[0001] The present invention relates to a smoking article comprising a combustible heat
source having opposed front and rear faces, an aerosol-forming substrate downstream
of the rear face of the combustible heat source and a single heat-conducting element
overlying a rear portion of the combustible heat source and at least a front portion
of the aerosol-forming substrate.
[0002] A number of smoking articles in which tobacco is heated rather than combusted have
been proposed in the art. One aim of such 'heated' smoking articles is to reduce known
harmful smoke constituents of the type produced by the combustion and pyrolytic degradation
of tobacco in conventional cigarettes. In one known type of heated smoking article,
an aerosol is generated by the transfer of heat from a combustible heat source to
an aerosol-forming substrate. The aerosol-forming substrate may be located within,
around or downstream of the combustible heat source. During smoking, volatile compounds
are released from the aerosol-forming substrate by heat transfer from the combustible
heat source and entrained in air drawn through the smoking article. As the released
compounds cool, they condense to form an aerosol that is inhaled by the user. Typically,
air is drawn into such known heated smoking articles through one or more airflow channels
provided through the combustible heat source and heat transfer from the combustible
heat source to the aerosol-forming substrate occurs by forced convection and conduction.
[0003] For example,
WO-A2-2009/022232 discloses a smoking article comprising a combustible heat source, an aerosol-forming
substrate downstream of the combustible heat source, and a heat-conducting element
around and in direct contact with a rear portion of the combustible heat source and
an adjacent front portion of the aerosol-forming substrate.
[0004] The heat-conducting element in the smoking article of
WO-A2-2009/022232 transfers heat generated during combustion of the combustible heat source to the
aerosol-forming substrate by conduction. In smoking articles in which tobacco is heated
rather than combusted, the temperature attained in the aerosol-forming substrate has
a significant impact on the ability to generate a sensorially acceptable aerosol.
It is typically desirable to maintain the temperature of the aerosol-forming substrate
within a certain range in order to optimise the aerosol delivery to a user. In some
cases, radiative heat losses from the outer surface of a heat-conducting element around
and in direct contact with the combustible heat source and the aerosol-forming substrate
may cause the temperature of the combustible heat source and the aerosol-forming substrate
to drop outside of a desired range, thereby impacting the performance of the smoking
article. If the temperature of the aerosol-forming substrate drops too low, for instance,
it may adversely impact the consistency and the amount of aerosol delivered to a user.
[0005] EP-A1-2 550 879 discloses a smoking article comprising a multilayered tube member 9 including at
least one metal layer and one paper layer, a carbon heat source 4 arranged in an end
portion of the tube member 9 to be at least partly in direct close contact with an
inner surface of the tube member 9 and a smoking flavor releasing source 8 arranged
in the tube member 9 to adjoin the carbon heat source 4, and a holder part 14 keeping
the carbon heat source 4 in direct contact with said end portion and holding the carbon
heat source 4 against said end portion.
[0006] In the embodiment shown in Fig. 1 the non-combustible wrapping material 9 is formed
by bonding a three-layer composite sheet 16 to the outer side of a two-layer composite
sheet 15. The part of the three-layer composite sheet 16 projecting from the two layer
composite sheet 15 forms the holder part 14. As shown in Fig. 2, the two-layer composite
sheet 15 comprises an inner aluminum layer 17 and an outer paper layer 18 and the
three-layer composite sheet 16 comprises an inner paper layer 18, a central aluminum
layer 17 and an outer paper layer 18. The innermost layer of the non-combustible wrapper
9 is the aluminum layer 17 of the two-layer composite sheet 15 and the outermost layer
of the non-combustible wrapper 9 is the outer paper layer 18 of the three-layer composite
sheet 16.
[0007] In some heated smoking articles, forced convective heat transfer from a combustible
heat source to the aerosol-forming substrate is provided in addition to conductive
heat transfer via a heat-conducting element. For example, in some known heated smoking
articles one or more airflow channels are provided along the combustible heat source
in order to provide forced convective heating of the aerosol-forming substrate. In
such smoking articles, the aerosol-forming substrate is heated by a combination of
conductive heating and forced convective heating.
[0008] For example,
WO-A2-2009/022232 discloses providing at least one longitudinal airflow channel through the combustible
heat source to provide a controlled amount of forced convective heating of the aerosol-forming
substrate.
[0009] In known heated smoking articles in which heat transfer from the combustible heat
source to the aerosol-forming substrate occurs primarily by forced convection, the
forced convective heat transfer and hence the temperature in the aerosol-forming substrate
can vary considerably depending upon the puffing behaviour of a user. As a result,
the composition and hence the sensory properties of the mainstream aerosol generated
by such known heated smoking articles may disadvantageously be highly sensitive to
a user's puffing regime.
[0010] In particular, in known heated smoking articles comprising one or more airflow channels
along the combustible heat source, direct contact between air drawn through the one
or more airflow channels and the combustible heat source during puffing by a user
results in activation of combustion of the combustible heat source. Intense puffing
regimes may therefore lead to sufficiently high forced convective heat transfer to
cause spikes in the temperature of the aerosol-forming substrate, disadvantageously
leading to pyrolysis and potentially even localised combustion of the aerosol-forming
substrate. As used herein, the term 'spike' is used to describe a short-lived increase
in the temperature of the aerosol-forming substrate. As a result, the levels of undesirable
pyrolytic and combustion by-products in the mainstream aerosols generated by such
known heated smoking articles may also disadvantageously vary significantly depending
upon the particular puffing regime adopted by a user.
[0011] In other heated smoking articles no airflow channels are provided through the combustible
heat source. In such heated smoking articles heating of the aerosol-forming substrate
is achieved primarily by conductive heat transfer via a heat-conducting element. In
heated smoking articles where the aerosol-forming substrate is heated primarily by
conductive heat transfer, the temperature of the aerosol-forming substrate can become
more sensitive to changes in the temperature of the heat-conducting element. This
means that any cooling of a heat-conducting element around and in direct contact with
the combustible heat source and the aerosol-forming substrate due to radiative heat
loss in such heated smoking articles may have a greater impact on the aerosol generation
than in heated smoking articles where the aerosol-forming substrate is also heated
by forced convective heat transfer.
[0012] It would be desirable to provide a heated smoking article including a combustible
heat source having opposed front and rear faces and an aerosol-forming substrate downstream
of the rear face of the combustible heat source which provides improved smoking performance.
In particular, it would be desirable to provide a heated smoking article in which
there is improved control of the heating of the aerosol-forming substrate in order
to help maintain the temperature of the aerosol-forming substrate within a desired
temperature range during smoking.
[0013] According to the invention there is provided a smoking article comprising: a combustible
heat source having opposed front and rear faces; an aerosol-forming substrate downstream
of the rear face of the combustible heat source; and a single heat-conducting element
overlying a rear portion of the combustible heat source and at least a front portion
of the aerosol-forming substrate. The single heat-conducting element comprises one
or more layers of heat conductive material and the one or more layers of heat conductive
material are radially separated from the combustible heat source and the aerosol-forming
substrate. The combustible heat source is either a blind combustible heat source or
the combustible heat source is a non-blind combustible heat source and the smoking
article further comprises a non-combustible substantially air impermeable barrier
between the non-blind combustible heat source and one or more airflow channels extending
from the front face to the rear face of the non-blind combustible heat source. The
single heat-conducting element comprises an outer layer of heat conductive material
that is visible on the exterior of the smoking article.
[0014] As used herein, the terms 'distal', 'upstream' and 'front', and 'proximal', 'downstream'
and 'rear', are used to describe the relative positions of components, or portions
of components, of the smoking article in relation to the direction in which a user
draws on the smoking article during use thereof. Smoking articles according to the
invention comprise a proximal end through which, in use, an aerosol exits the smoking
article for delivery to a user. The proximal end of the smoking article may also be
referred to as the mouth end. In use, a user draws on the proximal end of the smoking
article in order to inhale an aerosol generated by the smoking article.
[0015] The combustible heat source is located at or proximate to the distal end. The mouth
end is downstream of the distal end. The proximal end may also be referred to as the
downstream end of the smoking article and the distal end may also be referred to as
upstream end of the smoking article. Components, or portions of components, of smoking
articles according to the invention may be described as being upstream or downstream
of one another based on their relative positions between the proximal end and the
distal end of the smoking article.
[0016] The front face of the combustible heat source is at the upstream end of the combustible
heat source. The upstream end of the combustible heat source is the end of the combustible
heat source furthest from the proximal end of the smoking article. The rear face of
the combustible heat source is at the downstream end of the combustible heat source.
The downstream end of the combustible heat source is the end of the combustible heat
source closest to the proximal end of the smoking article.
[0017] As used herein, the term 'length' is used to describe the maximum dimension in the
longitudinal direction of the smoking article. That is, the maximum dimension in the
direction between the proximal end and the opposed distal end of the smoking article.
[0018] As used herein, the term aerosol-forming substrate' is used to describe a substrate
capable of releasing upon heating volatile compounds, which can form an aerosol. The
aerosols generated from aerosol-forming substrates of smoking articles according to
the invention may be visible or invisible and may include vapours (for example, fine
particles of substances, which are in a gaseous state, that are ordinarily liquid
or solid at room temperature) as well as gases and liquid droplets of condensed vapours.
[0019] As used herein, the term "radially separated" is used to indicate that the one or
more layers of heat conductive material of the single heat-conducting element are
spaced apart from both the combustible heat source and the aerosol-forming substrate
in a radial direction, such that there is no direct contact between the one or more
layers of heat conductive material of the single heat-conducting element and the combustible
heat source or the aerosol-forming substrate.
[0020] As used herein, the term 'radial' is used to describe the direction perpendicular
to the direction between the proximal end and the opposed distal end of the smoking
article.
[0021] As used herein, the term 'direct contact' is used to mean contact between two components
without any intermediate material, such that the surfaces of the components are touching
each other.
[0022] The aerosol-forming substrate may be in the form of a plug or segment comprising
a material capable of releasing upon heating volatile compounds, which can form an
aerosol, circumscribed by a wrapper. Where an aerosol-forming substrate is in the
form of such a plug or segment, the entire plug or segment including the wrapper is
considered to be the aerosol-forming substrate.
[0023] In such embodiments, the one or more layers of heat conductive material of the single
heat-conducting element are radially separated from the wrapper of the aerosol-forming
substrate.
[0024] Smoking articles according to the invention comprise a single heat-conducting element
overlying a rear portion of the combustible heat source and at least a front portion
of the aerosol-forming substrate. The single heat-conducting element comprises one
or more layers of heat conductive material and the one or more layers of heat conductive
material are radially separated from the combustible heat source and the aerosol-forming
substrate.
[0025] Smoking articles according to the invention do not comprise any additional heat-conducting
elements underlying or overlying the single heat-conducting element. In particular,
smoking articles according to the invention do not comprise any heat-conducting elements
around and in direct contact with one or both of the combustible heat source and the
aerosol-forming substrate.
[0026] Smoking articles according to the invention may comprise a blind combustible heat
source or a non-blind combustible heat source.
[0027] As used herein, the term 'blind' is used to describe a combustible heat source wherein
there are no airflow channels extending from the front face to the rear face of the
combustible heat source.
[0028] In use, the air drawn through smoking articles according to the invention comprising
a blind combustible heat source for inhalation by a user does not pass through any
airflow channels along the blind combustible heat source. In smoking articles according
to the invention comprising a blind combustible heat source, heating of the aerosol-forming
substrate occurs primarily by conduction and heating of the aerosol-forming substrate
by forced convection is minimised or reduced.
[0029] As used herein, the term 'airflow channel' is used to describe a channel extending
along the length of a combustible heat source through which air may be drawn downstream
for inhalation by a user.
[0030] As used herein, the term 'non-blind' is used to describe a combustible heat source
wherein there are one or more airflow channels extending from the front face to the
rear face of the combustible heat source.
[0031] In use, the air drawn through smoking articles according to the invention comprising
a non-blind combustible heat source for inhalation by a user passes through one or
more airflow channels along the non-blind combustible heat source. In smoking articles
according to the invention comprising a non-blind combustible heat source, heating
of the aerosol-forming substrate occurs by conduction and forced convection.
[0032] Smoking articles according to the invention comprising a non-blind combustible heat
source further comprise a non-combustible substantially air impermeable barrier between
the non-blind combustible heat source and the one or more airflow channels extending
from the front face to the rear face of the non-blind combustible heat source.
[0033] As used herein, the term 'non-combustible' is used to describe a barrier that is
substantially non-combustible at temperatures reached by the non-blind combustible
heat source during combustion and ignition thereof.
[0034] Where smoking articles according to the invention comprise a blind combustible heat
source, the lack of any airflow channels through the blind combustible heat source
advantageously substantially prevents or inhibits activation of combustion of the
blind combustible heat source during puffing by a user.
[0035] Similarly, where smoking articles according to the invention comprise a non-blind
combustible heat source inclusion of a non-combustible substantially air impermeable
barrier between the non-blind combustible heat source and the one or more airflow
channels extending from the front face to the rear face of the non-blind combustible
heat source advantageously substantially prevents or inhibit activation of combustion
of the non-blind combustible heat source during puffing by a user.
[0036] Preventing or inhibiting activation of combustion of the combustible heat source
during puffing by a user, advantageously substantially prevents or inhibits spikes
in the temperature of the aerosol-forming substrate of smoking articles according
to the invention during puffing by a user.
[0037] By preventing or inhibiting activation of combustion of the combustible heat source,
and so preventing or inhibiting excess temperature increases in the aerosol-forming
substrate, combustion or pyrolysis of the aerosol-forming substrate of smoking articles
according to the invention under intense puffing regimes may be advantageously avoided.
In addition, the impact of a user's puffing regime on the composition of the mainstream
aerosol of smoking articles according to the invention may be advantageously minimised
or reduced.
[0038] The single heat-conducting element overlies a rear portion of the combustible heat
source and at least a front portion of the aerosol-forming substrate.
[0039] The one or more layers of heat conductive material of the single heat-conducting
element are radially separated from the combustible heat source and the aerosol-forming
substrate. This limits conductive heat transfer from the combustible heat source to
the single heat-conducting element and conductive heat transfer from the single heat-conducting
element to the aerosol-forming substrate. In use, this advantageously helps to maintain
the temperature attained in the aerosol-forming substrate of smoking articles according
to the invention below that at which combustion or pyrolysis of the aerosol-forming
substrate may occur.
[0040] Preferably, heat transfer by conduction from the combustible heat source to the single
heat-conducting element is substantially reduced. This results in the single heat-conducting
element of smoking articles according to the invention retaining a lower temperature
than the heat-conducting element of known heated smoking articles in which the heat-conducting
element is around and in direct contact with a rear portion of the combustible heat
source and at least a front portion of the aerosol-forming substrate.
[0041] In heated smoking articles in which the heat-conducting element is around and in
direct contact with a rear portion of the combustible heat source and at least a front
portion of the aerosol-forming substrate, the heat drain exerted by conductive heat
transfer via the heat-conducting element significantly lowers the temperature of the
rear portion of the combustible heat source. This can shorten the burning lifetime
of the combustible heat source and may lead to non-acceptable aerosol delivery.
[0042] The radial separation between the one or more layers of heat conductive material
of the single heat-conducting element and the combustible heat source and the aerosol-forming
substrate of smoking articles according to the invention advantageously reduces the
heat drain exerted by conductive heat transfer via the single heat-conducting element.
[0043] The single heat-conducting element advantageously reduces heat losses from the combustible
heat source. The one or more layers of heat conductive material of the single heat-conducting
element increase in temperature during smoking of the smoking article, as heat is
generated by the combustible heat source. The increased temperature of the one or
more layers of heat conductive material of the single heat-conducting element reduce
the temperature differential between the combustible heat source and overlying components
of the smoking article, such that heat losses from the combustible heat source can
be reduced.
[0044] By reducing heat losses from the combustible heat source, the single heat-conducting
element advantageously helps to maintain the temperature of the aerosol-forming substrate
within a desired temperature range. This improves the generation of aerosol from the
aerosol-forming substrate.
[0045] The one or more layers of heat conductive material of the single heat-conducting
element conduct heat along the smoking article. This improves the efficiency of conductive
heat transfer from the combustible heat source to the aerosol-forming substrate and
therefore the heating of the aerosol-forming substrate. The improvement in conductive
heat transfer achieved through the inclusion of the single heat-conducting element
is particularly beneficial for smoking articles according to the invention comprising
a blind combustible heat source in which there is substantially no forced convective
heat transfer.
[0046] The radial separation between the one or more layers of heat conductive material
of the single heat-conducting element and the combustible heat source and the aerosol-forming
substrate is preferably achieved through the inclusion of one or more intermediate
layers of material between the one or more layers of heat conductive material of the
single heat-conducting element and the combustible heat source and the aerosol-forming
substrate. The one or more intermediate layers of material may be provided over the
entire area in which the single heat-conducting element overlies the combustible heat
source and the aerosol-forming substrate. Alternatively, the one or more intermediate
layers of material may be provided in only part or parts of this area. In some embodiments,
the one or more intermediate layers of material may extend beyond the one or more
layers of heat conductive material of the single heat-conducting element in one or
both of the upstream direction and the downstream direction.
[0047] Preferably, the one or more layers of heat conductive material of the single heat-conducting
element are radially separated from the combustible heat source and the aerosol-forming
substrate by one or more layers of heat insulative material. Suitable heat insulative
materials include, but are not limited to, paper, ceramics and metal oxides.
[0048] For example, in certain preferred embodiments of the invention, the rear portion
of the combustible heat source and the at least a front portion of the aerosol-forming
substrate overlain by the single heat-conducting element are covered by a paper wrapper
that circumscribes the smoking article along at least a portion of its length. In
such embodiments, the paper wrapper radially separates the single heat-conducting
element from the combustible heat source and the aerosol-forming substrate such that
there is no direct contact between the single heat-conducting element and the combustible
heat source or the aerosol-forming substrate.
[0049] The single heat-conducting element comprises an outer layer of heat conductive material
provided on the outside of the smoking article, such that the outer layer of heat
conductive material of the single heat-conducting element is visible on the exterior
of the smoking article.
[0050] In certain embodiments, the one or more layers of heat conductive material of the
single heat-conducting element are radially separated from the combustible heat source
and the aerosol-forming substrate by a wrapper that extends along all or just a part
of the smoking article. In such embodiments, the wrapper is wrapped around the smoking
article over the combustible heat source and the aerosol-forming substrate and the
single heat-conducting element is then provided over at least a portion of the wrapper.
[0051] Provision of the single heat-conducting element over a wrapper of the smoking article
may provide benefits in relation to the appearance of smoking articles according to
the invention, in particular during and after smoking thereof. In certain cases, some
discolouration of the wrapper in the region of the combustible heat source may be
observed when the wrapper is exposed to heat from the combustible heat source. The
wrapper may additionally be discoloured as a result of the migration of volatile compounds
from the aerosol-forming substrate into the wrapper around and downstream of the aerosol-forming
substrate. In certain embodiments, the single heat-conducting element of smoking articles
according to the invention may be provided over the wrapper around at least a rear
part of the combustible heat source and at least a front part of the aerosol-forming
substrate so that discolouration of the wrapper is covered and no longer or less visible.
In certain embodiments, the single heat-conducting element may extend around the entire
length of the aerosol-forming substrate. In certain preferred embodiments, the single
heat-conducting element may extend downstream beyond the aerosol-forming substrate.
The initial appearance of the smoking article can therefore be retained during smoking.
[0052] Alternatively or in addition to one or more layers of heat insulative material between
the one or more layers of heat conductive material of the single heat-conducting element
and the combustible heat source and the aerosol-forming substrate, at least part of
the single heat-conducting element may be radially separated from the combustible
heat source and the aerosol-forming substrate by an air gap. An air gap may be provided
through the inclusion of one or more spacer elements between the one or more layers
of heat conductive material of the single heat-conducting element and the combustible
heat source and the aerosol-forming substrate to maintain a defined separation between
the single heat-conducting element and the combustible heat source and the aerosol-forming
substrate. The one or more spacer elements may be, for example, one or more strips
of paper wrapped radially around the combustible heat source and the aerosol-forming
substrate.
[0053] Preferably, the one or more layers of heat conductive material of the single heat-conducting
element are radially separated from the combustible heat source and the aerosol-forming
substrate by at least 20 microns, more preferably by at least 50 microns. In certain
embodiments, the one or more layers of heat conductive material of the single heat-conducting
element are radially separated from the combustible heat source and the aerosol-forming
substrate by at least 75 microns or more or by at least 100 microns or more.
[0054] Where one or more layers of heat insulative material are provided between the one
or more layers of heat conductive material of the single heat-conducting element and
the combustible heat source and the aerosol-forming substrate, as described above,
the radial separation between the one or more layers of heat conductive material of
the single heat-conducting element and the combustible heat source and the aerosol-forming
substrate will be determined by the thickness of the one or more layers of heat insulative
material.
[0055] The one or more layers of heat conductive material of the single heat-conducting
element may comprise any suitable heat conductive material or combination of materials
with an appropriate thermal conductivity.
[0056] Preferably, the one or more layers of heat conductive material of the single heat-conducting
element comprise heat conductive materials having a bulk thermal conductivity of between
about 10 W per metre Kelvin (W/(m•K)) and about 500 W per metre Kelvin (W/(m•K)),
more preferably between about 15 W per metre Kelvin (W/(m•K)) and about 400 W per
metre Kelvin (W/(m•K)), at 23°C and a relative humidity of 50% as measured using the
modified transient plane source (MTPS) method. Suitable heat conductive materials
include, but are not limited to: metal foil wrappers such as, for example, aluminium
foil wrappers, steel wrappers, iron foil wrappers and copper foil wrappers; and metal
alloy foil wrappers.
[0057] In certain preferred embodiments, the single heat-conducting element comprises one
or more layers of aluminium.
[0058] Preferably, the one or more layers of heat conductive material of the single heat-conducting
element comprise a heat reflective material, such as aluminium or steel. In such embodiments,
in use, the single heat-conducting element advantageously reflects heat radiating
from the combustible heat source and the aerosol-forming substrate back towards the
combustible heat source and the aerosol-forming substrate.
[0059] As used herein the term 'heat reflective material' refers to a material that has
a relatively high heat reflectivity and a relatively low heat emissivity such that
the material reflects a greater proportion of incident radiation from its surface
than it emits. Preferably, the heat reflective material reflects more than 50% of
incident radiation, more preferably more than 70% of incident radiation and most preferably
more than 75% of incident radiation.
[0060] In such embodiments, the relatively high heat reflectivity and relatively low heat
emissivity of the single heat-conducting element reduces heat losses from the combustible
heat source and the aerosol-forming substrate.
[0061] The reflectivity of the one or more layers of heat conductive material of the single
heat-conducting element may be improved by providing the one or more layers of heat
conductive material of the single heat-conducting element with a shiny inner surface,
wherein the inner surface is the surface that faces the combustible heat source and
the aerosol-forming substrate.
[0062] The single heat-conducting element may be formed of a single layer of heat conductive
material. Alternatively, the single heat-conducting element may be formed of a multilayer
or laminate material comprising at least one layer of heat conductive material in
combination with one or more other heat-conducting layers or non-heat-conducting layers.
In such embodiments, the at least one layer of heat conductive material may comprise
any of the heat conductive materials listed above.
[0063] In certain preferred embodiments, the single heat-conducting element may be formed
of a laminate material comprising at least one layer of heat conductive material and
at least one layer of heat insulative material. In such embodiments, the inner layer
of the single heat-conducting element facing the combustible heat source and the aerosol-forming
substrate may be a layer of heat insulative material. In this way, the inner layer
of heat insulative material provides the required radial separation between the at
least one layer of heat conductive material of the single heat-conducting element
and the combustible heat source and the aerosol-forming substrate.
[0064] In certain preferred embodiments, the single heat-conducting element comprises a
single layer of heat conductive material.
[0065] In certain preferred embodiments, the single heat-conducting element is a laminate
material comprising a single layer of heat conductive material and one or more layers
of heat insulative material. In certain particularly preferred embodiments, the single
heat-conducting element is a laminate material comprising a single layer of heat conductive
material and a single layer of heat insulative material. Preferably, the single heat-conducting
element is a laminate material comprising a single outer layer of heat conductive
material and a single inner layer of heat insulative material.
[0066] One example of a particularly suitable laminate material for forming the single heat-conducting
element is a double layer laminate material comprising an outer layer of aluminium
and an inner layer of paper.
[0067] The use of a single heat-conducting element comprising a laminate material may additionally
be beneficial during the production of the smoking articles according to the invention,
since the at least one heat-insulating layer may provide added strength and rigidity.
This enables the laminate material to be processed more easily, with a reduced risk
of collapse or breakage of the at least one heat-conducting layer, which may be relatively
thin and fragile.
[0068] Preferably the thickness of the single heat-conducting element is between about 5
microns and about 100 microns, more preferably between about 5 microns and about 80
microns.
[0069] Preferably the single heat-conducting element comprises one or more layers of heat
conductive material having a thickness of between about 2 microns and about 50 microns,
more preferably between about 4 microns and about 30 microns.
[0070] In certain embodiments, the single heat-conducting element may comprise aluminium
foil having a thickness of about 20 microns.
[0071] In certain preferred embodiments, the single heat-conducting element may comprise
a laminate material comprising an outer layer of aluminium having a thickness of between
about 5 microns and about 6 microns and an inner layer of paper.
[0072] As described above, the single heat-conducting element of smoking articles according
to the invention overlies a rear portion of the combustible heat source and at least
a front portion of the aerosol-forming substrate.
[0073] The position and extent of the single heat-conducting element relative to the combustible
heat source and the aerosol-forming substrate may be adjusted in order to control
heating of the aerosol-forming substrate during smoking. In particular, the extent
of the single heat-conducting element relative to the combustible heat source and
the aerosol-forming substrate in the upstream direction and the downstream direction
may be adjusted in order to adjust the aerosol delivery profile of the smoking article.
[0074] The single heat-conducting element may extend around all or a part of the circumference
of the smoking article. Preferably, the single heat-conducting element forms a continuous
sleeve that circumscribes the smoking article along part of its length.
[0075] Preferably, the rear portion of the combustible heat source overlain by the single
heat-conducting element is between about 2 mm and about 8 mm in length, more preferably
between about 3 mm and about 5 mm in length.
[0076] Preferably, the front portion of the combustible heat source not overlain by the
first heat-conducting element is between about 4 mm and about 15 mm in length, more
preferably between about 5 mm and about 8 mm in length.
[0077] In certain embodiments, the single heat-conducting element overlies the entire length
of the aerosol-forming substrate. In such embodiments, the downstream end of the single
heat-conducting element may be aligned with the downstream end of the aerosol-forming
substrate. Alternatively, the single heat-conducting element may extend beyond the
aerosol-forming substrate in the downstream direction.
[0078] In other embodiments, the single heat-conducting element overlies only a front portion
of the aerosol-forming substrate. In such embodiments, the aerosol-forming substrate
extends beyond the single heat-conducting element in the downstream direction.
[0079] In embodiments in which the single heat-conducting element overlies only a front
portion of the aerosol-forming substrate, the aerosol-forming substrate may extend
at least about 3 mm beyond the single heat-conducting element in the downstream direction.
For example, the aerosol-forming substrate may extend between about 3 mm and about
10 mm beyond the single heat-conducting element in the downstream direction. Alternatively,
the aerosol-forming substrate may extend less than 3 mm beyond the single heat-conducting
element in the downstream direction.
[0080] In embodiments in which the single heat-conducting element overlies only a front
portion of the aerosol-forming substrate, the front portion of the aerosol-forming
substrate overlain by the single heat-conducting element may be between about 1 mm
and about 10 mm in length, For example, the front portion of the aerosol-forming substrate
overlain by the single heat-conducting element may be between about 2 mm and about
8 mm in length or between about 2 mm and about 6 mm in length.
[0081] Smoking articles according to the invention may comprise a blind combustible heat
source.
[0082] It is known to include additives in the combustible heat sources of heated smoking
articles in order to improve the ignition and combustion properties of the combustible
heat sources. However, the inclusion of ignition and combustion additives can give
rise to decomposition and reaction products, which may disadvantageously enter air
drawn through such known heated smoking articles during use thereof.
[0083] The inclusion of a blind combustible heat source may advantageously substantially
prevent or inhibit combustion and decomposition products and other materials formed
during ignition and combustion of the blind combustible heat source from entering
air drawn through smoking articles according to the invention during use thereof.
This is particularly advantageous where the blind combustible heat source comprises
one or more additives to aid ignition or combustion of the blind combustible heat
source.
[0084] In smoking articles according to the invention comprising a blind combustible heat
source, it is particularly important to optimise the conductive heat transfer between
the combustible heat source and the aerosol-forming substrate. The inclusion of a
single heat-conducting element radially separated from the combustible heat source
and the aerosol-forming substrate has been found to have a particularly advantageous
effect on the smoking performance of smoking articles including blind heat sources,
where there is little if any heating of the aerosol-forming substrate by forced convection.
[0085] It will be appreciated that smoking articles according to the invention may comprise
blind combustible heat sources comprising one or more closed or blocked passageways
through which air may not be drawn for inhalation by a user.
[0086] For example, smoking articles according to the invention may comprise blind combustible
heat sources comprising one or more closed passageways that extend from the front
face at the upstream end of the blind combustible heat source only part way along
the length of the blind combustible heat source.
[0087] The inclusion of one or more closed air passageways increases the surface area of
the blind combustible heat source that is exposed to oxygen from the air and may advantageously
facilitate ignition and sustained combustion of the blind combustible heat source.
[0088] Alternatively, smoking articles according to the invention may comprise a non-blind
combustible heat source wherein there are one or more airflow channels extending from
the front face to the rear face of the non-blind combustible heat source.
[0089] The one or more airflow channels may comprise one or more enclosed airflow channels.
[0090] As used herein, the term 'enclosed' is used to describe airflow channels that extend
through the interior of the non-blind combustible heat source and are surrounded by
the non-blind combustible heat source.
[0091] Alternatively or in addition, the one or more airflow channels may comprise one or
more non-enclosed airflow channels. For example, the one or more airflow channels
may comprise one or more grooves or other non-enclosed airflow channels that extend
along the exterior of the non-blind combustible heat source.
[0092] The one or more airflow channels may comprise one or more enclosed airflow channels
or one or more non-enclosed airflow channels or a combination thereof.
[0093] In certain embodiments, smoking articles according to the invention comprise one,
two or three airflow channels extending from the front face to the rear face of the
non-blind combustible heat source.
[0094] In certain preferred embodiments, smoking articles according to the invention comprise
a single airflow channel extending from the front face to the rear face of the non-blind
combustible heat source.
[0095] In certain particularly preferred embodiments, smoking articles according to the
invention comprise comprises a single substantially central or axial airflow channel
extending from the front face to the rear face of the non-blind combustible heat source.
[0096] In such embodiments, the diameter of the single airflow channel is preferably between
about 1.5 mm and about 3 mm.
[0097] It will be appreciated that in addition to one or more airflow channels through which
air may be drawn for inhalation by a user, smoking articles according to the invention
may comprise non-blind combustible heat sources comprising one or more closed or blocked
passageways through which air may not be drawn for inhalation by a user.
[0098] For example, smoking articles according to the invention may comprise non-blind combustible
heat sources comprising one or more airflow channels extending from the front face
to the rear face of the combustible heat source and one or more closed passageways
that extend from the front face of the non-blind combustible heat source only part
way along the length combustible heat source.
[0099] The inclusion of one or more closed air passageways increases the surface area of
the non-blind combustible heat source that is exposed to oxygen from the air and may
advantageously facilitate ignition and sustained combustion of the non-blind combustible
heat source.
[0100] Smoking articles according to the invention comprising a non-blind combustible heat
source further comprise a non-combustible substantially air impermeable barrier between
the non-blind combustible heat source and the one or more airflow channels extending
from the front face to the rear face of the non-blind combustible heat source.
[0101] Inclusion of a non-combustible substantially air impermeable barrier between the
non-blind combustible heat source and the one or more airflow channels extending from
the front face to the rear face of the non-blind combustible heat source may advantageously
substantially prevent or inhibit combustion and decomposition products formed during
ignition and combustion of the non-blind combustible heat source from entering air
drawn into the smoking article through the one or more airflow channels as the drawn
air passes through the one or more airflow channels. This is particularly advantageous
where the non-blind combustible heat source comprises one or more additives to aid
ignition or combustion of the non-blind combustible heat source.
[0102] The barrier between the non-blind combustible heat source and the one or more airflow
channels may be adhered or otherwise affixed to the non-blind combustible heat source.
[0103] In certain preferred embodiments, the barrier comprises a non-combustible substantially
air impermeable barrier coating provided on an inner surface of the one or more airflow
channels. In such embodiments, preferably the barrier comprises a barrier coating
provided on at least substantially the entire inner surface of the one or more airflow
channels. More preferably, the barrier comprises a barrier coating provided on the
entire inner surface of the one or more airflow channels.
[0104] As used herein, the term 'coating' is used to describe a layer of material that covers
and is adhered to the combustible heat source.
[0105] In other embodiments, the barrier coating may be provided by insertion of a liner
into the one or more airflow channels. For example, where the one or more airflow
channels comprise one or more enclosed airflow channels that extend through the interior
of the non-blind combustible heat source, a non-combustible substantially air impermeable
hollow tube may be inserted into each of the one or more airflow channels.
[0106] Depending upon the desired characteristics and performance of the smoking article,
the barrier may have a low thermal conductivity or a high thermal conductivity. Preferably,
the barrier has a low thermal conductivity.
[0107] The thickness of the barrier may be appropriately adjusted to achieve good smoking
performance. In certain embodiments, the barrier may have a thickness of between about
30 microns and about 200 microns. In a preferred embodiment, the barrier has a thickness
of between about 30 microns and about 100 microns.
[0108] The barrier may be formed from one or more suitable materials that are substantially
thermally stable and non-combustible at temperatures achieved by the non-blind combustible
heat source during ignition and combustion. Suitable materials are known in the art
and include, but are not limited to, for example: clays; metal oxides, such as iron
oxide, alumina, titania, silica, silica-alumina, zirconia and ceria; zeolites; zirconium
phosphate; and other ceramic materials or combinations thereof.
[0109] Preferred materials from which the barrier may be formed include clays, glasses,
aluminium, iron oxide and combinations thereof. If desired, catalytic ingredients,
such as ingredients that promote the oxidation of carbon monoxide to carbon dioxide,
may be incorporated in the barrier. Suitable catalytic ingredients include, but are
not limited to, for example, platinum, palladium, transition metals and their oxides.
[0110] Where the barrier comprises a barrier coating provided on an inner surface of the
one or more airflow channels, the barrier coating may be applied to the inner surface
of the one or more airflow channels by any suitable method, such as the methods described
in
US-A-5,040,551. For example, the inner surface of the one or more airflow channels may be sprayed,
wetted or painted with a solution or a suspension of the barrier coating. In certain
preferred embodiments, the barrier coating is applied to the inner surface of the
one or more airflow channels by the process described in
WO-A2-2009/074870 as the combustible heat source is extruded.
[0111] Smoking articles according to the invention may further comprise a non-combustible
substantially air impermeable barrier between the rear face of the combustible heat
source and the aerosol-forming substrate.
[0112] Where smoking articles according to the invention comprise a non-blind combustible
heat source and a non-combustible, substantially air impermeable barrier between the
rear face of the combustible heat source and the aerosol-forming substrate, the barrier
should allow air entering the smoking article through the one or more airflow channels
extending from the front face to the rear face of the non-blind combustible heat source
to be drawn downstream through the smoking article.
[0113] The barrier may abut one or both of the rear face of the combustible heat source
and the aerosol-forming substrate. Alternatively, the barrier may be spaced apart
from one or both of the rear face of the combustible heat source and the aerosol-forming
substrate.
[0114] The barrier may be adhered or otherwise affixed to one or both of the rear face of
the combustible heat source and the aerosol-forming substrate.
[0115] In certain preferred embodiments, the barrier comprises a non-combustible substantially
air impermeable barrier coating provided on the rear face of the combustible heat
source. In such embodiments, preferably the barrier comprises barrier coating provided
on at least substantially the entire rear face of the combustible heat source. More
preferably, the barrier comprises a barrier coating provided on the entire rear face
of the combustible heat source.
[0116] The barrier may advantageously limit the temperature to which the aerosol-forming
substrate is exposed during ignition and combustion of the combustible heat source,
and so help to avoid or reduce thermal degradation or combustion of the aerosol-forming
substrate during use of the smoking article. This is particularly advantageous where
the combustible heat source comprises one or more additives to aid ignition of the
combustible heat source.
[0117] To facilitate aerosol formation, the aerosol-forming substrates of heated smoking
articles typically comprise a polyhydric alcohol, such as glycerine, or other known
aerosol-formers. During storage and smoking, such aerosol-formers may migrate from
the aerosol-forming substrates of known heated smoking articles to the combustible
heat sources thereof. Migration of aerosol-formers to the combustible heat sources
of known heated smoking articles can disadvantageously lead to decomposition of the
aerosol-formers, particularly during smoking of the heated smoking articles.
[0118] Inclusion of a non-combustible substantially air impermeable barrier between the
rear face of the combustible heat source and the aerosol-forming substrate of smoking
articles according to the invention may advantageously substantially prevent or inhibit
migration of components of the aerosol-forming substrate to the combustible heat source
during storage of the smoking article.
[0119] Alternatively or in addition, inclusion of a non-combustible substantially air impermeable
barrier between the rear face of the combustible heat source and the aerosol-forming
substrate of smoking articles according to the invention may advantageously substantially
prevent or inhibit migration of components of the aerosol-forming substrate to the
combustible heat source during use of the smoking article.
[0120] Inclusion of a non-combustible substantially air impermeable barrier between the
rear face of the combustible heat source and the aerosol-forming substrate is particularly
advantageous where the aerosol-forming substrate comprises at least one aerosol-former.
[0121] In such embodiments, inclusion of a non-combustible substantially air impermeable
barrier between the rear face of the combustible heat source and the aerosol-forming
substrate of smoking articles according to the invention may advantageously prevent
or inhibit migration of the at least one aerosol-former from the aerosol-forming substrate
to the combustible heat source during storage and use of the smoking article. Decomposition
of the at least one aerosol-former during use of the smoking article may thus be advantageously
substantially avoided or reduced.
[0122] Depending upon the desired characteristics and performance of the smoking article,
the non-combustible substantially air impermeable barrier between the rear face of
the combustible heat source and the aerosol-forming substrate may have a low thermal
conductivity or a high thermal conductivity. In certain embodiments, the barrier may
be formed from material having a bulk thermal conductivity of between about 0.1 W
per metre Kelvin (W/(m•K)) and about 200 W per metre Kelvin (W/(m•K)), at 23°C and
a relative humidity of 50% as measured using the modified transient plane source (MTPS)
method.
[0123] The thickness of the barrier may be appropriately adjusted to achieve good smoking
performance. In certain embodiments, the barrier may have a thickness of between about
10 microns and about 500 microns.
[0124] The barrier may be formed from one or more suitable materials that are substantially
thermally stable and non-combustible at temperatures achieved by the combustible heat
source during ignition and combustion. Suitable materials are known in the art and
include, but are not limited to, clays (such as, for example, bentonite and kaolinite),
glasses, minerals, ceramic materials, resins, metals and combinations thereof.
[0125] Preferred materials from which the barrier may be formed include clays and glasses.
More preferred materials from which the barrier may be formed include copper, aluminium,
stainless steel, alloys, alumina (Al
2O
3), resins, and mineral glues.
[0126] In certain preferred embodiments, the barrier comprises a clay coating comprising
a 50/50 mixture of bentonite and kaolinite provided on the rear face of the combustible
heat source. In other preferred embodiments, the barrier comprises a glass coating,
more preferably a sintered glass coating, provided on the rear face of the combustible
heat source.
[0127] In certain particularly preferred embodiments, the barrier comprises an aluminium
coating provided on the rear face of the combustible heat source.
[0128] Preferably, the barrier has a thickness of at least about 10 microns.
[0129] Due to the slight permeability of clays to air, in embodiments where the barrier
comprises a clay coating provided on the rear face of the combustible heat source,
the clay coating more preferably has a thickness of at least about 50 microns, and
most preferably of between about 50 microns and about 350 microns.
[0130] In embodiments where the barrier is formed from one or more materials that are more
impervious to air, such as aluminium, the barrier may be thinner, and generally will
preferably have a thickness of less than about 100 microns, and more preferably of
about 20 microns.
[0131] In embodiments where the barrier comprises a glass coating provided on the rear face
of the combustible heat source, the glass coating preferably has a thickness of less
than about 200 microns.
[0132] The thickness of the barrier may be measured using a microscope, a scanning electron
microscope (SEM) or any other suitable measurement methods known in the art.
[0133] Where the barrier comprises a barrier coating provided on the rear face of the combustible
heat source, the barrier coating may be applied to cover and adhere to the rear face
of the combustible heat source by any suitable methods known in the art including,
but not limited to, spray-coating, vapour deposition, dipping, material transfer (for
example, brushing or gluing), electrostatic deposition or any combination thereof.
[0134] For example, the barrier coating may be made by pre-forming a barrier in the approximate
size and shape of the rear face of the combustible heat source, and applying it to
the rear face of the combustible heat source to cover and adhere to at least substantially
the entire rear face of the combustible heat source. Alternatively, the barrier coating
may be cut or otherwise machined after it is applied to the rear face of the combustible
heat source. In one preferred embodiment, aluminium foil is applied to the rear face
of the combustible heat source by gluing or pressing it to the combustible heat source,
and is cut or otherwise machined so that the aluminium foil covers and adheres to
at least substantially the entire rear face of the combustible heat source, preferably
to the entire rear face of the combustible heat source.
[0135] In another preferred embodiment, the barrier coating is formed by applying a solution
or suspension of one or more suitable coating materials to the rear face of the combustible
heat source. For example, the barrier coating may be applied to the rear face of the
combustible heat source by dipping the rear face of the combustible heat source in
a solution or suspension of one or more suitable coating materials or by brushing
or spray-coating a solution or suspension or electrostatically depositing a powder
or powder mixture of one or more suitable coating materials onto the rear face of
the combustible heat source. Where the barrier coating is applied to the rear face
of the combustible heat source by electrostatically depositing a powder or powder
mixture of one or more suitable coating materials onto the rear face of the combustible
heat source, the rear face of the combustible heat source is preferably pre-treated
with water glass before electrostatic deposition. Preferably, the barrier coating
is applied by spray-coating.
[0136] The barrier coating may be formed through a single application of a solution or suspension
of one or more suitable coating materials to the rear face of the combustible heat
source. Alternatively, the barrier coating may be formed through multiple applications
of a solution or suspension of one or more suitable coating materials to the rear
face of the combustible heat source. For example, the barrier coating may be formed
through one, two, three, four, five, six, seven or eight successive applications of
a solution or suspension of one or more suitable coating materials to the rear face
of the combustible heat source.
[0137] Preferably, the barrier coating is formed through between one and ten applications
of a solution or suspension of one or more suitable coating materials to the rear
face of the combustible heat source.
[0138] After application of the solution or suspension of one or more coating materials
to the rear face thereof, the combustible heat source may be dried to form the barrier
coating.
[0139] Where the barrier coating is formed through multiple applications of a solution or
suspension of one or more suitable coating materials to the rear face thereof, the
combustible heat source may need to be dried between successive applications of the
solution or suspension.
[0140] Alternatively or in addition to drying, after application of a solution or suspension
of one or more coating materials to the rear face of the combustible heat source,
the coating material on the combustible heat source may be sintered in order to form
the barrier coating. Sintering of the barrier coating is particularly preferred where
the barrier coating is a glass or ceramic coating. Preferably, the barrier coating
is sintered at a temperature of between about 500°C and about 900°C, and more preferably
at about 700°C.
[0141] Smoking articles according to the invention may comprise one or more first air inlets
around the periphery of the aerosol-forming substrate.
[0142] As used herein, the term 'air inlet' is used to describe a hole, slit, slot or other
aperture through which air may be drawn into the smoking article.
[0143] Where smoking articles according to the invention comprise one or more first air
inlets around the periphery of the aerosol-forming substrate, in use, cool air is
drawn into the aerosol-forming substrate of the smoking article through the first
air inlets. The air drawn into the aerosol-forming substrate through the first air
inlets passes downstream through the smoking article from the aerosol-forming substrate
and exits the smoking article through the proximal end thereof.
[0144] During puffing by a user, the cool air drawn through the one or more first air inlets
around the periphery of the aerosol-forming substrate advantageously reduces the temperature
of the aerosol-forming substrate. This advantageously substantially prevents or inhibits
spikes in the temperature of the aerosol-forming substrate during puffing by a user.
[0145] As used herein, the term 'cool air' is used to describe ambient air that is not significantly
heated by the combustible heat source upon puffing by a user.
[0146] By preventing or inhibiting spikes in the temperature of the aerosol-forming substrate,
the inclusion of one or more first air inlets around the periphery of the aerosol-forming
substrate, advantageously helps to avoid or reduce combustion or pyrolysis of the
aerosol-forming substrate under intense puffing regimes. In addition, the inclusion
of one or more first air inlets around the periphery of the aerosol-forming substrate
advantageously helps to minimise or reduce the impact of a user's puffing regime on
the composition of the mainstream aerosol of the smoking article.
[0147] In certain preferred embodiments, the one or more first air inlets are located proximate
to the downstream end of the aerosol-forming substrate.
[0148] In certain embodiments, the aerosol-forming substrate may abut the rear face of the
combustible heat source.
[0149] As used herein, the term 'abut' is used to describe the aerosol-forming substrate
being in direct contact with the rear face of the combustible heat source or a non-combustible
substantially air impermeable barrier coating provided on the rear face of the combustible
heat source.
[0150] In other embodiments, the aerosol-forming substrate may be spaced apart from the
rear face of the combustible heat source. That is, there may be a space or gap between
the aerosol-forming substrate and the rear face of the combustible heat source.
[0151] As used herein, the term 'spaced apart' is used to describe the aerosol-forming substrate
not being in direct contact with the rear face of the combustible heat source or a
non-combustible substantially air impermeable barrier coating provided on the rear
face of the combustible heat source.
[0152] Alternatively or in addition to one or more first air inlets, in such embodiments
smoking articles according to the invention may comprise one or more second air inlets
between the rear face of the combustible heat source and the aerosol-forming substrate.
In use, cool air is drawn into the space between the combustible heat source and the
aerosol-forming substrate through the second air inlets. The air drawn into the space
between the combustible heat source and the aerosol-forming substrate through the
second air inlets passes downstream through the smoking article from the space between
the combustible heat source and the aerosol-forming substrate and exits the smoking
article through the proximal end thereof.
[0153] During puffing by a user, cool air drawn through the one or more second inlets between
the rear face of the combustible heat source and the aerosol-forming substrate may
advantageously reduce the temperature of the aerosol-forming substrate. This may advantageously
substantially prevent or inhibit spikes in the temperature of the aerosol-forming
substrate during puffing by a user.
[0154] Alternatively or in addition to one or more first air inlets or one or more second
air inlets, smoking articles according to the invention may comprise one or more third
air inlets downstream of the aerosol-forming substrate.
[0155] It will be appreciated that smoking articles according to the invention may comprise
one or more first air inlets around the periphery of the aerosol-forming substrate,
or one or more second air inlets between the rear face of the combustible heat source
and the aerosol-forming substrate, or one or more third air inlets downstream of the
aerosol-forming substrate, or any combination thereof.
[0156] The number, shape, size and location of the air inlets may be appropriately adjusted
to achieve a good smoking performance.
[0157] Preferably, the combustible heat source is a carbonaceous heat source. As used herein,
the term 'carbonaceous' is used to describe a combustible heat source comprising carbon.
Preferably, combustible carbonaceous heat sources for use in smoking articles according
to the invention have a carbon content of at least about 35 percent, more preferably
of at least about 40 percent, most preferably of at least about 45 percent by dry
weight of the combustible heat source.
[0158] In some embodiments, combustible heat sources according to the invention are combustible
carbon-based heat sources. As used herein, the term carbon-based heat source' is used
to describe a heat source comprised primarily of carbon.
[0159] Combustible carbon-based heat sources for use in smoking articles according to the
invention have a carbon content of at least about 50 percent. For example, combustible
carbon-based heat sources for use in smoking articles according to the invention may
have a carbon content of at least about 60 percent, or at least about 70 percent,
or at least about 80 percent by dry weight of the combustible carbon-based heat source.
[0160] Smoking articles according to the invention may comprise combustible carbonaceous
heat sources formed from one or more suitable carbon-containing materials.
[0161] If desired, one or more binders may be combined with the one or more carbon-containing
materials. Preferably, the one or more binders are organic binders. Suitable known
organic binders, include but are not limited to, gums (for example, guar gum), modified
celluloses and cellulose derivatives (for example, methyl cellulose, carboxymethyl
cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose) flour, starches,
sugars, vegetable oils and combinations thereof.
[0162] In one preferred embodiment, the combustible heat source is formed from a mixture
of carbon powder, modified cellulose, flour and sugar.
[0163] Instead of, or in addition to one or more binders, combustible heat sources for use
in smoking articles according to the invention may comprise one or more additives
in order to improve the properties of the combustible heat source. Suitable additives
include, but are not limited to, additives to promote consolidation of the combustible
heat source (for example, sintering aids), additives to promote ignition of the combustible
heat source (for example, oxidisers such as perchlorates, chlorates, nitrates, peroxides,
permanganates, zirconium and combinations thereof), additives to promote combustion
of the combustible heat source (for example, potassium and potassium salts, such as
potassium citrate) and additives to promote decomposition of one or more gases produced
by combustion of the combustible heat source (for example catalysts, such as CuO,
Fe
2O
3 and Al
2O
3).
[0164] Where smoking articles according to the invention comprise a barrier coating provided
on the rear face of the combustible heat source, such additives may be incorporated
in the combustible heat source prior to or after application of the barrier coating
to the rear face of the combustible heat source.
[0165] In certain preferred embodiments, the combustible heat source is a combustible carbonaceous
heat source comprising carbon and at least one ignition aid. In one preferred embodiment,
the combustible heat source is a combustible carbonaceous heat source comprising carbon
and at least one ignition aid as described in
WO-A1-2012/164077.
[0166] As used herein, the term ignition aid' is used to denote a material that releases
one or both of energy and oxygen during ignition of the combustible heat source, where
the rate of release of one or both of energy and oxygen by the material is not ambient
oxygen diffusion limited. In other words, the rate of release of one or both of energy
and oxygen by the material during ignition of the combustible heat source is largely
independent of the rate at which ambient oxygen can reach the material. As used herein,
the term ignition aid' is also used to denote an elemental metal that releases energy
during ignition of the combustible heat source, wherein the ignition temperature of
the elemental metal is below about 500 °C and the heat of combustion of the elemental
metal is at least about 5 kJ/g.
[0167] As used herein, the term ignition aid' does not include alkali metal salts of carboxylic
acids (such as alkali metal citrate salts, alkali metal acetate salts and alkali metal
succinate salts), alkali metal halide salts (such as alkali metal chloride salts),
alkali metal carbonate salts or alkali metal phosphate salts, which are believed to
modify carbon combustion. Even when present in a large amount relative to the total
weight of the combustible heat source, such alkali metal burn salts do not release
enough energy during ignition of a combustible heat source to produce an acceptable
aerosol during early puffs.
[0168] Examples of suitable oxidizing agents include, but are not limited to: nitrates such
as, for example, potassium nitrate, calcium nitrate, strontium nitrate, sodium nitrate,
barium nitrate, lithium nitrate, aluminium nitrate and iron nitrate; nitrites; other
organic and inorganic nitro compounds; chlorates such as, for example, sodium chlorate
and potassium chlorate; perchlorates such as, for example, sodium perchlorate; chlorites;
bromates such as, for example, sodium bromate and potassium bromate; perbromates;
bromites; borates such as, for example, sodium borate and potassium borate; ferrates
such as, for example, barium ferrate; ferrites; manganates such as, for example, potassium
manganate; permanganates such as, for example, potassium permanganate; organic peroxides
such as, for example, benzoyl peroxide and acetone peroxide; inorganic peroxides such
as, for example, hydrogen peroxide, strontium peroxide, magnesium peroxide, calcium
peroxide, barium peroxide, zinc peroxide and lithium peroxide; superoxides such as,
for example, potassium superoxide and sodium superoxide; iodates; periodates; iodites;
sulphates; sulfites; other sulfoxides; phosphates; phospinates; phosphites; and phosphanites.
[0169] While advantageously improving the ignition and combustion properties of the combustible
heat source, the inclusion of ignition and combustion additives can give rise to undesirable
decomposition and reaction products during use of the smoking article. For example,
decomposition of nitrates included in the combustible heat source to aid ignition
thereof can result in the formation of nitrogen oxides.
[0170] Where smoking articles according to the invention comprise a non-blind combustible
heat source, the inclusion of a non-combustible substantially air impermeable barrier
between the one or more airflow channels and the non-blind combustible heat source
may advantageously substantially prevent or inhibit such decomposition and reaction
products from entering air drawn into smoking articles according to the invention
through the one or more airflow channels as the drawn air passes through the one or
more airflow channels.
[0171] The inclusion of a non-combustible substantially air impermeable barrier between
the rear face of the combustible heat source and the aerosol-forming substrate may
also advantageously substantially prevent or inhibit such decomposition and reaction
products from entering air drawn through smoking articles according to the invention.
[0172] Combustible carbonaceous heat sources for use in smoking articles according to the
invention may be prepared as described in prior art that is known to persons of ordinary
skill in the art.
[0173] Combustible carbonaceous heat sources for use in smoking articles according to the
invention, are preferably formed by mixing one or more carbon-containing materials
with one or more binders and other additives, where included, and pre-forming the
mixture into a desired shape. The mixture of one or more carbon containing materials,
one or more binders and optional other additives may be pre-formed into a desired
shape using any suitable known ceramic forming methods such as, for example, slip
casting, extrusion, injection moulding and die compaction or pressing. In certain
preferred embodiments, the mixture is pre-formed into a desired shape by pressing
or extrusion or a combination thereof.
[0174] Preferably, the mixture of one or more carbon-containing materials, one or more binders
and other additives is pre-formed into an elongate rod. However, it will be appreciated
that the mixture of one or more carbon-containing materials, one or more binders and
other additives may be pre-formed into other desired shapes.
[0175] After formation, particularly after extrusion, the elongate rod or other desired
shape is preferably dried to reduce its moisture content and then pyrolysed in a non-oxidizing
atmosphere at a temperature sufficient to carbonise the one or more binders, where
present, and substantially eliminate any volatiles in the elongate rod or other shape.
The elongate rod or other desired shape is pyrolysed preferably in a nitrogen atmosphere
at a temperature of between about 700°C and about 900°C.
[0176] In certain embodiments, at least one metal nitrate salt is incorporated in the combustible
heat source by including at least one metal nitrate precursor in the mixture of one
or more carbon containing materials, one or more binders and other additives. The
at least one metal nitrate precursor is then subsequently converted in-situ into at
least one metal nitrate salt by treating the pyrolysed pre-formed cylindrical rod
or other shape with an aqueous solution of nitric acid. In one embodiment, the combustible
heat source comprises at least one metal nitrate salt having a thermal decomposition
temperature of less than about 600°C, more preferably of less than about 400°C. Preferably,
the at least one metal nitrate salt has a decomposition temperature of between about
150°C and about 600°C, more preferably of between about 200°C and about 400°C.
[0177] In preferred embodiments, exposure of the combustible heat source to a conventional
yellow flame lighter or other ignition means should cause the at least one metal nitrate
salt to decompose and release oxygen and energy. This decomposition causes an initial
boost in the temperature of the combustible heat source and also aids in the ignition
of the combustible heat source. After decomposition of the at least one metal nitrate
salt, the combustible heat source preferably continues to combust at a lower temperature.
[0178] The inclusion of at least one metal nitrate salt advantageously results in ignition
of the combustible heat source being initiated internally, and not only at a point
on the surface thereof. Preferably, the at least one metal nitrate salt is present
in the combustible heat source in an amount of between about 20 percent by dry weight
and about 50 percent by dry weight of the combustible heat source.
[0179] In other embodiments, the combustible heat source comprises at least one peroxide
or superoxide that actively evolves oxygen at a temperature of less than about 600°C,
more preferably at a temperature of less than about 400°C.
[0180] Preferably, the at least one peroxide or superoxide actively evolves oxygen at a
temperature of between about 150°C and about 600°C, more preferably at a temperature
of between about 200°C and about 400°C, most preferably at a temperature of about
350°C.
[0181] In use, exposure of the combustible heat source to a conventional yellow flame lighter
or other ignition means should cause the at least one peroxide or superoxide to decompose
and release oxygen. This causes an initial boost in the temperature of the combustible
heat source and also aids in the ignition of the combustible heat source. After decomposition
of the at least one peroxide or superoxide, the combustible heat source preferably
continues to combust at a lower temperature.
[0182] The inclusion of at least one peroxide or superoxide advantageously results in ignition
of the combustible heat source being initiated internally, and not only at a point
on the surface thereof.
[0183] The combustible heat source preferably has a porosity of between about 20 percent
and about 80 percent, more preferably of between about 20 percent and 60 percent.
Where the combustible heat source comprises at least one metal nitrate salt, this
advantageously allows oxygen to diffuse into the mass of the combustible heat source
at a rate sufficient to sustain combustion as the at least one metal nitrate salt
decomposes and combustion proceeds. Even more preferably, the combustible heat source
has a porosity of between about 50 percent and about 70 percent, more preferably of
between about 50 percent and about 60 percent as measured by, for example, mercury
porosimetry or helium pycnometry. The required porosity may be readily achieved during
production of the combustible heat source using conventional methods and technology.
[0184] Advantageously, combustible carbonaceous heat sources for use in smoking articles
according to the invention have an apparent density of between about 0.6 g/cm
3 and about 1 g/cm
3.
[0185] Preferably, the combustible heat source has a mass of between about 300 mg and about
500 mg, more preferably of between about 400 mg and about 450 mg.
[0186] Preferably, the combustible heat source has a length of between about 7 mm and about
17 mm, more preferably of between about 7 mm and about 15 mm, most preferably of between
about 7 mm and about 13 mm.
[0187] Preferably, the combustible heat source has a diameter of between about 5 mm and
about 9 mm, more preferably of between about 7 mm and about 8 mm.
[0188] Preferably, the combustible heat source is of substantially uniform diameter. However,
the combustible heat source may alternatively be tapered so that the diameter of a
rear portion of the blind combustible heat source is greater than the diameter of
a front portion thereof. Particularly preferred are combustible heat sources that
are substantially cylindrical. The combustible heat source may, for example, be a
cylinder or tapered cylinder of substantially circular cross-section or a cylinder
or tapered cylinder of substantially elliptical cross-section.
[0189] Smoking articles according to the invention preferably comprise an aerosol-forming
substrate comprising at least one aerosol-former and a material capable of releasing
volatile compounds in response to heating. The aerosol-forming substrate may comprise
other additives and ingredients including, but not limited to, humectants, flavourants,
binders and mixtures thereof.
[0190] Preferably, the aerosol-forming substrate comprises nicotine. More preferably, the
aerosol-forming substrate comprises tobacco.
[0191] The at least one aerosol-former may be any suitable known compound or mixture of
compounds that, in use, facilitates formation of a dense and stable aerosol and that
is substantially resistant to thermal degradation at the operating temperature of
the smoking article. Suitable aerosol-formers are well known in the art and include,
for example, polyhydric alcohols, esters of polyhydric alcohols, such as glycerol
mono-, di- or triacetate, and aliphatic esters of mono-, di- or polycarboxylic acids,
such as dimethyl dodecanedioate and dimethyl tetradecanedioate. Preferred aerosol
formers for use in smoking articles according to the invention are polyhydric alcohols
or mixtures thereof, such as triethylene glycol, 1,3-butanediol and, most preferred,
glycerine.
[0192] The material capable of emitting volatile compounds in response to heating may be
a charge of plant-based material. The material capable of emitting volatile compounds
in response to heating may be a charge of homogenised plant-based material. For example,
the aerosol-forming substrate may comprise one or more materials derived from plants
including, but not limited to: tobacco; tea, for example green tea; peppermint; laurel;
eucalyptus; basil; sage; verbena; and tarragon.
[0193] Preferably, the material capable of emitting volatile compounds in response to heating
is a charge of tobacco-based material, most preferably a charge of homogenised tobacco-based
material.
[0194] The aerosol-forming substrate may be in the form of a plug or segment comprising
a material capable of emitting volatile compounds in response to heating circumscribed
by a paper or other wrapper. As stated above, where an aerosol-forming substrate is
in the form of such a plug or segment, the entire plug or segment including any wrapper
is considered to be the aerosol-forming substrate.
[0195] Preferably, the aerosol-forming substrate has a length of between about 5 mm and
about 20 mm, more preferably of between about 8 mm and about 12 mm.
[0196] In preferred embodiments, the aerosol-forming substrate comprises a plug of tobacco-based
material wrapped in a plug wrap. In particular preferred embodiments, the aerosol-forming
substrate comprises a plug of homogenised tobacco-based material wrapped in a plug
wrap.
[0197] Smoking articles according to the invention preferably comprise a mouthpiece downstream
of the aerosol-forming substrate. The mouthpiece is located at the proximal end of
the smoking article.
[0198] Preferably, the mouthpiece is of low filtration efficiency, more preferably of very
low filtration efficiency. The mouthpiece may be a single segment or component mouthpiece.
Alternatively, the mouthpiece may be a multi-segment or multi-component mouthpiece.
[0199] The mouthpiece may comprise a filter comprising one or more segments comprising suitable
known filtration materials. Suitable filtration materials are known in the art and
include, but are not limited to, cellulose acetate and paper. Alternatively or in
addition, the mouthpiece may comprise one or more segments comprising absorbents,
adsorbents, flavourants, and other aerosol modifiers and additives or combinations
thereof.
[0200] Smoking articles according to the element preferably further comprise a transfer
element or spacer element between the aerosol-forming substrate and the mouthpiece.
[0201] The transfer element may abut one or both of the aerosol-forming substrate and the
mouthpiece. Alternatively, the transfer element may be spaced apart from one or both
of the aerosol-forming substrate and the mouthpiece.
[0202] The inclusion of a transfer element advantageously allows cooling of the aerosol
generated by heat transfer from the combustible heat source to the aerosol-forming
substrate. The inclusion of a transfer element also advantageously allows the overall
length of smoking articles according to the invention to be adjusted to a desired
value, for example to a length similar to that of conventional cigarettes, through
an appropriate choice of the length of the transfer element.
[0203] The transfer element may have a length of between about 7 mm and about 50 mm, for
example a length of between about 10 mm and about 45 mm or of between about 15 mm
and about 30 mm. The transfer element may have other lengths depending upon the desired
overall length of the smoking article, and the presence and length of other components
within the smoking article.
[0204] Preferably, the transfer element comprises at least one open-ended tubular hollow
body. In such embodiments, in use, the air drawn through the smoking article passes
through the at least one open-ended tubular hollow body as it passes downstream through
the smoking article from the aerosol-forming substrate to the proximal end thereof.
[0205] The transfer element may comprise at least one open-ended tubular hollow bodies formed
from one or more suitable materials that are substantially thermally stable at the
temperature of the aerosol generated by the transfer of heat from the combustible
heat source to the aerosol-forming substrate. Suitable materials are known in the
art and include, but are not limited to, paper, cardboard, plastics, such a cellulose
acetate, ceramics and combinations thereof.
[0206] Alternatively or in addition, smoking articles according to the invention may comprise
an aerosol-cooling element or heat exchanger between the aerosol-forming substrate
and the mouthpiece. The aerosol-cooling element may comprise a plurality of longitudinally
extending channels.
[0207] The aerosol-cooling element may comprise a gathered sheet of material selected from
the group consisting of metallic foil, polymeric material, and substantially non-porous
paper or cardboard. In certain embodiments, the aerosol-cooling element may comprise
a gathered sheet of material selected from the group consisting of polyethylene (PE),
polypropylene (PP), polyvinylchloride (PVC), polyethylene terephthalate (PET), polylactic
acid (PLA), cellulose acetate (CA), and aluminium foil.
[0208] In certain preferred embodiments, the aerosol-cooling element may comprise a gathered
sheet of biodegradable polymeric material, such as polylactic acid (PLA) or a grade
of Mater-Bi® (a commercially available family of starch based copolyesters).
[0209] Smoking articles according to the invention may comprise one or more aerosol modifying
agents downstream of the aerosol-forming substrate. For example, one or more of the
mouthpiece, transfer element and aerosol-cooling element of smoking articles according
to the invention may comprise one or more aerosol modifying agents.
[0210] Suitable aerosol-modifying agents include, but are not limited to: flavourants; and
chemesthetic agents.
[0211] As used herein, the term 'flavourant' is used to describe any agent that, in use,
imparts one or both of a taste or aroma to an aerosol generated by the aerosol-forming
substrate of the smoking article.
[0212] As used herein, the term 'chemesthetic agent' is used to describe any agent that,
in use, is perceived in the oral or olfactory cavities of a user by means other than,
or in addition to, perception via taste receptor or olfactory receptor cells. Perception
of chemesthetic agents is typically via a "trigeminal response," either via the trigeminal
nerve, glossopharyngeal nerve, the vagus nerve, or some combination of these. Typically,
chemesthetic agents are perceived as hot, spicy, cooling, or soothing sensations.
[0213] Smoking articles according to the invention may comprise one or more aerosol modifying
agents that are both a flavourant and a chemesthetic agent downstream of the aerosol-forming
substrate. For example, one or more of the mouthpiece, transfer element and aerosol-cooling
element of smoking articles according to the invention may comprise menthol or another
flavourant that provides a cooling chemesthetic effect.
[0214] Smoking articles according to the invention may be assembled using known methods
and machinery.
[0215] The invention will be further described, by way of example only, with reference to
the accompanying drawings in which:
Figure 1 shows a schematic longitudinal cross-section of a smoking article according
to a first embodiment of the invention;
Figure 2 shows a schematic longitudinal cross-section of a smoking article according
to a third embodiment of the invention;
Figure 3a shows a graph of the temperature of the rear portion of the combustible
heat source of a smoking article according to the invention during smoking; and
Figure 3b shows a graph of the temperature of the aerosol-generating substrate of
the smoking article according to the invention during smoking.
[0216] The smoking article 2 according to the first embodiment of the invention shown in
Figure 1 comprises a blind combustible heat source 4 having a front face 6 and an
opposed rear face 8, an aerosol-forming substrate 10, a transfer element 12, an aerosol-cooling
element 14, a spacer element 16 and a mouthpiece 18 in abutting coaxial alignment..
[0217] The blind combustible heat source 4 is a blind carbonaceous combustible heat source
and is located at the distal end of the smoking article 2. As shown in Figure 1, a
non-combustible substantially air impermeable barrier 22 in the form of a disc of
aluminium foil is provided between the rear face 8 of the blind combustible heat source
4 and the aerosol-forming substrate 10. The barrier 22 is applied to the rear face
8 of the blind combustible heat source 4 by pressing the disc of aluminium foil onto
the rear face 8 of the blind combustible heat source 4 and abuts the rear face 8 of
the combustible carbonaceous heat source 4 and the aerosol-forming substrate 10.
[0218] In other embodiments of the invention (not shown), the non-combustible substantially
air impermeable barrier 22 between the rear face 8 of the blind combustible heat source
4 and the aerosol-forming substrate 10 may be omitted.
[0219] The aerosol-forming substrate 10 is located immediately downstream of the barrier
22 applied to the rear face 8 of the blind combustible heat source 4. The aerosol-forming
substrate 10 comprises a cylindrical plug of homogenised tobacco-based material 24
including an aerosol former such as, for example, glycerine, wrapped in plug wrap
26.
[0220] The transfer element 12 is located immediately downstream of the aerosol-forming
substrate 10 and comprises a cylindrical open-ended hollow cellulose acetate tube
28.
[0221] The aerosol-cooling element 14 is located immediately downstream of the transfer
element 12 and comprises a gathered sheet of biodegradable polymeric material such
as, for example, polylactic acid.
[0222] The spacer element 16 is located immediately downstream of the aerosol-cooling element
14 and comprises a cylindrical open-ended hollow paper or cardboard tube 30.
[0223] The mouthpiece 18 is located immediately downstream of the spacer element 16. As
shown in Figure 1, the mouthpiece 18 is located at the proximal end of the smoking
article 2 and comprises a cylindrical plug of suitable filtration material 32 such
as, for example, cellulose acetate tow of very low filtration efficiency, wrapped
in filter plug wrap 34
[0224] The smoking article may further comprise a band of tipping paper (not shown) circumscribing
a downstream end portion of the outer wrapper 20.
[0225] As shown in Figure 1, the smoking article 2 further comprises a single heat-conducting
element 36 of suitable material such as, for example, aluminium foil, overlying a
rear portion of the blind combustible heat source 4, the entire length of the aerosol-forming
substrate 10 and the entire length of the transfer element 12.
[0226] In other embodiments of the invention (not shown), the transfer element 12 may extend
beyond the single heat-conducting element 36 in the downstream direction. That is
the single heat-conducting element 36 may overlie only a front portion of the transfer
element 12. In other embodiments of the invention (not shown), the single heat-conducting
element 36 may not overlie any of the transfer element 12.
[0227] In further embodiments of the invention (not shown), the aerosol-forming substrate
10 may extend beyond the single heat-conducting element 36 in the downstream direction.
That is the single-heat-conducting element 36 may overlie only a front portion of
the aerosol-forming substrate 10.
[0228] The single heat-conducting element 36 is radially separated from the blind combustible
heat source 4 and the aerosol-forming substrate 10 by a wrapper 38 of heat insulative
sheet material such as, for example, cigarette paper, of low air permeability, which
is wrapped around the aerosol-forming substrate 10, transfer element 12 and a rear
portion of the blind combustible heat source 4.
[0229] In the smoking article 2 according to the first embodiment of the invention shown
in Figure 1, the single heat-conducting element 36 and the wrapper 38 radially separating
the single heat-conducting element 36 from the blind combustible heat source 4 and
the aerosol-forming substrate 10 extend to approximately the same position on the
blind combustible heat source 4 in the upstream direction, such that the upstream
ends of the single heat-conducting element 36 and the wrapper 38 are substantially
aligned over the blind combustible heat source 4.
[0230] However, it will be appreciated that in other embodiments of the invention (not shown),
the wrapper 38 radially separating the single heat-conducting element 36 from the
blind combustible heat source 4 and the aerosol-forming substrate 10 may extend beyond
the single heat-conducting element 36 in the upstream direction.
[0231] The smoking article 2 according to the first embodiment of the invention comprises
one or more first air inlets 40 around the periphery of the aerosol-forming substrate
10.
[0232] As shown in Figure 1, a circumferential arrangement of first air inlets 40 is provided
in the plug wrap 26 of the aerosol-forming substrate 10, the wrapper 38 radially separating
the single heat-conducting element 36 from the blind combustible heat source 4 and
the aerosol-forming substrate 10 and the single heat conducting element 36 to admit
cool air (shown by dotted arrows in Figure 1) into the aerosol-forming substrate 10.
[0233] In use, a user ignites the blind combustible heat source 4 of the smoking article
2 according to the first embodiment of the invention and then draws on the mouthpiece
18. When a user draws on the mouthpiece 18, cool air (shown by dotted arrows in Figures
1) is drawn into the aerosol-forming substrate 10 of the smoking article 2 through
the first air inlets 40.
[0234] The front portion of the aerosol-forming substrate 10 is heated by conduction through
the rear face 8 of the blind combustible heat source 4 and the barrier 22.
[0235] The heating of the aerosol-forming substrate 10 by conduction releases glycerine
and other volatile and semi-volatile compounds from the plug of homogenised tobacco-based
material 24. The compounds released from the aerosol-forming substrate 10 form an
aerosol that is entrained in the air drawn into the aerosol-forming substrate 10 of
the smoking article 2 through the first air inlets 40 as it flows through the aerosol-forming
substrate 10. The drawn air and entrained aerosol (shown by dashed arrows in Figures
1 and 2) pass downstream through the transfer element 12, aerosol-cooling element
14 and spacer element 16, where they cool and condense. The cooled drawn air and entrained
aerosol pass downstream through the mouthpiece 18 and are delivered to the user through
the proximal end of the smoking article 2 according to the first embodiment of the
invention. The non-combustible substantially air impermeable barrier 22 on the rear
face 8 of the blind combustible heat source 4 isolates the blind combustible heat
source 4 from air drawn through the smoking article 2 such that, in use, air drawn
through the smoking article 2 does not come into direct contact with the blind combustible
heat source 4.
[0236] In use, the single heat-conducting element 36 retains heat within the smoking article
2 to help maintain the temperature of the aerosol-forming substrate 10 and so facilitate
continued and enhanced aerosol delivery. In addition, the single heat-conducting element
36 transfers heat along the aerosol-forming substrate 10 so that heat is dispersed
through a larger volume of the aerosol-forming substrate 10. This helps to provide
a more consistent puff-by-puff aerosol delivery.
[0237] A smoking article according to a second embodiment of the invention (not shown) is
of largely identical construction to the smoking article according to the first embodiment
of the invention shown in Figure 1. However, in the smoking article according to the
second embodiment of the invention, the wrapper 38 radially separating the single
heat-conducting element 36 from the blind combustible heat source 4 and the aerosol-forming
substrate 10 is omitted and the single heat-conducting element 36 is formed of a laminate
material comprising an outer layer of heat conductive material and an inner layer
of heat insulative material. In the smoking article according to the second embodiment
of the invention, the outer layer of heat conductive material of the single heat-conducting
element 36 is radially separated from the blind combustible heat source 4 and the
aerosol-forming substrate 10 by the inner layer of heat insulative material of the
single heat-conducting element 36.
[0238] The smoking article 42 according to the third embodiment of the invention shown in
Figure 2 is of largely identical construction to the smoking article according to
the first embodiment of the invention shown in Figure 1. However, in the smoking article
42 according to the second embodiment of the invention, the first air inlets 40 around
the periphery of the aerosol-forming substrate 10 are omitted and the combustible
heat source 4 is a non-blind combustible carbonaceous heat source comprising a single
central airflow channel 44 extending from the front face 6 to the rear face 8 of the
non-blind combustible heat source 4.
[0239] As shown in Figure 2, a non-combustible substantially air impermeable barrier 46
is provided between the combustible heat source 4 and the central airflow channel
44. The barrier 46 comprises a non-combustible substantially air impermeable barrier
coating provided on the entire inner surface of the single central airflow channel
44.
[0240] In use, a user ignites the non-blind combustible heat source 4 of the smoking article
42 according to the third embodiment of the invention and then draws on the mouthpiece
18. When a user draws on the mouthpiece 18, cool air (shown by dotted arrows in Figures
2) is drawn into the aerosol-forming substrate 10 of the smoking article 2 through
the central airflow channel 44. The non-combustible substantially air impermeable
barrier 22 on the rear face 8 of the non-blind combustible heat source 4 and the non-combustible
substantially air impermeable barrier 46 on the inner surface of the single central
airflow channel 44 isolate the non-blind combustible heat source 4 from air drawn
through the smoking article 42 such that, in use, air drawn through the smoking article
42 does not come into direct contact with the non-blind combustible heat source 4.
[0241] In other embodiments of the invention (not shown), the non-combustible substantially
air impermeable barrier 22 between the rear face 8 of the non-blind combustible heat
source 4 and the aerosol-forming substrate 10 may be omitted.
[0242] A smoking article according to a fourth embodiment of the invention (not shown) is
of largely identical construction to the smoking article according to the third embodiment
of the invention shown in Figure 2. However, in the smoking article according to the
fourth embodiment of the invention, the wrapper 38 radially separating the single
heat-conducting element 36 from the blind combustible heat source 4 and the aerosol-forming
substrate 10 is omitted and the single heat-conducting element 36 is formed of a laminate
material comprising an outer layer of heat conductive material and an inner layer
of heat insulative material. In the smoking article according to the fourth embodiment
of the invention, the outer layer of heat conductive material of the single heat-conducting
element 36 is radially separated from the non-blind combustible heat source 4 and
the aerosol-forming substrate 10 by the inner layer of heat insulative material of
the single heat-conducting element 36.
Example A
[0243] A smoking article according to the invention of largely identical construction to
the smoking article according to the second embodiment of the invention described
above is assembled. The smoking article comprises a single heat-conducting element
formed of a laminate material comprising an outer layer of aluminium and an inner
layer of paper. The smoking article does not comprise an outer wrapper, such that
the outer layer of aluminium of the single heat-conducting element is visible on the
exterior of the smoking article. Instead of a circumferential arrangement of first
air inlets around the periphery of the aerosol-forming substrate, the smoking article
comprises a circumferential arrangement of third air inlets around the periphery of
the transfer element.
[0244] In the smoking article according to the invention, the outer layer of aluminium of
the single heat-conducting element is radially separated from the blind combustible
heat source and the aerosol-forming substrate by the inner layer of paper of the single
heat-conducting element.
Comparative Example B
[0245] For the purposes of comparison, a smoking article not according to the invention
is assembled. The smoking article not according to the invention comprises a single
heat-conducting element formed of a laminate material comprising an inner layer of
aluminium and an outer layer of paper. Otherwise, the smoking article not according
to the invention is of identical construction to the smoking article according to
the invention of Example A.
[0246] In the smoking article not according to the invention, the inner layer of aluminium
of the single heat-conducting element is in direct contact with the blind combustible
heat source and the aerosol-forming substrate.
[0247] The temperature of the rear portion of the blind combustible heat sources of the
smoking article according to the invention of Example A and the smoking article not
according to the invention of Comparative Example B during combustion of the combustible
heat source are measured in the smoking articles using a thermocouple attached to
the surface of the smoking articles at a position 1 mm upstream of the aerosol-generating
substrates thereof. The results are shown in Figure 3a.
[0248] The temperature of the rear portion of the aerosol-forming substrates of the smoking
article according to the invention of Example A and the smoking article not according
to the invention of Comparative Example B during combustion of the combustible heat
source are measured in the smoking articles using a thermocouple attached to the surface
of the smoking articles at a position 6 mm downstream of the combustible heat sources
thereof. The results are shown in Figure 3b.
[0249] To measure the temperatures of the rear portion of the blind combustible heat sources
and the aerosol-forming substrates, the smoking articles are ignited using a conventional
yellow flame lighter and smoked under a Health Canada smoking regime over 12 puffs
with a puff volume of 55 ml, puff duration of 2 seconds and a puff interval of 30
seconds using a smoking machine. Conditions for smoking and smoking machine specifications
are set out in ISO Standard 3308 (ISO 3308:2000). The atmosphere for conditioning
and testing is set out in ISO Standard 3402.
[0250] As shown in Figures 3a and 3b, the temperature of the rear portion of the blind combustible
heat source and the aerosol-forming substrate of the smoking article not according
to the invention of Comparative Example B are reduced compared to the smoking article
according to the invention, particularly during later puffs. This results in the dry
total particulate matter (DTPM) delivery of the smoking article not according to the
invention of Comparative Example B (10.3 mg) being lower than the dry total particulate
matter (DTPM) delivery of the smoking article according to the invention of Example
A (17.4 mg).
[0251] The specific embodiments described above are intended to illustrate the invention.
However, other embodiments may be made without departing from the scope of the invention
as defined in the claims, and it is to be understood that the specific embodiments
described above are not intended to be limiting.