[0001] The present invention is directed to a filling system for filling a cooling cartridge
in a transport container via a filling terminal with carbon dioxide snow (dry ice).
It is also directed to a filling gun for such a filling system and to a method of
filling dry ice into a transport container. The principles of transporting goods in
a thermally insulated container and of the filling of such containers with carbon
dioxide snow are for example known from
DE 10 2010 013 056 A1. However, in this document the containers are moved and docked to a stationary filling
station, what is not always the best choice in a logistic chain. Thus, filling guns
have already been used to inject liquid carbon dioxide into transport containers to
produce carbon dioxide snow inside the container and for collecting exhausted gaseous
carbon dioxide during the filling process. However, so far manually introducing a
filling end of a filling gun into a filling terminal of a transport container requires
certain skills of the operating personal and the reliability of the process and the
reproducibility of required amounts of carbon dioxide snow are not very high.
[0002] EP1724538 A1 discloses a filling sytem, a filling gun and a method for filling a cooling cartridge
according to the preamble of claims 1, 3 and 5.
[0003] It is therefore an object of the present invention to create a filling system and
a filling method, which are simple and safe in use and allow the filling of transport
containers with exactly the required amounts of carbon dioxide snow. Moreover, it
is an object of the present invention to create a filling gun, the handling of which
is easy and safe and which can be moved manually or by a robotic arm to transport
containers at different positions.
[0004] The described problems are solved by a filling system according to independent claim
1, a filling gun according to independent claim 3 and a filling method according to
independent claim 5. Additional improvements, embodiments and features, which can
also be used in combination with each other, are described in the respective dependent
claims.
[0005] A filling system according to the present invention for filling a cooling cartridge
in a transport container via a filling terminal with carbon dioxide snow comprises:
- an external supply line for supplying liquid carbon dioxide,
- an external exhaust line for conducting gaseous carbon dioxide to the environment,
- a filling gun having an internal supply line and an internal exhaust line, to which
the external supply line and the external exhaust line are coupled and which form
a filling end where the internal supply line is surrounded by the internal exhaust
line, which filling end can be introduced into the filling terminal,
- at least one electromagnet for holding the filling gun in a filling position,
- a filling valve for opening and closing the internal supply line,
- a pressure sensor downstream of the filling valve,
- at least one activation sensor measuring the distance of the filling gun to a filling
position,
- a control center for controlling the opening and closing of the filling valve in dependency
of the values measured by the pressure sensor and an electric current flow in the
electromagnet.
[0006] This filling system is especially designed for high safety and reliability. If a
filling gun is introduced manually or by a robotic arm into a filling terminal of
a transport container at least five parameters have to be taken into account. The
filling gun usually can be moved in three dimensions and can be pivoted horizontally
and vertically. An operator has to take care that the filling end of the filling gun
hits an opening of the filling terminal and that the filling gun is aligned in a correct
way, what usually means that a longitudinal axis of the filling gun points in a normal
direction of a wall of the transport container. Only if all parameters are correct
a tight connection between the filling gun and the filling terminal is possible and
a reproducible filling process can be started. For this reason according to the present
invention at least one electromagnet and at least one activation sensor play an important
role for the correct positioning and the maintenance and surveillance of a correct
position of the filling gun during the whole filling process. Although magnetic couplings
are known in filling systems, so far permanent magnets were used or electromagnets
were only activated or deactivated to establish a connection or to open it. However,
it is also possible to measure the electric current flowing in an electromagnet after
having activated it. This allows to measure, whether the electromagnet has found a
predetermined connecting position and whether it is maintaining the connection. A
filling valve can be blocked until the electric current flow in the electromagnet
has reached a certain predetermined range and/or can be stopped as soon as the electric
current flow exceeds the predetermined range. This makes sure that filling only takes
place when the filling gun is in the correct filling position and is stopped as soon
as the electric current detects any displacement. On the other hand such an electromagnet
can disturb the positioning of the filling gun if it is activated too early or at
a time, when the filling gun is not in a correct position or under a certain angle
in horizontal and/or vertical direction. In this case the magnetic force could even
damage the filling gun. For this reason the activation of the electromagnet is dependent
on at least one activation sensor measuring the distance of the filling gun to the
filling terminal. Such an activation sensor, preferably two on two sides of the filling
gun, allows making sure that the electromagnet is only activated when the filling
gun is almost in the correct filling position and only needs a final correction, which
can be achieved by magnetic force.
[0007] Another safety feature of the filling gun is a pressure sensor downstream of the
filling valve, which allows detecting the pressure of the liquid carbon dioxide with
a sensor which for example allows to determine any malfunction in the system and to
document the pressure during the whole filling process, if required. A control center
controls the opening and closing of the filling valve in dependency of the values
measured by the pressure sensor and an electric current flow in the electromagnet.
This means that the filling system according to the present invention has all measuring
and switching means in the filling gun, while a control and supply is done by a control
center to which the filling gun is connected.
[0008] In a preferred embodiment of the invention there is another safety feature provided
by a vacuum control circuit for keeping the pressure in the external exhaust line
in a predetermined range. While usual transport containers under overpressure simply
open a door or flap or blow some gas through their sealing lips, they cannot withstand
in the same way a high under-pressure. This means that the external exhaust line should
not be connected to a vacuum pump only, but the pressure in the external exhaust line
should be controlled and kept in a predetermined range of under-pressure. If the pressure
is below a certain threshold the vacuum control circuit can for example open a safety
flap, which connects the external exhaust line with the environment. This makes sure
that also the pressure in the transport container does not fall below this threshold
even in case that no liquid carbon dioxide is supplied through the filling gun.
[0009] A filling gun according to the present invention for the described filling system
comprises:
- at least one electromagnet for cooperating with a ferromagnetic area of a transport
container having a filling terminal,
- at least one activation sensor measuring the distance of the filling gun to the filling
terminal,
- couplings for connecting the filling gun with an external supply line for liquid carbon
dioxide and with an external exhaust line for gaseous carbon dioxide,
- a filling end forming an arrangement of an internal supply line for liquid carbon
dioxide as inner part and an internal exhaust line for gaseous carbon dioxide as outer
part surrounding the internal supply line,
- a filling valve for opening and closing the internal supply line,
- a pressure sensor downstream of the filling valve,
- at least one handle to manually move the filling gun in three dimensions containing
at least one integrated manual switch for activating the electromagnet, if the activation
sensor measures a value for the distance of the filling gun to a filling position
in a predetermined range.
[0010] As will be described below the combination of activation sensor, electromagnet, filling
valve and pressure sensor all integrated in the filling gun allow a very safe and
reliable filling process. For allowing an operating person to easily handle the filling
gun it is provided with at least one handle to manually move the filling gun in three
dimensions and, of course, to correct its horizontal or vertical angle if required
for bringing a filling gun almost into the final filling position. At this stage at
least one integrated manual switch allows to activate the electromagnet, but only
if the at least one activation sensor measures a distance in a predetermined range.
It is preferred to use two handles on both horizontal sides of the filling gun in
combination with two activation sensors on both sides of the filling gun as well as
two manual switches integrated in both handles to force an operating person to operate
the filling gun with both hands on both handles and allowing this person to activate
the electromagnet by pushing these manual switches, only if both activation sensors
measure a distance below a certain predetermined distance. In this case the electromagnet
will finally correct the position of the filling gun and safely connect it with the
filling terminal and keep it there until the electromagnet is deactivated. As long
as the electromagnet is activated, an operating person needs not to keep the hands
on the handles, but is free for other activities, in particular inputting information
into an interface of the control center.
[0011] In a preferred embodiment of the invention the electromagnet in the filling gun is
designed such that its magnetic circuit is open when the electromagnet is not cooperating
with the ferromagnetic area of the transport container and is substantially closed
when the electromagnet is cooperating with the ferromagnetic area. This allows to
measure whether or not the filling gun is (still) in the correct filling position
and to use this signal as additional safety feature for the filling process.
[0012] The present invention also provides a method for filling a cooling cartridge in a
transport container with a predetermined amount of carbon dioxide snow comprising
the following steps:
- approaching a filling terminal of the transport container with a filling gun having
an internal supply line for liquid carbon dioxide and an internal exhaust line for
gaseous carbon dioxide both forming a filling end,
- measuring the distance of the filling gun from a filling position in the transport
container by at least one activation sensor,
- supplying an electric current to at least one electromagnet cooperating with a ferromagnetic
area of the transport container for bringing and holding the filling gun in a filling
position, when the distance measured is below a predetermined threshold,
- measuring the electric current flow in the electromagnet,
- opening a filling valve in the internal supply line, if the electric current measured
is in a predetermined range, and keeping the filling valve open for a predetermined
time interval,
- measuring the pressure in the internal supply line by a pressure sensor downstream
of the filling valve,
- closing the filling valve, if the measured electric current in the electromagnet exceeds
the predetermined electric current range and/or if the measured pressure in the internal
supply line exceeds a predetermined pressure range or if the time interval has expired.
[0013] The method according to the present invention describes a very safe and reliable
process, which allows filling transport containers with carbon dioxide snow without
docking them to a stationary filling station and without strong restrictions for the
size, the position, and the alignment of the transport container. It would even be
possible to move the container during the filling process. To safely and correctly
position the filling gun in the filling terminal of the transport container the distance
of the filling gun from a filling position is measured by at least one activation
sensor. An electromagnet can only be activated, if the distance is below a predetermined
threshold. After activation of the electromagnet the electric current flow in the
electromagnet is measured, what allows to recognize whether the electromagnet is (still)
in the correct position for filling. The filling valve can only be opened if the filling
gun is in the correct filling position. For filling a predetermined amount of carbon
dioxide snow into the transport container a filling valve is opened for a predetermined
time interval. During the whole filling process the pressure in the internal supply
line is measured by a pressure sensor downstream of the filling valve, what allows
a surveillance and documentation of the whole filling process. In particular it is
possible to detect any blockage in the filling end or the transport container and
to stop the filling process accordingly. If anything goes wrong during the filling
process either on the mechanical side or on the electrical side, the filling process
can be interrupted based on the measured signals, otherwise it can be ended if the
predetermined interval has expired.
[0014] It should be noted that an activation sensor in the meaning of the present invention
can be any device, which allows verifying whether or not the filling gun is close
to the correct filling position. Thus, it would also be possible to use a robotic
arm and its positioning equipment to produce such a verifying signal for activation
of the electromagnet.
[0015] According to a preferred embodiment of the invention it is possible to measure an
actual filling time interval by measuring the time between a pressure raise over and
a pressure drop at the pressure sensor in the supply line under a predetermined value.
This means that not the opening and closing time of the filling valve determines the
filling interval, but the measured pressure eliminates any delay of the valve or the
supply system. It is also possible to use a combination of the information available
from the pressure sensor and the filling valve to determine the actual filling time
interval. Based on tests and experimental data this allows a very precise documentation
of the amount of carbon dioxide snow filled into the transport container.
[0016] To make the docking of the filling gun to the filling terminal as easy and safe as
possible, it is preferred to use two activation sensors measuring the distance between
the filling gun and the transport container and to allow activating the electromagnet
only, if both activation sensors measure a distance below a predetermined threshold.
[0017] In another preferred embodiment a control center is used to control the whole filling
process. It is interconnected to the filling gun for transmitting measured values
and signals for activating the electromagnet and opening of the filling valve. The
control center is additionally equipped with a reading instrument, in particular a
bar code reader, for reading and transmitting information attached to the transport
container. This allows for each individual container to be filled to first obtaining
information about its size, its content and an estimated transport time. Instead of
a bar code also other methods for storing and supplying information can be used, especially
systems for near field communication or similar devices.
[0018] Moreover, in a preferred embodiment of the invention the control center has a communication
module to communicate with a customer and/or a data center. This allows a lot of additional
modifications of the exchanged information and keeps the customer informed about any
progress on the transport chain.
[0019] In another embodiment of the invention the control center has a receiver for receiving
information about the environment and transport conditions, in particular about temperatures
in storage and transport facilities, estimated transport duration and the like. This
information is helpful to better calculate the required amount of carbon dioxide snow
for a certain container.
[0020] If the control center is designed for not only using externally given information
about filling amounts or filling times, it is preferably equipped with a calculation
unit, which is able to internally calculate the required amount of carbon dioxide
snow depending on read, received and/or transmitted data and to calculate a resulting
time interval for opening the supply valve.
[0021] The described equipment of the control center also allows measuring and communicating
information about the filling process, especially the actual filling time interval
and/or any error due to earlier closing of the filling valve and the like. This information
can be communicated via the communication module to a customer or data center to be
verified and/or stored.
[0022] Of course, the abilities of the control center also allow to only releasing a transport
container for further handling, if an approval by the customer or a data center is
received via the communication module.
[0023] The safety of the whole filling process is further improved according to the present
invention by a vacuum control circuit, which keeps the pressure in the external exhaust
line in a predetermined range. This avoids under-pressure and a possible implosion
of a transport container in case of connecting it to the exhaust line without supplying
it with liquid carbon dioxide.
[0024] Preferred embodiments and their methods of use are described in the following with
reference to the drawings. However, the invention is not restricted to the shown embodiments
and different features shown in different embodiments can also be combined with each
other without exceeding the scope of the present invention.
Fig. 1 shows a schematic overview over the whole filling system,
Fig. 2 shows a perspective exploded view of a filling gun according to the invention,
Fig. 3 shows a perspective exploded view of the interior of the filling gun according
to fig. 2 and
Fig. 4 shows in a schematic diagram the pressure measured by a pressure sensor downstream
of a filling valve during a filling process.
[0025] Fig. 1 shows a schematic overview over the whole filling system according to the
invention. A filling gun 1 is used to spray liquid carbon dioxide into a cooling cartridge
3 of a transport container 2. The liquid carbon dioxide is converted to carbon dioxide
snow and some gaseous carbon dioxide as exhaust. The principles of this process for
producing dry ice by spraying liquid carbon dioxide through a nozzle, are well known
and can be found for example in
DE 10 2010 013 056 A1. For this reason the cooling cartridge 3, the transport container 2 and a filling
terminal 4 in the transport container 2 are only shown in a schematic way. According
to the invention the filling process takes place by using a filling gun 1, which contains
measuring and switching equipment all controlled by a control center 8. The control
center 8 is also used to supply liquid carbon dioxide from a tank through an external
supply line to the filling gun 1 as well as for collecting gaseous exhausted carbon
dioxide to transport it through an external exhaust line 7 to the environment 35.
The external supply line 6 and the external exhaust line 7 are connected to an internal
supply line 16 and an internal exhaust line 17 in the filling gun 1. The filling gun
1 has two handles 22 with at least one integrated manual switch 23. In front of the
filling gun 1 an electromagnet 18 is located, which can cooperate with a ferromagnetic
area 5 at the transport container 2 to bring and hold the filling gun 1 in a filling
position P. Two activation sensors 14 measure the distance d of the filling gun 1
from the filling position P. Only if the distance d is below a predetermined threshold,
on operating person can activate the electromagnet 18 by pushing the manual switch
23. The electrical current flowing in the electromagnet 18 is measured in the control
center 8, which is connected via signal lines 26 to the filling gun 1. If the measured
electric current is in a certain predetermined range a filling valve 13 can be opened
by the control center 8 to allow liquid carbon dioxide to flow to a filling end 11
to start the filling process by the production of dry ice. A pressure sensor 12 downstream
of the filling vale 13 measures the pressure in the internal supply line 16 during
the whole filling process. Only if the measured pressure is in a predetermined range,
the filling process can be continued. During the filling process the electromagnet
18 holds the filling gun 1 in place and an operating person can go to a display or
touchscreen 10 of the control center 8 to observe or influence the filling process.
If a new transport container 2 arrives, a reader 24 can be used to read information
attached to the transport container 2, for example as a bar code. A communication
module 27 in the control center 8 allows to communicate information about the arrived
transport container to a customer 28 or data center and to exchange additional information.
[0026] A receiver 29 of the control center also allows receiving additional external information,
for example about temperatures, estimated transport time and the like. A calculation
unit 30 in the control center 8 allows, if such information is not given from outside,
to calculate the required amount of dry ice based on the information available and
to open the filling valve for a certain time interval T to supply the required amount
of liquid carbon dioxide.
[0027] The control center 8 also contains a vacuum controller 33, which receives signals
from a vacuum sensor 31 to control a safety flap 32. This allows keeping the pressure
in the external exhaust line 7 in a desired range.
[0028] Usually a vacuum pump 34 is used to transport gaseous carbon dioxide through the
external exhaust line 7 into the environment 35. The vacuum controller 33 allows to
run the vacuum pump 34 and to nevertheless keep the under-pressure in the external
exhaust line 7 in the predetermined range to avoid high under-pressure in the transport
container 2, if no carbon dioxide is supplied over a certain period of time.
[0029] Fig. 2 and 3 show in more detail the elements of the filling gun 1 in exploded views
before assembling them. The filling gun 1 has a housing 37 bearing two handles 22
on opposite sides. The housing 37 contains if assembled an internal supply line 16
comprising a filling valve 13 and a pressure sensor 12 downstream of the filling valve
13. The housing also contains an internal exhaust line 17, whereby the internal supply
line 16 and the internal exhaust line 17 form a filling end 11. In the shown example
the filling end 11 is designed as basically known from the prior art having a spraying
nozzle and inlet openings to collect gaseous carbon dioxide. The internal supply line
16 is surrounded by the internal exhaust line 17. A ring shaped electromagnet 18 with
a core 19 and a coil 20 surrounds the internal exhaust line 17 at a certain distance
from the filling end 11. Two activation sensors 14 are located at the housing 37 in
a position directed to the filling end 11 to allowing measuring the distance to the
transport container 2, what means the distance d to a filling position P. A manual
switch 23 in one of the handles 22, preferably two manual switches 23 in both handles
22, allow an operating person to active the electromagnet 18, if the distance d to
the filling position P is below a threshold. Two manual switches 23 connected in series
provide the additional safety that an operating person can only activate the electromagnet
18, if he/she handles the filling gun 1 with both hands.
[0030] An electric heating 21 can be located in the area of the filling valve 13 and the
pressure sensor 12 to keep this area free of ice. All sensors and electric devices
are connected via a signal line 26 (not shown in fig. 2 and 3) to a control center
8. Couplings 15 are provided at the filling gun 1 to interconnect the internal supply
line 16 to an external supply line 6 and the internal exhaust line 17 to an external
exhaust line 7. As the filling gun 1 may be too heavy to be held by an operating person
it is balanced by a not shown counterweight carrying the filling gun 1 by a suspension
38. A balancing plate 36 allows fixing the suspension 38 at different balancing positions
to allow adapting the balanced position of the filling gun 1 to different situations
for example concerning the external supply line 6 and the external exhaust line 7.
The suspension 38 nevertheless allows to three dimensionally move the filling gun
1 and avoids unnecessary pivoting in vertical or horizontal direction.
[0031] It should be mentioned that for safety reasons two valves in series can be used in
the filling gun. In this case it is possible to open one of them as long as the electromagnet
is active in the correct filling position, and to use the second one as filling valve
by opening it for a certain time interval T. This provides a high safety against unintentional
spraying of liquid carbon dioxide in case of failure of one of the valves.
[0032] Fig. 4 shows in a schematic diagram the behavior of the pressure measured by the
pressure sensor 12, if the filling valve 13 is opened for a time interval T. The time
t is given by the x-achsis, the y-achsis shows the pressure. As can be seen from the
diagram the pressure soon raises over a threshold, after the filling valve 12 is opened.
If the filling valve 12 is closed, it can take some time until the internal supply
line 16 is empty. For this reason it can be more precise to measure an actual filling
time Ta, which is the time during which the pressure in the internal supply line measured
by the pressure sensor 12 is higher than a given threshold. The actual filling time
interval allows a precise determination of the amount of carbon dioxide snow filled
into the cooling cartridge 3 of the transport container 2. It also provides an additional
safety, if the filling gun 1 is not released from the filling position P until the
pressure is below the threshold. This avoids unintended spraying of carbon dioxide
into the environment 35 in case of a delayed closing of the filling valve 13 by malfunction
or for systematic reasons.
[0033] The described filling system with a filling gun containing all measuring and switching
devices to safely and reliably operate the filling systems allows filling in a reproducible
manner exactly required amounts of carbon dioxide snow into a transport container.
Any problems coming up during the filling process can be measured, documented and
be used to switch off the filling process or to correct it.
Reference List
[0034]
- 1
- filling gun
- 2
- transport container
- 3
- cooling cartridge
- 4
- filling terminal
- 5
- ferromagnetic area
- 6
- external supply line
- 7
- external exhaust line
- 8
- control center
- 9
- tank for liquid carbon dioxide
- 10
- display/touchscreen
- 11
- filling end
- 12
- pressure sensor
- 13
- filling valve
- 14
- activation sensor
- 15
- coupling
- 16
- internal supply line
- 17
- internal exhaust line
- 18
- electromagnet
- 19
- core of the electromagnet
- 20
- coil of the electromagnet
- 21
- electric heating
- 22
- handle
- 23
- manual switch
- 24
- reader
- 25
- information carrier
- 26
- signal line
- 27
- communication module
- 28
- customer/data center
- 29
- receiver
- 30
- calculation unit
- 31
- vacuum sensor
- 32
- safety flap
- 33
- vacuum controller
- 34
- vacuum pump
- 35
- environment
- 36
- balancing plate
- 37
- housing
- 38
- suspension
- P
- filling position
- d
- distance between filling gun and transport container
- t
- time
- T
- time interval
- Ta
- actual filling time interval
1. Filling system for filling a cooling cartridge (3) in a transport container (2) via
a filling terminal (4) with carbon dioxide snow comprising:
- an external supply line (6) for supplying liquid carbon dioxide,
- an external exhaust line (7) for conducting gaseous carbon dioxide to the environment
(32),
- a filling gun (1), able to be introduced manually or by a robotic arm into the filling
terminal of the transport container, having an internal supply line (16) and an internal
exhaust line (17), to which the external supply line (6) and the external exhaust
line (7) are coupled and which form a filling end (11), wherein the internal supply
line (16) is surrounded by the internal exhaust line (17), which filling end (11)
can be introduced into the filling terminal (4),
- at least one electromagnet (18) for holding the filling gun (1) in a filling position
(P),
- a filling valve (13) for opening and closing the internal supply line (16),
- at least one activation sensor (14) measuring the distance (d) of the filling gun
(1) from the filling terminal (4),
characterized by
- a pressure sensor (12) downstream of the filling valve (13),
- a control center (8) for controlling the opening and closing of the filling valve
(13) in dependency of the values measured by the pressure sensor (12) and an electric
current flow (I) in the electromagnet (18),
wherein the activation of said at least one electromagnet (18) being dependent on
said at least one activation sensor (14) measuring the distance of the filling gun
(1) to the filling terminal(4).
2. Filling system according to claim 1, further comprising a vacuum control circuit (33)
for keeping the pressure in the external exhaust line (7) in a predetermined range.
3. Filling gun (1) for a filling system according to claim 1, comprising
- at least one electromagnet (18) for cooperating with a ferromagnetic area (5) of
a transport container (2) having a filling terminal (4),
- at least one activation sensor (14) measuring the distance (d) of the filling gun
(1) to the filling terminal (4),
- couplings (15) for connecting the filling gun (1) with an external supply line (6)
for liquid carbon dioxide and with an external exhaust line (7) for gaseous carbon
dioxide,
- a filling end (11) forming an arrangement of an internal supply line (16) for liquid
carbon dioxide as inner part and an internal exhaust line (17) for gaseous carbon
dioxide as outer part surrounding the internal supply line (16),
- a filling valve (13) for opening and closing the internal supply line (16),
characterized by:
- a pressure sensor (12) downstream of the filling valve (13),
- a handle (22) to manually move the filling gun (1) in three dimensions containing
at least one integrated manual switch (23) for activating the electromagnet (18),
if the activation sensor (14) measures a value for the distance (d) of the filling
gun (1) to the filling position (P) in a predetermined range.
4. Filling gun (1) according to claim 3, wherein the electromagnet (18) is designed such
that its magnetic circuit is open when not cooperating with the ferromagnetic area
(5) of the transport container (2) and closed when it is cooperating with the ferromagnetic
area (5).
5. Method for filling a cooling cartridge (3) in a transport container (2) with a predetermined
amount of carbon dioxide snow comprising the following steps:
- approaching a filling terminal (4) of the transport container (2) with a filling
gun (1) having an internal supply line (16) for liquid carbon dioxide and an internal
exhaust line (17) for gaseous carbon dioxide both forming a filling end (11), characterized by the implementation of the following steps
- measuring the distance (d) of the filling gun (1) from a filling position (P) by
at least one activation sensor (14),
- supplying an electric current to at least one electromagnet (18) cooperating with
a ferromagnetic area (5) of the transport container (2) for bringing and holding the
filling gun (1) in the filling position (P), when the distance (d) measured is below
a predetermined threshold,
- measuring the electric current flow in the electromagnet (18),
- opening a filling valve (13) in the internal supply line (16), if the electric current
measured is in a predetermined range, and keeping the filling valve (13) open for
a predetermined time interval (T),
- measuring the pressure in the internal supply line (16) by a pressure sensor (12)
downstream of the filling valve (13),
- closing the filling valve (13), if the measured electric current in the electromagnet
(18) exceeds the predetermined electric current range and/or if the measured pressure
in the internal supply line (16) exceeds a predetermined pressure range or if the
time interval (T) has expired.
6. Method according to claim 5, wherein an actual filling time interval (Ta) is determined
by measuring the time between a pressure raise and a pressure drop at the pressure
sensor (12) in the supply line (16) over and under, respectively, a predetermined
value.
7. Method according to claim 5 or 6, wherein two activation sensors (14) are arranged
at different sides of the filling gun (1) and the electromagnet (18) can only be supplied
with an electric current, if the distance (d) measured by both activation sensors
(14) is below the predetermined threshold.
8. Method according to one of claims 5 to 7, wherein the filling process is controlled
by a control center (8) interconnected to the filling gun (1) for transmitting measured
values and signals for activating the electromagnet (18) and opening of the filling
valve (13) and wherein the control center (8) is equipped with a reading instrument
(24), in particular a bar code reader, for reading and transmitting information attached
to the transport container (2).
9. Method according to one of claims 5 to 8, wherein the control center (8) has a communication
module (27) to communicate with a customer and/or a data center (28).
10. Method according to one of claims 5 to 9, wherein the control center (8) has a receiver
(29) for receiving information about the environment (34) and transport conditions,
in particular about temperatures in storage and transport facilities, estimated transport
duration and the like.
11. Method according to one of claims 5 to 10, wherein the control center (8) has a calculation
unit (30) to calculate the required amount of carbon dioxide snow depending on read,
received and/or transmitted data and the resulting time interval (T) for opening the
supply valve (13).
12. Method according claims 6 and 9, wherein the actual filling time interval (Ta) and/or
any error due to earlier closing of the filling valve (13) is communicated via the
communication module (27) to a customer or data center (28) to be verified and/or
stored.
13. Method according to claim 12, wherein the transport container (2) is only released
for further handling, if an approval by the customer or a data center (28) is received
via the communication module (27).
14. Method according to one of claims 5 to 13, wherein a vacuum control circuit (10) keeps
the pressure in the external exhaust line (7) in a predetermined range.
1. Füllsystem zum Füllen einer Kühlpatrone (3) in einem Transportbehälter (2) über einen
Füllanschluss (4) mit Kohlendioxidschnee, umfassend:
- eine externe Versorgungsleitung (6) zum Versorgen mit flüssigem Kohlendioxid,
- eine externe Auslassleitung (7) zum Leiten von gasförmigem Kohlendioxid an die Umgebung
(32),
- eine Füllpistole (1), imstande, manuell oder durch einen Roboterarm in den Füllanschluss
des Transportbehälters eingeführt zu werden, eine interne Versorgungsleitung (16)
und eine interne Auslassleitung (17) aufweisend, mit der die externe Versorgungsleitung
(6) und die externe Auslassleitung (7) gekoppelt sind und die ein Füllende (11) bilden,
wobei die interne Versorgungsleitung (16) von der internen Auslassleitung (17) umgeben
ist,
wobei das Füllende (11) in den Füllanschluss (4) eingeführt werden kann,
- mindestens einen Elektromagneten (18) zum Halten der Füllpistole (1) in einer Füllposition
(P),
- ein Füllventil (13) zum Öffnen und Schließen der internen Versorgungsleitung (16),
- mindestens einen Aktivierungssensor (14), der den Abstand (d) der Füllpistole (1)
vom Füllanschluss (4) misst,
gekennzeichnet durch
- einen Drucksensor (12) stromabwärts des Füllventils (13),
- eine Steuerzentrale (8) zum Steuern des Öffnens und Schließens des Füllventils (13)
in Abhängigkeit von den vom Drucksensor (12) gemessenen Werten und einem elektrischen
Stromfluss (I) im Elektromagneten (18),
wobei die Aktivierung des mindestens einen Elektromagneten (18) von dem mindestens
einen Aktivierungssensor (14) abhängt, der den Abstand der Füllpistole (1) zum Füllanschluss
(4) misst.
2. Füllsystem nach Anspruch 1, weiter umfassend
eine Vakuumsteuerschaltung (33) zum Halten des Drucks in der externen Auslassleitung
(7) in einem vorbestimmten Bereich.
3. Füllpistole (1) für ein Füllsystem nach Anspruch 1, umfassend
- mindestens einen Elektromagneten (18) zum Zusammenwirken mit einem ferromagnetischen
Bereich (5) eines Transportbehälters (2), der einen Füllanschluss (4) aufweist,
- mindestens einen Aktivierungssensor (14), der den Abstand (d) der Füllpistole (1)
zum Füllanschluss (4) misst,
- Kupplungen (15) zum Verbinden der Füllpistole (1) mit einer externen Versorgungsleitung
(6) für flüssiges Kohlendioxid und mit einer externen Auslassleitung (7) für gasförmiges
Kohlendioxid,
- ein Füllende (11), das eine Anordnung einer inneren Versorgungsleitung (16) für
flüssiges Kohlendioxid als Innenteil und einer inneren Auslassleitung (17) für gasförmiges
Kohlendioxid als Außenteil bildet, der die interne Versorgungsleitung (16) umgibt,
- ein Füllventil (13) zum Öffnen und Schließen der internen Versorgungsleitung (16),
gekennzeichnet durch:
- einen Drucksensor (12) stromabwärts des Füllventils (13),
- einen Griff (22) zum manuellen Bewegen der Füllpistole (1) in drei Dimensionen,
enthaltend mindestens einen integrierten Handschalter (23) zum Aktivieren des Elektromagneten
(18), wenn der Aktivierungssensor (14) einen Wert für den Abstand (d) der Füllpistole
(1) bis zur Füllposition (P) in einem vorbestimmten Bereich misst.
4. Füllpistole (1) nach Anspruch 3, wobei der Elektromagnet (18) ausgelegt ist, sodass
seine Magnetschaltung offen ist, wenn sie nicht mit dem ferromagnetischen Bereich
(5) des Transportbehälters (2) zusammenwirkt, und geschlossen ist, wenn sie mit dem
ferromagnetischen Bereich (5) zusammenwirkt.
5. Verfahren zum Füllen einer Kühlpatrone (3) in einem Transportbehälter (2) mit einer
vorbestimmten Menge Kohlendioxidschnee, umfassend die folgenden Schritte:
- Annähern eines Füllanschlusses (4) des Transportbehälters (2) mit einer Füllpistole
(1), die eine interne Versorgungsleitung (16) für flüssiges Kohlendioxid und eine
interne Auslassleitung (17) für gasförmiges Kohlendioxid aufweist, die beide ein Füllende
(11) bilden,
gekennzeichnet durch die Implementierung der folgenden Schritte:
- Messen des Abstands (d) der Füllpistole (1) von einer Füllposition (P) durch mindestens
einen Aktivierungssensor (14),
- Versorgen mindestens eines Elektromagneten (18), der mit einem ferromagnetischen
Bereich (5) des Transportbehälters (2) zusammenwirkt mit elektrischem Strom, um die
Füllpistole (1) in die Füllposition (P) zu bringen und zu halten, wenn der gemessene
Abstand (d) unterhalb eines vorbestimmten Schwellenwertes liegt,
- Messen des elektrischen Stromflusses im Elektromagneten (18),
- Öffnen eines Füllventils (13) in der internen Versorgungsleitung (16), wenn der
gemessene elektrische Strom in einem vorbestimmten Bereich liegt, und Offenhalten
des Füllventils (13) für ein vorbestimmtes Zeitintervall (T),
- Messen des Drucks in der internen Versorgungsleitung (16) durch einen Drucksensor
(12) stromabwärts des Füllventils (13),
- Schließen des Füllventils (13), wenn der gemessene elektrische Strom im Elektromagneten
(18) den vorgegebenen elektrischen Strombereich überschreitet und/oder wenn der gemessene
Druck in der internen Versorgungsleitung (16) einen vorgegebenen Druckbereich überschreitet
oder wenn das Zeitintervall (T) abgelaufen ist.
6. Verfahren nach Anspruch 5, wobei ein tatsächliches Füllzeitintervall (Ta) durch Messen
der Zeit zwischen einer Druckerhöhung und einem Druckabfall am Drucksensor (12) in
der Versorgungsleitung (16) über bzw. unter einem vorbestimmten Wert liegt.
7. Verfahren nach Anspruch 5 oder 6, wobei zwei Aktivierungssensoren (14) an verschiedenen
Seiten der Füllpistole (1) angeordnet sind und der Elektromagnet (18) nur dann mit
einem elektrischen Strom versorgt werden kann, wenn der Abstand (d), der von beiden
Aktivierungssensoren (14) gemessen wird, unter dem vorbestimmten Schwellenwert liegt.
8. Verfahren nach einem der Ansprüche 5 bis 7, wobei der Füllprozess von einer mit der
Füllpistole (1) verbundenen Steuerzentrale (8) zur Übertragung von Messwerten und
Signalen zur Aktivierung des Elektromagneten (18) und zum Öffnen des Füllventils (13)
gesteuert wird und wobei die Steuerzentrale (8) mit einem Leseinstrument (24), insbesondere
einem Strichcodeleser, zum Lesen und Übertragen von an dem Transportbehälter (2) angebrachten
Informationen ausgestattet ist.
9. Verfahren nach einem der Ansprüche 5 bis 8, wobei die Steuerzentrale (8) ein Kommunikationsmodul
(27) zur Kommunikation mit einem Kunden und/oder einer Datenzentrale (28) aufweist.
10. Verfahren nach einem der Ansprüche 5 bis 9, wobei die Steuerzentrale (8) einen Empfänger
(29) zum Empfangen von Informationen über die Umgebung (34) und Transportbedingungen,
insbesondere über Temperaturen in Lager- und Transporteinrichtungen, geschätzte Transportdauer
und dergleichen aufweist.
11. Verfahren nach einem der Ansprüche 5 bis 10, wobei die Steuerzentrale (8) eine Berechnungseinheit
(30) aufweist, um die erforderliche Menge an Kohlendioxidschnee in Abhängigkeit von
gelesenen, empfangenen und/oder übertragenen Daten und dem sich daraus ergebenden
Zeitintervall (T) zum Öffnen des Versorgungsventils (13) zu berechnen.
12. Verfahren nach Anspruch 6 und 9, wobei das tatsächliche Füllzeitintervall (Ta) und/oder
ein etwaiger Fehler aufgrund eines früheren Schließens des Füllventils (13) über das
Kommunikationsmodul (27) an einen Kunden oder eine Datenzentrale (28) übermittelt
wird, um überprüft und/oder gespeichert zu werden.
13. Verfahren nach Anspruch 12, wobei der Transportbehälter (2) nur zur weiteren Handhabung
freigegeben wird, wenn über das Kommunikationsmodul (27) eine Genehmigung des Kunden
oder einer Datenzentrale (28) empfangen wird.
14. Verfahren nach einem der Ansprüche 5 bis 13, wobei eine Vakuumsteuerschaltung (10)
den Druck in der externen Auslassleitung (7) in einem vorbestimmten Bereich hält.
1. Système de remplissage pour remplir une cartouche de refroidissement (3) dans un conteneur
de transport (2) via un terminal de remplissage (40) avec de la neige de dioxyde de
carbone, comprenant :
- une ligne d'alimentation externe (6) pour fournir du dioxyde de carbone liquide,
- une ligne d'évacuation externe (7) pour acheminer du dioxyde de carbone gazeux à
l'environnement (32),
- un pistolet de remplissage (1) qui est à même d'être introduit manuellement ou par
un bras robotique dans le terminal de remplissage du conteneur de transport, ayant
une ligne d'alimentation interne (16) et une ligne d'évacuation interne (17), auxquelles
la ligne d'alimentation externe (6) et la ligne d'évacuation externe (7) sont couplées
et qui forment une extrémité de remplissage (11), dans lequel la ligne d'alimentation
interne (16) est entourée par la ligne d'évacuation interne (17),
laquelle extrémité de remplissage (11) peut être introduite dans le terminal de remplissage
(4),
- au moins un électro-aimant (18) pour maintenir le pistolet de remplissage (1) en
position de remplissage (P),
- un clapet de remplissage (13) pour ouvrir et fermer la ligne d'alimentation interne
(16),
- au moins un capteur d'activation (14) mesurant la distance (d) du pistolet de remplissage
(1) depuis le terminal de remplissage (4),
caractérisé par :
- un capteur de pression (12) en aval du clapet de remplissage (13),
- un centre de commande (8) pour commander l'ouverture et la fermeture du clapet de
remplissage (13) en fonction des valeurs mesurées par le capteur de pression (12)
et une circulation de courant électrique (I) dans l'électro-aimant (18),
dans lequel l'activation dudit au moins un électro-aimant (18) dépendant dudit au
moins un capteur d'activation (14) mesurant la distance du pistolet de remplissage
(1) au terminal de remplissage (4).
2. Système de remplissage selon la revendication 1, comprenant en outre un circuit de
commande de vide (33) pour conserver la pression dans la ligne d'évacuation externe
(7) dans une plage prédéterminée.
3. Pistolet de remplissage (1) pour un système de remplissage selon la revendication
1, comprenant :
- au moins un électro-aimant (18) pour coopérer avec une zone ferromagnétique (5)
d'un conteneur de transport (2) ayant un terminal de remplissage (4),
- au moins un capteur d'activation (14) mesurant la distance (d) du pistolet de remplissage
(1) au terminal de remplissage (4),
- des couplages (15) pour raccorder le pistolet de remplissage (1) à une ligne d'alimentation
externe (6) pour du dioxyde de carbone liquide et à une ligne d'évacuation externe
(7) pour du dioxyde de carbone gazeux,
- une extrémité de remplissage (11) formant un agencement d'une ligne d'alimentation
interne (16) pour du dioxyde de carbone liquide en tant que partie interne et d'une
ligne d'évacuation interne (17) pour du dioxyde de carbone gazeux en tant que partie
externe entourant la ligne d'alimentation interne (16),
- un clapet de remplissage (13) pour ouvrir et fermer la ligne d'alimentation interne
(16),
caractérisé par :
- un capteur de pression (12) en aval du clapet de remplissage (13),
- une poignée (22) pour déplacer manuellement le pistolet de remplissage (1) dans
trois dimensions contenant au moins un commutateur manuel intégré (23) pour activer
l'électro-aimant (18) si le capteur d'activation (14) mesure une valeur de la distance
(d) du pistolet de remplissage (1) à la position de remplissage (P) dans une plage
prédéterminée.
4. Pistolet de remplissage (1) selon la revendication 3, dans lequel l'électro-aimant
(18) est conçu de sorte que son circuit magnétique soit ouvert lorsqu'il ne coopère
pas avec la zone ferromagnétique (5) du conteneur de transport (2) et fermé lorsqu'il
coopère avec la zone ferromagnétique (5).
5. Procédé de remplissage d'une cartouche de refroidissement (3) dans un conteneur de
transport (2) avec une quantité prédéterminée de neige de dioxyde de carbone comprenant
les étapes suivantes consistant à :
- approcher un terminal de remplissage (4) du conteneur de transport (2) avec un pistolet
de remplissage (1) ayant une ligne d'alimentation interne (16) pour du dioxyde de
carbone liquide et une ligne d'évacuation interne (17) pour du dioxyde de carbone
gazeux formant toutes deux une extrémité de remplissage (11),
caractérisé par la mise en oeuvre des étapes suivantes consistant à :
- mesurer la distance (d) du pistolet de remplissage (1) depuis une position de remplissage
(P) par au moins un capteur d'activation (14),
- fournir un courant électrique à au moins un électro-aimant (18) coopérant avec une
zone ferromagnétique (5) du conteneur de transport (2) pour amener et maintenir le
pistolet de remplissage (1) dans la position de remplissage (P) lorsque la distance
(d) mesurée se situe en dessous d'un seuil prédéterminé,
- mesurer la circulation de courant électrique dans l'électro-aimant (18),
- ouvrir un clapet de remplissage (13) dans la ligne d'alimentation interne (16) si
le courant électrique mesuré se situe dans une plage prédéterminée et maintenir le
clapet de remplissage (13) ouvert pendant un intervalle de temps prédéterminé (T),
- mesurer la pression dans la ligne d'alimentation interne (16) par un capteur de
pression (12) en aval du clapet de remplissage (13),
- fermer le clapet de remplissage (13) si le courant électrique mesuré dans l'électro-aimant
(18) dépasse la plage de courant électrique prédéterminée et/ou si la pression mesurée
dans la ligne d'alimentation interne (16) dépasse une plage de pression prédéterminée
ou si l'intervalle de temps (T) a expiré.
6. Procédé selon la revendication 5, dans lequel un intervalle de temps de remplissage
réel (Ta) est déterminé en mesurant le temps entre une augmentation de pression et
une chute de pression dans le capteur de pression (12) de la ligne d'alimentation
(16) au-dessus et en dessous, respectivement, d'une valeur prédéterminée.
7. Procédé selon la revendication 5 ou 6, dans lequel deux capteurs d'activation (14)
sont agencés sur différents côtés du pistolet de remplissage (1) et l'électro-aimant
(18) peut seulement être alimenté en courant électrique si la distance (d) mesurée
par les deux capteurs d'activation (14) se situe en dessous du seuil prédéterminé.
8. Procédé selon l'une quelconque des revendications 5 à 7, dans lequel le procédé de
remplissage est commandé par un centre de commande (8) interconnecté avec le pistolet
de remplissage (1) pour transmettre des valeurs mesurées et des signaux pour activer
l'électro-aimant (18) et l'ouverture du clapet de remplissage (13) et dans lequel
le centre de commande (8) est équipé d'un instrument de lecture (24), en particulier
un lecteur de codes à barres pour lire et transmettre des informations fixées au conteneur
de transport (2).
9. Procédé selon l'une quelconque des revendications 5 à 8, dans lequel le centre de
commande (8) a un module de communication (27) pour communiquer avec un client et/ou
un centre de données (28).
10. Procédé selon l'une quelconque des revendications 5 à 9, dans lequel le centre de
commande (8) a un récepteur (29) pour recevoir des informations sur l'environnement
(34) et les conditions de transport, en particulier sur les températures dans les
installations de stockage et de transport, la durée estimée du transport, etc.
11. Procédé selon l'une quelconque des revendications 5 à 10, dans lequel le centre de
commande (8) a une unité de calcul (30) pour calculer la quantité requise de neige
de dioxyde de carbone en fonction des données lues, reçues et/ou transmises et de
l'intervalle de temps résultant (T) pour ouvrir le clapet d'alimentation (13).
12. Procédé selon les revendications 6 et 9, dans lequel l'intervalle de temps de remplissage
réel (Ta) et/ou toute erreur due à une fermeture prématurée du clapet de remplissage
(13) est ou sont communiqués via le module de communication (27) à un client ou à
un centre de données (28) pour être vérifiés et/ou stockés.
13. Procédé selon la revendication 12, dans lequel le conteneur de transport (2) est uniquement
libéré pour une autre manipulation si une approbation par le client ou un centre de
données (28) est reçue via le module de communication (27).
14. Procédé selon l'une quelconque des revendications 5 à 13, dans lequel un circuit de
commande de vide (10) maintient la pression dans la ligne d'évacuation externe (7)
dans une plage prédéterminée.