(11) EP 3 029 252 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

08.06.2016 Bulletin 2016/23

(51) Int Cl.:

E05F 3/10 (2006.01)

(21) Application number: 14196668.9

(22) Date of filing: 05.12.2014

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

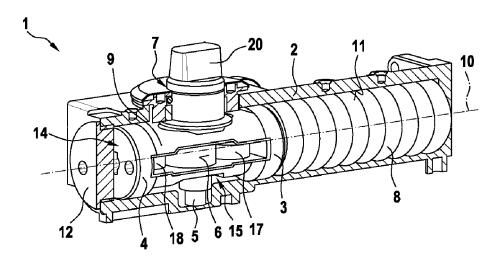
Designated Extension States:

BA ME

(71) Applicant: **DORMA Deutschland GmbH** 58256 Ennepetal (DE)

(72) Inventors:

- Leong, Jackson 58256 Ennepetal (DE)
- Mengsang, Kwan
 58256 Ennepetal (DE)
- (74) Representative: Balder IP Law, S.L. Paseo de la Castellana 93
 5a planta


28046 Madrid (ES)

(54) Floor door closer

(57) The invention regards a floor spring (1), comprising a housing (2), a first piston (3), a second piston (4), and a spindle (5) extending through an opening (7) of the housing (2), wherein the spindle (5) is connected to the first piston (3) i.e. between the cam surface (6) and

the main roller (17) such that a longitudinal movement of the first piston (3) is translated into a rotational movement of the spindle (5) under the effect of the loaded closer spring (8), and wherein the first piston (3) and the second piston (4) are formed integrally as a hybrid piston (9).

Fig. 2

EP 3 029 252 A1

20

25

40

45

[0001] The present invention regards a floor spring. Such floor springs are provided in the floor and function

1

as a door hinge. The door can then be operated by the floor spring directly at the hinge such that no further door operator needs to be mounted on the door itself.

[0002] A floor spring commonly known from the prior art is shown in figure 1. The floor spring 100 has a piston 101 which is guided in a housing 103. Two connecting lugs 104 are connected to the piston 101 such that a movement of the connecting lugs 104 is transferred to piston 101 along the housing 103. Further, the floor spring 100 comprises a closer spring 102, which is sandwiched between the piston 101 and the housing 103 around the connecting lugs 104. Therefore, the piston 101 is always subjected to the spring force that changes with the position of the piston 101 that is in turn followed the movement of the connecting lugs 104.

[0003] Finally, the floor spring 100 has a spindle 107 which is provided within the housing 103 in perpendicular to the closer spring 102 and the piston 101. The spindle 107 has a spindle head 108 protruding outside the housing 103 and functioning as a connecting interface between the floor spring and the door wing. This allows coupling of a door rotation with the spindle 107 via the spindle head 108. In order to couple the rotation of the spindle 107 to a movement of the piston 101, the spindle 107 comprises a cam surface 106. On the other side, the two connecting lugs 104 are connected via two rollers 105 rolling on the cam surface 106 of the spindle 107. At null position, both rollers will be in contact with the cam surface 106. Only one roller will be in contact with the cam surface 106 when the spindle 107 is rotating away from the null position. The 3rd roller 105 (close to the spring 102) acts as a safety counter roller.

[0004] In case a door wing connected to the spindle 107 is rotated in the manner to open the door wing, the cam surface 106 and one of the rollers105 (far from the spring 102) convert the rotation of the spindle 107 into a linear movement of the connecting lugs 104 and in turn pulls the piston 101 towards the spindle 107. This results in a compression of the closer spring 102 by the movement of the piston 101. Therefore, the floor spring 100 is loaded with energy to move the door wing back to the original position i.e. closing of the door wing.

[0005] However, the above described prior art floor spring 100 requires a lot of components for manufacturing. This results in high costs due to material usage of individual components a long assembly time due to complexity of assembly.

[0006] Therefore, the objective of the invention is to provide a floor spring which is easy to assemble, cheap to manufacture and save in operations.

[0007] The result of this objective is achieved by the features of independent claim 1. Therefore, the object is solved by a floor spring comprising a housing, a first piston, a second piston, and a spindle. The spindle extends

through an opening of the housing. Further, the spindle is connected to the first piston and the second piston such that a transformation of a longitudinal movement of the first piston and/or second piston into a rotational movement of the spindle is allowed. The first piston and the second piston are formed integrally as a hybrid piston, such that both, the first piston and the second piston, are parts of the hybrid piston. By providing such a floor spring, the number of parts required for assembling is reduced. This results in a simplified assembly procedure thus such the inventive floor spring can be manufactured cheaper than the prior art floor springs. Also, the overall dimensions of the inventive floor spring can be reduced due to the compactness of the cam driven system with hybrid piston.

[0008] The dependent claims contain advantageous embodiments of the present invention.

[0009] Preferably, the first piston and the second piston are assembled within the housing along the same axis. In particular, the first piston and the second piston are provided along a longitudinal axis of the housing. In particular, the longitudinal axis intersects with an axis of the spindle.

[0010] In particular, the spindle comprises a cam surface to establish a cam drive. The spindle is connected to the hybrid piston via said cam drive. Hence, a transformation of the rotation of the spindle into a longitudinal movement of the hybrid piston is provided.

[0011] In order to achieve a reliable transformation between rotation of the spindle and longitudinal movement of the hybrid piston, the first piston has to be pressed against the cam surface of the spindle at all time. This assurance is provided by a closer spring sandwiched between an inner wall of the housing and the first piston. This design also allows the compression of the closer spring as soon as the spindle is rotated (in the direction of the opening of the door wing) that translates into the linear movement of the first piston. On the other side, this act of compressing of the closer spring presses the first piston via a main roller against the cam surface of the spindle, such that the spindle can be rotated (in the direction of the closing of the door wing) under the force of the loaded closer spring. In particular, the closer spring is first loaded by manual opening of a door that is connected to the spindle and after which, the closer spring forces the closing of the door by pressing the first piston onto the cam surface of the spindle via the main roller that translates into a turning moment on the spindle.

[0012] The first piston particularly comprises a main roller that rolls on the cam surface of the spindle. In the same way, the second piston comprises the second roller (smaller) that always maintains a very small clearance with the cam surface of the spindle. This second roller on the second piston is known as counter roller. Alternatively, instead of a second roller, the second piston may comprise a rolling bolt. The rolling bolt requires less installation space compared with the second counter roller. [0013] The second piston preferably separates a first

40

45

fluid chamber from a second fluid chamber within the housing. The housing comprises a fluid passage connecting the first fluid chamber and the second fluid chamber. In this way, a damping system is installed. When moving the second piston due to rotation of the spindle caused by the closer spring pressing the first piston against the cam surface, the second piston damps the rotation by the spindle. The damping is achieved by the fluid passage, which allows a regulated flow of fluid from the first fluid chamber to the second fluid chamber. Therefore, the speed of the movement of the second piston is strongly determined by the fluid flowing from the first fluid chamber to the second fluid chamber. Preferably, the fluid passage comprises a valve for setting said flow. In case the above mentioned damping system is provided, any rotation of the spindle is damped. This would result in an activation of the damping during the opening of the door which would cause an uncomfortable handling of the door. To avoid such drawbacks, the second piston preferably comprises a check valve allowing flow of the fluid from the second fluid chamber to the first fluid chamber. Therefore, the door can be opened without damping force, such that the damping system is only active when closing the door.

[0014] Additionally, there might be the case that the door is forcibly closed by a user while the damping system exerting a damping force. This might cause a huge pressure within the first fluid chamber and the fluid passage. In order to prevent damage of the floor spring, the second piston preferably comprises a pressure relief system. In particular, the pressure relief system is a spring valve. The pressure relief system allows flow of the fluid from the first fluid chamber to the second fluid chamber when a predetermined pressure within the first fluid chamber is exceeded.

[0015] In a preferred embodiment, the hybrid piston comprises at least one sealing on the outer surface. The sealing seals the hybrid piston against an inner wall of the housing. In particular, such a sealing is provided in case the housing is made of a less rigid material as plastic. The sealing preferably allows an enhanced separation of the first fluid chamber and second fluid chamber. [0016] In particular, the second piston comprises a seal ring and/or the first piston comprises a wear ring. The seal ring of the second piston preferably is a combination of a rubber o-ring and polyurethane seal. Therefore, a tight sealing is established.

[0017] In a preferred embodiment, a diameter of the spindle and a length of the housing are set at an approximate ratio of 1:8. Additionally or alternatively, the diameter of the spindle and a width of the housing are set at an approximate ratio of 1:3. Yet additionally or alternatively, the diameter of the spindle and a height of the housing are set at an approximate ratio of 1:2. This allows a compact design of the floor spring. Despite the compact design, the floor spring can supply the same amount of torque provided on the spindle as in the prior art, e.g. for rotating a door. This means that the same door weights

as in the prior art can be moved with the inventive floor spring according to the preferred embodiment, while the dimensions of the floor spring are reduced.

[0018] Particular embodiments of the invention are now described based on the attached drawings. In the drawings,

- Fig. 1 is a schematic overview of the floor spring according to the prior art,
- Fig. 2 is a schematic overview of the floor spring according to a first embodiment of the present invention.
- Fig. 3 is a schematic view of a part of the floor spring according to the first embodiment of the present invention,
- Fig. 4 is a schematic view of a part of the floor spring according to a second embodiment of the present invention, and
- Fig. 5 is a schematic view of a part of the floor spring according to a third embodiment of the present invention.

[0019] Figure 2 is a schematic overview of the floor spring 1 according to a first embodiment of the invention. The floor spring 1 comprises a housing 2, which is formed to have an at least partly cylindrical inner surface. Therefore, an inner wall 11 of the housing 2 is at least partly formed cylindrically. In the housing 2, a first piston 3 and a second piston 4 are guided. In particular, the first piston 3 is a closing piston while the second piston 4 is a damping piston. The first piston 3 and the second piston 9. In other words, the first piston 3 and the second piston 9 as well as the first piston 3 and the second piston 9 as well as the first piston 3 and the second piston 4 are provided along the longitudinal axis 10 of the housing 2.

[0020] Between the inner wall 11 of the housing 2 and the hybrid piston 9, in particular the first piston 3, a closer spring 8 is sandwiched. The closer spring 8 preferably is a coil spring. In the same way as the hybrid piston 9, the closer spring 8 is orientated along the longitudinal axis 10 of the housing 2.

[0021] The closer spring 8 can be compressed by the movement of the hybrid piston 9. In particular, the hybrid piston 9 moves to compress the closer spring 8 when a door connected to the floor spring 1 is opened. Thereafter, the energy stored in the closer spring 8 can be used to move the hybrid piston such that the door can be moved back to a closed state.

[0022] The hybrid piston 9 mounted within the housing 2 via an opening of the housing which is closed by an end cap 12. The opening also allows mounting of the closer spring 8 within the housing 2. In particular, the end cap 12 has a thread which is screwed into the housing 2.

[0023] In order to connect a door to the floor spring 1, the floor spring 1 comprises a spindle 5 extending through the housing 2. The spindle 5 has a spindle head 20 on an area outside the housing 2 such that a door can be connected to that spindle head 20. Since the floor spring 1 is to be provided in a floor of a room, the cam 20 is supposed to function as a lower hinge of the door. In this way, the door can be directly operated without any door operators visible on the door.

[0024] The spindle 5 further has a cam surface 6 which is employed to set up a cam drive between the spindle 5 and the hybrid piston. In particular, the cam surface 6 is placed between the first piston 3 and the second piston 4. Tight contact of the cam surface 6 and the first piston 3 via the roller 17 is assured under the force of the closer spring 8. Therefore, the hybrid piston 9 can be moved by rotating the spindle 5 and thus the cam surface 6. Accordingly, the cam surface 6 and thus the spindle 5 can be rotated by moving the hybrid piston 9 due to the energy stored by the closer spring 8.

[0025] In case the door is opened, the movement of the door is transferred to the spindle 5 via the spindle head 20. Therefore, the spindle 5 and thus the cam surface 6 are rotated. The rotation of the cam surface 6 causes the hybrid piston 9 to be moved such that the closer spring 8 is compressed. In this way, energy is stored within the closer spring 8 such that the closer spring 8 is enabled to move the hybrid piston 9. Due to the movement of the hybrid piston 9, the cam surface 6 and thus the spindle 5 are rotated. This rotation is transferred to the door via the spindle head 20 such that the door is moved back to the closed state.

[0026] The second piston 4 functions to damp the movement of the spindle 5. Therefore, the second piston 4 separates a first fluid chamber 14 from a second fluid chamber 15. In particular, the first fluid chamber 14 is provided between the hybrid piston 9 and the end cap 12. A not shown fluid passage within the housing 2 connects the first fluid chamber 14 and the second fluid chamber 15. In particular, the fluid passage has a regulatory valve to set the flow through the fluid passage. The second piston 4 further has a one-way valve 22 (cf. figure 3) allowing a fluid provided within the second fluid chamber 15 to flow into the first fluid chamber 14.

[0027] In case the door is opened, the second piston 4 moves such that the first fluid chamber 14 is enlarged and the second fluid chamber 15 is reduced. This means that fluid flows from the second fluid chamber 15 to the first fluid chamber 14 via the fluid passage of the housing 2 and/or the one-way valve 22 of the second piston 4. In particular, no damping force is generated.

[0028] In case the door is closed by the closer spring 8, the hybrid piston 9 and thus the second piston 4 are moved by the cam surface 6 such that the first fluid chamber 14 is reduced and the second fluid chamber 15 is enlarged. This means that fluid flows from the first fluid chamber 14 to the second fluid chamber 15 via the fluid passage of the housing 2. Since the maximum flow of

the fluid can be changed by the valve provided within the fluid passage, a user settable damping force is generated. The damping force prevents the door from being slammed against the door frame.

[0029] Further, the first piston 3 has a main roller 17 rolling on the cam surface 6. The second piston has a second roller 18, the counter roller that under normal operation maintains a small clearance between the counter roller 18 and the cam surface 6. Details of the connection between first piston 3, second piston 4 and cam surface 6 are shown in figure 3. Due to the main roller 17, the friction generated of the cam surface 6 sliding on the first piston 3 is reduced. Therefore, the floor spring 1 allows opening the door without increased force.

[0030] Figure 4 is a schematic view of a part of the floor spring 1 according to a second embodiment of the invention. In the second embodiment, the only difference to the first embodiment is that the second piston 4 does not comprise a second roller 18 but a rolling bolt 19. The rolling bolt 19 requires less space within the second piston 4 such that the overall dimensions of the hybrid piston 9 und thus the floor spring 1 can be reduced. Therefore, the second embodiment allows a compact design with a reduced number of components of the floor spring 1.

[0031] Finally, figure 5 is a schematic view of a part of the floor spring 1 according to a third embodiment of the invention. Figure 5 shows the hybrid piston 9 having provision for additional sealing system. Such a sealing system is preferably installed in case the housing 3 is made of less rigid material as plastics.

[0032] The first piston 3 comprises a wear ring 13. On the other side, the second piston 4 comprises a seal ring 21. The seal ring 21 is preferably a combination of a rubber o-ring and polyurethane seal. The seal ring 21 assures that the second piston 4 strictly separates the first fluid chamber 14 from the second fluid chamber 15 such that no flow of fluid between the inner wall 11 of the housing 2 and the hybrid piston 9, in particular the second piston 4, is possible.

[0033] Additionally, in the third embodiment, the floor spring 1 can comprise a pressure relief system 16. There might be the case that the door is closed manually such that both, the force of the closer spring 8 and the force of a user trying to close the door act on the hybrid piston 9. Therefore, the pressure within the first fluid chamber 14 and the fluid passage increases. In order to prevent damage caused due to high fluid pressure, the second piston 4 comprises the pressure relief system 16. The pressure relief system 16 preferably is a spring valve allowing flow of the fluid from the first fluid chamber 14 to the second fluid chamber 15 when a predetermined fluid pressure within the first fluid chamber 14 is exceeded. Since the second piston 4 does not comprise the second counter roller 18

[0034] (first embodiment) but rather the rolling bolt 19 (second embodiment), there is enough room left within the second piston 4 to provide the pressure relief system 16. Therefore, the pressure relief system 16 might also

be provided with the floor spring 1 according to the second embodiment.

[0035] Regarding all embodiments, it can be seen, that the overall number of parts is very small compared with the prior art floor spring 100 shown in figure 1. Therefore, the manufacturing costs and assembly time can be reduced. Additionally, the overall dimensions of the floor spring 1 are reduced compared with the prior art floor spring 100. In particular, the dimension of the cam surface 6 provided on the spindle 5 is reduced. In particular, a diameter of the spindle 5 and a length of the housing 2 are set at an approximate ratio of 1:8. Further, the diameter of the spindle 5 and a width of the housing 2 are set at an approximate ratio of 1:3. Finally, the diameter of the spindle 5 and a height of the housing 2 are set at an approximate ratio of 1:2. Therefore, the floor spring 1 has a very compact design such that less mounting space for the floor spring 1 is required. Nevertheless, the same door weights as in the prior art can be handled by the floor spring 1.

Reference numerals

[0036]

- 1 floor spring
- 2 housing
- 3 first piston
- 4 second piston
- 5 spindle
- 6 cam surface
- 7 opening of the housing
- 8 closer spring
- 9 hybrid piston
- 10 longitudinal axis of the housing
- 11 inner wall of housing
- 12 end cap
- 13 wear ring
- 14 first fluid chamber
- 15 second fluid chamber
- 16 pressure relief system
- 17 main roller
- 18 counter roller
- 19 rolling bolt
- 20 spindle head
- 21 seal ring
- 100 floor spring (prior art)
- 101 piston (prior art)
- 102 closer spring (prior art)
- 103 housing (prior art)
- 104 connecting lug (prior art)
- 105 roller (prior art)
- 106 cam surface (prior art)
- 107 spindle (prior art)

108 spindle head (prior art)

Claims

5

15

20

25

30

- 1. Floor spring (1), comprising
 - a housing (2),
 - a first piston (3),
 - a second piston (4), and
 - a spindle (5) extending through an opening (7) of the housing (2),
 - wherein the spindle (5) is connected to the first piston (3) such that a longitudinal movement of the first piston (3) is translated into a rotational movement of the spindle (5) via the main roller (17), and
 - wherein the first piston (3) and the second piston (4) are formed integrally as a hybrid piston (9).
- 2. Floor spring (1) according to claim 1, **characterized** in that the first piston (3) and the second piston (4) are provided within the housing (2) along the same axis (10).
- 3. Floor spring (1) according to any one of previous claims, **characterized in that** the spindle (5) comprises a cam surface (6), wherein the spindle (5) is connected to the first piston (3) via the main roller (17) and the cam surface (6) to establish the cam driven mechanism.
- 4. Floor spring (1) according claim 3, **characterized**by a closer spring (8) provided between an inner wall
 (11) of the housing (2) and the first piston (3), such that the first piston (3) is pressed against the cam surface (6) of the spindle (5) via the main roller (17).
- 40 5. Floor spring (1) according to claim 3 or 4, characterized in that the first piston (3) comprises a main roller (17) rolling on the cam surface (6) of the spindle (5) and/or the second piston (4) comprises a counter roller (18) or a rolling bolt (19) that maintains a small clearance with the cam surface (6) of the spindle (5) under normal operating condition.
- 6. Floor spring (1) according to any one of previous claims, **characterized in that** the second piston (4) separates a first fluid chamber (14) from a second fluid chamber (15) within the housing (2), wherein the housing (2) comprises a fluid passage connecting the first fluid chamber (14) and the second fluid chamber (15).
 - 7. Floor spring according to claim 6, **characterized in that** the second piston (4) comprises a pressure relief system (16), in particular a spring valve, allowing

flow of a fluid from the first fluid chamber (14) to the second fluid chamber (15) when a predetermined pressure within the first fluid chamber (14) is exceed-

8. Floor spring (1) according to any one of previous claims, characterized in that the hybrid piston (9) comprises one seal ring (21) on the outer surface to seal the hybrid piston (9) against an inner wall (11) of the housing (2).

9. Floor spring (1) according to claim 8, characterized in that the second piston (4) comprises a seal ring (21), in particular a combination of a rubber o-ring and polyurethane seal, and/or the first piston (3) comprises a wear ring (13).

10. Floor spring (1) according to any one of previous

claims, characterized in that

20

- a diameter of the spindle (5) and a length of the housing (2) are set at an approximate ratio of 1:8 and/or
- a diameter of the spindle (5) and a width of the housing (2) are set at an approximate ratio of 1:3 and/or
- a diameter of the spindle (5) and a height of the housing (2) are set at an approximate ratio of 1:2.

30

35

40

45

50

Fig. 1

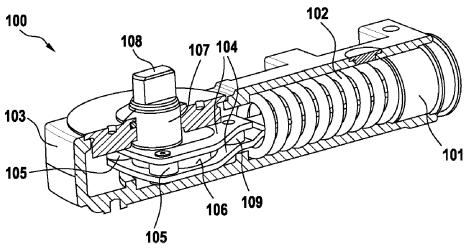
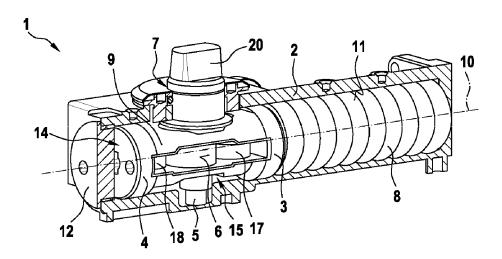



Fig. 2

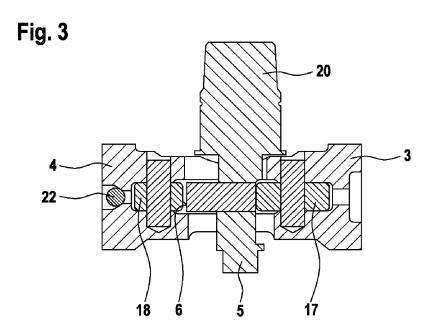


Fig. 4

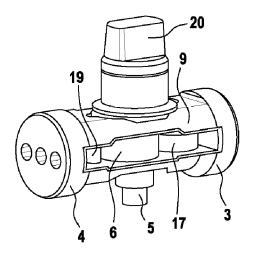
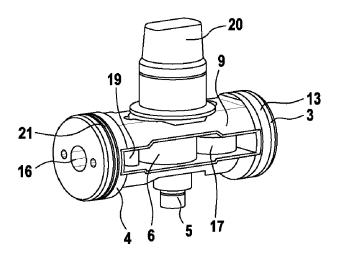



Fig. 5

EUROPEAN SEARCH REPORT

Application Number

EP 14 19 6668

5

10	
15	
20	
25	
30	
35	
40	

50

45

	DOCUMENTS CONSIDEREI	TO BE RELEVANT		
Category	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	EP 2 138 662 A2 (TAIWAN LTD [TW]) 30 December 2 * paragraph [0009] - pa figures 1-7 *	009 (2009-12-30)	1-10	INV. E05F3/10
X	US 5 901 412 A (JENTSCH 11 May 1999 (1999-05-11 * column 5, line 27 - c figures 1-4 *)	1-7,10	TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been di	awn up for all claims		
	Place of search	Date of completion of the search		Examiner
	The Hague	9 April 2015	Gui	llaume, Geert
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent after the filing D : document cite L : document cite	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons	
		& : member of the document	&: member of the same patent family, corresponding document	

EP 3 029 252 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 14 19 6668

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-04-2015

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	EP 2138662 A	2 30-12-2009	EP 2138662 A2 EP 2623699 A1 ES 2429218 T3 TW 201000741 A	30-12-2009 07-08-2013 13-11-2013 01-01-2010
	US 5901412 A	11-05-1999	NONE	
20				
25				
30				
35				
40				
45				
50				
55 S				

© L □ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82