth and scope of the present invention should not be limited by any
of the above described embodiments. Rather, the scope of the invention should be defined
in accordance with the following claims and their equivalents.
[0058] Although the invention has been illustrated and described with respect to one or
more implementations, equivalent alterations and modifications will occur to others
skilled in the art upon the reading and understanding of this specification and the
annexed drawings. In addition, while a particular feature of the invention may have
been disclosed with respect to only one of several implementations, such feature may
be combined with one or more other features of the other implementations as may be
desired and advantageous for any given or particular application.
[0059] The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting of the invention. As used herein, the singular
forms "a", "an" and "the" are intended to include the plural forms as well, unless
the context clearly indicates otherwise. Furthermore, to the extent that the terms
"including", "includes", "having", "has", "with", or variants thereof are used in
either the detailed description and/or the claims, such terms are intended to be inclusive
in a manner similar to the term "comprising."
[0060] Unless otherwise defined, all terms (including technical and scientific terms) used
herein have the same meaning as commonly understood by one of ordinary skill in the
art to which this invention belongs. It will be further understood that terms, such
as those defined in commonly used dictionaries, should be interpreted as having a
meaning that is consistent with their meaning in the context of the relevant art and
will not be interpreted in an idealized or overly formal sense unless expressly so
defined herein.