(11) EP 3 031 941 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

15.06.2016 Bulletin 2016/24

(51) Int Cl.:

C22C 21/00 (2006.01)

(21) Application number: 15198382.2

(22) Date of filing: 06.12.2013

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 13466032.3 / 2 881 477

(71) Applicant: Moravia Cans a.s. 687 71 Bojkovice (CZ)

(72) Inventors:

 SEDLACEK, Jan 69676 Louka (CZ)

- DIVOKY, Rudolf 68801 Uhersky Brod (CZ)
- KROVINA, Jan 687 25 Hluk (CZ)
- FOKSOVA, Veronika 76326 Luhacovice (CZ)
- (74) Representative: Malusek, Jiri Mendlovo namesti 1 a 603 00 Brno (CZ)

Remarks:

This application was filed on 08.12.2015 as a divisional application to the application mentioned under INID code 62.

(54) HEAT RESISTANT ALLOY FOR PRODUCTION OF AEROSOL CANS

(57) Heat-resistant alloy for production of aerosol cans from a material having the following contents of alloying additions in percent by weight: according to the standards EN 573-3 EN AW 3207 Si \leq 0.30; Fe \leq 0.45; Cu \leq 0.10; Mn 0.40-0.80; Mg \leq 0.10;

 $S1 \le 0.30$; $Fe \le 0.45$; $Cu \le 0.10$; Min 0.40-0.80; $Mig \le 0.10$; $Zn \le 0.10$;

or with more specific compositions

- Si = $0.05 \div 0.09$; Fe = $0.23 \div 0.27$; Cu ≤ 0.005 ; Mn = $0.58 \div 0.62$; Mg ≤ 0.005 ; Zn ≤ 0.015 ; Ti = $0.01 \div 0.03$; where each composition contains added Zr in the amount ranging between 0.10 and 0.15

% by weight, the sum of the contained amounts of all the secondary elements being \leq 0,10% by weight and Al content is remainder.

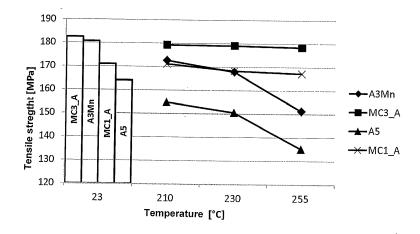


Fig.1

Description

Background of the invention

[0001] At the present time, aerosol cans are manufactured either from pure aluminium or from aluminium alloys. In the former case, 1000-series aluminium according to the European standard EN 573-3 is mostly used. The most common aluminium grades are EN AW 1050A having the minimum AI content of AI 99.5% and EN AW 1070A having the minimum AI content of 99.7%.

[0002] In the latter case, aerosol cans are mostly made of 3000-series aluminium alloys according to the European standard EN 573-3. The most common aluminium alloy grades are EN AW 3102 having the Mn content of approximately 0.3% and EN AW 3207 having the Mn content of approximately 0.6%.

[0003] For the manufacture of aerosol cans, aluminium and its alloys are mostly supplied in the form of slugs.

[0004] Such slugs are manufactured in a continuous two-phase process comprising the following steps.

- a.) Phase 1 Manufacture of strips
- Melting down ingots in melting furnaces.
- Transfer of molten aluminium into a holding furnace.
- Continuous casting of a strip.
- Hot rolling of the cast strip.
- Cold rolling of the cast strip.
- Coiling the rolled strip.
- b.) Phase 2 Manufacture of slugs

25

30

35

40

10

15

20

- · Uncoiling the rolled strip.
- · Punching the slugs in a blanking press.
- Annealing of the slugs.
- Cooling down of the slugs.
- Surface finishing of the slugs (tumbling, sand blasting, vibration).
- Packaging of the slugs.

[0005] The method of manufacturing aerosol cans can be described as follows:

- Applying a lubricant to the slugs.
 - Backward impact extrusion.
 - Wall ironing of the can.
 - Brushing of the can.
 - · Degreasing of the can.
 - Application of the inner varnish layer + curing in a polymerization oven
 - Application of the basecoat + curing in oven.
 - Application of the decorative inks + curing in oven.
 - Application of the overcoat + curing in oven.
 - Shaping the cans on the necking press.

45

50

55

[0006] The above described materials according to the standards EN AW 1050A and EN AW 1070A respectively exhibit significant levels of formability and work hardening which make them ideal for the manufacture of aerosol cans in a backward impact extrusion process. Aluminium alloys EN AW 3102 and EN AW 3207 offer enhanced mechanical properties (strength) and hence better rigidity and pressure resistance of finished aerosol cans. Nevertheless, the mechanical properties of these materials are changed when the cans pass through a curing oven in which polymerization of the inner varnish layer takes place. The curing (polymerization) temperatures of the inner varnish layers range between 210 and 255°C, the respective curing process lasting about 10 minutes. Under such temperatures, partial annealing of the can bodies occurs causing the mechanical strength of the same to decrease.

[0007] In order to eliminate the above undesirable effect, thicker walls of the aerosol cans must be selected which are necessary for achieving the required safety and technological specifications, particularly a sufficient pressure resistance, of the cans. This leads to an significant increase of the consumption of input materials.

[0008] In US 6,543,636 a process of making cans from aluminium alloy is presented and alloy 1050 A was chosen as the as the suitable one. This alloy is known as EN AW 1050A according to the EU norm and is broadly used. Nevertheles,

for some application tensile strength (Rm) of the cans is not satisfactory enough when being subject to the higher temperature.

Summary of the invention

5

10

20

25

30

35

40

45

50

55

[0009] The above drawbacks are eliminated by the heat-resistant alloy for the production of aerosol cans having the features defined in the characterizing part of claim 1.

Brief description of the drawings

[0010] The invention will be further explained with reference to the accompanying drawings in which Fig. 1 shows the temperature dependences of the strengths of the new alloys in comparison with those of standard alloys by means of a graphical representation.

[0011] The subject matter of the present invention is a new, modified heat resistant aluminium based alloy provided for eliminating the effect of weakening the material of the cans passing through a curing oven. Thereby, the desired enhancement of the mechanical properties of aerosol cans is achieved in comparison with standard (conventionally used) materials, along with the reduction of the wall thickness and increase of the pressure resistance of the same. Particularly, the above favourable effect is achieved by adding an anti-recrystallization admixture formed by Zr (zirconium) for the purpose of modifying the compositions of aluminium and its alloys: EN AW 1050A, EN AW 3102, EN AW 3207.

[0012] The chemical compositions of the commonly used, non-modified alloys have the following limit values in accordance with EN 573-3 in percent by weight:

EN AW 1050A

 $Si \le 0.25$; $Fe \le 0.40$; $Cu \le 0.05$; $Mn \le 0.05$; $Mg \le 0.05$; $Zn \le 0.07$; $Zn \le 0.07$; $Zn \le 0.05$; $Zn \le 0.07$; $Zn \le 0.05$; $Zn \ge 0.05$; Zn

EN AW 3102

 $Si \le 0.40$; $Fe \le 0.70$; $Cu \le 0.10$; $Mn \ 0.05-0.40$; $Zn \le 0.30$; $Ti \le 0.10$; $Al \ remainder$

EN AW 3207

 $Si \le 0.30$; $Fe \le 0.45$; $Cu \le 0.10$; $Mn \ 0.40 - 0.80$; $Mg \le 0.10$; $Zn \le 0.10$; $Al \ remainder$

[0013] The alloy according to the invention has new chemical composition with added Zr, the proportion of the new constituent ranging between 0.10 and 0.15% by weight. The addition of Zr gives rise to completely new alloy which cannot be categorized in the existing classes according to the standard EN 573-3. Therefore, the new alloys will be referred to as MC alloys hereinafter, namely MC4 (EN AW 3207 + Zr). The composition of the new alloy (in percent by weight) is as follows:

Alloy MC4

Si \leq 0.30; Fe \leq 0.45; Cu \leq 0.10; Mn 0.40 \div 0.80; Mg \leq 0.10; Zn \leq 0.10; Zr = 0.05 \div 0.20; Al remainder; (sum of all secondary elements \leq 0.10)

[0014] In order to verify the anti-recrystallization effect during the aerosol can production process, the new alloys were compared with the known, commonly used materials. The outcome is graphically represented in Fig. 1 where the first standard material according to EN AW 1050A, herein specifically referred to as alloy A5, is compared with the new alloy MC1_A which is not subject of this application. and the second standard material according to EN AW 3102, herein specifically referred to as alloy A3Mn, is compared with the new alloy MC4_A containing the added anti-recrystallization constituent Zr. The cans, which were made of the above materials under the same technological conditions, had identical wall specifications.

[0015] The standard alloys used for comparison purposes of anti-recrystallization effect are designated as follows:

Alloy A5 (aluminium according to EN AW 1050A) having the following chemical composition in percent by weight:

```
Si = 0.08; Fe = 0.24; Cu \leq 0.005; Mn \leq 0.005; Mg \leq 0.005; Zn = 0.01; Ti = 0.02; Al remainder
```

Alloy A3Mn (aluminium alloy according to EN AW 3102) having the following chemical composition in percent by weight:

```
Si = 0.07; Fe = 0.25; Cu \leq 0.005; Mn = 0.29; Mg \leq 0.005; Zn = 0.01; Ti = 0.02; Al remainder
```

[0016] The newly developed alloy used for comparison purposes of anti-recrystallization effect are designated as follows:

Alloy MC4_A having the following chemical composition in percent by weight:

Si = $0.05 \div 0.09$; Fe = $0.23 \div 0.27$; Cu ≤ 0.005 ; Mn = $0.58 \div 0.62$; Mg ≤ 0.005 ; Zn ≤ 0.015 ; Ti = $0.01 \div 0.03$; Zr = 0.12; Al remainder

[0017] Table 1 shows the mechanical properties of the cans made of the above materials. During the comparison, the values of the tensile strength (Rm) of the cans measured before and after the curing oven, in which the inner varnish layer was polymerized, were evaluated. Moreover, the hardness (HB) of the input semifinished products (slugs) was measured.

Table 1

	Table 1						
15			To	Tensile strength Rm [MPa]			
	Alloy	Hardness of the slug	After the backward extrusion	After the curing (polymerization) oven of inner varnish			
			Alter the backward extrusion	210°C/10min	230°C/10min	255°C/10min	
20	A5	20.8	164.1	154.8	150.5	135.1	
	A3Mn	22	180.7	172.6	167.9	151.2	
	MC1_A	22	171.0	171.1	168.3	167.2	
	MC3_A	23.5	182.5	179.2	179.0	178.3	
25							

[0018] The results listed in Table 1 clearly show that the standard materials lose their tensile strength when being subject to the temperature of 255°C in the oven, the strength being decreased by 17.7% for aluminium A5 and by 16.3% for the alloy A3Mn. In contrast to that, the loss of strength of the alloys containing Zr is significantly lower, namely only 2.2% for the alloy MC1_A and 2.3% for the alloy MC3_A. In several cases, even an increase of the tensile strength of the new alloys was observed after they had passed through the curing oven.

[0019] The comparison of aluminium A5 with the alloy MC1_A shows that the value of the tensile strength of the latter alloy was by 32.1 MPa higher after the passage through the polymerization oven under the temperature of 255°C.

[0020] The comparison of aluminium alloys A3Mn and MC3_A shows that the value of the tensile strength of the latter alloy was by 27.1 MPa higher after the passage through the polymerization oven under the temperature of 255°C.

[0021] Also advantageous proves to be the fact that although the alloy MC1_A containing the added Zr constituent has its tensile strength after the backward extrusion by 9.7 MPa lower in comparison with the alloy A3Mn, the passage of the alloy MC1_A through the polymerization oven under temperatures over 226°C causes the strength of this alloy to exceed the strength of the A3Mn alloy, even though the MC1_A alloy does not contain Mn.

[0022] The main advantages of the new alloys MC1, MC3 and MC4 particularly include:

- a.) Owing to the admixture of Zr, the alloys MC1, MC3 and MC4 contain a fine dispersion of Al₃Zr.
- b.) The presence of manganese in the alloys MC3 and MC4 additionally results in an increase of the strength of these alloys after undergoing a shaping process, this being due to the formation of the particles of Al_6Mn , $Al_6(FeMn)$ and α -Al(Mn,Fe)Si.
- c.) The above particles become caught in the subgrain boundaries, thus preventing any recovery, formation of recrystallization nuclei or growth of recrystallized grains from occurring (increasing the recrystallization resistance).

Claims

5

10

35

40

45

50

55

1. Heat-resistant alloy for production of aerosol cans from a material having the following contents of alloying additions in percent by weight:

according to the standards EN 573-3 EN AW 3207 Si \leq 0.30; Fe \leq 0.45; Cu \leq 0.10; Mn 0.40-0.80; Mg \leq 0.10; Zn \leq 0.10;

or with more specific compositions

 $-\,Si = 0.05 \div 0.09;\, Fe = 0.23 \div 0.27;\, Cu \leq 0.005;\, Mn = 0.58 \div 0.62;\, Mg \leq 0.005;\, Zn \leq 0.015;\, Ti = 0.01 \div 0.03;\, Mn = 0.58 \div 0.62;\, Mg \leq 0.005;\, Zn \leq 0.015;\, Zn \leq 0.015$

characterized in that each composition contains added Zr in the amount ranging between 0.10 and 0.15% by weight, the sum of the contained amounts of all the secondary elements being \leq 0,10% by weight and Al content is remainder.

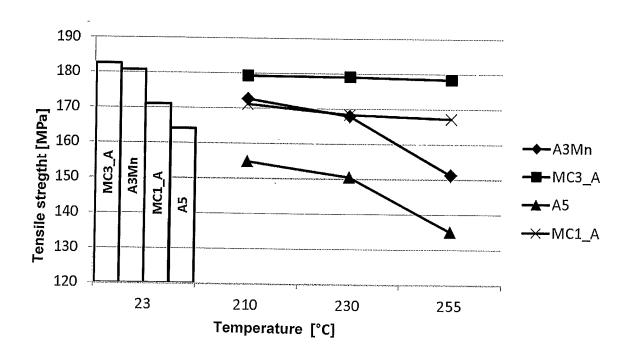


Fig.1

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate,

Zusammensetzung und Foem von Halbzeug-Teil3: Chemiche Zusammensetzung und Erzeugnisformen; Deutsche fassung EN

1 August 2009 (2009-08-01), pages 1-32,

EP 1 624 083 A2 (BOXAL FRANCE [FR]) 8 February 2006 (2006-02-08)

URL:http://www.siblenta.ru/upload/files/DI N EN 573-3 2009-08.pdf

of relevant passages

Deutsche Norm - DIN EN 573-3:

Retrieved from the Internet:

[retrieved on 2016-04-18]

* the whole document *

573-3:2009",

XP055266255,

table 3 *

und Aluminiumlegierungen-Chemische

Category

Α

Α

EUROPEAN SEARCH REPORT

"Aluminium

Application Number

EP 15 19 8382

CLASSIFICATION OF THE APPLICATION (IPC)

TECHNICAL FIELDS SEARCHED (IPC)

C22C

Examiner

Brown, Andrew

INV.

C22C21/00

Relevant

to claim

1

5

10

15

20

25

30

35

40

45

50

55

1503 03.82

EPO FORM

1	The present search report has been drawn up for all claims				
_		Place of search	Date of completion of the search		
04C01)		Munich	18 April 2016		

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application

L: document cited for other reasons

& : member of the same patent family, corresponding document

X : particularly relevant if taken alone
 Y : particularly relevant if combined with another document of the same category

A : technological background
O : non-written disclosure
P : intermediate document

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 19 8382

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-04-2016

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1624083	A2	08-02-2006	AT EP ES FR US	507317 T 1624083 A2 2365716 T3 2873717 A1 2006021415 A1	15-05-201 08-02-200 10-10-201 03-02-200 02-02-200

C For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6543636 A [0008]