

(11) EP 3 016 060 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **04.05.2016 Bulletin 2016/18**

(21) Application number: 13883850.3

(22) Date of filing: 28.06.2013

(51) Int Cl.: **G06Q 50/22** (2012.01)

(86) International application number: **PCT/JP2013/067759**

(87) International publication number: WO 2014/196087 (11.12.2014 Gazette 2014/50)

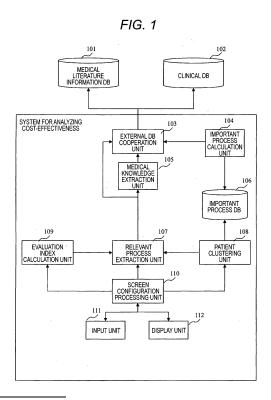
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(71) Applicant: Hitachi, Ltd. Tokyo 100-8280 (JP)


(72) Inventors:

- YUI, Syuntaro Kokubunji-shi Tokyo 185-8601 (JP)
- KIDO, Kunihiko Kokubunji-shi Tokyo 185-8601 (JP)

- SHIMADA, Kazuyuki Kokubunji-shi Tokyo 185-8601 (JP)
- OHTA, Masayuki Kokubunji-shi Tokyo 185-8601 (JP)
- SATO, Jumpei Kokubunji-shi Tokyo 185-8601 (JP)
- HISAMITSU, Toru Kokubunji-shi Tokyo 185-8601 (JP)
- (74) Representative: Moore, Graeme Patrick et al Mewburn Ellis LLP City Tower
 40 Basinghall Street London EC2V 5DE (GB)

(54) MEDICAL CARE PROCESS ANALYSIS SYSTEM

(57)Upon evaluation of a value of a diagnostic process, the value of a diagnostic process is evaluated not based on a simple cost but on a cost required for all processes of a patient who was in the diagnostic process through a follow-up survey. Diagnostic processes that are not relevant to a target diagnostic process are eliminated, clustering is performed on patients to divide the patients into clinically meaningful homogeneous groups, and the target diagnostic process is evaluated for each of the homogeneous groups. For the purpose, importance scores of data pieces of the clinical data are calculated and the relevant data is output using the output result of the medical knowledge extraction unit, clustering, is performed on patients in the clinical data, and a clinical index and a cost are output for each of the clusters.

Printed by Jouve, 75001 PARIS (FR)

1

Description

Technical Field

[0001] The present invention relates to a technique of a hospital information system in medical field and particularly relates to a diagnostic process analysis system.

Background Art

[0002] Recently, an environment surrounding medical treatment has largely changed due to declining birthrate and an aging society, and progress in medical technology, for example. In particular, medical care expenditure in the world has increased by 5% a year both in developed countries and developing countries due to super-aging society starting from developed countries, causing an urgent issue of suppressing medical care expenditure while maintaining Quality of Life (QoL). It is particularly important to analyze and provide an optimal diagnostic process. What is especially desired upon evaluation of a "value (effect)" of a diagnostic process is to evaluate the value of a diagnostic process not based on a simple cost but on a cost required for the all processes of a patient who was in the diagnostic process through a follow-up survey.

[0003] PTL 1 provides a system that evaluates medical efficiency based on a master table in which positions of a user and physical condition evaluation indices are associated, action history of the user, and taken medicine (detected by detecting that a package is opened).

Citation List

Patent Literature

[0004] PTL 1: JP 2011-243140 A

Summary of Invention

Technical Problem

[0005] Upon evaluation of cost required for the all processes, it is difficult to eliminate processes that are not relevant to a target diagnostic process because many patients have various comorbidities. For example, upon analyzing hepatoma of a patient with myocardial infarction as a comorbidity, there is a demand of easily eliminating processes for myocardial infarction. However, for elimination, all diagnostic processes have to be checked, and medical knowledge is also required, thus requiring a lot of labor.

[0006] In addition, upon evaluation of a target diagnostic process, what is required is not discussion of simple means of all patterns but discussion of each clinically meaningful homogeneous group of combination of processes because cost and quality largely depends on a combination of diagnostic processes (diagnostic process

pattern). However, clustering of clinically homogeneous patients is difficult because many patients are in many diagnostic processes.

[0007] The system of above-described PTL 1 evaluates medical efficiency based on physical condition evaluation indices according to a behavior pattern of a user (ex. go to an amusement park, go to a hospital) without taking account of diagnostic process patterns.

[0008] As described above, according to the conventionally disclosed technique, it has been difficult to achieve enough effect on evaluating cost required for all processes.

Solution to Problem

[0009] Provided is a diagnostic process analysis system that analyzes cost-effectiveness of a diagnostic process by using a database storing clinical data, medical concept information indicating medical concepts, and text data, the system comprising: an input unit; an output unit; and a processing unit, wherein the input unit accepts input of a first diagnostic process to be analyzed, the processing unit includes: a medical knowledge extraction unit configured to extract, from the text data, relevance information indicating relevance between different medical concepts regarding the medical concept information of respective data pieces of the clinical data that are previously defined; an important process calculation unit configured to calculate importance scores of the data pieces of the clinical data by using the relevance information; a relevant process extraction unit configured to extract a second diagnostic process by eliminating diagnostic processes that are less relevant to the first diagnostic process, which has been accepted by the input unit, based on the importance scores; a patient clustering unit configured to perform clustering on patients in the clinical data based on the second diagnostic process and the importance scores calculated by the important process calculation unit; and an evaluation index calculation unit configured to calculate a clinical index and a cost of the second diagnostic process for each patient group obtained by clustering performed by the patient clustering unit, and the output unit outputs a result of calculation performed by the evaluation index calculation unit.

Advantageous Effects of Invention

[0010] The invention allows extraction of diagnostic processes that are not relevant to a target diagnostic process (administration of medicine, for example), thereby allowing calculation of total cost and a clinical index of processes caused by the target diagnostic process. In addition, upon evaluation of a diagnostic process, clinically homogeneous groups are generated so as to allow extraction of diagnostic process patterns (combinations) having bad clinical indices. Furthermore, since a diagnostic process is evaluated using clinically homogeneous groups, the diagnostic processes can be easily im-

25

35

40

45

proved.

Brief Description of Drawings

[0011]

[FIG. 1] FIG. 1 is a schematic block diagram of a diagnostic process analysis system according to the present invention.

3

[FIG. 2] FIG. 2 is a hardware block diagram of the diagnostic process analysis system according to the present invention.

[FIG. 3] FIG. 3 is a first flowchart showing a process flow of the diagnostic process analysis system according to the present invention.

[FIG. 4] FIG. 4 is a first example illustrating a screen of the diagnostic process analysis system according to the present invention.

[FIG. 5] FIG. 5 is a flowchart showing a process flow of a relevant process extraction unit of the diagnostic process analysis system according to the present invention.

[FIG. 6] FIG. 6 is a screen example relating to the relevant process extraction unit of the diagnostic process analysis system according to the present invention.

[FIG. 7] FIG. 7 is an example of a dictionary table that is processed by the diagnostic process analysis system according to the present invention.

[FIG. 8] FIG. 8 is an example of a medical literature processed by the diagnostic process analysis system according to the present inventions.

[FIG. 9] FIG. 9 is an example of a literature rank table processed by the diagnostic process analysis system according to the present invention.

[FIG. 10] FIG. 10 is an example of evidence levels processed by the diagnostic process analysis system according to the present invention.

[FIG. 11] FIG. 11 is an output example of a medical knowledge output unit of the diagnostic process analysis system according to the present invention. [FIG. 12] FIG. 12 is a flowchart showing a process flow of an important process calculation unit of the diagnostic process analysis system according to the present invention.

[FIG. 13] FIG. 13 is examples of a patient table and a clinical index table of the diagnostic process analysis system according to the present invention.

[FIG. 14] FIG. 14 is a treatment record table example of the diagnostic process analysis system according to the present invention.

[FIG. 15] FIG. 15 is a. flowchart showing a process flow of a patient clustering unit of the diagnostic process analysis system according to the present inven-

[FIG. 16] FIG. 16 is a screen example that is related to the patient clustering unit of the diagnostic process analysis system according to the present invention. [FIG. 17] FIG. 17 is a flowchart showing a process flow of an evaluation index calculation unit of the diagnostic process analysis system according to the present invention.

[FIG. 18] FIG. 18 is a screen example that is related to the evaluation index calculation unit of the diagnostic process analysis system according to the present invention.

Description of Embodiments

First Embodiment

[0012] FIG. 1 is a block diagram of a diagnostic process analysis system according to the present invention. The system includes an external DB cooperation unit 103; an important process calculation unit 104; a medical knowledge extraction unit 105; an important process database 106; a relevant process extraction unit 107; a patient clustering unit 108; an evaluation index calculation unit 109; a screen configuration processing unit 110; an input unit 111; and a display unit 112. The external DB cooperation unit 103 is a function for cooperating with a database outside of the system. In the present embodiment, data stored in a medical literature information database 101 and a clinical database 102 are acquired via the external DB cooperation unit 103. The external DB cooperation unit 103 may cooperate with other databases in some embodiments.

[0013] The hardware configuration of the system is described. FIG. 2 illustrates a hardware block diagram for implementing the diagnostic process analysis system according to the present invention. The important process database 106 is formed in an external storage device 204 or the like. The external storage is exemplified by a Hard Disk Drive (HDD) device. The external DB cooperation unit 103, the important process calculation unit 104, the medical knowledge extraction unit 105, the relevant process extraction unit 107, the patient clustering unit 108, the evaluation index calculation unit 109, and the screen configuration processing unit 110 can implement various types of processing by loading and executing a predetermined program by a central processing unit 203, a memory 202, or the like. The input unit 111 can be implemented by a keyboard 200, a mouse, a pen tablet, or the like. The display unit 112 can be implemented by a display 201 such as a liquid crystal display, a monitor of Cathode-Ray Tube (CRT) or the like. Information may be output on a medium such as paper.

[0014] FIG. 3 illustrates a flowchart schematically showing the system. First, a diagnostic process to be analyzed is input via the input unit 111 and the display unit 112 (S301). Next, based on the diagnostic process to be analyzed having been input in S301, diagnostic processes that are relevant to the diagnostic process to be analyzed are extracted (S302). Next, importance scores of data pieces of clinical data are calculated by using data stored in the clinical database 102 (S303).

20

25

40

45

Next, based on the relevant processes extracted in S302 and the importance scores calculated in S303, clustering is performed on patients (S304). Last, for each of clusters given by clustering in S304, an evaluation index (also referred to as a clinical indicator and a quality indicator) is calculated (S305). Note that S303 may be performed at any time before S304 and thus can be performed before these steps in advance.

[0015] FIG. 4 illustrates a screen example that is displayed on the display unit 112 in S301 and S302. In this paragraph, only a part relating to S301 is described. This screen includes a condition setting part 401 and a processing result presenting part 402. In the condition setting part 401, there are displayed buttons for running a processing unit of the present system (a relevant data extraction button 4011, a clustering button 4012, and an evaluation index calculate button 4013) and various conditions. FIG. 4 illustrates the screen example of S301. Pressing the relevant data extraction button 4011 starts S302, pressing the clustering button 4012 starts S304, and pressing the evaluation index calculate button 4013 starts S305. In the condition setting part 401 of FIG. 4, conditions required to press the relevant data extraction button 4011 are displayed. In this example, Lipiodol and IA-call are set as diagnostic processes (medicines) to be analyzed. These diagnostic processes are used as anticancer drugs for hepatoma treatment. A user will analyze cost-effectiveness of the diagnostic processes. In the processing result presenting part 402, there is displayed a result after performing S302 by pressing the relevant data extraction button 4011.

[0016] A detailed flowchart of S302 is provided in FIG. 5. First, the relevant process extraction unit 107 extracts medical knowledge via the medical knowledge extraction unit 105 (S3021 to S3023) and then extracts relevant processes (S3024). The detail is as follows.

[0017] First, the medical knowledge extraction unit 105 acquires medical literature information and a dictionary table from the medical literature information database 101 via the external DB cooperation unit 103 (S3021). FIG. 7. illustrates a dictionary table. The dictionary table is used to extract medical concepts from medical literatures and includes fields of name 701 and category 702. In the field of name 701, words of medical concepts that have been extracted from medical literatures are recorded. In the field of category 702, categories of the words are recorded. The categories include disease name, operative procedure name, index name, and pharmaceutical name. FIG. 9 is a table in which ranks of the respective literatures are recorded and which includes a field of literature number 901 and a field of literature rank 902. In the present embodiment, clinical study levels of FIG. 10 are used as the literature ranks. The clinical study levels indicate reliabilities of studies or strength as evidence of respective studies.

[0018] FIG. 6 is a screen example used in the present embodiment. This is a screen used in S3021. A literature DB specifying part 601 is an area for specifying a litera-

ture DB to be processed by the program out of medical literatures stored in the medical literature information DB 101. A medical knowledge generation start button 602 is a button to start the process of the program. When the medical knowledge generation start button 602 is clicked, the medical knowledge extraction unit 105 acquires a medical literature specified in the literature DB specifying part 601 from the medical literature information DB 101. FIG. 8 is an example of a medical literature. The information includes a literature title 801, a date of publish 802, an abstract 803, and keywords 804. The medical knowledge extraction unit 105 similarly acquires the dictionary table illustrated in FIG. 7 and the literature rank table from the medical literature information DB 101.

[0019] Next, the medical knowledge extraction unit 105 extracts medical terms from the abstract of the medical literature based on the field of name 701 of each record having disease name, operative procedure, or index in the field of category 702 in the dictionary table (\$3022). Underlined parts in the abstract 803 of FIG. 8 are medical terms extracted based on the dictionary table of FIG. 7. Next, the medical knowledge extraction unit 105 calculates an identification of the rank of the literature and cooccurrence degree of medical terms and amount/timerelated information extracted in S3022 based on keywords of the literature information (S3023). Here, a cooccurrence degree of item A and item B is defined as the number of literatures that include both of item A and item B. In S3023, the medical knowledge extraction unit 105 registers the co-occurrence degree and the resultant rank to a medical knowledge managing table of FIG. 11 on a memory. Last, the relevant process extraction unit 107 extracts relevant processes of the diagnostic processes to be analyzed, which have been input, based on the result of S3023 (the co-occurrence degrees and the literature ranks in the medical knowledge managing table) (S3024). For example, the relevant process extraction unit 107 extracts, from records in the medical knowledge managing table, records having word 1 (or word 2) that matches the diagnostic processes to be analyzed, which have been input, and then narrows down the records to extract records having a co-occurrence degree and a literature rank that are higher in the medical knowledge managing table. Thus, importance scores are calculated using levels of academic literatures as evidence and co-occurrence degrees of respective terms, enabling to acquire knowledge of the academic literature and set importance scores corresponding to reliabilities of the studies. Therefore, process analysis by clustering diagnostic processes using results of medical academic studies in progress day by day corresponding to their evidence.

[0020] As a method of narrowing down records having a co-occurrence degree and a literature rank that are higher in the medical knowledge managing table, in the present embodiment, the condition setting part 401 of FIG. 4 is designed to allow setting of an integrated value of a co-occurrence degree and a literature rank as a

25

30

40

45

threshold. In addition, in FIG. 4, the medical knowledge managing table is displayed in the processing result presenting part 402 so as to allow a user to select a relevant process. In the present embodiment, a state where a combination of hepatocellular carcinoma and lipiodol is selected is illustrated. In the present embodiment, a user selects a relevant process, but a user may select a non-relevant process using the threshold and the like in the condition setting part 401. Through such control of the threshold by a user, relevance between processes can be controlled to extract diagnostic processes responding to various needs, whereby various types of analysis of diagnostic processes are possible.

[0021] A detailed flowchart of S303 is provided in FIG. 12. First, a patient table, a clinical index table, and a treatment record table stored in the clinical DB 102 are acquired via the external DB cooperation unit 103 (S3031). FIG. 13 provides an example of the patient table and the clinical index table, and FIG. 14 provides an example of the treatment record table. The patient table includes patient code, sex, age, disease name, and information of date of admission/discharge (date of outpatient for an outpatient). The clinical index table manages clinical index (also referred to as Clinical Indicator and Quality Indicator) and includes information of length of stay and hospital readmission in the present embodiment. The treatment record table manages diagnostic processes and indicates a state where lipiodol is administered to patient P1 in the present embodiment. Next, for each disease name and diagnostic process, patients who were in the diagnostic process and patients who were not in the diagnostic process are respectively extracted and a difference between clinical indices of the two groups is calculated (S3032). In the present embodiment, a group of patient P1 who is a hepatoma patient and who was in the diagnostic process of lipiodol and a group of patients P2 to P6 who are hepatoma patients but who were not in the diagnostic process of lipiodol are extracted, and a difference between clinical indices of the two groups is calculated. As a calculation method, a difference of means of the clinical indices of the two groups may be calculated, or result of test for the difference of means of the clinical indices of the two groups may be calculated. Last, based on the result of S3023 and the result of S3032, an importance score is calculated for each disease name/diagnostic process (S3033). When an importance score is calculated based only on the result of S3023, an integrated value of a co-occurrence degree and a literature rank of the medical knowledge managing table is set as the importance score similarly to S3024. When an importance score is calculated based only on the result of S3032, the difference between clinical indices of the two groups calculated in S3032 is set as the importance score. When an importance score is calculated based on both of the results of S3023 and S3032, the sum or an integrated value of the both results is set as the importance score. Thus, processes that are highly important regarding to a clinical index in accordance with

analysis needs are extracted, thereby enabling various types of analysis of diagnostic processes.

[0022] A detailed flowchart of S304 is provided in FIG. 15. The characteristic of this process is clustering of clinically similar patients based on clinically important diagnostic process. The clinically important diagnostic process means a diagnostic process that has an important influence on an outcome such as a death rate. For example, there is considered a method in which deterioration of clinical data is previously classified by degrees of deterioration, and an importance score is calculated based on the degrees. Thus, analysis of a diagnostic process in accordance with various types of analysis needs is possible by controlling a calculation method of an importance score.

[0023] In addition, a relevant data extraction unit 107 eliminates diagnostic processes that are less clinically relevant, enabling to improve clustering accuracy and extract relevant processes using clinically divided groups.

[0024] Next, detailed flow is described. First, processes that are relevant to a diagnostic process to be analyzed and patients who was in the diagnostic process to be analyzed are extracted from the relevant data extraction unit (S3041). Next, importance scores of the diagnostic processes are extracted from the important process calculation unit (S3042). Next, the importance scores of S3042 are integrated to amounts of the relevant processes for each patient who was in the process to be analyzed (S3043). Last, clustering is performed on the patients who were in the process to be analyzed based on the integrated amounts that are result of S3043 (S3044). [0025] Here, FIG. 16 provides a screen example in which result of calculation of importance scores and clustering in S303 and S304 are displayed on the display unit 112. Pressing the clustering button 4012 starts the processes of S303 and S304. In the condition setting part 401 of FIG. 16, conditions required to press the clustering button 4012 are displayed, and the number of clusters used in S304 is set. In the present embodiment, four is set as the number of clusters. In the processing result presenting part 402, a state where the patients are divided in four clusters (patterns A to D) as a result of S304 is provided. Since the number of clusters is thus accepted, clustering control is enabled. Therefore, scale of analysis regarding relevance of diagnostic processes can be adjusted, and the embodiment can meet various needs of diagnostic processes.

[0026] Note that, in the present embodiment, US and CT are displayed as diagnostic processes. These are displayed as diagnostic processes that have been determined to have higher importance scores in S303. Through the process of extracting diagnostic processes having higher importance scores, validity of clustering, accuracy can be visually confirmed. In addition, in the present embodiment, a state where patterns A and D are selected and patterns B and C are not selected is provided. Pressing the evaluation index calculate button

4013 in this state enables display of evaluation indices of the selected patterns A and D.

[0027] Next, a detailed flowchart of S305 is provided in FIG. 17. First, through the input unit 111, evaluation indices to be calculated are input (S3051). FIG. 18 illustrates a screen example for displaying calculated importance scores and the result of clustering in S305 on the display unit 112. Pressing the evaluation index calculate button 4013 starts the process of S305. The condition setting part 401 of FIG. 16 is structured to allow selection of an evaluation index to be calculated. In the present embodiment, a length of stay, a cost, and a readmission rate are selected as evaluation indices to be calculated so as not to calculate a death rate.

[0028] Here, the description returns to the flowchart of FIG. 17. Next, patient clustering information is acquired from the patient clustering unit 108 (S3052). In the present embodiment, patients and diagnostic processes belonging to patterns A and D that have been selected in FIG. 16 are extracted. Last, an evaluation index is calculated for each patient cluster (S3053). In the present embodiment, means of lengths of hospital stay and readmission rates of patients of patterns A and D are respectively calculated and displayed in the processing result presenting part 402. Similarly, means of diagnostic process costs of respective patients in patterns A and D are respectively calculated based on the table of FIG. 14 and displayed as a cost in the processing result presenting part 402. The processing result presenting part 402 of FIG. 18 indicates a state where a cost of lipiodol is lower but a length of stay and a readmission rate thereof are higher. On the other hand, cost of IA-call is higher but a length of stay and a readmission rate thereof are lower. Thus, it can be seen that through the use of IAcall, lengths of hospital stay and readmission rates can be reduced, thereby suppressing a total cost.

[0029] According to the above-described system, upon evaluation of a "value (effect)" of a diagnostic process, the value of a diagnostic process can be evaluated not based on a simple cost but on a cost required for the all processes of a patient who was in the diagnostic process through a follow-up survey. In particular, upon evaluation of the value of the all processes, there exist many processes that are not clinically relevant to the diagnostic process to be analyzed. Thus, elimination of processes that are clearly different from the diagnostic process to be analyzed can improve evaluation accuracy of the value by a cost required for the all processes. Furthermore, the main object of evaluating the all processes is improvement. Therefore, upon value evaluation, each of combinations of processes, the combinations being clinically homogeneous as much as possible, is evaluated by using the present system, thereby allowing identifying a combination of processes to be improved.

Industrial Applicability

[0030] The present invention relates to a hospital in-

formation system technique in medical field and is particularly useful as a technique that supports diagnostic process analysis.

Reference Signs List

[0031]

	101	medical literature information database
10	102	clinical database
	103	external DB cooperation unit
	104	important process calculation unit
	105	medical knowledge extraction unit
	106	important process database
15	107	relevant process extraction unit
	108	patient clustering unit
	109	evaluation index calculation unit
	110	screen configuration processing unit
	111	input unit
20	112	display unit
	200	keyboard
	201	liquid crystal display
	202	memory
	203	central processing unit
25	204	external storage device
	401	condition setting part
	4011	relevant data extraction button
	4012	clustering button
	4013	evaluation index calculate button
30	402	processing result presenting part
	601	literature DB specifying part
	602	medical knowledge generation start button
	701	name
	702	category
35	801	literature title
	802	date of publish
	803	abstract
	804	keyword
	901	literature number
40	902	literature rank

Claims

- 45 1. A diagnostic process analysis system that analyzes cost-effectiveness of a diagnostic process by using a database storing clinical data, medical concept information indicating medical concepts, and text data, the system comprising:
 - an input unit; an output unit; and a processing unit, wherein
 - the input unit accepts input of a first diagnostic process to be analyzed,
 - the processing unit includes:
 - a medical knowledge extraction unit configured to extract, from the text data, relevance

50

15

20

25

35

40

45

information indicating relevance between different medical concepts regarding the medical concept information of respective data pieces of the clinical data that are previously defined;

an important process calculation unit configured to calculate importance scores of the data pieces of the clinical data by using the relevance information;

a relevant process extraction unit configured to extract a second diagnostic process by eliminating diagnostic processes that are less relevant to the first diagnostic process, which has been accepted by the input unit, based on the importance scores;

a patient clustering unit configured to perform clustering on patients in the clinical data based on the second diagnostic process and the importance scores calculated by the important process calculation unit; and an evaluation index calculation unit configured to calculate a clinical index and a cost of the second diagnostic process for each patient group obtained by clustering performed by the patient clustering unit, and

the output unit outputs a result of calculation performed by the evaluation index calculation unit.

The diagnostic process analysis system according to claim 1, wherein

the relevant process extraction unit is configured to eliminate diagnostic processes that are less relevant based on a predetermined threshold and the relevance information between medical concepts having been output by the medical knowledge extraction unit.

3. The diagnostic process analysis system according to claim 1, wherein

the important process calculation unit is configured to evaluate deterioration degrees of the clinical index and calculate the importance scores based on the evaluated deterioration degrees of the clinical index.

4. The diagnostic process analysis system according to claim 1, wherein

the text data is medical literatures,

the medical knowledge extraction unit is configured to extract evidence levels from study levels indicated by the medical literatures,

the important process calculation unit is configured to calculate the importance scores of the data pieces of the clinical data based on the evidence levels and co-occurrence degrees between the medical concepts output by the medical knowledge extraction unit.

The diagnostic process analysis system according to claim 3, wherein

the important process calculation unit is configured to, for each of the diagnostic processes, extract a group of patients who have been in the diagnostic process and a group of patients who have not been in the diagnostic process from the database, calculate a difference between the clinical indices of the two extracted groups, and evaluate the deterioration degree of the clinical index based on the calculated difference of the clinical indices upon evaluation of the deterioration degree of the clinical index.

The diagnostic process analysis system according to claim 1, wherein

the patient clustering unit is configured to accept input of the number of clusters upon performing the clustering, and perform clustering on patients of the clinical data based on the accepted number of clusters.

FIG. 1

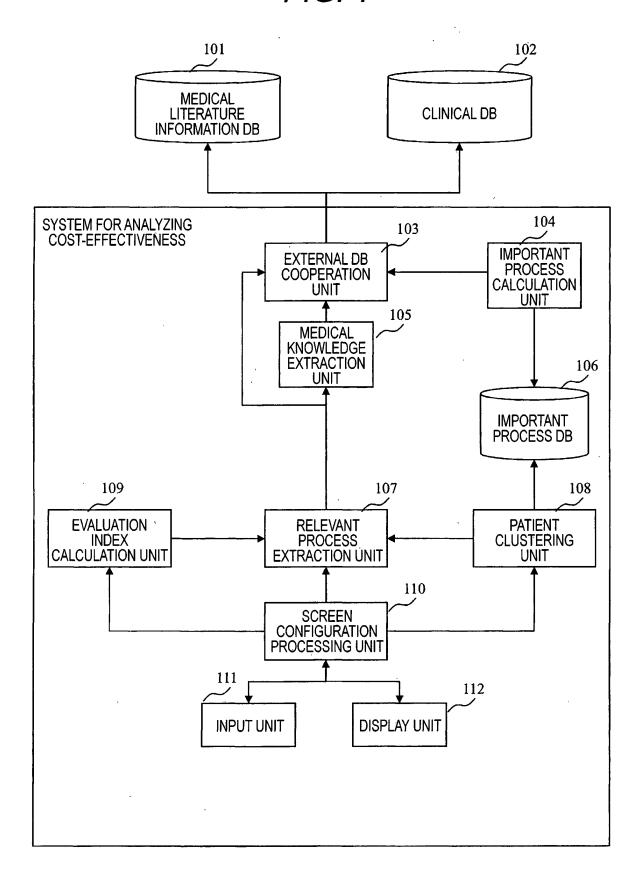


FIG. 2

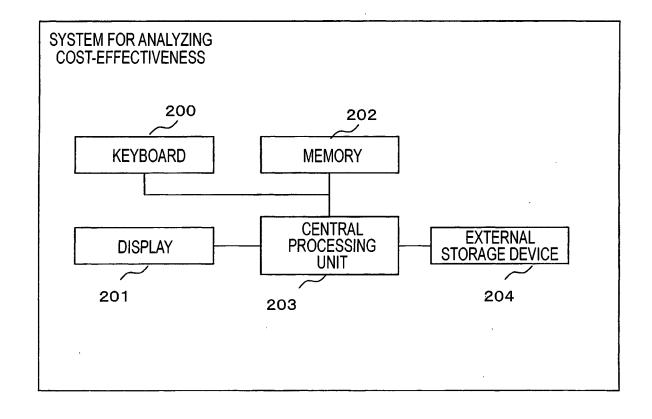


FIG. 3

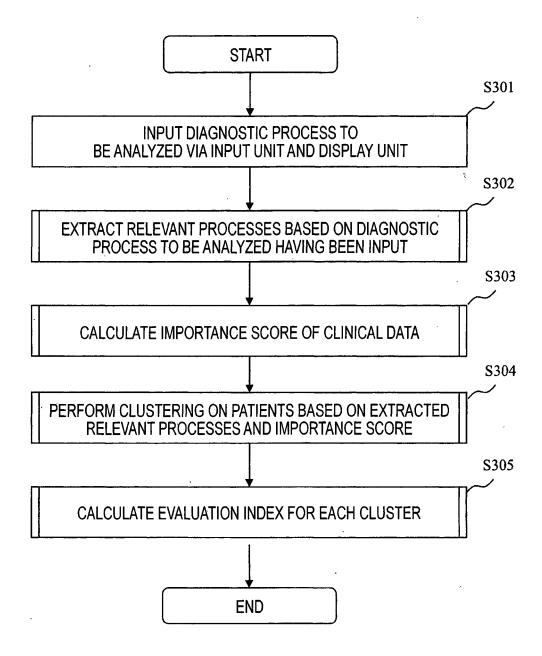
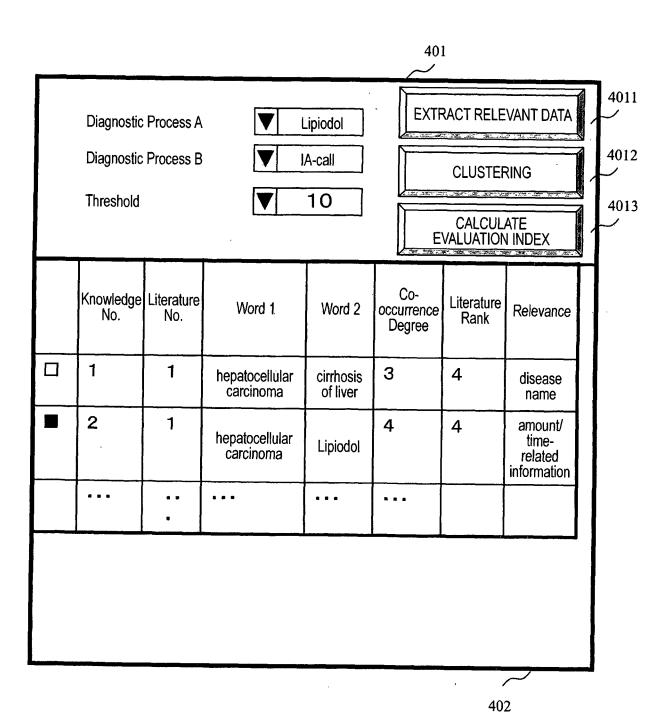



FIG. 4



FIG. 6

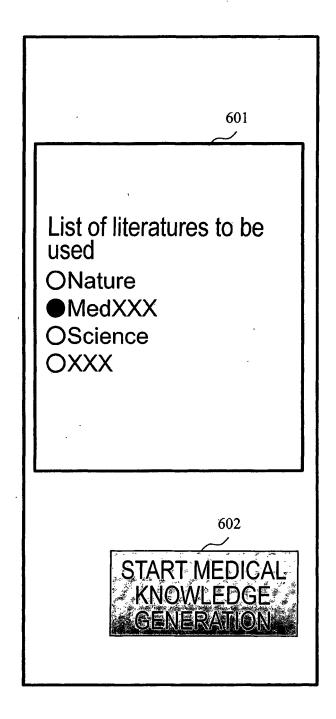
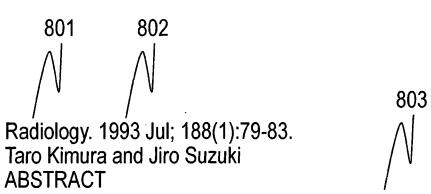



FIG. 7

DICTIONARY TABLE

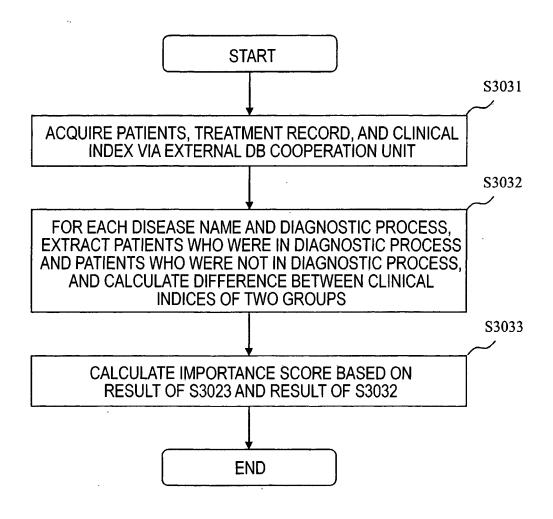
- -	701	702
\mathcal{N}	\mathcal{N}	.
Name	Category	
cirrhosis of liver	disease name	
hepatocellular carcinoma	disease name	
TAE	operative procedure	
survival rate	index	
recurrence rate	index	
size	amount	
cm	unit	
not more than	magnitude	

We have retrospectively analyzed effect of <u>TAE therapy</u> for <u>small hepatocellular carcinoma</u> with <u>cirrhosis of liver</u> using <u>Lipiodol</u>. The size of <u>hepatocellular carcinoma</u> is not more than 4 cm. The <u>recurrence rates</u> of one year and four years are respectively 18% and 33%. The <u>survival rates</u> of one year and four years are respectively 100% and 67%. TAE therapy is effective for small hepatocellular carcinoma.

KEYWORD
hepatocellular carcinoma
cirrhosis of liver
retrospective study

FIG. 9

LITERATURE RANK TABLE


9	901	902
	\mathcal{N}	
Literature No.	Literature Rank	
1	4	
2	2	
3	3	
4	1	
5	5	

Clinical Study Type					
Level	Content				
1a	Meta-analysis of randomized comparison test				
1b	At least one randomized comparison test				
2a	Concurrent control cohort study without random allocation (forward-looking study, prospective study, concurrent cohort study, and the like)				
Past control cohort study without random allocati (historical cohort study, retrospective cohort study and the like)					
3	Case control study (retrospective study)				
4	Before/after comparison such as comparison before and after treatment without group to be compared				
5	Case report, case series				
Opinion of individual expert (including report of expert committee)					

MEDICAL KNOWLEDGE MANAGING TABLE

Knowledge No.	Literature No.	Word 1	Word 2	Co- Occurrence Degree	Literature Rank	Туре
1	1	hepatocellular carcinoma	cirrhosis of liver	3	4	disease name
2	4	hepatocellular carcinoma	Lipiodol	4	4	amount/ time- related information
		•••	•••	•••	• • •	•••

FIG. 12

FIG. 13

PATIENT TABLE

Patient Code	Sex	Age	Disease Name	Date Of Admission	Date Of Discharge	Date Of Outpatient
P0	Male	60	myocardial infarction	1/1	2/1	-
P1	Female	70	hepatoma	1/11	2/1	-
P2	Male	80	hepatoma	1/21	2/1	- .
P3	Male	60	hepatoma	-	-	4/1
P4	Female	70	hepatoma	11/1	12/1	-
P5	Male	80	hepatoma	_	-	5/1
P6	Male	50	hepatoma	11/11	12/1	-
				• • •		

CLINICAL INDEX TABLE

Patient Code	Date Of Admission	Date Of Discharge	Date Of Outpatient	Length Of Stay	Readmission
P0	1/1	2/1	-	31	0
P1	1/11	2/1	-	21	1
P2 -	1/21	2/1	-	11	0
P3		-	4/1	-	0
P4	11/1	12/1		31	0
.P5	-		5/1	-	O
P6	11/11	12/1	-	21	0

FIG. 14

TREATMENT RECORD TABLE

Patient Code	Diagnostic Process	Unit Cost	Date Of Treatment	Elapsed Day(s)	Care Provider
P0	Artery marking	300	1/1	1	A1
P0	Sigmart	200	1/1	1	A2
P1	Lipiodol	5000	1/12	2	A2
	4 8 8			2 5 8	

FIG. 15

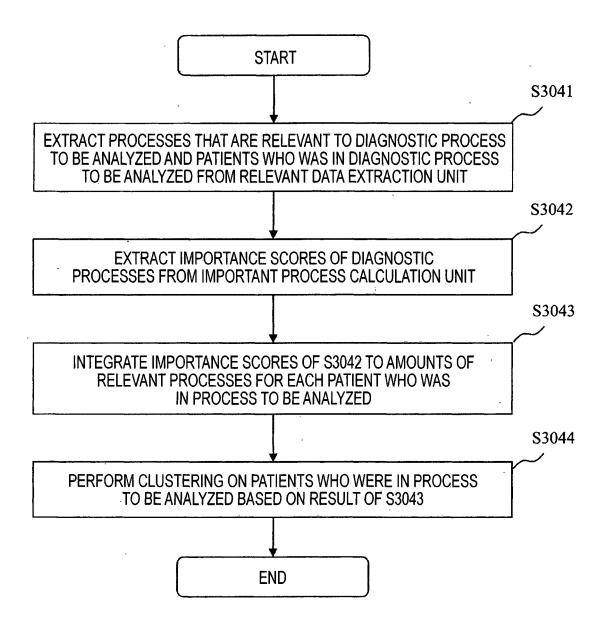


FIG. 16

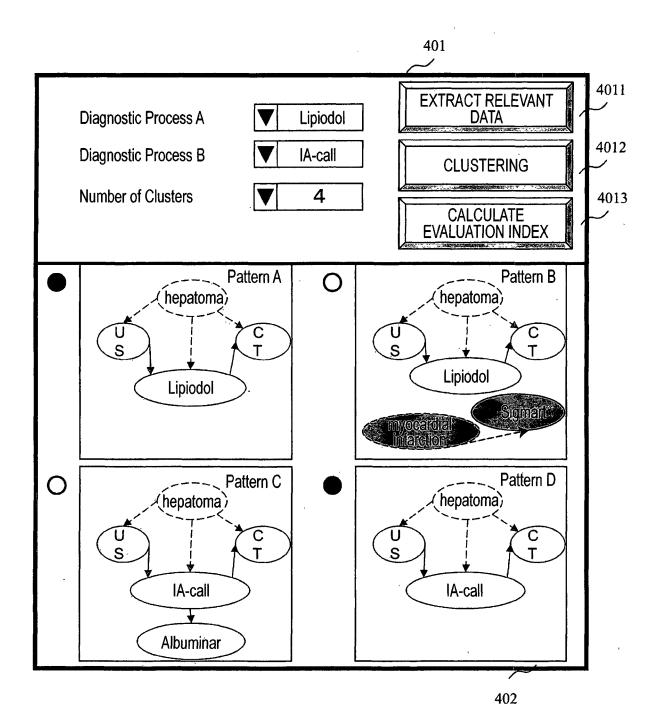
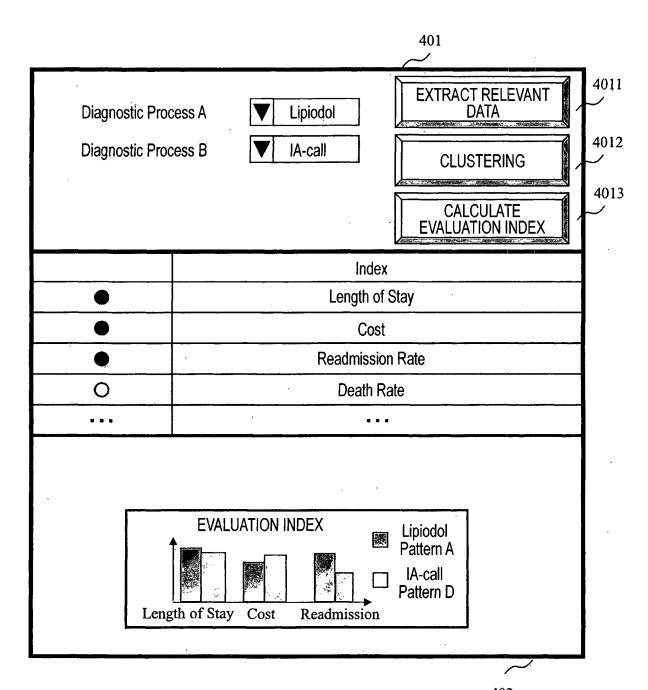



FIG. 17

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2013/067759 A. CLASSIFICATION OF SUBJECT MATTER G06Q50/22(2012.01)i 5 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 G06050/22 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2013 15 Kokai Jitsuyo Shinan Koho 1971-2013 Toroku Jitsuyo Shinan Koho 1994-2013 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2008-47154 A (Hitachi, Ltd.), Α 28 February 2008 (28.02.2008), paragraphs [0001] to [0011]; fig. 1 to 12 25 (Family: none) JP 2003-331055 A (Hitachi, Ltd.), 1-6 Α 21 November 2003 (21.11.2003), paragraphs [0001] to [0005]; fig. 1 to 12 & US 2003/0216939 A1 30 Α JP 2010-191891 A (Global Health Consulting 1 - 6Kabushiki Kaisha), 02 September 2010 (02.09.2010), paragraphs [0001] to [0065]; fig. 1 to 12 35 (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone 45 document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 04 September, 2013 (04.09.13) 17 September, 2013 (17.09.13) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office 55 Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2013/067759

	C (Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT	JI / UI Z \	013/06/739
5	Category*	Citation of document, with indication, where appropriate, of the relevant pass	ages	Relevant to claim No.
10	A	JP 2005-202547 A (Hitachi, Ltd.), 28 July 2005 (28.07.2005), paragraphs [0001] to [0009], [0011] to [0061] fig. 1 to 5 (Family: none)];	1-6
15				
20				
25				
30				
35				
40				
45				
50				
55	E DCT/ICA/O	O (soutinesting of second short) (July 2000)		

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2011243140 A [0004]