

(11) **EP 3 034 211 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

22.06.2016 Bulletin 2016/25

(51) Int Cl.:

B22F 3/15^(2006.01) C22C 38/22^(2006.01) C22C 33/02 (2006.01)

(21) Application number: 14198569.7

(22) Date of filing: 17.12.2014

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(71) Applicant: Uddeholms AB 683 23 Hagfors (SE)

(72) Inventor: Magnus, Tidesten 683 34 HAGFORS (SE)

(74) Representative: Johansson, Lars E.

Hynell Patenttjänst AB

P.O. Box 138

683 23 Hagfors (SE)

(54) A wear resistant tool steel produced by HIP

(57) The invention relates tool steel produced by powder metallurgy and hot isostatic pressing resulting in that the steel is isotropic has a non-amorphous microstructure and has a theoretical density (TD) of > 98 %, the steel consists of in weight % (wt.%):

C 0.2 - 1.5

Si 0.1 - 2.5 Mn 0.1 - 2.5 Mo 10-35 B 0.5-3

balance optional elements, iron and impurities.

EP 3 034 211 A1

Description

10

35

40

50

55

TECHNICAL FIELD

⁵ [0001] The invention relates to a wear resistant tool steel produced by HIP. The tool steel is alloyed with boron.

BACKGROUND OF THE INVENTION

[0002] Nitrogen and vanadium alloyed powder metallurgy (PM) tool steels attained a considerable interest because of their unique combination of high hardness, high wear resistance and excellent galling resistance. These steels have a wide rang of applications where the predominant failure mechanisms are adhesive wear or galling. Typical areas of application include blanking and forming, fine blanking, cold extrusion, deep drawing and powder pressing. The basic steel composition is atomized, subjected to nitrogenation and thereafter the powder is filled into a capsule and subjected to hot isostatic pressing (HIP) in order to produce an isotropic steel. A high performance steel produced in this way is described in WO 00/79015 A1.

[0003] Although the known steel has a very attractive property profile there is a continuous strive for improvements of the tool material in order to further improve the surface quality of the products produced as well as to extend the tool life, in particular under severe working conditions, where galling is the main problem.

20 DISCLOSURE OF THE INVENTION

[0004] The object of the present invention is to provide powder metallurgy (PM) produced tool steel having an improved property profile for advanced cold working like fine blanking. Another object of the present invention is to provide a powder metallurgy (PM) produced tool steel having a composition and microstructure leading to improvements in the surface quality of the produced parts.

[0005] The foregoing objects, as well as additional advantages are achieved to a significant measure by providing a tool steel having a composition as set out in the claims.

[0006] The invention is defined in the claims.

30 DETAILED DESCRIPTION

[0007] The present invention relates to a HIPed tool steel comprising a hard phase consisting mainly of multiple borides containing Fe in a hardenable matrix. The double boride is of the type $M_2M'B_2$, where M and M' stand for metals of the multiple boride. Said boride forming elements are generally selected from Cr, Mo, W, Ti, V, Nb, Ta, Hf and Co. In the present case M is Mo and M' is Fe. However, the boride may contain substantial amounts of one ore more of the other boride forming elements. However, in the following the double boride will simply be referred to as Mo_2FeB_2 although the boride also may contain Ni and one or more of the above mentioned boride forming elements.

[0008] The importance of the separate elements and their interaction with each other as well as the limitations of the chemical ingredients of the claimed alloy are briefly explained in the following. All percentages for the chemical composition of the steel are given in weight % (wt. %) throughout the description. The upper and lower limits of the individual elements may be freely combined within the limits set out in claim 1.

Carbon (0.2 - 1.5 %)

[0009] Carbon is to be present in a minimum content of 0.2 %, preferably 0.3 % or 0.35 %. The upper limit for carbon is 1.5 %. Carbon is important for the formation of carbides and for the hardening Preferably, the carbon content is adjusted in order to obtain 0.4-0.6 % C dissolved in the matrix at the austenitizing temperature. In any case, the amount of carbon should be controlled such that the amount of carbides of the type M₂₃C₆, M₇C₃, M₆C and MC in the steel is limited. The upper limit may therefore be set to 0.8, 0.6, 0.5 or 0.45 %

Chromium (≤ 25 %)

[0010] Chromium is an optional component. However, Cr is for most applications present in contents of at least 2.5 % in order to provide a sufficient hardenability. Cr is preferably higher for providing a good hardenability in large cross sections during heat treatment. If the chromium content is too high, this may lead to the formation of undesired carbides, such as M_7C_3 . In addition, this may also increase the propensity of retained austenite in the microstructure. The lower limit may be 2.8 %, 3.4 % or 4.2 The upper limit may be 6.0, 5.4 %, or 4,6 %. On the other hand, Chromium contents of mare then 10 %, preferably more than 12 % are used for stainless applications.

Molybdenum (10 - 35 %)

[0011] Mo is the main element forming the hard boride. In the present invention, a high amount of Molybdenum is used in order to obtain a desired precipitation of the boride Mo₂FeB₂ in an amount of 5-35 vol. %. Preferred ranges include 12-30 % and 15-25%. Mo is also known to have a very favourable effect on the hardenability is essential for attaining a good secondary hardening response. For this reason it is preferred that the amount of Mo remaining in the matrix after quenching form 1100°C is 1.5-2.5 %.

Boron (0.5 - 3 %)

10

15

20

30

40

45

55

[0012] Boron, which is the main hard phase-forming element, should be at least 0.5 % so as to provide the minimum amount of 5 % hard phase Mo₂FeB₂. The amount of B is limited to 3 % for not making the alloy to brittle.

Tungsten (≤ 3 %)

[0013] The effect of tungsten is similar to that of Mo. However, for attaining the same effect it is necessary to add twice as much W as Mo on a weight % basis. Tungsten is expensive and it also complicates the handling of scrap metal. The maximum amount is therefore limited to 3 %, preferably 1%, more preferably 0.3 % and most preferably W is not deliberately added at all.

Vanadium (≤ 15 %)

[0014] Vanadium forms evenly distributed primary and secondary precipitated carbides of the type MC. In the inventive steel M is mainly vanadium but Cr and Mo may be present to some extent. The maximum addition of V is restricted to 15 % and the preferred maximum amount is 5 %. However, in the present case V is mainly added for obtaining a desired composition of the steel matrix before hardening. The addition may therefore be limited to 2.0 % or even to 0.5 %. A preferred range is 0.1-0.5 % V.

Niobium (≤ 15 %)

[0015] Niobium is similar to vanadium in that it forms MC. However, for attaining the same effect it is necessary to add twice as much Nb as V on a weight % basis. Nb also results in a more angular shape of the MC. Hence, the maximum addition of Nb is restricted to 15 % and the preferred maximum amount is 5 %. Preferably, no niobium is added.

35 **Silicon** (0.1 - 2.5 %)

[0016] Silicon is used for deoxidation. Si also increases the carbon activity and is beneficial for the machinability. Si is therefore present in an amount of 0.1 - 2.5 %. For a good deoxidation, it is preferred to adjust the Si content to at least 0.2 %. The lower limit may be set to 0.3 %, 0.35 % or 0.4 %. However, Si is a strong ferrite former and should be limited to 2.5 %. The upper limit may be set to 1.5%, 1 %, 0.8 %, 0.7 % or 0.6 %. A preferred range is 0.2 - 0.8 %.

Manganese (0.1 - 2.5 %)

[0017] Manganese contributes to improving the hardenability of the steel and together with sulphur manganese contributes to improving the machinability by forming manganese sulphides. Manganese shall therefore be present in a minimum content of 0.1 %, preferably at least 0.2 %. At higher sulphur contents manganese prevents red brittleness in the steel. The steel shall contain maximum 2.5 % Mn. The upper limit may be set to 1.5 %, 1.2 %, 1.0 %, 0.8 % or 0.6%. However, preferred ranges are 0.2 - 0.8 % and 0.2 - 0.6 %.

50 **Nickel** (≤ 5%)

[0018] Nickel is optional and may be present in an amount of not more than 5 %. It gives the steel a good hardenability and toughness. Because of the expense, the nickel content of the steel should be limited as far as possible. Accordingly, the Ni content is preferably limited to 2%, more preferably to 1.0% or 0.3%.

Copper (≤ 3.0%)

[0019] Cu is an optional element, which may contribute to increasing the hardness and the corrosion resistance of the

steel. If used, the preferred range is 0.02 - 2% and the most preferred range is 0.04 - 1.6%. However, it is not possible to extract copper from the steel once it has been added. This drastically makes the scrap handling more difficult. For this reason, Copper is normally not deliberately added.

5 **Cobalt** (≤ 10 %)

10

15

20

25

[0020] Co is an optional element, which may be present in an amount of not more than 10 %. Co dissolves in iron (ferrite and austenite) and strengthens it whilst at the same time imparting high temperature strength. Co increases the M_s temperature. Co can substitute mainly Fe in the Mo_2FeB_2 boride. A preferred maximum content is 2 %. However, scrap handling will be more difficult. For this reason, Co is not deliberately added

Ti, Ta, Zr and Hf

[0021] These elements are boride and carbide formers and may be present in the alloy in the claimed ranges for altering the composition of the hard phases. However, normally none of these elements are added.

Phosphorous

[0022] P is an impurity element and a solid solution strengthening element. However, P tends to segregate to the grain boundaries, reduces the cohesion and thereby the toughness. P is therefore normally limited to \leq 0.05 %.

Sulphur (≤ 0.5%)

[0023] S contributes to improving the machinability of the steel. At higher sulphur contents there is a risk for red brittleness. Moreover, a high sulphur content may have a negative effect on the fatigue properties of the steel. The steel shall therefore contain ≤ 0.5 %, preferably ≤ 0.03 %.

EXAMPLE

[0024] 10 kg of an alloy having the composition given below was melted in a laboratory furnace and subjected to Argas atomizing.

C 0.3
Si 0.3
Mn 0.3
Mo 19
B 2.1
Fe balance.

40

45

50

55

35

[0025] The powder was sieved to < 500 μ m, filled in steel capsules having a diameter of 63 mm and a height of 150 mm. HIPing was performed at a temperature of 1150 °C, the holding time was 2 hours and the pressure 110 MPa. The cooling rate was < 1 °C/s. The material thus obtained was forged at 1130 °C to the dimension 20x30 mm. Soft annealing was performed at 900 °C with a cooling rate of 10 °C/h down to 750 °C and thereafter cooling freely in air. Hardening was performed by austenitizing at 1100 °C for 30 minutes followed by quenching in water followed by tempering. The result of the hardness testing after tempering is given in Table 1.

[0026] The amount of the hard phase was found to be 24 vol. % and the borides were found to have a small size. The area fraction of borides in different size classes is given in Table 2 below.

Table. 1. Hardness as a function of the tempering temperature after hardening from 1100°C.

Tempering temperature (°C)	Hardness HRC		
200	60		
300	56		
400	54		

4

(continued)

Tempering temperature (°C)	Hardness HRC
500	53
525	53
550	54
600	49

10

5

Table. 2. Size distribution of the borides.

15

 Size range (μm)
 Area fraction (%)

 0-1
 6.3

 1-2
 13.5

 2-3
 4.0

 3-4
 0.2

20

25

30

[0027] The microstructure is shown in Fig. 1. The high area fraction and the uniform distribution of the Mo_2FeB_2 borides results in a material having excellent anti-galling properties such that it would be possible to dispense with surface treatments like PVD, CVD and TD.

INDUSTRIAL APPLICABILITY

[0028] The tool steel of the present invention is particular useful in applications requiring very high galling resistance.

Claims

1. A tool steel produced by powder metallurgy and hot isostatic pressing resulting in that the steel is isotropic has a non-amorphous microstructure and has a theoretical density (TD) of > 98 %, the steel consists of in weight % (wt.%):

35

 $\begin{array}{lll} C & 0.2 - 1.5 \\ Si & 0.1 - 2.5 \\ Mn & 0.1 - 2.5 \\ Mo & 10 - 35 \\ B & 0.5 - 3 \\ Cr & \leq 25 \\ V & \leq 15 \end{array}$

40

 $\begin{array}{ll} \text{Nb} & \leq 15 \\ \text{Ti} & \leq 5 \end{array}$

45

 $\begin{array}{ll} \text{Ta} & \leq 5 \\ \text{Zr} & \leq 5 \end{array}$

55

 $\begin{array}{ll} \text{Hf} & \leq 5 \\ \text{Ni} & \leq 5 \\ \text{Co} & \leq 10 \end{array}$

50

Co ≤ 10 Cu ≤ 3 W ≤ 3

 ≤ 0.5

Fe and impurities balance.

2. A steel according to claim 1, wherein the steel fulfils at least one of the following conditions,

S

C 0.3 - 0.6 Si 0.2 - 1.5 Mn 0.2 - 1.5 Mo 12 - 30 B 0.7 - 2.5

10 3. A steel according to claim 1 or 2, wherein the steel fulfils at least one of the following conditions

Cr ≤ 20 ٧ ≤ 5 15 Nb ≤ 5 Τi ≤ 1 Ta ≤ 1 Zr ≤ 1 Hf ≤ 1 20 Ni ≤ 2 Co ≤ 2 ≤ 1 Cu W ≤ 1 25 S ≤ 0.03

4. A steel according to any of the preceding claims, wherein the steel fulfils at least one of the following conditions

30 С 0.3 - 0.5Si 0.2 - 0.8 Mn 0.2 - 0.815 - 25 Мо В 1.8 - 2.2 35 Cr 3.0 - 16٧ 0.1 - 2.0

5. A steel according to any of the preceding claims, wherein the steel fulfils at least one of the following conditions

C 0.35 - 0.45
Si 0.2 - 0.6
Mn 0.2 - 0.6
Cr 3.0 - 6.0
V 0.1 - 0.5

 $\mathbf{6.}$ A steel according to any of claims 1-4, wherein the steel fulfils at least one of the following conditions

C 0.35 - 0.45
Si 0.2 -0.6
Mn 0.2 - 0.6
Cr 10.0 - 15.0
V 0.1 - 0.5

	7.	A steel according to any of the preced	ing claims, who	erein the steel fulfils at least one of the following conditions
			V	0.2 - 0.4
5			Р	< 0.05
			S	< 0.003
			0	< 0.005
10	8.	A steel according to any of claims 1-4, from 1100 °C	wherein the m	etallic matrix fulfils the following requirements after quenching
			С	0.4 - 0.5
15			Si	0.3 - 0.5
			Mn	0.3 - 0.5
			Мо	1.5 - 2.5
			Cr	4.0 - 5-0
20			V	0.3 - 0.4
20				
	9.			rein the steel comprises 5 - 35 volume % hard phase, wherein rides, carbides and/or combinations thereof.
0.5	10	A steel according to any of the precedi	na claime whe	rein the maximal Equivalent Circle Diameter of the hard phase
25	10.	is less than 5 μm, preferably less than	_	rein the maximal Equivalent Oncie Diameter of the hard phase
	11.			herein the steel comprises 15 - 25 volume % hard phase and
		wherein the maximal Equivalent Circle	e Diameter of th	ne hard phase is less than 3 μm.
30		wherein the maximal Equivalent Circle	e Diameter of th	ne hard phase is less than 3 μm.
30		wherein the maximal Equivalent Circle	e Diameter of th	ne hard phase is less than 3 μm.
30		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
30		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
		wherein the maximal Equivalent Circle	e Diameter of th	ne hard phase is less than 3 μm.
<i>30 35</i>		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35 40		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35 40		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35 40		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35 40		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.
35 40		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.
35 40 45		wherein the maximal Equivalent Circle	e Diameter of tr	ne hard phase is less than 3 μm.
35 40 45		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.
35 40 45		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.
35 40 45		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.
35 40 45		wherein the maximal Equivalent Circle	e Diameter of the	ne hard phase is less than 3 μm.

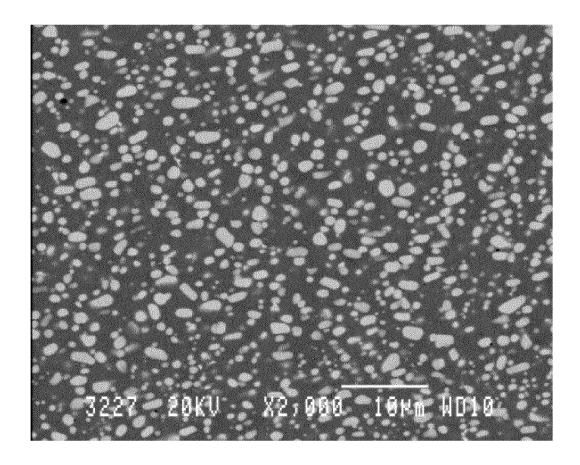


Fig. 1. Microstructure of the inventive steel. The white phase is Mo_2FeB_2 . The length of the bar is 10 μm .

EUROPEAN SEARCH REPORT

Application Number

EP 14 19 8569

10	

1	DOCUMENTS CONSID	ERED TO BE RELEVA	NT	
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevar to claim	
Y	US 4 318 733 A (RAY 9 March 1982 (1982- * column 7, line 38 * examples * * column 9, line 14	03-09) - line 64 *	1-11	INV. B22F3/15 C22C33/02 C22C38/22
Y	GB 2 187 757 A (NIS POWDERED METALS NIS POWDE) 16 September * examples * * table 1 * * page 1, line 57 -	SAN MOTOR [JP]; HI 1987 (1987-09-16)	ГАСНІ 1-11	
Α	JP 2002 022891 A (S LTD) 23 January 200 * the whole documer	2 (2002-01-23)	CO 1-11	
				TECHNICAL FIELDS SEARCHED (IPC) B22F C22C
	The present search report has			
	Place of search The Hague	Date of completion of the s 3 June 2015		Examiner Morra, Valentina
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone cularly relevant if combined with anot iment of the same category nological background written disclosure rediate document	E : earlier p after the ner D : docume L : docume	r of the same patent fa	ublished on, or tion ons

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 14 19 8569

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-06-2015

10	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
15	US 4318733	A	09-03-1982	DE JP US	3043290 A1 S5677362 A 4318733 A	27-05-1981 25-06-1981 09-03-1982
20	GB 2187757	A	16-09-1987	DE GB JP JP US	3708035 A1 2187757 A 2506333 B2 S62211355 A 4778522 A	17-09-1987 16-09-1987 12-06-1996 17-09-1987 18-10-1988
	JP 2002022891	Α	23-01-2002	NONE		
25						
30						
35						
40						
45						
50	Φ.					
55	FORM P0459					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 0079015 A1 [0002]