(11) EP 3 009 429 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **20.04.2016 Bulletin 2016/16**

(21) Application number: 14811092.7

(22) Date of filing: 05.06.2014

(51) Int CI.: CO7D 307/80 (2006.01) A61P 3/10 (2006.01)

A61K 31/343 (2006.01)

(86) International application number:

PCT/CN2014/000558

(87) International publication number: WO 2014/198123 (18.12.2014 Gazette 2014/51)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 14.06.2013 CN 201310238137

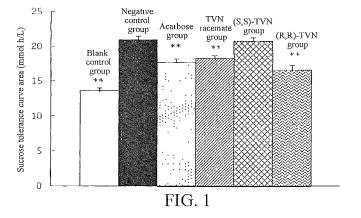
(71) Applicant: China Pharmaceutical University Nanjing, Jiangsu 211198 (CN)

(72) Inventors:

KONG, Lingyi
 Nanjing
 Jiangsu 211198 (CN)

 LUO, Jianguang Nanjing Jiangsu 211198 (CN) HAN, Chao
 Nanjing
 Jiangsu 211198 (CN)

 WANG, Xiaobing Nanjing Jiangsu 211198 (CN)


 HONG, Hao Nanjing Jiangsu 211198 (CN)

(74) Representative: Engelhard, Markus Boehmert & Boehmert Anwaltspartnerschaft mbB Patentanwälte Rechtsanwälte Pettenkoferstrasse 20-22 80336 München (DE)

(54) R TYPE RESVERATROL DIMER, PREPARATION METHOD THEREFOR AND USE THEREOF IN REDUCING BLOOD SUGAR

(57) The present invention relates to the field of natural pharmaceutical chemistry, and in particular, to a resveratrol dimer (7R,8R)-trans- δ -viniferin (I), a preparation method therefor and a use thereof in reducing a blood sugar level. According to the present invention, an R type

of resveratrol dimer is separated from the resveratrol dimer by using high-speed countercurrent chromatography. Pharmacodynamic tests proved that the R type of resveratrol dimer has a better effect in reducing a blood sugar level than a racemate.

Description

FIELD OF THE INVENTION

⁵ **[0001]** The present invention relates to the field of natural pharmaceutical chemistry, and in particular, to a resveratrol dimer (7R,8R)-trans-δ-viniferin, a preparation method therefor and a use thereof in reducing a blood sugar level.

DESCRIPTION OF RELATED ART

[0002] Separation of chiral compounds, especially chiral drugs is of importance in pharmaceutical research and pharmaceutical industry development. For drugs with a chiral center, pharmacological and toxicological actions thereof are different. In most cases, a stereisomer has a pharmacological effect, but a mirror molecular thereof has a very low pharmacological effect or even no pharmacological effect, or has a side-effect. In chiral separation technologies, high-performance liquid chromatography (HPLC) plays an extremely important role. However, a cost thereof is expensive and solvent consumption during preparative separation by using the HPLC method is also very great

[0003] High-speed countercurrent chromatography is a novel technology to achieve separation and preparation based on that a sample has different distribution coefficients in two phases of a solvent that are not mutually solvable. Application of the countercurrent chromatography in separation of chiral compounds does not need to use a chemical means to bond a chiral reagent to a solid medium, but only needs to add a proper chiral reagent into a liquid-state stationary phase or mobile phase. A same countercurrent chromatography separation column can be used in separation of different chiral compounds for multiple times, which only needs to select a proper two-phase solvent system and chiral reagent. In addition, a same countercurrent chromatography column can be used in both chiral analysis and chiral preparative separation just by means of adjusting a quantity of the chiral reagent added into the stationary phase or mobile phase [0004] A compound trans-δ-viniferin (TVN for short) is a resveratrol dimer:

25

30

35

45

50

10

15

20

[0005] The compound is a natural product that was separated from grapes in 1977. Such compounds obtained by means of separation from a natural drug or a traditional Chinese medicine, are in a form of racemate. In laboratories, a TVN racemate may also be obtained by means of using Momordica charantia peroxidase to perform biotransformation of resveratrol.

[0006] At present, reports on activities of this compound are only limited to a strong anti-oxidative action. According to a patent (Publication No.: CN 101433534A) previously applied by us, it was found through in-vitro activity tests that, alpha-glucosidase inhibitory activity of the TVN racemate is 254 times of that of acarbose.

SUMMARY OF THE INVENTION

Technical Solution

[0007] The present invention discloses an optical isomer of TVN, namely, (7R,8R)-trans- δ -viniferin of a structural formula I, which is referred to as (R,R)-TVN for short, and has the following structural formula:

55

5

10

15

20

40

45

50

55

[0008] The present invention further discloses a chiral preparation method of (7R,8R)-trans-δ-viniferin of the structure formula I and a pharmaceutical use thereof.

[0009] Chiral separation is performed on a TVN racemate by using high-speed countercurrent chromatography (HSC-CC), to obtain two optically pure compounds, (7R,8R)-trans- δ -viniferin(I,(R,R)-TVN) and ((7S,8S)-trans- δ -viniferin((S,S)-TVN).

[0010] The compound of the structural formula I may be prepared by using the following method:

Biotransformation of resveratiol is performed by using Momordica charantia peroxidase, and a transformation product is washed by using chloroform and methanol as an eluent after a silica gel column chromatography process, and then passes through a preparative HPLC, to obtain a TVN racemate. After the TVN racemate passes through a high speed countercurrent chromatograph, two optically pure compounds, (R,R)-TVN and (S,S)-TVN can be obtained. An operational procedure of the high-speed countercurrent chromatograph includes: preparing a two-phase solvent by using n-hexane, ethyl acetate and water in a volume ratio of 4.8 to 5.2: 4.8 to 5.2: 9.8 to 10 2, where a top phase is a stationary phase, and 22 mmol/L to 28 namol/L (2-hydroxypropyl)-β-cyclodextrin is added into a bottom phase to form a mobile phase; pumping the stationary phase into the high-speed countercurrent chromatograph from a top end thereof; simultaneously rotating a main machine until a pipeline is fully filled with the stationary phase and pumping the mobile phase thereinto; dissolving the TVN racemate into a small amount of the top phase when the mobile phase obviously flows from an outlet of the pipeline; then injecting a resulting solution to a sample cell, and starting to acquire data; and receiving target compositions according to peaks.

[0011] Results of pharmacodynamic tests show that, (R,R)-TVN can significantly lower a sucrose-induced high blood sugar level of a mouse, and has a better effect than the TVN racemate. However, an enantiomer thereof (S,S)-TVN cannot significantly lower a sucrose-induced high blood sugar level of a mouse.

[0012] Some pharmacodynamic tests and results thereof are as follows:

A mean body weight of mice was 22 g to 25 g. The mice were randomly divided into 6 groups, and each group included 10 animals. Each group of animals was intragastrically administered with a drug after 12 hours of fasting

For a normal control group, a 0.5% CMC-Na solution whose volume is equal to that of a positive control group was administered.

[0013] For a negative control group, a 05% CMC-Na solution whose volume is equal to that of a positive control group was administered.

[0014] For an acarbosc group, a 0.33 mg/ml acarbose suspension that was prepared by using a 0.5% CMC-Na solution was administered at a dosage of 0.3 ml per 10 g of weight.

[0015] For a TVN racemate group, a 0.33 mg/ml TVN racemate suspension that was prepared by using a 0.5% CMC-Na solution was administered at a dosage of 0.3 ml per 10 g of weight.

[0016] For a (S,S)-TVN group, a 0.33 mg/ml (S,S)-TVN suspension that was prepared by using a 0.5% CMC-Na solution was administered tat a dosage of 0.3 ml per 10 g of weight.

[0017] For a (R,R)-TVN group, a 0.33 mg/ml (R,R)-TVN suspension that was prepared by using a 0.5% CMC-Na solution was administered at a dosage of 0.3 ml per 10 g of weight.

[0018] After 30 min, animals in the groups other than the normal group were intragastrically administered with a 6.7% sucrose solution at a dosage of 0.3 ml per 10 g of weight, and animals in the normal group were intragastrically administered with water whose volume is equal to that of the sucrose solution Orbital blood sampling was separately performed at four time points, namely 0 h, 0.5 h, 1 h, and 2 h after intragastric administration of the sucrose solution to the animals. Then, 2 μ L of blood serum was taken after centrifugation and added into a 96-pore plate. Thereafter, 200 μ L of a reagent from a glucose assay kit was further added thereinto and a 505 nm micro-plate reader was used to measure a value of absorbance. A blood sugar concentration was obtained from a standard curve. Refer to the table below:

Blood sugar concentration (mmol/L) ($x\pm s$, n=10)

Group	0 h	0.5 h	1 h	2 h		
Blank control group	6.67±1.06	6.90±1.06**	6.47±1.29**	7.22±0.58		
Negative control group	$8.47\!\pm\!1.24$	12.02 ± 1.67	10.62 ± 1.65	8.71 ± 1.44		
Acarbose group	$7.94\!\pm\!1.25$	$9.74 \pm 1.45^*$	$8.32 \pm 1.50 *$	$8.54 \!\pm\! 1.04$		
TVN racemate group	7.75 ± 1.57	$10.34 \pm 1.75^*$	$9.07\!\pm\!1.55^{*}$	8.83 ± 1.46		
"*": P<0.05; "**"· P<001 (relative to a negative control group)						

[0019] A sucrose tolerance test curve was drawn, and an area under the curve was calculated, as shown in FIG. 1. [0020] All data was represented by using a mean value \pm a standard deviation ($x\pm$ s). SPSS11.5 software was used

for analysis, and data comparison was performed by means of a one-way analysis of variance. P<0.05 represents that there was a significant difference; and P<0.01 represents that there was an extremely significant difference

[0021] According to a table of blood sugar level change in an orally-administered sucrose tolerance test for normal mice, calculation was performed by using the SPSS11.5 software. Compared with the negative control group, blood glucose-reducing rates of the acarbose group and the TVN racemate group at 0.5 h were respectively 18.97% and 13.98%, and P<0.05, which means that there was a significant difference. Compared with the negative control group, blood glucose-reducing rates thereof were respectively 21.66% and 14.60% at 1 h, which means that there was a significant difference. Compared with the negative control group, blood glucose-reducing rates of the (R,R)-TVN group at 0.5 h and 1 h were respectively 30.20% and 22.79%, and P<0.01, which means that there was an extremely significant difference. Compared with the negative control group, blood glucose-reducing rates of the (S,S)-TVN group were respectively 0.08% and 3.01% at 0.5 h and 1 h, which had almost no difference from that of the negative control group.

[0022] In FIG. 1, a general sucrose tolerance level in the test was studied by means of calculating the area under the sucrose tolerance test curve. Compared with the negative control group, the areas under the sucrose tolerance test curves of the TVN racemate group, the (R,R)-TVN group and the negative control group were respectively 18.3 mmol h/L, 16.7 mmol h/L and 21.0 mmol h/L, and P<0.01, which means that there was an extremely significant difference. The area under the sucrose tolerance test curve of the (S,S)-TVN group was 20.9 mmol h/L, which had almost no difference from that of the negative control group.

Advantageous Effect

10

15

20

25

30

35

40

45

50

55

[0023] Conclusions: (R,R)-TVN can significantly lower a sucrose-induced high blood sugar level of a mouse, but an enantiomer thereof (S,S)-TVN cannot significantly lower a sucrose-induced high blood sugar level of a mouse Moreover, a mixture of (R,R)-TVN and (S,S)-TVN, namely a TVN racemate has a hypoglycemic activity between hypoglycemic activities of the both.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024]

- FIG. 1 is a diagram of an area under a sucrose tolerance test curve for each test group, where: "*": P<0.05; "**": P<0.01 (relative to a negative control group);
 - FIG. 2 is a diagram of separation of a TVN racemate by high-speed countercurrent chromatography,
- FIG. 3 is HPLC diagrams of a TVN racemate and HSCCC fractions; and
 - FIG. 4 is a CD diagram of two HSCCC fractions.

DETAINED DESCRIPTION OF THE INVENTION

Embodiment 1

15

20

30

35

40

[0025] Separation of a TVN racemate by high-speed countercurrent chromatography:

Preparation of a sample solution: 20 mg of a TVN racemate was dissolved in 10 mL of a top organic phase.

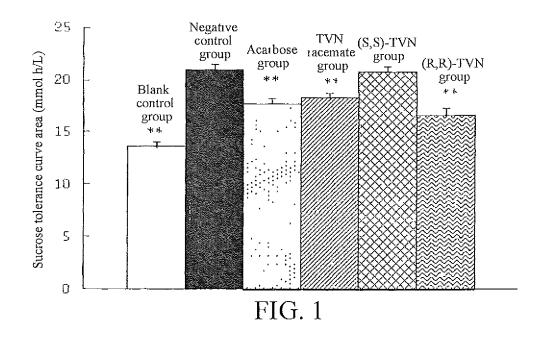
[0026] 1,200 mL of a two-phase solvent system consisting of n-hexane, ethyl acetate and 25 mmol/L aqueous solution of (2-hydroxypropyl)-β-cyclodextrin in a volume ratio of 5·5:10 was placed in a 2,000 mL separating funnel for full equilibrium overnight, then separated and ultrasonically processed for 30 min. A top-phase solvent was used as a stationary phase, and injected into a high-speed countercurrent chromatograph at a flow rate of 30 ml/min until an entire pipeline system was filled. A main machine was rotated at a constant rotation rate of 800 r/min. A column oven was started to maintain a temperature at 5°C. A bottom-phase solvent was used as a mobile phase, and the bottom phase was injected into the high-speed conntercurrent pipeline at a rate of 1 mL/min. When the bottom phase obviously flowed from an outlet of the pipeline, the sample solution was injected to a mouth of a sample cell, and fractions were collected under ultraviolet detection at 313 nm. For a countercurrent diagram, refer to FIG. 2, where: 1 represents (S,S)-TVN, and 2 represents (R,R)-TVN. To the collected samples, a small amount of hydrochloric acid was added for acidification, and a resulting solution was extracted with ethyl acetate for 3 times, and then vacuum concentrated to obtain a crude product. After a silica gel column chromatography process, the crude product was eluted by using dichloromethane and methanol in a volume ratio of 15:1 to remove a small amount of (2-hydroxypropyl)-β-cyclodextrin, and obtain high purity samples, i.e. 8.2 mg of (S,S)-TVN and 9.4 mg of (R,R)-TVN. A recovery rate exceeded 80%.

[0027] The (R,R)-TVN and (S,S)-TVN may be verified by using the following method:

The TVN racemate and two HSCCC fractions were verified by using HPLC, as shown in FIG. 3. In FIG. 3, (a) represents the TVN racemate; (b) represents HSCCC including a fraction of (S,S)-TVN; and (c) represents HSCCC including a fraction of (R,R)-TVN. HPLC conditions: an Agilent HPLC workstation was set by using Agilent 1200 HPLC, and a chromatographic column was Agilent Zorbax SB-C18: column (4.6 mum*250 mm, 5 μ m), temperature: 30°C, mobile phase. 25 mmol L-1 HP- β -CD aqueous solution and acetonitrile (75:25, v/v), flow rate: 1.0 mL min-1, and detection wavelength: 320 nm.

[0028] In FIG. 3, a retention time (t=21.493 min) of (R,R)-TVN is longer than a retention time (t=19.247 min) of (S,S)-TVN. In addition, purities of two compounds both exceed 98%, and values of enantiomer excess (ec) thereof reach 100%.

[0029] FIG. 4 is a circular dichroism (CD) spectrum diagram of two compounds. When the two compounds have a same concentration, CD curves thereof are almost completely symmetric. In the figure, a dotted line shows a CD diagram of HSCCC including a fraction of (S,S)-TVN; and a solid line shows a CD diagram of HSCCC including a fraction of (R,R)-TVN, where concentrations thereof are both 0.2 mg/ml.


Claims

55

50

A compound of a structural formula (I) or a pharmaceutically acceptable salt thereof:

- 2. A pharmaceutical pomposition, comprising the compound or pharmaceutically acceptable salt thereof according to claim 1 and a pharmaceutically acceptable carrier.
- 3. A use of the compound or pharmaceutically acceptable salt thereof according to claim 1 in preparing drugs for diseases related to hyperglycemia.
 - 4. A method for preparing the compound according to claim 1, comprising: preparing a two-phase solvent by using n-hexane, ethyl acetate and water m a volume ratio of 4 8 to 5 2 4 8 to 5.2: 9.8 to 10.2, wherein a top phase is a stationary phase, and 22 nmol/L. to 28 mmol/L (2-hydroxypropyl)-β-cyclodextrin is added into a bottom phase to form a mobile phase; pumping the stationary phase intro a high-speed countercurrent chromatograph from a top end thereof; simultaneously rotating a main machine until a pipeline is fully filled with the stationary phase and pumping the mobile phase thereinto, dissolving a racemate into a small amount of the top phase when the mobile phase obviously flows from an outlet of the pipeline; then injecting a resulting solution into a sample cell and starting to acquire data; and receiving target compositions according to peaks, to obtain the compound

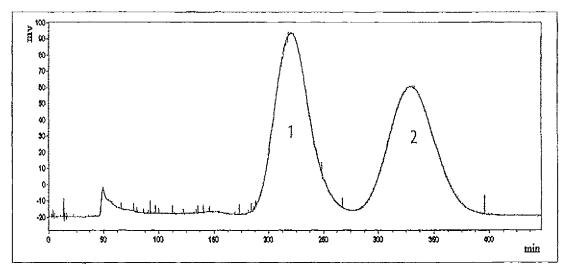
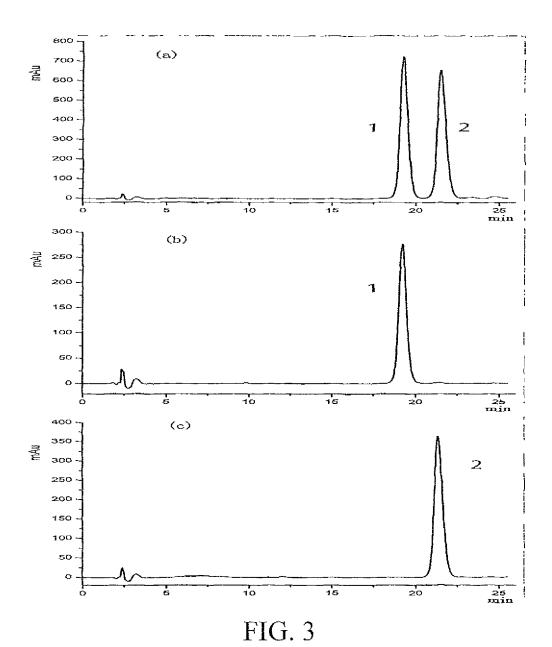



FIG. 2

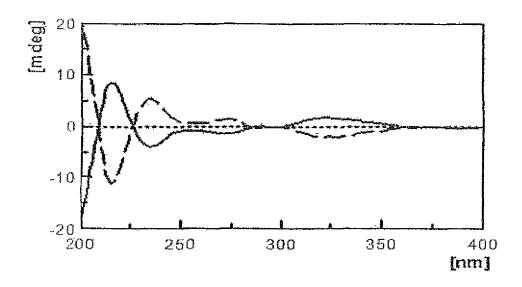


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2014/000558

5 A. CLASSIFICATION OF SUBJECT MATTER C07D 307/80 (2006.01) i; A61K 31/343 (2006.01) i; A61P 3/10 (2006.01) i According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) C07D 307/-; A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS; DWPI; SIPOABS; CNKI; REG; CAplus: resveratrol, resveratrol dimer, trans, pallidol, viniferin, STN 20 Registration numbers: [1453263-90-5], [204076-78-8], [681293-15-2] C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages 25 PX CN 103275044 A (CHINA PHARMACEUTICAL UNIVERSITY), 04 September 2013 1-4 (04.09.2013), claims 1-4 CN 101433534 A (CHINA PHARMACEUTICAL UNIVERSITY et al.), 20 May 2009 Α 1-4 (20.05.2009), the whole document CN 101977601 A (CAUDALIE), 16 February 2011 (16.02.2011), the whole document 1-4 Α 30 Further documents are listed in the continuation of Box C. See patent family annex. 35 later document published after the international filing date Special categories of cited documents: or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention 40 cannot be considered novel or cannot be considered to involve international filing date an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such documents, such combination being obvious to a person document referring to an oral disclosure, use, exhibition or 45 skilled in the art other means "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 01 August 2014 (01.08.2014) 26 August 2014 (26.08.2014) 50 Name and mailing address of the ISA/CN: Authorized officer State Intellectual Property Office of the P. R. China No. 6, Xitucheng Road, Jimenqiao LIU, Shujing Haidian District, Beijing 100088, China Telephone No.: (86-10) 62086345 Facsimile No.: (86-10) 62019451

Form PCT/ISA/210 (second sheet) (July 2009)

55

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
CN 103275044 A	04 September 2013	None	
CN 101433534 A	20 May 2009	CN 101433534 B	09 February 2011
CN 101977601 A	16 February 2011	US 2010310615 A1	09 December 2010
		CA 2705840 A1	22 May 2009
		RU 2010123790 A	20 January 2013
		RU 2491063 C2	27 August 2013
		EP 2222294 B1	07 May 2014
		WO 2009063440 A1	22 May 2009
		EP 2222294 A1	01 September 2010
		JP 2011504467 A	10 February 2011
		FR 2923717 A1	22 May 2009

Form PCT/ISA/210 (patent family annex) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 101433534 A [0006]