

(11) **EP 3 034 741 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

22.06.2016 Patentblatt 2016/25

(51) Int Cl.: **E05D 15/06** (2006.01)

(21) Anmeldenummer: 14198061.5

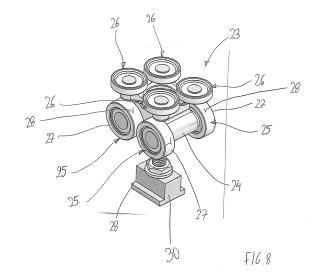
(22) Anmeldetag: 15.12.2014

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME


(71) Anmelder: **DORMA Deutschland GmbH** 58256 Ennepetal (DE)

(72) Erfinder: MAYER, Mark- Oliver 58256 Ennepetal (DE)

(74) Vertreter: Balder IP Law, S.L. Castellana 93 28046 Madrid (ES)

(54) Schiebewandsystem mit verbessertem akustischem Verhalten

Die Erfindung betrifft ein Schiebewandsystem, umfassend mindestens eine Deckenführung (2), mindestens ein Türflügelelement (3), welches an mindestens einem Rollenwagen (23) befestigt und in der Deckenführung (2) verschiebbar angerordnet ist, wobei der mindestens eine Rollenwagen (23) einen Grundkörper (24) aufweist, an welchem mindestens eine Laufrolle (25) und/oder mindestens eine Führungsrolle (26) angeordnet sind, wobei die Laufrolle (25) und/oder die Führungsrolle (26) einen Rollenkörper (27) aufweisen, und wobei der Rollenwagen (23) mittels des auf mindestens einer Laufläche (26) der Deckenführung (2) abrollenden Rollenkörpers (27) in der Deckenführung (2) verschiebbar angeordnet ist. Erfindungsgemäß weist der Grundkörper (24) einen Elastizitätsmodul bei 20°C von 70 kN/mm² bis 100 kN/mm², bevorzugt ca. 85 kN/mm², einen Schubmodul bei 20°C von 20 kN/mm² bis 60 kN/mm², bevorzugt ca. 40 kN/mm² und eine Dichte bei 20°C von 2 g/cm³ bis 7 g/cm³, bevorzugt ca. 6,7 g/cm³, auf. Erfindungsgemäß weist der Rollenkörper (27) einen Elastizitätsmodul bei 20°C von 2 kN/mm² bis 4 kN/mm², bevorzugt ca. 3 kN/mm², einen Schubmodul bei 20°C von 0,5 kN/mm² bis 1 kN/mm², bevorzugt ca. 0,8 kN/mm² und eine Dichte bei 20°C von 1 g/cm³ bis 2 g/cm³, bevorzugt ca.1,4 g/cm³, auf. Erfindungsgemäß weist die Lauffläche (26) einen Elastizitätsmodul bei 20°C von 60 kN/mm² bis 80 kN/mm², bevorzugt ca. 70 kN/mm², einen Schubmodul bei 20°C von 10 kN/mm² bis 40 kN/mm², bevorzugt ca. 27 kN/mm², und eine Dichte bei 20°C von 2 g/cm³ bis 5 g/cm³, bevorzugt ca. 3 g/cm³ auf, wobei die Lauffläche (26) zumindest abschnittsweise eine Rillung im Wesentlichen parallel zu einer Verschieberichtung (V) des Türflügelelements (3) aufweist.

EP 3 034 741 A1

Beschreibung

30

35

45

50

55

[0001] Die Erfindung betrifft ein Schiebewandsystem mit mindestens einem Türflügelelement, welches beim Verfahren ein verbessertes akustisches Verhalten aufweist.

[0002] Schiebewandsysteme und deren Türflügelelemente sind beispielsweise bei mehrflügeligen Eingangstüren, bei als Raumteiler verwendeten Wandschiebeelementen oder bei Wandelementen in Frontbereichen von Gebäuden, insbesondere bei Gaststätten und Geschäften, bekannt, um entsprechend der Witterung das Ladenlokal frei zugänglich bzw. verschlossen zu halten. Die Türflügelelemente sind in der Regel in deckenseitig montierten Deckenführungen verfahrbar aufgenommen. Dabei können die einzelnen Flügelelemente in einer Seitenposition geparkt werden, damit für den eintretenden Publikumsverkehr keine Behinderung stattfindet.

[0003] Schiebewandsysteme können, insbesondere verglichen mit Dreh- bzw. Schwenktüren, vergleichsweise hohe Geräuschemissionen aufweisen, welche üblicherweise durch Abrollgeräusche und Übertragung von Körperschall von den bewegten Elementen derartiger Schiebewandsysteme herrühren. Auch ein gewisses Quietschen beim Verfahren der Türflügelelemente der Schiebewandsysteme, welches regelmäßig von Benutzern als äußerst unangenehm empfunden wird, ist bekannt.

[0004] Bei derartigen Schiebewandsystemen wird jedoch zum einen die Laufruhe eines üblicherweise durch einen Rollenwagen gehaltenen und geführten Türflügelelements von Benutzern stets als ein Qualitätsindiz, welches durch den Benutzer direkt und unmittelbar wahrnehmbar ist, für ein Schiebewandsystem gewertet.

[0005] Zum anderen ist insbesondere in geräuschemissionssensitiven Gebäudesituationen, wie beispielsweise Schlafund Ruhebereichen, Bürozugängen, Konzertgebäuden, Konferenz-, Spa- oder Wellnessbereiche in Hotelanlagen, der Einsatz von geräuschintensiven Schiebewandsystemen derzeit nur limitiert möglich.

[0006] Es ist daher Aufgabe der vorliegenden Erfindung, ein Schiebewandsystem mit hoher Laufruhe, insbesondere ohne Quietschgeräusche, bereitzustellen.

[0007] Die voranstehende Aufgabe wird erfindungsgemäß gelöst durch ein Schiebewandsystem, umfassend: mindestens eine Deckenführung, mindestens ein Türflügelelement, welches an mindestens einem Rollenwagen befestigt und in der Deckenführung verschiebbar angerordnet ist, wobei der mindestens eine Rollenwagen einen Grundkörper aufweist, an welchem mindestens eine Laufrolle und/oder mindestens eine Führungsrolle angeordnet sind, wobei die Laufrolle und/oder die Führungsrolle einen Rollenkörper aufweisen, und wobei der Rollenwagen mittels des auf mindestens einer Laufläche der Deckenführung abrollenden Rollenkörpers in der Deckenführung verschiebbar angeordnet ist. Erfindungsgemäß weist der Grundkörper einen Elastizitätsmodul bei 20°C von 70 kN/mm² bis 100 kN/mm², bevorzugt ca. 85 kN/mm², gemessen nach EN ISO 6892-1:2009, einen Schubmodul bei 20°C von 20 kN/mm² bis 60 kN/mm², bevorzugt ca. 40 kN/mm², gemessen nach DIN 53445, und eine Dichte bei 20°C von 2 g/cm³ bis 7 g/cm³, bevorzugt ca. 6,7 g/cm³, gemessen nach ISO 1183, auf. Der Rollenkörper weist erfindungsgemäß einen Elastizitätsmodul bei 20°C von 2 kN/mm² bis 4 kN/mm², bevorzugt ca. 3 kN/mm², gemessen nach ISO 527-1/-2, einen Schubmodul bei 20°C von 0,5 kN/mm² bis 1 kN/mm², bevorzugt ca. 0,8 kN/mm², gemessen nach DIN ISO 1827:2010-07, und eine Dichte bei 20°C von 1 g/cm³ bis 2 g/cm³, bevorzugt ca.1,4 g/cm³, gemessen nach ISO 1183, auf. Erfindungsgemäß weist die Lauffläche einen Elastizitätsmodul bei 20°C von 60 kN/mm² bis 80 kN/mm², bevorzugt ca. 70 kN/mm², gemessen nach EN ISO 6892-1:2009, einen Schubmodul bei 20°C von 10 kN/mm² bis 40 kN/mm², bevorzugt ca. 27 kN/mm², gemessen nach DIN 53445, und eine Dichte bei 20°C von 2 g/cm³ bis 5 g/cm³, bevorzugt ca. 3 g/cm³, gemessen nach ISO 1183, auf, wobei die Lauffläche zumindest abschnittsweise eine Rillung im Wesentlichen parallel zu einer Verschieberichtung des Türflügelelements aufweist. Eine Rillung ist eine im Wesentlichen linienförmige Oberflächenstruktur aus einer Vielzahl parallel angeordneter linienförmiger Vertiefungen.

[0008] Durch das erfindungsgemäße Schiebewandsystem kann die Laufruhe des Schiebewandsystems erhöht und ein Quietschen beim Verfahren von Türflügelelementen reduziert bzw. eliminiert werden. Dies wird dadurch ermöglicht, dass die zusammenwirkenden Bauteile des Schiebewandsystems, insbesondere der Rollenkörper der Laufrolle und die Lauffläche der Deckenführung weder zu glatt noch zu rau ausgebildet sind. Erfindungsgemäß wird ein Gleichgewicht zwischen einer zu glatten und einer zu rauen Schnittstelle zwischen von relativ zueinander bewegenden Bauteilen erreicht. Eine zu glatte Ausgestaltung führt zu Quietschgeräuschen. Auf der anderen Seite verursacht eine zu raue Ausgestaltung einen hohen Abrieb, welcher zum einen eine Beschädigung des Rollenkörpers oder der Lauffläche zur Folge hat und zum anderen weitere Geräusche durch das Erzeugen von Partikeln bewirkt.

[0009] Vorzugsweise weist die Rillung der Lauffläche eine Oberflächenrauhigkeit Ra von 0, 05 μ m bis 1,0 μ m, bevorzugt ca. 0,5 μ m, gemessen nach DIN EN ISO 4287 auf. Somit wird ein noch geräuschärmeres Rollen des Türflügelelements in der Deckenführung ermöglicht.

[0010] Der Rollenkörper ist mittels eines geschlossenen Kugellagers am Rollenwagen gelagert. Geschlossene Kugellager sorgen für sehr gute Laufeigenschaften und einen geräuscharmen Betrieb, indem der Innenraum des Kugellagers gegen Partikel und Verunreinigungen geschützt ist.

[0011] Weiter bevorzugt weist eine Rollenfläche des Rollenkörpers eine Oberflächenrauhigkeit Ra von 0,01 bis 3 μ m, bevorzugt von 0,05 bis 2 μ m auf. Somit wird ein Verschleiß der Rollenfläche des Rollenkörpers und der Lauffläche der

Deckenführung verringert und damit das Erzeugen von Materialteilchen vermieden, welche auf der Lauffläche verbleiben und Abrieb und hohe Geräuschemissionen verursachen könnten. Die Oberflächenrauhigkeit wird nach DIN EN ISO 4287 gemessen.

[0012] Besonders bevorzugt weisen die Rillung der Lauffläche und die Rollenfläche des Rollenkörpers dieselbe Oberflächenrauhigkeit auf. Es wird hierdurch ein geringer abrasiver Verschleiß möglich, was dazu führt, dass das Erzeugen von Materialteilchen eliminiert wird. Somit wird eine höhere Laufruhe des Schiebewandsystems sichergestellt.

[0013] In vorteilhafter Weise ist die Lauffläche der Deckenführung aus einem stranggepresstem Material ausgebildet. Dies hat zur Folge, dass die Lauffläche gute Oberflächeneigenschaften aufweist, insbesondere möglichst riefenfrei hergestellt ist, ohne dass Nachfertigungsschritte erforderlich sind. Dadurch wird ein geräuscharmes Rollen des Türflügelelements in der Deckenführung sichergestellt. Außerdem bietet Strangpressen den Vorteil, dass Profile auch in komplizierten Formen und aus schwer umformbaren Werkstoffen kostengünstig hergestellt werden können. Ferner kann in einem Verfahrensschritt ein hoher Umformgrad erreicht werden.

10

30

35

50

[0014] Des Weiteren vorteilhaft ist, wenn die Lauffläche der Deckenführung einstückig mit der Deckenführung ausgebildet ist. Somit ist ein kompakter Aufbau möglich. Ferner werden potentielle Montagefehler wie z.B. Schiefstellungen eliminiert, wodurch Geräusche beim Rollen des Türflügelelements in der Deckenführung verursacht werden könnten.

[0015] Ferner bevorzugt ist die Lauffläche der Deckenführung größer als die Rollenfläche ausgebildet. Montageabweichungen werden dadurch ausgeglichen, wodurch ein geräuscharmes Verfahren des Türflügelelements sichergestellt wird.

[0016] Vorzugsweise beträgt die statische Flächenpressung zwischen der Laufrolle und der Lauffläche der Deckenführung mindestens 2,5 kg/mm², bevorzugt zwischen 2,5 und 100 kg/mm². Dies führt zu einem Beseitigen von Quietschgeräuschen beim Verfahren des Türflügelelements.

[0017] Um den Rollenkörper am Grundkörper des Rollenwagens in sicherer Weise verdrehfest zu befestigen, kann vorzugsweise der Rollenkörper eine Achse mit mindestens einer Rändelung aufweisen. Dadurch ist die Wahrscheinlichkeit eines Lockerns des Rollenkörpers, was zu hohen Geräuschen führen könnte, deutlich reduziert.

[0018] Um den geräuscharmen Betrieb des Schiebewandsystems zu optimieren, kann die Achse des Rollenkörpers mit einem Innenring des geschlossenen Kugellagers einstückig ausgebildet sein. Auf diese Weise wird auf eine zusätzliche Achse verzichtet, wodurch potentielle Montagefehler vermieden werden. Geräusche können somit reduziert werden. [0019] In vorteilhafter Weise kann das erfindungsgemäße Schiebewandsystem eine Glasscheibe mit einer zähelastischen Folie umfassen, wobei die Folie eine schalldämmende Funktion aufweist. Entstehende Geräusche beim Rollen des Türflügelelements in der Deckenführung werden zumindest teilweise durch die Folie gedämmt und daher vom Nutzer nicht wahrgenommen.

[0020] Ferner bevorzugt weist der Rollenkörper eine Wasseraufnahme von 0,3 % bei Normalklima auf. Die Wasseraufnahme bei Normalklima bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung bei einer Temperatur von 23°C und Luftfeuchtigkeit von 50%. Erfindungsgemäß wird die Wasseraufnahme des Rollenkörpers bei Normalklima gering gehalten. Eine hohe Wasseraufnahme führt zu einem hohen Abplatten des Rollenkörpers, wodurch Geräusche beim Rollen des Rollenkörpers der Laufrolle auf der Lauffläche der Deckenführung verursacht werden. Die Wasseraufnahme bei Normalklima wird nach ISO 62 gemessen.

[0021] Weiter bevorzugt weist der Rollenkörper eine Wasseraufnahme von 1,4% bei Wasserlagerung auf. Die Wasseraufnahme bei Wasserlagerung bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung im Wasser. Der Rollenkörper der Laufrolle ist derart ausgebildet, dass seine Wasseraufnahme bei Wasserlagerung gering gehalten wird. Somit wird eine Abplattung des Rollenkörpers, z.B. bei einem Schiebewandsystem, welches in einem Außenraum angeordnet ist, reduziert. Dadurch kann ein geräuschärmerer Betrieb unter verschiedenen Wetterbedingungen sichergestellt werden. Die Wasseraufnahme bei Wasserlagerung wird nach ISO 62 gemessen.

[0022] Besonders bevorzugt weist der Rollenkörper eine Abflachung kleiner als 0,7 % in Bezug auf den Durchmesser des Rollenkörpers nach 8 Stunden Stillstand des Rollenkörpers auf. Durch die geringe zulässige Abplattung des Rollenkörpers wird die Laufruhe des erfindungsgemäßen Schiebewandsystems deutlich erhöht. Die Abplattung eines Rollenkörpers 27 wird gemessen, indem eine Prüflast von 200 N in vertikaler Richtung auf den auf einer Auflage angeordneten Rollenkörper 27 ausgeübt wird.

[0023] Besonders bevorzugt beträgt die durchschnittliche Verfahrgeschwindigkeit des Rollenwagens zwischen 0,05 m/s und 0,5 m/s, bevorzugt ca. 0,2 m/s. Diese Verfahrgeschwindigkeit bietet zum einen den Vorteil eines schnellen Rollens des Rollenkörpers auf der Lauffläche. Zum anderen wird die Laufruhe des Schiebewandsystems aufrechterhalten.

[0024] Die Erfindung wird nun unter Berücksichtigung der beigefügten Zeichnung näher beschrieben. Es zeigt:

- Fig. 1 eine schematische, vereinfachte perspektivische Ansicht eines Schiebewandsystems gemäß der vorliegenden Erfindung;
 - Fig. 2 eine schematische, vereinfachte perspektivische Ansicht eines Teilbereichs einer Deckenführung eines Schie-

bewandsystems gemäß der vorliegenden Erfindung; eine weitere schematische, perspektivische Ansicht der Deckenführung des Schiebewandsystems gemäß der vorliegenden Erfindung;

Fig. 3 5 Fig. 4 eine schematische, perspektivische Ansicht einer Weiche der Deckenführung gemäß der vorliegenden Erfinduna: Fig. 5a eine schematische Explosionsansicht der Weiche der Deckenführung gemäß der vorliegenden Erfindung; 10 eine schematische, vereinfachte Ansicht der Weiche von Fig. 4 und 5a von unten; Fig. 5b Fig. 6 eine schematische, vereinfachte perspektivische Ansicht einer weiteren Weiche einer Deckenführung gemäß der vorliegenden Erfindung: 15 Fig. 7 eine schematische, vereinfachte Seitenansicht eines Rollenwagens, welcher in der Deckenführung des erfindungsgemäßen Schiebewandsystems angeordnet ist; Fig. 8 eine schematische, vereinfachte perspektivische Ansicht des Rollenwagens von Fig. 7; 20 Fig. 9 eine schematische, vereinfachte Schnittansicht einer Laufrolle des Rollenwagens von Fig. 7 und 8; Fig. 10 eine schematische, vereinfachte Seitenansicht der Laufrolle von Fig. 9: 25 Fig. 11 eine schematische, vereinfachte perspektivische Ansicht einer Sicherungsvorrichtung, welche in der Deckenführung des Schiebewandsystems gemäß der vorliegenden Erfindung angeordnet ist, Fig. 12 eine schematische, vereinfachte Explosionsansicht der Sicherungsvorrichtung von Fig. 11, 30 Fig. 13 eine schematische, vereinfachte Vorderansicht eines Teilbereichs eines Türflügelelements des Schiebewandsystems gemäß der vorliegenden Erfindung, Fig. 14 eine schematische, vereinfachte Seitenansicht des Türflügelelements von Fig. 13, 35 eine schematische, vereinfachte perspektivische Ansicht des Türflügelelements von Fig. 13 und 14; Fig. 15 Fig. 16 eine schematische, vereinfachte Vorderansicht einer Zwischenlage, welche im Türflügelelement von Fig. 13 bis 15 vorgesehen ist; Fig. 17 eine schematische, vereinfachte Schnittansicht eines Teilbereichs eines Türflügelelements mit einem inte-40 grierten Türbetätiger des Schiebewandsystems gemäß der vorliegenden Erfindung; Fig. 18 eine schematische, vereinfachte Vorderansicht des Teilbereichs des Türflügelelements von Fig. 17; 45 Fig. 19 eine schematische, vereinfachte perspektivische Ansicht des Teilbereichs des Türflügelelements von Figuren 17 und 18, wobei sich das Türflügelelement in einem offenen Zustand befindet; eine schematische, vereinfachte Explosionsansicht eines Verriegelungsmechanismus für ein Türflügelele-Fig. 20 ment des Schiebewandsystems gemäß der vorliegenden Erfindung; 50

eine schematische, vereinfachte Vorderansicht des Verriegelungsmechanismus von Fig. 20, wobei die Kom-Fig. 21 ponenten des Verriegelungsmechanismus dargestellt sind,

Fig. 22 eine schematische, vereinfachte Vorderansicht des Verriegelungsmechanismus von Fig. 21 in einer ersten Position;

55

Fig. 23 eine schematische, vereinfachte Vorderansicht des Verriegelungsmechanismus von Fig. 21 in einer zweiten

- Fig. 24 eine schematische, vereinfachte Vorderansicht des Verriegelungsmechanismus von Fig. 21 in einer dritten Position;
- Fig. 25 eine schematische, vereinfachte Schnittansicht eines Teilbereichs des Schiebewandsystems mit der Bürstenanordnung gemäß der vorliegenden Erfindung;
 - Fig. 26 eine schematische, vereinfachte perspektivische Ansicht eines weiteren Teilbereichs des Schiebewandsystems mit einer Bürstenanordnung gemäß der vorliegenden Erfindung,
- Fig. 27 eine schematische, vereinfachte Seitenansicht einer Bürste, welche in den Bürstenanordnungen von Figuren 25 und 26 vorgesehen ist, und

15

20

30

35

40

45

50

Fig. 28 eine schematische Seitenansicht einer weiteren Bürste, welche in der Bürstenanordnung von Fig. 27 vorgesehen ist.

[0025] Fig. 1 zeigt eine perspektivische Ansicht eines Schiebewandsystems 1 gemäß der vorliegenden Erfindung. Das erfindungsgemäße Schiebewandsystem 1 umfasst eine Deckenführung 2 und vier Türflügelelemente 3, welche in Längsrichtung L des Schiebewandsystems 1 in der Deckenführung 2 nebeneinander angeordnet sind. Alle Türflügelelemente 3 haben dieselbe Breite z. Die Deckenführung 2, welche als einteilige Schiene 10 ausgebildet ist, weist eine Länge auf, welche ein Vierfaches der Breite z der Türflügelelemente 3 entspricht. Alternativ kann die Deckenführung 2 aus mehreren Deckenführungselementen zusammengesetzt sein.

[0026] Ferner ist das Schiebewandsystem 1 an einem Rahmen 9 angeordnet. Insbesondere ist die Deckenführung 2 an einem oberen Teil des Rahmens 9 vorgesehen, welcher an einer nicht dargestellten Decke eines Gebäudes befestigt ist. Alternativ kann die Deckenführung 2 unmittelbar an der Decke des Gebäudes befestigt sein. Ein unterer Teil des Rahmens 9 ist mit einem ebenso nicht gezeigten Boden des Gebäudes fest verbunden.

[0027] Insbesondere weist das erfindungsgemäße Schiebewandsystem 1 der Fig. 1 ein erstes Türflügelelement 3a, ein zweites Türflügelelement 3b, ein drittes Türflügelelement 3c und ein viertes Türflügelelement 3d auf, welche mit bestimmten Funktionen ausgestattet sein können. Das erste Türflügelelement 3a sowie das vierte Türflügelelement 3d sind in der Deckenführung 2 schwenkbar angeordnet und drehbar bodengelagert, wobei das zweite Türflügelelement 3b in der Deckenführung 2 nur verschoben werden kann. Ferner ist das dritte Türflügelelement 3c in der Deckenführung 2 schwenkbar und verschiebbar angeordnet. So dienen das erste Türflügelelement 3a und das vierte Türflügelelement 3d als Drehflügel oder Pendelflügel, das zweite Türflügelelement 3b als Schiebeflügel und das dritte Türflügelelement 3c als Drehschiebeflügel.

[0028] Alle Türflügelelemente 3 weisen jeweils ein Befestigungsprofil 4, zwei Türschienen 5 und eine Glasscheibe 34 auf, welche zwischen den Türschienen 5 angeordnet sind. Die Befestigungsprofile 4, die Türschienen 5 und die Glasscheiben 34 sind bei allen Türflügelelementen 3 identisch ausgebildet. Die eine Türschiene 5 jedes Türflügelelements der Türflügelelemente 3a, 3b, 3c und 3d ist an einem der Deckenführung 2 zugewandten Ende und die andere an einem dem Boden zugewandten Ende angeordnet.

[0029] Des Weiteren umfasst das Schiebewandsystem 1 drei Verriegelungsmechanismen.

[0030] Das dritte Türflügelelement 3c weist einen Verriegelungsmechanismus 6 auf, welcher ein zweiseitiger Verriegelungsmechanismus ist. Dadurch kann eine Verdrehung der Türschienen 5 und der Glasscheibe 34 des dritten Türflügelelements 3c, welche miteinander fest verbunden sind, in Bezug auf das Befestigungsprofil 4 des dritten Türflügelelements 3c verhindert werden. Ferner kann durch den zweiseitigen Verriegelungsmechanismus 6 eine Verschiebung des dritten Türflügelelements 3c in der Deckenführung 2 in einer Verschieberichtung V blockiert werden. Die Verschieberichtung V wird durch die Form der Deckenführung 2 bestimmt. Hierbei entspricht die Verschieberichtung V der Längsrichtung L des Schiebewandsystems 1. Der Aufbau und die Funktion des zweiseitigen Verriegelungsmechanismus 6 werden später mit Bezug auf die Fig. 20 bis 24 beschrieben.

[0031] Bei allen Türflügelelementen 3 ist ein dreiseitiger Verriegelungsmechanismus 8 vorgesehen, welcher die Verriegelung in drei Richtungen bewirkt. Der dreiseitige Verriegelungsmechanismus 8 ermöglicht eine Verriegelung eines Türflügelelements 3 in ein benachbartes Türflügelelement 3, den Rahmen 9 oder den Boden und weist eine zusätzliche Schließfunktion auf.

[0032] Am ersten Türflügelelement 3a ist ein einseitiger Verriegelungsmechanismus 7 angeordnet, welcher eine Verdrehung des ersten Türflügelelements 3a in Bezug auf die Deckenführung 2 verhindert.

[0033] Da aber der einseitige Verriegelungsmechanismus 7 sowie der dreiseitige Verriegelungsmechanismus 8 nicht zum Gegenstand der vorliegenden Erfindung gehören, werden sie hier nicht näher erläutert.

[0034] Die Fig. 2 und 3 zeigen einen Teilbereich einer Deckenführung 2 eines Schiebewandsystems 1 gemäß der vorliegenden Erfindung. Wie aus diesen Figuren ersichtlich, ist die Deckenführung 2 aus drei Schienen 10, insbesondere einer ersten Schiene 10a, einer zweiten Schiene 10b und einer dritten Schiene 10c, und einer Weiche 11, welche als

ein Abzweig 15 ausgebildet ist, zusammengesetzt.

30

35

45

50

[0035] Der Abzweig 15 weist drei Anschlussflächen auf, an welchen die drei Schienen 10a, 10b und 10c angeschlossen sind. Die Schienen 10a, 10b und 10c sind mit dem Abzweig 15 mittels einer Vielzahl von Verbindungseinrichtungen 18 verbunden. Jede Verbindungseinrichtung 18 weist ein Steckelement 19 auf, welches in eine Nut 20 einer der Schienen 10 und in eine Nut 21 der Weiche 11 eingesteckt ist, und in die Schienen 10 sowie den Abzweig 15 eingeschraubt ist. Insbesondere sind in der Fig. 2 eine erste Verbindungseinrichtung 18a, eine zweite Verbindungseinrichtung 18b und eine dritte Verbindungseinrichtung 18c gezeigt. Die erste Schiene 10a ist mittels der ersten Verbindungseinrichtung 18a, welche ein erstes Steckelement 19a, eine in der ersten Schiene 10a ausgebildete erste Nut 20a und eine in der Weiche 11 ausgebildeten ersten Nut 21 a aufweist, mit der Weiche 11 verbunden. Die zweite Verbindungeinrichtung 18b weist ein zweites Steckelement 19b, eine in der zweiten Schiene 10a ausgebildete zweite Nut 20b und eine in der Weiche 11 ausgebildete zweite Nut 21b auf und verbindet die zweite Schiene 10b mit der Weiche 11. Über die dritte Verbindungseinrichtung 18c, welche aus einem dritten Steckelement 19c, einer in der dritten Schiene 10c ausgebildeten dritten Nut 20c und der zweiten Nut 21b der Weiche besteht, ist die dritte Schiene 10c mit der Weiche 10 verbunden. In den Fig. 2 und 3 ist ferner ein Rollenwagen 23 in der Deckenführung 2 eingezeichnet, welcher mit Bezug auf die Fig. 7 bis 10 näher beschrieben wird.

[0036] Die Fig. 4 und 5a zeigen perspektivische Ansichten des Abzweigs 15. Um eine Umlenkung des Rollenwagens 23 in der Deckenführung 2 zu erleichtern, weist der Abzweig 15 ein Umlenkelement 16 auf. Das Umlenkelement 16 ist an einer der Gebäudedecke zugewandten Innenseite 17 des Abzweigs 15 angeordnet. Insbesondere ist das Umlenkelement 16 in den Abzweig 15 mittels Stahlschrauben eingeschraubt (Fig. 4). Ferner ist das Umlenkelement 16 aus Kunststoff, insbesondere Polyoxymethylen, ausgebildet. Die Schienen 10 weisen jeweils einen ersten Schlitz 12 auf. Der Abzweig 15 weist zwei zweite Schlitze 13 auf, die miteinander kommunizieren. Im montierten Zustand der Deckenführung 2 schließen sich die ersten Schlitze 12 der Schienen 10a, 10b und 10c an die zweiten Schlitze 13 des Abzweigs 15 an und bilden einen stetigen Schlitzverlauf (Fig. 3).

[0037] Fig. 6 zeigt eine Weiche 11 in der Form eines Bogens 14 gemäß der vorliegenden Erfindung. Bögen werden bei Schiebewänden benutzt, wenn eine Verschieberichtung eines Türflügelelements um etwa 90 Grad geändert werden soll. Dies kann z.B. der Fall sein, wenn das Türflügelelement zu einer Parkposition des Schiebwandsystems verschoben werden muss.

[0038] Der Bogen 14 weist zwei Anschlussflächen auf, an welche zwei Schienen 10a und 10b anschließbar sind, wobei der Bogen 14 mit einem viertelkreisförmigen Schlitz 13 ausgebildet ist.

[0039] Der Abzweig 15 und der Bogen 14 sind in der Grundform als U-förmige Profile ausgebildet.

[0040] Die Schienen 10 und die Weichen 11, aus welchen die Deckenführung 2 zusammengesetzt ist, sind gemäß der vorliegenden Erfindung mittels eines Strangpressverfahrens hergestellt. Insbesondere sind die Schienen 10 und die Weichen 11 aus demselben Material stranggepresst. Die Weichen 11 sind jeweils aus einem im Querschnitt im Wesentlichen rechteckigen oder quadratischen stranggepresstem Körper ausgebildet. Die Schienen 10 und die Weichen 11 weisen aneinander angrenzende Sichtflächen mit einer im Wesentlichen gleichen Strangpressrichtung auf. Somit wird erfindungsgemäß ein sehr ähnlich bzw. gleicher optischer Eindruck bei diesen Sichtflächen erreicht.

[0041] In Fig. 3 sind eine erste Sichtfläche 91, eine zweite Sichtfläche 92 und eine dritte Sichtfläche 93 des Abzweigs 15 sowie eine erste Sichtfläche 94 und eine zweite Sichtfläche 95 bei jeder der Schienen 10 dargestellt. Die Schienen 10 und die Weiche 11 weisen weitere Sichtflächen auf, welche aber in Fig. 3 nicht ersichtlich sind. Die Anzahl der Sichtflächen hängt von der Form einer Schiene bzw. einer Weiche und deren Anordnung in einem Schiebewandsystem.

[0042] Die Weiche 11 sind ausgehend vom stranggepressten Körper spanend bearbeitet, wobei die an die Schienen 10 angrenzenden Sichtflächen der Weiche 11 nicht spanend bearbeitet sind.

[0043] Um das gesamte Erscheinungsbild der Deckenführung 2 weiter zu verbessern, sind alle Sichtflächen der Schienen 10 nicht spanend bearbeitet. Hierdurch erzeugt die Deckenführung 2 ein einheitliches und harmonisches ästhetisches Erscheinungsbild.

[0044] Die Schienen 10 weisen jeweils eine erste Außenflächenrillung und die Weiche 11 eine zweite Außenflächenrillung auf deren aneinander angrenzenden Sichtflächen in Strangpressrichtung auf, welche eine im Wesentlichen parallele zu der Verschieberichtung V eines Türflügelelements 3 Rillenausrichtung aufweist. Als Außenflächenrillung bzw. Rillung ist eine im Wesentlichen linienförmige Oberflächenstruktur aus einer Vielzahl parallel angeordneter linienförmiger Vertiefungen zu verstehen, welche durch das Strangpressverfahren erzeugt werden und die Oberflächenqualität sowie den optischen Eindruck einer Oberfläche beeinflussen.

[0045] Bevorzugt weist die Rillung von den aneinander angrenzenden Sichtflächen eine Rauhigkeit R $_a$ von 0,1 μ m bis 2,0 μ m, bevorzugt von 0,2 μ m bis 1,6 μ m, ganz besonders bevorzugt von 0,2 μ m bis 1 μ m, gemessen nach DIN EN ISO 4287 in Querrichtung zur Rillenausrichtung auf.

[0046] In einer bevorzugten Ausführung weisen alle Sichtflächen der Weiche 11 und der Schienen 10 eine Rauhigkeit R_a von 0,1 μ m bis 2,0 μ m, bevorzugt von 0,2 μ m bis 1,6 μ m, ganz besonders bevorzugt von 0,2 μ m bis 1 μ m, gemessen nach DIN EN ISO 4287 in Querrichtung zur Rillenausrichtung auf.

[0047] Gemäß einer höchst bevorzugten Ausführungsform der Erfindung beträgt die Abweichung in der Rauhigkeit

von aneinander angrenzenden Sichtflächen der Weiche 11 und der Schienen 10, bevorzugt allen Sichtflächen, in einem Intervall R_a von 0,1 μ m bis 2,0 μ m, bevorzugt von 0,2 μ m bis 1,6 μ m, ganz besonders bevorzugt von 0,2 μ m bis 1 μ m, <10%, bevorzugt <5%.

[0048] Es ist weiter höchst bevorzugt, dass aneinander angrenzende Sichtflächen der Schienen 10 und der Weiche 11, bevorzugt alle Sichtflächen, eine im Wesentlichen identische Rauhigkeit in Querrichtung zur Rillenausrichtung aufweisen.

[0049] Der optische Eindruck kann weiter verbessert werden, wenn die aneinander angrenzenden Sichtflächen der Weiche 11 und der Schienen 10 eine Oberflächenrauheit R_a parallel zur Strangpressrichtung von 0,1 μ m bis 3 μ m, bevorzugt von 0,2 μ m bis 2 μ m, insbesondere bevorzugt von 0,75 μ m bis 1,8 μ m, gemessen nach DIN EN ISO 4287 aufweisen.

[0050] Ganz besonders bevorzugt ist es, dass alle Sichtflächen der Weiche 11 und der Schienen 10 eine Oberflächenrauheit R_a parallel zur Strangpressrichtung von 0,1 μ m bis 3 μ m, bevorzugt von 0,2 bis 2 μ m, insbesondere bevorzugt von 0,75 μ m bis 1,8 μ m, gemessen nach DIN EN ISO 4287 aufweisen.

[0051] In einer höchst bevorzugten Ausgestaltung ist es ferner bevorzugt, dass die Abweichung der Oberflächenrauheit R_a parallel zur Strangpressrichtung von wenigstens zwei aneinander angrenzenden Sichtflächen der Schienen 10 und der Weiche 11, bevorzugt von allen Sichtflächen, ausgewählt aus dem Intervall R_a von 0,1 μ m bis 3 μ m, bevorzugt von 0,2 μ m bis 2 μ m, <10% beträgt, insbesondere <5%.

[0052] In einer weiteren höchst vorteilhaften Weiterentwicklung der Erfindung ist die Oberflächenrauheit R_a parallel zur Strangpressrichtung von wenigstens zwei aneinander angrenzenden Sichtflächen der Schienen 10 und der Weiche 11, bevorzugt allen Sichtflächen, im Wesentlichen identisch.

[0053] Ferner ist es zur weiteren Verbesserung des optischen Eindrucks von Vorteil, dass wenigstens die aneinander angrenzenden Sichtflächen der Weiche 11 und der Schienen 10 einen Glanzgrad von 1 GE bis 50 GE, bevorzugt 5 GE bis 25 GE, gemessen bei einem Winkel von 60° nach DIN 53778 aufweisen.

[0054] Ganz besonders bevorzugt ist es, dass alle Sichtflächen der Weiche und der Schiene einen Glanzgrad von 1 GE bis 50 GE, bevorzugt 5 GE bis 25 GE, gemessen bei einem Winkel von 60° nach DIN 53778 aufweisen.

[0055] In einer höchst bevorzugten Ausführung der Erfindung beträgt die Abweichung der Glanzgrade ausgewählt aus dem Intervall 1 GE bis 50 GE, bevorzugt 5 GE bis 25 GE, der aneinander angrenzenden Sichtflächen <10%, insbesondere bevorzugt <5%.

[0056] Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung weisen die aneinander angrenzenden Sichtflächen einen im Wesentlichen identischen Glanzgrad ausgewählt aus dem Intervall 1 GE bis 50 GE, bevorzugt 5 GE bis 25 GE, auf.

30

35

45

50

[0057] Wie aus Fig. 5b ersichtlich, ist die Weiche 11 als sechseckförmiger Körper ausgebildet. Die Sechseckförmigkeit des Körpers ergibt sich in der Aufsicht auf die Weiche 11 aus einer sechseckförmigen Grundfläche, wobei von wenigstens drei der sechs Seiten der Grundfläche gleichhohe Seitenwände senkrecht abfallen, die die Höhe der Weiche 11 definieren.

[0058] Eine erste Seite und eine der ersten Seite gegenüberliegende zweite Seite weisen im Wesentlichen eine gleiche erste Länge I1 und die übrigen vier Seiten des Sechsecks eine gleiche zweite Länge I2 auf, wobei die erste Länge I1 größer als die zweite Länge I2 ist.

[0059] Um eine möglichst große Sichtfläche der Weiche 11 optisch angepasst zur Verfügung zu stellen, weist eine Sichtfläche die erste Länge I1 und zwei weitere Sichtflächen die zweite Länge 12 auf. Die Sichtfläche der ersten Länge I1 weist die gleiche Strangpressrichtung auf, wie die an dieser Fläche anliegenden Sichtflächen der Schienen 10.

[0060] Um eine sechseckige Form bereitzustellen, die aus dem stranggepressten Körper in möglichst günstiger Weise materialspanend zu der Weiche 11 weiterbearbeitet werden kann, stehen zwei benachbarte Seiten der zweiten Länge I2 senkrecht zueinander.

[0061] Um das gesamte Schiebewandsystem 1 in einer optisch harmonischen Weise auszubilden, sind die Türschienen 5 der Türflügelelemente 3 ebenso stranggepresst und weisen wenigstens eine Sichtfläche auf, die eine im Wesentlichen gleiche Strangpressrichtung wie die aneinander angrenzenden Sichtflächen der Schienen 10 und der Weiche 11 aufweist.

[0062] Zum Herstellen des Schiebewandsystems 1 mit der Deckenführung 2 werden jeweils ein Körper für die Schienen 10 und ein Körper für die Weiche 11 in beliebiger Reihenfolge stranggepresst. Die Schienen 10 und die Weiche 11 werden aus demselben Material stranggepresst.

[0063] Nachfolgend wird der stranggepresste Körper für die Weiche 11 spanend bearbeitet.

[0064] Die Schienen 10 und die Weiche 11 werden zum Ausbilden der Deckenführung 2 zusammenmontiert, so dass die Schienen 10 und die Weiche 11 aneinander angrenzende Sichtflächen aufweisen und die aneinander angrenzenden Sichtflächen der Schienen 10 und der Weiche 11 eine im Wesentlichen gleiche Strangpressrichtung aufweisen. Anschließend wird ein Türflügelelement 3 in der Deckenführung 2 des Schiebewandsystems 1 positioniert. Somit können Abweichungen im optischen Eindruck der Schienen 10 und der Weichen 11 eliminiert werden.

[0065] Fig. 7 zeigt einen Rollenwagen 23 innerhalb der Deckenführung 2 des Schiebewandsystems 1 gemäß der vorliegenden Erfindung. Der Rollenwagen 23 ist mittels eines Verbindungselementes in Form eines Klotzes 30 mit einem

Türflügelelement 3, wie z.B. dem zweiten Türflügelelement 3b des Schiebewandsystems 1 der Fig. 1, verbunden. Dadurch ist das Türflügelelement 3b in der Deckenführung 2, welche aus Schienen 10 und Weichen 11 ausgebildet ist, verschiebbar angerordnet. Im Schiebewandsystem 1 ist eine Vielzahl von Rollenwagen 23 vorgesehen.

[0066] Der Rollenwagen 23 von Fig. 7 weist einen Grundkörper 24 auf, an welchem eine Vielzahl von Laufrollen 25 und eine Vielzahl von Führungsrollen 26 angeordnet ist. Wie aus Fig. 8 ersichtlich, umfasst der Rollenwagen 23 vier Laufrollen 25 und vier Führungsrollen 26, wobei die Laufrollen 25 senkrecht zu den Führungsrollen 26 angeordnet sind. Somit kann eine ausfallsichere Verschiebung und Führung des Türflügelelements 3b in der Deckenführung 2 sichergestellt werden.

[0067] Die Laufrollen 25, welche identisch ausgebildet sind, weisen jeweils einen Rollenkörper 27 mit einer Rollenfläche 28 auf, wobei die Rollenkörper 27 auf zwei Lauflächen 29 der Deckenführung 2 abrollen.

[0068] Der Grundkörper 24 weist einen Elastizitätsmodul bei 20°C von 70 kN/mm² bis 100 kN/mm², bevorzugt ca. 85 kN/mm², nach EN ISO 6892-1:2009, einen Schubmodul bei 20°C von 20 kN/mm² bis 60 kN/mm², bevorzugt ca. 40 kN/mm² nach DIN 53445, und eine Dichte bei 20°C von 2 g/cm³ bis 7 g/cm³, bevorzugt ca. 6,7 g/cm³, nach ISO 1183, auf. [0069] Der Rollenkörper 27 weist einen Elastizitätsmodul bei 20°C von 2 kN/mm² bis 4 kN/mm², bevorzugt ca. 3 kN/mm², nach ISO 527-1/-2 für Kunststoffe, einen Schubmodul bei 20°C von 0,5 kN/mm² bis 1 kN/mm², bevorzugt ca. 0,8 kN/mm², nach DIN ISO 1827:2010-07 für Kunststoffe und eine Dichte bei 20°C von 1 g/cm³ bis 2 g/cm³, bevorzugt ca. 1,4 g/cm³, nach DIN EN ISO 1183 auf. Weiterhin weist die Rollenfläche 28 des Rollenkörpers 27 eine Oberflächenrauhigkeit Ra von 0,01 bis 3 μm, bevorzugt von 0,05 μm bis 2 μm nach DIN EN ISO 4287 auf. Besonders bevorzugt ist die Rollenfläche 28 des Rollenkörpers 27 isotrop ausgebildet, wodurch die Rollenfläche 28 keine richtungsabhängigen Oberflächenrauhigkeits-Abweichungen aufweist. Der Rollenkörper 27 weist ferner einen Durchmesser von 16 mm bis 20 mm, besonders bevorzugt von 18,5 mm, auf. Die Rollenfläche 28 des Rollenkörpers 27 hat eine Rollenflächenbreite von 5 mm bis 9 mm, bevorzugt 7 mm. Weiterhin weist der Übergang von der Rollenfläche 28 zu einer Seitenflanke des Rollenkörpers 27 einen Radius von 0,3 mm bis 0,7 mm, insbesondere 0,5 mm auf.

[0070] Der Rollenkörper 27 weist ferner eine Wasseraufnahme von 0,3 % bei Normalklima nach ISO 62 auf. Die Wasseraufnahme bei Normalklima bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung bei einer Temperatur von 23°C und Luftfeuchtigkeit von 50%. Erfindungsgemäß wird die Wasseraufnahme des Rollenkörpers bei Normalklima gering gehalten. Eine hohe Wasseraufnahme führt zu einem hohen Abplatten des Rollenkörpers 27, wodurch Geräusche beim Rollen des Rollenkörpers 27 der Laufrolle 25 auf der Lauffläche 29 der Deckenführung 2 verursacht werden.

[0071] Der Rollenkörper 27 weist weiterhin eine Wasseraufnahme von 1,4% bei Wasserlagerung nach ISO 62 auf. Die Wasseraufnahme bei Wasserlagerung bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung im Wasser. Der Rollenkörper 27 der Laufrolle 25 ist derart ausgebildet, dass seine Wasseraufnahme bei Wasserlagerung gering gehalten wird. Somit wird eine Abplattung der Rollenkörper 27, z.B. bei einem Schiebewandsystem 1, welches in einem Außenraum angeordnet ist, reduziert. Dadurch kann ein geräuschärmerer Betrieb unter verschiedenen Wetterbedingungen sichergestellt werden.

30

35

40

45

50

[0072] Weiterhin weist der Rollenkörper 27 eine Abflachung kleiner als 0,7 % in Bezug auf den Durchmesser des Rollenkörpers 27 nach 8 Stunden Stillstand des Rollenkörpers 27 auf. Durch die geringe zulässige Abplattung der Rollenkörper 27 wird die Laufruhe des erfindungsgemäßen Schiebewandsystems 1 deutlich erhöht. Die Abplattung eines Rollenkörpers 27 wird gemessen, indem eine Prüflast von 200 N in vertikaler Richtung auf den auf einer Auflage angeordneten Rollenkörper 27 ausgeübt wird. Besonders bevorzugt weist der Rollenkörper 27 mit einem Durchmesser von 18,5 mm eine maximale Abplattung von 0,12 mm nach 8 Stunden Stillstand auf.

[0073] Die Laufflächen 29 der Deckenführung 2 weisen jeweils einen Elastizitätsmodul bei 20°C von 60 kN/mm² bis 80 kN/mm², bevorzugt ca. 70 kN/mm², nach EN ISO 6892-1:2009, einen Schubmodul bei 20°C von 10 bis 40 kN/mm², bevorzugt ca. 27 kN/mm², nach DIN 53445 und eine Dichte bei 20°C von 2 g/cm³ bis 5 g/cm³, bevorzugt ca. 3 g/cm³, nach ISO 1183 auf. Ferner weisen jeweils die Laufflächen 29 eine Oberflächenrauhigkeit Ra parallel zur Strangpressrichtung von 0,05 μ m bis 1,0 μ m, bevorzugt ca. 0,5 μ m, gemessen nach DIN EN ISO 4287 auf. Weiterhin weisen die Laufflächen 29 eine Oberflächenrauhigkeit Ra in Querrichtung zur Strangpressrichtung von 0,7 μ m bis 1,4 μ m, bevorzugt ca. 0,7 μ m, gemessen nach DIN EN ISO 4287 auf. Die Laufflächen 29 weisen jeweils ferner eine Oberflächenrauhigkeit Rz parallel zur Strangpressrichtung von 3 μ m bis 5 μ m, bevorzugt ca. 3,2 μ m, gemessen nach DIN EN ISO 4287 auf. Weiterhin weisen jeweils die Laufflächen 29 eine Oberflächenrauhigkeit Rz in Querrichtung zur Strangpressrichtung von 4 μ m bis 6 μ m, bevorzugt ca. 4,1 μ m, gemessen nach DIN EN ISO 4287 auf. Besonders bevorzugt liegt ein Verhältnis einer Oberflächenrauhigkeit Ra in Querrichtung zur Strangpressrichtung der Lauffläche 29 zu einer Oberflächenrauhigkeit Ra parallel zur Strangpressrichtung der Lauffläche 29 zwischen 1,1 und 3, bevorzugt zwischen 1,1 und 2.

[0074] Der Rollenkörper 27 weist ferner eine Wasseraufnahme von 0,3 % bei Normalklima nach ISO 62 auf. Die Wasseraufnahme bei Normalklima bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung bei einer Temperatur von 23°C und Luftfeuchtigkeit von 50%. Erfindungsgemäß wird die Wasseraufnahme des Rollenkörpers bei Normalklima gering gehalten. Eine hohe Wasseraufnahme führt zu einem hohen Abplatten des Rollenkörpers 27, wodurch Geräusche beim Rollen des Rollenkörpers 27 der Laufrolle 25 auf der Lauffläche 29 der

Deckenführung 2 verursacht werden.

30

35

50

[0075] Der Rollenkörper 27 weist weiterhin eine Wasseraufnahme von 1,4% bei Wasserlagerung nach ISO 62 auf. Die Wasseraufnahme bei Wasserlagerung bezeichnet die prozentuelle Gewichtszunahme eines Körpers durch Wasseraufnahme bei Lagerung im Wasser. Der Rollenkörper 27 der Laufrolle 25 ist derart ausgebildet, dass seine Wasseraufnahme bei Wasserlagerung gering gehalten wird. Somit wird eine Abplattung der Rollenkörper 27, z.B. bei einem Schiebewandsystem 1, welches in einem Außenraum angeordnet ist, reduziert. Dadurch kann ein geräuschärmerer Betrieb unter verschiedenen Wetterbedingungen sichergestellt werden.

[0076] Weiterhin weist der Rollenkörper 27 eine Abflachung kleiner als 0,7 % in Bezug auf den Durchmesser des Rollenkörpers 27 nach 8 Stunden Stillstand des Rollenkörpers 27 auf. Durch die geringe zulässige Abplattung der Rollenkörper 27 wird die Laufruhe des erfindungsgemäßen Schiebewandsystems 1 deutlich erhöht. Die Abplattung eines Rollenkörpers 27 wird gemessen, indem eine Prüflast von 200 N in vertikaler Richtung auf den auf einer Auflage angeordneten Rollenkörper 27 ausgeübt wird. Besonders bevorzugt weist der Rollenkörper 27 mit einem Durchmesser von 18,5 mm eine maximale Abplattung von 0,12 mm nach 8 Stunden Stillstand auf.

[0077] Die Laufflächen 29 der Deckenführung 2 weisen jeweils einen Elastizitätsmodul bei 20°C von 60 kN/mm² bis 80 kN/mm², bevorzugt ca. 70 kN/mm², nach EN ISO 6892-1:2009, einen Schubmodul bei 20°C von 10 bis 40 kN/mm², bevorzugt ca. 27 kN/mm², nach DIN 53445 und eine Dichte bei 20°C von 2 g/cm³ bis 5 g/cm³, bevorzugt ca. 3 g/cm³, nach ISO 1183 auf. Ferner weisen die Laufflächen 29 eine Oberflächenrauhigkeit Ra von 0,05 μm bis 1,0 μm, bevorzugt ca. 0,5 μm, gemessen nach DIN EN ISO 4287 auf.

[0078] Die Laufflächen 29 weisen jeweils Innenflächenrillungen im Wesentlichen parallel zu der Verschieberichtung V des Türflügelelements 3 auf. Als Innenflächenrillung ist eine im Wesentlichen linienförmige Oberflächenstruktur aus einer Vielzahl parallel linienförmiger Vertiefungen auf der Laufläche 29 zu verstehen, welche durch das Strangpressverfahren erzeugt wird. Weiterhin sind die Laufflächen 29 der Deckenführung 2 einstückig mit der Deckenführung 2 ausgebildet. Somit ist ein kompakter Aufbau möglich. Ferner werden potentielle Montagefehler, wie z.B. Schiefstellungen eliminiert, wodurch Geräusche beim Rollen der Türflügelelemente 3 in der Deckenführung 2 verursacht werden könnten. Die Deckenführung 2 weist eine Dichte von 2 bis 5 g/cm³, bevorzugt ca. 3 g/cm³, nach ISO 1183 auf. Die Laufflächen 29 der Deckenführung 2 weisen jeweils eine Laufflächenbreite auf, welche größer als die Rollenflächenbreite der Rollenflächen 28 der Rollenkörper 27 ist.

[0079] Wie aus Fig. 9 ersichtlich, ist jeder der Rollenkörper 27 mittels eines geschlossenen Kugellagers 31 am Rollenwagen 23 gelagert. Der Rollenkörper 27 weist eine Achse 32 mit zwei Rändelungen 33 auf, mittels welcher der Rollenkörper 27 am Grundkörper 24 des Rollenwagens 23 verdrehfest befestigt ist (Fig. 9 und 10). Die Achse 32 dient auch als Innenring des Kugellagers 31. Das Kugellager 31 weist sieben Kugeln auf, welche etwa mit Lithiumseifenfett befettet sind.

[0080] Ferner beträgt die statische Flächenpressung zwischen der Laufrolle 27 und der Lauffläche 29 der Deckenführung 2 mindestens 2.5 kg/mm², bevorzugt zwischen 2,5 und 100 kg/mm². Dies führt zu einem Beseitigen von Quietschgeräuschen beim Verfahren der Türflügelelemente 3.

[0081] Die durchschnittliche Verfahrgeschwindigkeit des Rollenwagens 23 beträgt zwischen 0,05 und 0,5 m/s, bevorzugt ca. 0,2 m/s.

[0082] Weiterhin beträgt das Anschubmoment eines Türflügelelements 3, welches in der Deckenführung 2 verschiebbar angeordnet ist, wie z.B. das Türflügelelement 3b von Fig. 1, 8N bis 15 N, bevorzugt 10N bis 14N, insbesondere bevorzugt 11N bis 13 N bei einem Gewicht des Türflügelelements 3b von 175kg. Nach 100000 Zyklen beträgt das Anschubmoment des Türflügelelements 3b weiterhin 15N bis 21 N, bevorzugt 16N bis 20N, insbesondere bevorzugt 17N bis 19N.

[0083] Durch den erfindungsgemäßen Rollenwagen 23 sowie die erfindungsgemäßen Laufflächen 29 der Deckenführung 2 wird eine geräuscharme Bewegung des Schiebewandsystems 1 ermöglicht. Der Abrieb der Rollenkörper 27 wird verringert und damit wird die Standzeit des Rollenwagens 23 deutlich erhöht. Zusätzlich kann ein Quietschen der Laufrollen 25 eliminiert werden.

[0084] Fig. 11 zeigt eine Sicherungsvorrichtung 35 in einem im Schiebewandsystem 1 verbauten Zustand, wobei die Sicherungsvorrichtung 35 bei einem Glasbruch zum Halten des Befestigungsprofils 4 des Türflügelelements 3 dient. Fig. 12 zeigt eine Explosionsansicht der Sicherungsvorrichtung 35. Die Sicherungsvorrichtung 35 kann beispielsweise beim vierten Türflügelelement 3d des Schiebewandsystems 1 der Fig. 1 benutzt werden.

[0085] Die Sicherungsvorrichtung 35 weist ein Drehlager 36, ein Drehelement 38 und ein Sicherungselement 40 auf. Das Drehlager 36 ist in der Deckenführung 2 fest angeordnet. Das Drehelement 38 ist mit dem Türflügelelement 3 verbunden und im Drehlager 36 gelagert. Insbesondere ist das Drehlager 36 mittels Schrauben 46 in die Deckenführung 2 eingeschraubt.

[0086] Ferner weist das Drehlager 36 eine Hülse 37 auf, in welcher das Drehelement 38 drehbar angeordnet ist. Das Drehelement 38 ist als Drehzapfen mit einem zylindrischen Bereich und einem balligen Bereich 39 ausgebildet, wobei der ballige Bereich 39 drehbar im Drehlager 36 positioniert ist. Insbesondere weist die Sicherungsvorrichtung 35 ein als Klotz ausgebildetes Halterungselement 43 auf, welches auf das Drehelement 38 mittels einer Mutter 44 aufgeschraubt

und in einer Nut des Befestigungsprofils 4 angeordnet ist. Die Mutter 44 ist durch eine Keilsicherungsscheibe 45 gegen Lösen gesichert. Durch das Sicherungselement 40 wird eine vertikale Bewegung des Drehelements 38 relativ zum Drehlager 36 verhindert. Gleichzeitig ist die Verdrehung des Türflügelelements 3d durch das Drehlager 36 freigegeben. [0087] Das Sicherungselement 40 ist als Klemmblech ausgebildet, welches in eine Aufnahme 22 der Deckenführung 2 einschiebbar angeordnet ist und das Drehelement 38, insbesondere den zylindrischen Bereich des Drehelements 35, umschließt. Hierzu weist das Klemmblech eine erste Ausnehmung 41 auf, welche teilkreisförmig und kleiner als der ballige Bereich 39 ausgebildet ist, so dass der ballige Bereich 39 nicht durch die erste Ausnehmung 41 ragt (Fig. 12). So verhindert das Klemmblech durch einen bei einem Glasbruch entstehenden Formschluss zwischen dem Klemmblech und dem Drehelement 38, dass das Drehelement 38 mit dem Halterungselement 43 und das damit verbundene Befestigungsprofil 4 runterfallen.

[0088] Das Sicherungselement 40 weist ferner eine zweite Ausnehmung 42 auf, um das Montageverfahren des Sicherungselements 40 in der Aufnahme 22 der Deckenführung 2 zu erleichtern (Fig. 12). Die zweite Ausnehmung 42 ist ebenso teilkreisförmig wie die erste Ausnehmung 41 ausgebildet, weist aber einen kleineren Durchmesser als die erste Ausnehmung 41 auf. Die erste Ausnehmung 41 und die zweite Ausnehmung 42 sind über einen Schlitz verbunden. Die Aufnahme 22 der Deckenführung 2 ist als Nut ausgebildet.

10

20

30

35

50

[0089] Weiterhin ist das Sicherungselement 40 derart gestaltet, dass das Sicherungselement 40 ausgedehnt werden muss, bevor es in die Aufnahme 22 eingeschoben wird. Im montierten Zustand wird eine Aufweitung des Sicherungselements 40 durch die Außenseiten der Aufnahme 22 verhindert. Somit übt das Sicherungselement 40 Druck auf das Drehelement 35 aus und wirkt als ein Schnappverschluss.

[0090] Das Einschieben des Sicherungselements 40 in die Aufnahme 22 wird durch das Vorsehen von zwei nach außen gerichteten, mit einem Winkel von 20 Grad in Bezug auf die Einschubrichtung abgefasten Flächen 96 an einem der Deckenführung 2 zugewandten Ende des Sicherungselements 40 erleichtert (Fig. 12).

[0091] Um eine sichere Befestigung einer Glasscheibe 34 an einem Türflügelelement 3 zu bewirken, ist die Glasscheibe 34 mit der oberen und der unteren Türschiene 5 kraftschlüssig und stoffschlüssig verbunden (Fig. 13 bis 15). Die Glasscheibe 34 kann beispielsweise aus hochsicherem Verbund-Sicherheitsglas bestehen, wodurch das Sicherheitsniveau auf ein Höchstmaß erhöht wird. Außerdem bietet das Verbund-Sicherheitsglas Wärmeschutz durch einen niedrigen Wärmedurchgangskoeffizienten.

[0092] Hierbei ist die Glasscheibe 34 beiderseits der Mittellinie M, wie in Fig. 17 gezeigt, an zwei Stellen entlang der Breite der Glasscheibe 34 mit den Türschienen 5 stoffschlüssig verbunden. Insbesondere ist die Glasscheibe 34 in die Türschiene 5 eingeklemmt und mit der Türschiene 5 verklebt. Zur Herstellung der Klemmverbindung zwischen der Türschiene 5 und der Glasscheibe 34 können an sich bekannte Glasklemmen verwendet werden. Als Mittellinie M ist die Mittelachse des Türflügelelements 3 in vertikaler Richtung zu verstehen, welche senkrecht zu der Verschieberichtung V ist

[0093] Die Türschiene 5 weist zwei Einfüllöffnungen 50 auf, welche in zwei Klebstoffkammern 47 münden und zum Einfüllen des Klebstoffes dienen. Alternativ können beide Klebstoffkammern 47 über eine einzige Einlassöffnung bzw. Einfüllöffnung mit Klebstoff versorgt werden. In den Figuren 13 bis 15 ist nur ein Teilbereich eines Türflügelelements 3 gezeigt, wobei nur eine Klebstoffkammer 47 mit der entsprechenden Einlassöffnung 50 ersichtlich ist.

[0094] Zwischen der Türschiene 2 und der Glasscheibe 34 ist eine Zwischenlage 48 eingelegt, wobei die Zwischenlage 48 zwei kanalförmig ausgebildete Ausnehmungen 49 aufweist (Fig. 13 und 16). Die Klebstoffkammern 47 sind durch die Ausnehmungen 49 der Zwischenlage 48 sowie die zu den Klebstoffkammern 47 hin gerichteten Oberflächen der Türschiene 2 und der Glasscheibe 34 definiert. Weiterhin erstrecken sich die Klebstoffkammern 47 parallel zu den Türschienen 5. Die Klebstoffkammern 47 sind nahe den vertikalen Enden des Türflügelelements 3 positioniert.

[0095] Die Zwischenlage 48, welche in Fig. 16 separat dargestellt ist, ist einstückig ausgebildet und weist an ihren distalen Enden jeweils eine Ausstanzung zur Ausbildung der Klebstoffkammern 47 auf.

[0096] Um eine symmetrische und gleichförmige Adhäsionskraftverteilung bereitzustellen, sind die zwei Klebstoffkammern 47 im Wesentlichen identisch ausgeformt.

[0097] Jede Klebstoffkammer 47 weist bevorzugt ein Volumen zwischen 0,5 bis 30 cm³, insbesondere bevorzugt zwischen 1 bis 10 cm³ auf. Mittels dieses Volumens wird ein hinreichend großes Klebstoffreservoir für eine ausreichend starke Adhäsionsverbindung zur Verfügung gestellt. Die Klebstoffkammern 47 weisen jeweils eine Länge in Verschieberichtung des Türflügelelements 3 von 0,05 bis 0,2 mal der Breite z des Türflügelelements 3 auf. Hierdurch wird eine für die Verklebung der Glasscheibe 34 hinreichende Verklebungslänge und Adhäsionskraftverteilung bereitgestellt.

[0098] Bevorzugt umfasst die Türschiene 5 wenigstens zwei, insbesondere bevorzugt wenigstens drei Krafteinleitungspunkte 89, welche als Schraubverbindung ausgebildet sind und einen horizontalen Abstand voneinander aufweisen. In den Figuren 13 und 15 sind zwei solche Krafteinleitungspunkte 89 dargestellt. Bevorzugt beträgt die Klemmkraft, die über einen Krafteinleitungspunkt 89 über die Zwischenlage 48 auf die Glasscheibe 34 einwirkt, zwischen 2.500 bis 15.000N, insbesondere bevorzugt zwischen 5.000 bis 10.000N.

[0099] Es ist ganz besonders bevorzugt, dass ein Krafteinleitungspunkt 89 und eine Klebstoffkammer 47 einen Überdeckungsbereich aufweisen, so dass der Krafteinleitungspunkt 89 im Bereich der Klebstoffkammer 47 angeordnet ist

(Fig. 13). Hierdurch kann eine besonders vorteilhafte und sichere Abdichtung der Klebstoffkammer 47 erfolgen.

[0100] Die Zwischenlage 48 weist bevorzugt eine streifenartige Ausbildung mit rechteckigem Querschnitt auf. Hierdurch ist insbesondere die Realisierung von schmalen Glasklemmen mit geringer Aufbauhöhe möglich. Insbesondere bevorzugt weist die Zwischenlage 48 eine Materialstärke zwischen 0,5 und 10 mm, insbesondere bevorzugt zwischen 1 und 7,5 mm auf. Bei dieser Materialstärke bildet sich eine hinreichende Höhe der Klebstoffkammern 47 aus, die ein gesichertes Fließen und Verteilen eines Klebstoffes in den Klebstoffkammern 47 gewährleistet. Ferner kann bei diesen Materialstärken eine hinreichend gute Druckverteilung beim Kraftschluss auf die Glasscheibe 34 bereitgestellt werden. [0101] Die Grundform der Klebstoffkammern 47 ist, wie schon beschrieben, bevorzugt durch eine Ausstanzung in der Zwischenlage 48 definiert. Grundsätzlich sind hier eine Vielzahl von Grundformen für die Klebstoffkammern 47 denkbar, wie beispielsweise eine Rechteckform, eine Quadratform, Ellipsenform oder Kreisform.

[0102] Erfindungsgemäß ist die Grundform der Klebstoffkammern 47 rechteckig symmetrisch zur Mittenlängsachse der streifenartigen Zwischenlage 48 ausgebildet. Hierdurch wird eine im Wesentlichen gleiche Dichtwirkung beidseitig der Längserstreckung der Klebstoffkammer 47 erreicht. Insbesondere bei in der Grundform rechteckig ausgeformten Klebstoffkammern 47 ist das Verhältnis der Breite der streifenartigen Zwischenlage 48 zur Breite der rechteckigen Klebstoffkammer 47 zwischen 1,5 bis 3,5 bevorzugt zwischen 2 bis 3. Hierdurch wird zum einen eine hinreichende Dichtwirkung in Bezug auf die Klebstoffkammern 47 bereitgestellt und zum anderen auch eine hinreichende Druckverteilung beim Kraftschluss auf die Glasscheibe 34 sichergestellt.

[0103] Es ist bevorzugt, dass sich die Zwischenlage 47 über 80% bis 100%, insbesondere bevorzugt über 85% bis 95%, der gesamten Türflügelbreite eines Türflügelelements 3 erstreckt.

[0104] Es ist ferner vorteilhaft, dass sich die Türschiene über 80% bis 100%, insbesondere über 90% bis 100% der gesamten Türflügelbreite eines Türflügelelements 3 erstreckt.

20

45

50

55

[0105] Die Zwischenlage 48 kann zumindest einseitig eine selbstklebende Schicht aufweisen, welche ein einfaches Fixieren der Zwischenlage 48 an der Türschiene 5 erlaubt. Ferner trägt diese Verklebung zu einer zusätzlichen Abdichtung der Zwischenlage 48 gegenüber der Türschiene 5 bei, insbesondere beim Einspritzen des Klebstoffes in die von der Zwischenlage 48 mitdefinierten Klebstoffkammern 47. Selbstverständlich ist es auch möglich, jeweils eine selbstklebende Schicht auf zwei Seiten der Zwischenlage 48 vorzusehen.

[0106] Ferner ist es denkbar, die Zwischenlage 48 durch einen separaten Klebstoff an der Türschiene 5 zu fixieren oder eine selbstklebende Schicht, beispielsweise in Form eines doppelseitigen Klebebandes, an der Türschiene 5 vorzusehen.

[0107] Um eine optimierte Druckverteilung und eine Reduktion von lokalen Druckspitzen von der Türschiene 5 auf die Oberfläche der Glasscheibe 34 zu erzielen, weist die Zwischenlage 48 eine Kompressibilität von 5% bis 25%, besonders bevorzugt von 5% bis 15%, gemessen nach ASTM F36/J auf.

[0108] Um die Druckverteilung weiter zu optimieren, weist die Zwischenlage 48 eine Rückfederung von 30% bis 60%, bevorzugt 40% bis 50%, gemessen nach ASTM F36/J auf.

[0109] Zum Herstellen der Klebverbindung wird ein Klebstoff benutzt, dessen Viskosität in einem nicht ausgehärteten Zustand, also zu Beginn des Injektionsprozesses, bei 20°C zwischen 75.000 bis 125.000 mPas, bevorzugt zwischen 80.000 bis 110.000 mPas, gemessen nach DIN EN 12092 beträgt.

[0110] Die Türschiene 5 weist zwei Auslassöffnungen 90 auf, welche zum Entlüften der Klebstoffkammern 47 und zum Anzeigen des Füllstands des Klebstoffes dienen. Nicht dargestellte Verschlusselemente sind zum Verschließen der Einfüllöffnungen 50 und der Auslassöffnungen 90 im Schiebewandsystem 1 vorgesehen.

[0111] Die Geometrie der Klebstoffkammern 47 sowie der Einfüllöffnungen 50 und der Auslassöffnungen 90 sind bevorzugt auf die rheologischen Eigenschaften des Klebstoffes, insbesondere zum Injektionszeitpunkt hin angepasst, so dass eine optimale Benetzung der zu verklebenden Flächen, vollständiges Füllen der Klebstoffkammern 47 sowie eine leichte und sichere Handhabung der Klebstoffinjektion für den Benutzer innerhalb der offenen Zeit des Klebstoffes gewährleistet ist. Als offene Zeit wird die maximale Zeitspanne verstanden, innerhalb der die Fügeteile geklebt werden müssen. Vorteilhafterweise besitzt ein Klebstoff, welcher für das erfindungsgemäße Schiebewandsystem 1 und das erfindungsgemäße Verfahren zur Befestigung einer Glasscheibe 34 in einem Schiebewandsystem 1 eine offene Zeit zwischen 1 bis 10 min, bevorzugt zwischen 2 bis 5 min.

[0112] Ferner weist der verwendete Klebstoff bevorzugt eine Zugscherfestigkeit nach etwa 5 bis 15 min, bevorzugt nach etwa 7 bis 10 min, von wenigstens ca. 5 MPa, bevorzugt wenigstens ca. 7 MPa bei 23°C gemessen nach ASTM D 1002 auf. Hierdurch wird gewährleistet, dass eine zeitnahe Weiterverarbeitung bzw. Installation des geklebten Türflügelelements 3 erfolgen kann.

[0113] Um neben dem Kraftschluss auch eine hinreichende Adhäsionswirkung zum Tragen der Glasscheibe 34 in bzw. an der Türschiene 3 bereitzustellen, weist der Klebstoff im ausgehärteten Zustand eine Zugscherfestigkeit von mindestens 10 MPa, besonders bevorzugt mindestens 20 MPa, gemessen nach ASTM D 1002 auf einem Aluminiumsubstrat auf.

[0114] Die Türschiene weist bevorzugt eine zu den Klebstoffkammern 47 hin gerichtete Oberfläche mit einer Oberflächenrauhigkeit R_a von 0,5 μ m bis 5 μ m, bevorzugt von 1 μ m bis 2,5 μ m, gemessen nach DIN EN ISO 4287 auf,

wodurch eine verbesserte Adhäsionswirkung des Klebstoffes auf dem Substrat bewirkt wird.

20

50

[0115] Jede der Auslassöffnungen 90 ist am vertikalen Ende des Türflügelelements 3, also an seiner vertikalen Stirnseite, angeordnet. Es wird hierdurch möglich, dass bei der Injektion des Klebstoffes, der Austritt des Klebstoffes nach vollständiger Füllung der Klebstoffkammer an der Stirnseite des Türflügelelements 3 beobachtet werden kann. Insbesondere aus ergonomischen Aspekten des Klebstoffinjektionsprozesses, hat sich diese Anordnung der Auslassöffnung 90 als vorteilhaft erwiesen.

[0116] Die Einfüllöffnung 50 und die Auslassöffnung 90 für jede Klebstoffkammer 47 sind an den distalen Enden der kanalförmigen Klebstoffkammer 47 angeordnet. Hierdurch wird insbesondere ein vollständiges Füllen der Klebstoffkammern 47 mit Klebstoff sichergestellt.

[0117] Es ist ferner bevorzugt, dass die Auslassöffnungen 90 in der Zwischenlage 48 ausgeformt sind, so dass kein Durchsatz in der Türschiene 5 vorgesehen werden muss. Somit wird dem Benutzer nur die Einfüllöffnungen 50, bevorzugt frontseitig an der Türschiene 5 bereitgestellt. Dies erhöht die Bedien- und Montagesicherheit des Systems.

[0118] Um diese weiter zu verbessern, kann vorgesehen werden, dass die Auslassöffnungen 90 und die Einfüllöffnungen 50 voneinander verschiedene Querschnittsformen aufweisen, so dass eine Kopplung mit einer Klebstoffapplikationsvorrichtung ausschließlich über die Einfüllöffnungen 50 ermöglicht wird.

[0119] Die Auslassöffnungen 90 sind jeweils in Bezug auf die Klebstoffkammern 47 verjüngt. Vorteilhafterweise ist jede der Auslassöffnungen 90 als kanalförmiger Schlitz in der Zwischenlage 48 ausgebildet.

[0120] Die Öffnungsbreite des Schlitzes beträgt vorzugsweise in Bezug auf die Breite der durch die Ausstanzung in der Zwischenlage 48 definierten Grundform der Klebstoffkammer 47 zwischen 0,1 bis 0,5, bevorzugt zwischen 0,15 bis 0,25. Hierdurch wird beim Füllen der Klebstoffkammer 47 und beim Austritt des Klebstoffes diesem eine hinreichend großes hydraulischer Widerstand entgegengesetzt, der ein vollständiges Ausfüllen der Klebstoffkammer 47 begünstigt und gleichzeitig dem Benutzer durch den erhöhten Widerstand bereits vor dem Austritt des Klebstoffes aus der Auslassöffnung 90 haptisch signalisieren kann, dass der Klebstoffinjektionsprozess kurz vor dem Abschluss steht.

[0121] Um eine hinreichende Reaktionszeit für den Benutzer zwischen der voran beschriebenen Widerstandserhöhung und dem Austritt des Klebstoffes aus der Auslassöffnung 90 bereit zu stellen, weist die Länge der kanalartigen Auslassöffnung 90 bezogen auf die Länge der kanalartigen Klebstoffkammern 47 ein Verhältnis von 0,1 bis 0,75, bevorzugt von 0,25 bis 0,5 auf.

[0122] Nachfolgend wird das Befestigungsverfahren einer Glasscheibe 34 im erfindungsgemäßen Schiebewandsystem 1 erläutert.

[0123] In einem ersten Schritt wird eine nicht tragende Verbindung zwischen der Türschiene 5 und der Glasscheibe 34 durch die Befestigung der Türschiene 5 an der Glasscheibe 34 mit einer geringen, nur der Lagesicherung der Türschiene 5 an der Glasscheibe 34 dienenden Klemmkraft hergestellt, nachdem die Zwischenlage 48, in welcher die zwei Ausnehmungen 49 ausgestanzt worden sind, zwischen der Türschiene 5 und der Glasscheibe 34 eingelegt worden ist. In einem zweiten Schritt wird eine tragende Verbindung zwischen der Türschiene 5 und der Glasscheibe 34 durch eine Verklebung der Türschiene 5 mit der Glasscheibe 34 erzielt.

[0124] Zum besseren Verständnis des zweiten Schrittes des Befestigungsverfahrens ist in den Fig. 13 bis 15 ein Klebstoffinjektor 51 dargestellt. Durch die dargestellte Einlassöffnung 50 wird Klebstoff, z.B. ein Zweikomponentenkleber, mittels des Klebstoffinjektors 51 in die Klebstoffkammer 47 injiziert. Der Klebstoff verteilt sich selbstständig über die gesamte Klebstoffkammer 47. Das Injizieren des Klebstoffes endet wenn Klebstoff aus der Auslassöffnung 90 austritt. Anschließend werden die Einlassöffnung 50 und die Auslassöffnung 90 mit nicht gezeigten Verschlusselementen verschlossen und mittels Blenden, welche an der Türschiene 5 angebracht werden, elegant verdeckt.

[0125] Durch die Verklebung der Glasscheibe 34 mit der Türschiene 5 ist die Funktionalität des Türflügelelements 3 auf lange Zeit gesichert. Ferner beschleunigt die einfache Zuführung des Klebstoffes die Montage.

[0126] Fig. 17 und 18 zeigen einen Teilbereich des dritten Türflügelelements 3c des Schiebwandsystems 1 gemäß der vorliegenden Erfindung, wobei im Türflügelelement 3c ein integrierter Türbetätiger 52 vorgesehen ist.

[0127] Vorzugsweise ist der Türbetätiger 52 in die Türschiene 5 integriert und über einen Hebelarm 53 mit einem Gleitelement 54 verbunden, wobei das Gleitelement 54 im Befestigungsprofil 4 in einer Führung 55 geführt ist. Alternativ kann der Türbetätiger 52 im Befestigungsprofil 4 und das Gleitelement 54 in der Türschiene 5 angeordnet sein. Das Türflügelelement 3c ist in den Fig. 17 und 18 im geschlossenen Zustand gezeigt.

[0128] Die Führung 55, welche einstückig mit der Türschiene 5 ausgebildet ist, ist an einem der Deckenführung 2 abgewandten Ende des Befestigungsprofils 4 angeordnet. Insbesondere ist die Führung 55 als Nut ausgebildet.

[0129] Das Befestigungsprofil 4, die Führung 55, das Gleitelement 54 und die Deckenführung 2 sind auf der Mittellinie M angeordnet. Dadurch ist ein kompakter Aufbau möglich.

[0130] Wie aus Fig. 18 ersichtlich, weist das Türflügelelement 3c eine erste Drehachse 56 auf, um welche die Türschiene 5 in Bezug auf das Befestigungsprofil 4 schwenkbar angeordnet ist. Die erste Drehachse 56 ist im Befestigungsprofil 4 und in der Türschiene 5 kraftschlüssig angeordnet. Insbesondere ist die Drehachse 56 in das Befestigungsprofil 4 und in die Türschiene 5 eingeklemmt. Die Drehachse 56 ist vertikal ausgerichtet.

[0131] Fig. 19 zeigt eine perspektivische Ansicht des Türflügelelements 3c, wobei die Türschiene 5 in Bezug auf das

Befestigungselement 4 in einer geschwenkten Position gezeigt ist. Hierbei weist der Türbetätiger 52 vorzugsweise einen Öffnungswinkel a von 180°und einen Öffnungswinkel b von 90°um eine Nulllage des Türbetätigers 52 auf. Als Nulllage ist die Lage zu verstehen, in welcher das Befestigungsprofil 4, die Türschiene 5, der Türbetätiger 52 und der Hebelarm 54 auf der gemeinsamen Mittellinie M liegen. In der Nulllage weist der Türbetätiger 52 einen Öffnungswinkel von 0 Grad auf und das Türflügelelement 3c befindet sich im geschlossen Zustand. Mit anderen Worten kann die Türschiene 5 des Türflügelelements 3c um 90 Grad in beide Richtungen in Bezug auf das Befestigungsprofil 4 verdreht werden.

[0132] Die Nulllage des Türbetätigers 52 ist einstellbar. Vorzugsweise kann die Nulllage über ein Spiel von in der Türschiene 5 angeordneten Bauteilen des Türbetätigers 52 auf einen Öffnungswinkel von 0 Grad eingestellt werden. Um das Türflügelelement 3c in das Schiebewandsystem 1 zu montieren, wird zuerst die Deckenführung 2 an einer Decke des Gebäudes angebracht. Danach wird das Gleitelement 54 in die Führung 55 eingeschoben, wobei das Gleitelement 54 in einem montierten Zustand in der Führung 55 verschiebbar angeordnet ist. Nachfolgend wird das Türflügelelement 3c in die Deckenführung 2 eingeschoben. Anschließend wird der Türbetätiger 52 über den Hebelarm 53 mit dem Gleitelement 54 verbunden. Alternativ können das Anbringen der Deckenführung 2 an der Decke und das Einschieben des Gleitelements 54 in die Führung 55 in umgekehrter Reihenfolge erfolgen. Außerdem kann das Einschieben des Gleitelements 54 in die Führung 55 nach dem Einschieben des Türflügelelements 3 in die Deckenführung durchgeführt werden.

10

20

30

35

40

45

50

55

[0133] Um in der Lage zu sein, die Funktionsweise des Türflügelelements 3c je Anwendung anzupassen, weist das dritte Türflügelelement 3c, wie schon erwähnt, einen zweiseitigen Verriegelungsmechanismus 6 auf. Durch den zweiseitigen Verriegelungsmechanismus 6 kann die Verschwenkbarkeit der Türschiene 5 in Bezug auf das Befestigungsprofil 4 und/oder die Verschiebbarkeit des Türflügelelements 3c in Bezug auf die Deckenführung 2 verhindert werden.

[0134] Fig. 20 zeigt eine Explosionsansicht des Verriegelungsmechanismus 6. Der genaue Aufbau des Verriegelungsmechanismus 6 ist in Fig. 20 dargestellt.

[0135] Der Verriegelungsmechanismus 6 ist mit einem Verriegelungselement 57 versehen, welches zwischen einer ersten Position A, einer zweiten Position B und einer dritten Position C am Befestigungsprofil 4 bewegbar angeordnet ist. Die erste Position A, die zweite Position B und die dritte Position C sind in den Fig. 22 bis 24 gezeigt. Alternativ kann der Verriegelungsmechanismus 6 in das Befestigungsprofil 4 bewegbar integriert sein. Durch den erfindungsgemäßen Verriegelungsmechanismus 6 wird eine Verriegelung zwischen dem Befestigungsprofil 4 und der Deckenführung 2 und/oder zwischen dem Befestigungsprofil 4 und der Türschiene 5 ermöglicht. Insbesondere ist in der ersten Position A des Verriegelungselements 45 die Verschiebbarkeit des Türflügelelements 3 in der Deckenführung 2 blockiert. In der zweiten Position B des Verriegelungselements 57 ist die Verschwenkbarkeit der Türschiene 5 in Bezug auf das Befestigungsprofil 4 unterbunden. Ferner sind in der dritten Position C des Verriegelungselements 57 die Verschiebbarkeit und die Verschwenkbarkeit des Türflügelelements in der Deckenführung 2 gehemmt.

[0136] Vorzugsweise ist das Verriegelungselement 57 drehbar um eine zweite Drehachse R am Befestigungselement 4 angeordnet, wobei die zweite Drehachse R senkrecht zu der größten Fläche des Türflügelelements 3c bzw. zur Mittellinie M ist. Somit kann das Verriegelungselement 57 durch Verdrehung in die erste Position A, die zweite Position B und die dritte Position C überführt werden. Besonders bevorzugt umfasst das Verriegelungselement 57 ein Teilzahnradelement 59, welches unmittelbar durch eine Schnecke 60 betätigbar ist. Durch die Selbsthemmung der Schnecke 60 ist eine sichere Verriegelung möglich. Des Weiteren weist das Verriegelungselement 57 einen Verstärkungsbereich 86 auf, wodurch eine sichere und stabile Verriegelung bereitgestellt ist.

[0137] Der Verriegelungsmechanismus 6 umfasst ferner ein erstes Gehäusebauteil 61, ein zweites Gehäusebauteil 62 und ein drittes Gehäusebauteil 63.

[0138] Das erste Gehäusebauteil 61 ist mit der Deckenführung 2 außerhalb der Deckenführung 2 verbunden. Insbesondere weist das erste Gehäusebauteil 61 einen Anschlag (nicht gezeigt) auf, an welchem das Teilzahnradelement 59 und der Verstärkungsbereich 86 in der ersten Position A anliegen (Fig. 22). Der Verstärkungsbereich 86 weist ferner Gleiteigenschaften auf, um zumindest an einer Innenfläche des ersten Gehäusebauteils 61, insbesondere einer sich in Richtung der Breite z des Türflügelelements 3 erstreckenden Innenfläche, gleiten zu können. Somit wird das Verriegelungselement 45 auf eine Art im ersten Gehäusebauteil 61 geführt.

[0139] Das Verriegelungselement 57 ragt in der ersten Position A über das zweite Gehäusebauteil. Das als Teilzahnradelement 59 ausgebildete Verriegelungselement 57 weist einen Radius r auf, so dass ein Verhältnis zwischen dem Radius r und einer Länge x in vertikaler Richtung, welche sich zwischen der Drehachse R und einer dem ersten Gehäusebauteil 61 zugewandten Außenfläche des dritten Gehäusebauteils 63 erstreckt, in einem Bereich von 2 bis 3 liegt (Fig. 21). Dadurch ist eine stabile Verriegelung in der ersten Position A des Verriegelungselements 57 möglich.

[0140] Das zweite Gehäusebauteil 62 ist außen mit der Türschiene 5 verbunden und weist eine Gehäusenut 64 auf, in welche das Verriegelungselement 57 in der zweiten Position B eingreift (Fig. 23). Um eine stabile Verriegelung in der zweiten Position B sicherzustellen, weist das Verriegelungselement 57 einen Armbereich 65 auf, welcher in die Gehäusenut 64 des zweiten Gehäusebauteils 62 eingreift. In der zweiten Position B umgreift der Armbereich 65 einen Stift 66, welcher parallel zur zweiten Drehachse R des Verriegelungselements 57 im zweiten Gehäusebauteil 62 angeordnet ist. Das Verriegelungselement 57 ist derart ausgebildet, dass in der dritten Position C das Verriegelungselement 57 teilweise

in das erste Gehäusebauteil 61 und teilweise in das zweite Gehäusebauteil 62 eingreift (Fig. 24). Das dritte Gehäusebauteil 63 ist am Befestigungsprofil 4 angeordnet und dient als Aufnahme für das Verriegelungselement 57 und die Schnecke 60. Um einen kompakten Aufbau des dritten Gehäusebauteils 63 zu ermöglichen, ist die Drehachse R im dritten Gehäusebauteil 63 seitlich in Richtung der Breite z des Türflügelelements 3 versetzt angeordnet (Fig. 21).

[0141] Um den Verriegelungszustand des Türflügelelements 3c zu ändern, wird die Schnecke 60 mittels eines Werkzeugs betätigt. Dafür ist im zweiten Gehäusebauteil 62 eine Zugangsausnehmung 83 vorgesehen, durch welche Zugang auf die Schnecke 60 gewährt wird.

[0142] Zum Anzeigen des Verriegelungszustands des Türflügelelements 3c ist der Verriegelungsmechanismus 6 mit einer Anzeigeeinrichtung 58 versehen, welche mit dem Verriegelungselement 57 teilweise gekoppelt ist. Der Verriegelungsmechanismus 6 wird anhand der Fig. 20 bis 24 beschrieben.

10

20

30

35

50

[0143] Die teilweise Kopplung der Anzeigeeinrichtung 58 mit dem Verriegelungselement 57 bedeutet, dass nicht alle Bauteile der Anzeigeeinrichtung 58 mit dem Verriegelungselement 57 verbunden sind. Insbesondere weist die Anzeigeeinrichtung 58 ein erstes Anzeigeelement 67 und ein zweites Anzeigeelement 68 auf. Das erste Anzeigeelement 67 ist am Verriegelungselement 57 drehbar angeordnet und das zweite Anzeigeelement 68 ist drehfest mit dem Verriegelungselement 57 gekoppelt. Ferner überlappen sich teilweise das erste Anzeigeelement 67 und das zweite Anzeigeelement 68. Diese Überlappung ergibt sich durch die Form des ersten Anzeigeelements 67 und des zweiten Anzeigeelements 68. Insbesondere sind das erste Anzeigeelement 67 als eine L-förmige Platte und das zweite Anzeigeelement 68 als eine im Wesentlichen rechteckige Platte ausgebildet. Um ein einfaches Erkennen des Verriegelungszustands zu ermöglichen, sind das erste Anzeigeelement 67 und das zweite Anzeigeelement 68 mit unterschiedlichen Farben versehen.

[0144] Die Anzeigeeinrichtung 58 weist ferner eine erste Ausnehmung 69 und eine zweite Ausnehmung 70 auf, welche im dritten Gehäusebauteil 63 angeordnet sind. Durch die erste Ausnehmung 69 und die zweite Ausnehmung 70 ist eine relative Lage zwischen dem ersten Anzeigeelement 67 und dem zweiten Anzeigeelement 68 gegeben. Das erste Anzeigeelement 67, welches in der Regel durch die erste Ausnehmung 69 und die zweite Ausnehmung 70 sichtbar ist, kann in der ersten Ausnehmung 57 und/oder in der zweiten Ausnehmung 58 durch das zweite Anzeigeelement 68 je nach Verriegelungszustand des Türflügelelements 3c verdeckt werden.

[0145] So ist in der ersten Position A des Verriegelungselements 57, welche einer Blockierung der Verschiebbarkeit des Türflügelelements 3c in der Deckenführung 2 entspricht, das erste Anzeigeelement 67 in der ersten Ausnehmung 69 durch das zweite Anzeigeelement 68 verdeckt und in der zweiten Ausnehmung 70 sichtbar (Fig. 22). In der zweiten Position B des Verriegelungselements 57, welche einer Blockierung der Verschwenkbarkeit der Türschiene 5 in Bezug auf das Befestigungsprofil 4 entspricht, ist das erste Anzeigeelement 67 in der zweiten Ausnehmung 70 durch das zweite Anzeigeelement 68 verdeckt und in der ersten Ausnehmung 69 sichtbar (Fig. 23). In der dritten Position C des Verriegelungselements 57 ist das erste Anzeigeelement 67 in der ersten Ausnehmung 69 und in der zweiten Ausnehmung 70 durch das zweite Anzeigeelement 68 verdeckt (Fig. 24). Dies bedeutet eine Blockierung der Verschiebbarkeit und der Verschwenkbarkeit des Türflügelelements 3c in der Deckenführung 2.

[0146] Um auf einfache und zuverlässige Art Zugluft zu verringern bzw. eine verbesserte Dichtheit des Schiebewandsystems 1 sicherzustellen und zugleich die Glaskanten der Glasscheiben 34 zu schützen, sind im Schiebwandsystem 1 mehrere Dichtungen in Form von Bürsten vorhanden. Insbesondere sind zwei Bürsten 71 jeweils beiderseits der Mittellinie M am Befestigungsprofil 4 eines Türflügelelements 3 angeordnet, um einen Spalt zu der Deckenführung 2 abzudichten (Fig. 25 und 26). Die Bürsten 71 sind die ersten Bürsten 71. Außerdem können zwei erste Bürsten 71 jeweils beiderseits der Mittellinie M an der unteren Türschiene 5 angeordnet sein, um einen Spalt zum Boden abzudichten (nicht gezeigt).

[0147] In Fig. 26 ist ein Teilbereich des dritten Türflügelelements 3c der Fig. 1 gezeigt. Wie aus Fig. 26 ersichtlich, sind zwei zweite Bürsten 72 jeweils beiderseits der Mittellinie M an einer Seitenfläche des Befestigungsprofils 4 angeordnet, um einen Spalt zu einem Befestigungsprofil 4 eines benachbarten Türflügelelements 3 abzudichten. Ferner sind zwei weitere zweite Bürsten 72 jeweils beiderseits der Mittellinie M an einer Seitenfläche der Türschiene 5 angeordnet, um einen Spalt zu einer Türschiene 5 eines benachbarten Türflügelelements 3 abzudichten. Bei Türflügelelementen 3, bei denen keine Verschwenkung der Türschiene 5 in Bezug auf das Befestigungsprofil 4 stattfindet, können die zweiten Bürsten 72 derselben Seite in Bezug auf die Mittellinie M einstückig ausgebildet sein. Vorzugsweise liegen die ersten Bürsten 71 und die zweiten Bürsten 72, welche auf derselben Seite in Bezug auf die Mittellinie M des Türflügelelements 3 angeordnet sind, innerhalb einer virtuellen Ebene E (Fig. 26). Dies bedeutet, dass die ersten Bürsten 71 und die zweiten Bürsten 72 derart angeordnet sind, dass ihre Mittelachsen eine Ebene definieren. Somit ist eine das Türflügelelement 3 umlaufende Bürstendichtung ausgebildet, wodurch z.B. ein verbesserter Schutz vor äußeren Einflüssen ermöglicht wird. Jede der ersten Bürsten 71 ist in einer ersten Bürstenaufnahme 74 verschiebbar angeordnet, wobei die erste Bürstenaufnahme 74 im Querschnitt einen U-förmigen Bereich 75 aufweist und lösbar am Befestigungsprofil 4 angeordnet ist. Das Befestigungsprofil 4 weist einen Kanal 76 auf, wobei die erste Bürstenaufnahme 74 mittels einer Kraftschlussverbindung 77, insbesondere einer Keilverbindung, im Kanal 76 angeordnet ist.

[0148] Weiterhin weist die erste Bürstenaufnahme 74 einen ersten Aufnahmebereich 78 und einen zweiten Aufnah-

mebereich 79 auf, wobei der erste Aufnahmebereich 78 in vertikaler Richtung oberhalb des zweiten Aufnahmebereichs 79 angeordnet ist. Vorzugsweise sind der erste Aufnahmebereich 78 und der zweite Aufnahmebereich 79 als Einschubkanäle ausgebildet. So können die ersten Bürsten 71 auf einfache Weise in das Türflügelelement 3 montiert und in vertikaler Richtung eingestellt werden, indem die ersten Bürsten 71 jeweils in den ersten Aufnahmebereich 78 oder in den zweiten Aufnahmebereich 79 eingeschoben werden.

[0149] Ferner sind die zweiten Bürsten 72 in zweiten Bürstenaufnahmen 85 verschiebbar am Befestigungsprofil 4 und an den Türschienen 5 des Türflügelelements 3 aufgenommen. Weiterhin sind die zweiten Bürstenaufnahmen 85 beiderseits der Mittellinie M angeordnet. Die zweiten Bürstenaufnahmen 85 sind als Nuten ausgebildet, in welchen die zweiten Bürsten 72 formschlüssig aufgenommen sind.

[0150] In den Fig. 27 und 28 sind eine erste Bürste 71 und eine zweite Bürste 72 gezeigt.

30

35

45

50

[0151] Die erste Bürste 71 umfasst einen ersten Basisbereich 81 und einen ersten Besatz 82, wobei der erste Besatz 82 im Querschnitt trapezförmig ausgebildet ist. Auf ähnliche Weise weist die zweite Bürste 72 einen zweiten Basisbereich 87 und einen zweiten Besatz 88 auf, welcher im Querschnitt ebenso trapezförmig ist.

[0152] Der erste Besatz 82 der ersten Bürste 71 ist aus Polyamid, bevorzugt Polyamid 6.6, insbesondere mit einem Faserdurchmesser des ersten Besatzes 82 von 0,025 mm bis 0,25 mm, ganz besonders bevorzugt von 0,05 bis 0,2 mm ausgebildet.

[0153] Der zweite Besatz 88 der zweiten Bürste 72 ist aus Polypropylen, insbesondere mit einem Faserdurchmesser des zweiten Besatzes 88 von 0,01 mm bis 0,2 mm, ganz besonders bevorzugt von 0,025 bis 0,1 mm, ausgebildet.

[0154] Der erste Besatz 82 kann bevorzugt eine erste Besatzschrägstellung von 0° bis 10° in Längsrichtung der ersten Bürste 71 und der zweite Besatz 88 eine zweite Besatzschrägstellung von 0° bis 10° in Längsrichtung der zweiten Bürste aufweisen. Somit kann die erste Bürste besser an unterschiedliche Formen der Deckenführung oder Temperaturschwankungen angepasst werden, um eine ausreichende Dichtheit zu gewährleisten. Ferner können potentielle, durch das Montieren verursachte Abweichungen der relativen Position zwischen dem Befestigungsprofil und der Deckenführung und/oder zwischen benachbarten Türflügelelementen durch die Schrägstellung des ersten Besatzes und/oder des zweiten Besatzes ausgeglichen werden.

[0155] In vorteilhafter Weise kann der erste Besatz 82 eine erste Besatzbreite von 2 mm bis 5 mm und eine erste Besatzhöhe von 1 cm bis 2,5 cm, bevorzugt von 1,5 cm bis 2 cm, aufweisen. Die zweite Bürste 72 weist eine zweite Besatzbreite bevorzugt zwischen 2 mm bis 10 mm, insbesondere bevorzugt zwischen 3 mm bis 7,5 mm, und eine zweite Besatzhöhe bevorzugt zwischen 1 cm bis 2,5 cm, insbesondere bevorzugt 1 cm bis 1,5 cm, auf.

[0156] Ferner bevorzugt ist die Biegesteifigkeit der ersten Bürste 71 größer als die Biegefestigkeit der zweiten Bürste 72. Die Borsten bzw. Fasern, aus welchen die Besätze 82, 88 der Bürsten 71, 72 ausgebildet sind, weisen eine ausreichende Biegesteifigkeit auf, um eine hinreichend gute Dichtheit der ersten Bürste 71 und der zweiten Bürste 72 gegenüber mechanischen oder pneumatischen Einflüssen aufzuweisen, anderseits jedoch keine Beschädigung der Oberflächen von Boden- und/oder Deckenführungen beim Bewegen der Türflügelelemente 3 in dem Schiebewandsystem 1 hervorzurufen. Dies ist wichtig, da insbesondere im Bodenbereich neben schleif- und kratzresistenten mineralischen Bodenbelägen auch vermehrt Werkstoffe, wie Holz zum Einsatz kommen, deren Schleif- und Kratzanfälligkeit deutlich höher ist. [0157] Besonders bevorzugt weist das Material des ersten Besatzes 82 eine erste Biegesteifigkeit zwischen 0,07 Nmm² und 0,3 Nmm², bevorzugt zwischen 0,07 Nmm² und 0,15 Nmm² auf. Das Material des zweiten Besatzes 88 weist eine zweite Biegesteifigkeit von 0,064 Nmm² auf. Die Messung der Biegesteifigkeit kann nach DIN EN ISO 22254 erfolgen.

[0158] Der Spalt zwischen den zwei benachbarten Türflügelelementen 3 kann mit der Zeit aufgrund der häufigen Benutzung bzw. zueinander relativen Bewegung sowie Wärmeausdehnung oder Wärmekontraktion variieren. Die Spalte können auch zwischen unterschiedlichen benachbarten Türflügelelementen unterschiedlich sein. Da das zweite Besatzmaterial der zweiten Bürste 72 weich ausgebildet ist, können diese Variationen ausgeglichen werden. Variationen des Spalts zwischen dem Befestigungsprofil 4 und der Deckenführung 2 sind in der Regel kleiner, insbesondere wenn eine einzige einstückige Deckenführung 2 für alle Türflügelelemente benutzt wird, wodurch eine niedrigere Biegesteifigkeit begründet ist.

[0159] Die erste Bürste 71 weist eine erste Kunststofffolie 80a und die zweite Bürste 72 eine zweite Kunststofffolie 80b auf, wobei die erste Kunststofffolie 80a in der ersten Bürste 71 und die zweite Kunststofffolie 80b in der zweiten Bürste 72 mittig angeordnet ist..

[0160] Vorzugsweise ist die erste Kunststofffolie 80a aus Polyethylen gefertigt. Insbesondere weist Polyethylen eine hohe Zähigkeit und Bruchdehnung, ein gutes Gleitverhalten, einen geringen Verschleiß, eine große Temperaturbeständigkeit und eine sehr geringe Wasseraufnahme auf.

[0161] Um die unterschiedlichen, wie schon beschrieben, Erfordernisse an Dichtheit zu erfüllen, sind vorzugsweise die erste Kunststofffolie 80a einlagig und die zweite Kunststofffolie 80b zweilagig ausgebildet.

[0162] Die erste Kunststofffolie 80a weist vorzugsweise eine erste Folienstärke zwischen 30 μm und 200 μm, insbesondere bevorzugt zwischen 50 μm und 150 μm, auf. Die zweite Kunststofffolie 80b weist eine zweite Folienstärke zwischen 30 μm bis 200 μm, insbesondere bevorzugt zwischen 50 μm bis 150 μm, auf. Über die Materialstärke kann die Flexibilität der ersten Bürsten 71 und der zweiten Bürsten 72 kontrolliert werden. Die spezifizierten Folienstärken

zeigen eine optimale Dichtwirkung.

[0163] Vorteilhafterweise beträgt eine erste Folienhöhe der ersten Kunststofffolie 80a in der ersten Bürste 71 zwischen 100% und 150 %, bevorzugt zwischen 105% und 125%, der ersten Besatzhöhe eines ersten Besatzes 82 der ersten Bürste 71. Die zweite Kunststofffolie 80b in der zweiten Büste 72 weist eine zweite Folienhöhe zwischen 100 % und 150%, bevorzugt zwischen 105% und 125%, der zweiten Besatzhöhe eines zweiten Besatzes 88 der zweiten Bürste 72 auf.

[0164] In diesem Zusammenhang ist es vorteilhaft, wenn die erste Kunststofffolie 80a im in der ersten Bürste 71 angeordneten Zustand um 2% bis 20%, bevorzugt um 5% bis 10%, gegenüber einer ersten Bürstenhöhe nach innen, zum ersten Basisbereich 81 der ersten Bürste 71 und die zweite Kunststofffolie im in der zweiten Bürste 72 angeordneten Zustand um 2% bis 20%, bevorzugt um 5% bis 10%, gegenüber einer zweiten Bürstenhöhe nach innen, zu einem zweiten Basisbereich 87 der zweiten Bürste 72 hin zurückversetzt sind. Hierdurch wird ein gutes Ineinandergreifen der zweiten Kunststofffolien 80b zweier benachbarter Türflügelelemente 3 in der Verschlussstellung und folglich eine verbesserte Dichtwirkung bewirkt.

[0165] Um eine ausreichende Dichtheit sicherzustellen, ohne den Boden und/oder die Deckenführung 2 zu beschädigen, kontaktiert bevorzugt jede der ersten Bürsten 71 mit einem Anpressdruck von 0,01 N/mm² bis 0,5 N/mm² den Boden und/oder die Deckenführung 2.

[0166] Besonders bevorzugt greift der zweite Besatz 88 von sich gegenüberliegenden zweiten Bürsten 72 zweier benachbarter Türflügelelemente 3 in der Verschlussstellung der Türflügelelemente 3 im Schiebewandsystem 1 ineinander. Somit kann sichergestellt werden, dass die benachbarten Türflügelelemente 3 gegeneinander abgedichtet bleiben, auch wenn der Spalt durch z.B. Verschleiß der zweiten Bürste 72 größer wird.

[0167] Nach einer bevorzugten Ausgestaltung der vorliegenden Erfindung weisen die zweiten Besätze 88 von sich gegenüberliegenden zweiten Bürsten 72 zweier benachbarter Türflügelelemente 3 in der Verschlussstellung der Türflügelelemente 3 im Schiebewandsystem 1 einen Überdeckungsgrad von 2% bis 20%, bevorzugt von 5% bis 15 % bezogen auf die zweite Besatzhöhe der zweiten Bürsten 72 auf.

[0168] Die beiden Lagen der zweiten Kunststofffolie 80b im in der zweiten Bürste 72 angeordneten Zustand weisen eine im Wesentlichen gleiche zweite Folienhöhe auf. Dies führt zu einer gleichmäßigen Belastung und damit zu einem vergleichbaren Verschleiß der beiden Lagen.

[0169] Ferner grenzen die beiden Lagen der zweiten Kunststofffolie 80b unmittelbar aneinander an, insbesondere ohne Zwischenanordnung von Borstenfasern. Somit bilden die beiden Lagen eine Einheit, welche besser mechanische oder pneumatische Einflüsse aushalten kann und eine verbesserte Dichtheit bewirkt.

[0170] Insbesondere weisen die zweiten Kunststofffolien 80a von sich gegenüberliegenden zweiten Bürsten 72 zweier benachbarter Türflügelelemente 3 in der Verschlussstellung der Türflügelelemente 3 im Schiebewandsystem 1 einen Überdeckungsgrad von 1% bis 20 %, bevorzugt von 2% bis 10% bezogen auf die zweite Folienhöhe der zweiten Bürsten 72 auf. Durch die Überdeckung der zweiten Kunststofffolien 80b in der Verschlussstellung kann die Dichtwirkung noch weiter optimiert werden.

[0171] Ferner bevorzugt sind die zweiten Bürsten 72 von sich gegenüber liegenden zweiten Bürsten 72 zweier benachbarter Türflügelelemente 3 im Wesentlichen identisch.

[0172] Das erfindungsgemäße Schiebewandsystem weist insbesondere eine Luftdurchlässigkeit bezogen auf die Fugenlänge von 5 m^3 /hm bis 20 m^3 /hm, bevorzugt 10 m^3 /hm bis 20 m^3 /hm, bei einem Differenzdruck von 200 Pa, gemessen nach EN1026, auf.

Bezugszeichenliste

[0173]

20

30

35

40

45		
	1	Schiebewandsystem
	2	Deckenführung
	3, 3a, 3b, 3c	Türflügelelement
	4	Befestigungsprofil
50	5	Türschiene
	6	doppelseitiger Verriegelungsmechanismus
	7	einseitiger Verriegelungsmechanismus
	8	dreiseitiger Verriegelungsmechanismus
	9	Rahmen
55	10, 10a, 10b, 10c	Schiene
	11	Weiche
	12	erster Schlitz (Schiene)
	13	zweiter Schlitz (Weiche)

	14	Bogen
	15	Abzweig
	16	Umlenkelement
	17	Innenseite des Abzweigs
5	18, 18a, 18b, 18c	Verbindungseinrichtung
	19, 19a, 19b, 19c	Steckelement
	20, 20a, 20b, 20c	Nut der Schiene
	21, 21a, 21b	Nut der Weiche
	22	Aufnahme für Sicherungselement
10	23	Rollenwagen
	24	Grundkörper des Rollenwagens
	25	Laufrolle
	26	Führungsrolle
	27	Rollenkörper
15	28	Rollenfläche
	29	Lauffläche der Deckenführung
	30	Klotz (Rollenwagen)
	31	geschlossenes Kugellager
	32	Achse
20	33	Rändelung
	34	Glasscheibe
	35	Sicherungsvorrichtung
	36	Drehlager
	37	Hülse
25	38	Drehelement (Drehzapfen)
	39	balliger Bereich
	40	Sicherungselement (Klemmblech)
	41	erste Ausnehmung des Versicherungselements
	42	zweite Ausnehmung des Versicherungselements
30	43	Halterungselement (Klotz)
	44	Mutter
	45	Keilsicherungsscheibe
	46	Schrauben
	47	Klebstoffkammer
35	48	Zwischenlage
	49	Ausnehmung der Zwischenlage
	50	Einlassöffnung/Einfüllöffnung
	51	Klebstoffinjektor
	52	Türbetätiger
40	53	Hebelarm
	54	Gleitelement
	55	Führung für Gleitelement
	56	erste Drehachse
	57	Verriegelungselement
45	58	Anzeigeeinrichtung
	59	Teilzahnradelement
	60	Schnecke
	61	erstes Gehäuseteil
	62	zweites Gehäuseteil
50	63	drittes Gehäuseteil
	64	Gehäusenut
	65	Armbereich
	66	Stift
	67	erstes Anzeigeelement
55	68	zweites Anzeigeelement
	69	erste Ausnehmung
	70	zweite Ausnehmung
	71	erste Bürste

	72	zweite Bürste
	74	erste Bürstenaufnahme
	75	U-förmiger Bereich der ersten Bürstenaufnahme
	76	Kanal im Befestigungsprofil
5	77	Kraftschlussverbindung
	78	erster Aufnahmebereich
	79	zweiter Aufnahmebereich
	80a	erste Kunststofffolie
	80b	zweite Kunststofffolie
10	81	erster Basisbereich
	82	erster Besatz
	83	Zugangsausnehmung
	85	zweite Bürstenaufnahme
	86	Verstärkungsbereich
15	87	zweiter Basisbereich
	88	zweiter Besatz
	89	Krafteinleitungspunkt
	90	Auslassöffnung
	91	erste Sichtfläche der Weiche
20	92	zweite Sichtfläche der Weiche
20	93	dritte Sichtfläche der Weiche
	94	erste Sichtfläche der Schiene
	95	zweite Sichtfläche der Schiene
	96	abgefaste Flächen (Versicherungselement/Klemmblech)
25	a	Öffnungswinkel
20	b b	Öffnungswinkel
	A	erste Position des Verriegelungselements
	В	zweite Position des Verriegelungselements
	С	dritte Position des Verriegelungselements
30	F	virtuelle Ebene
00	L	Längsrichtung des Türflügelelements
	M	Mittellinie
	R	zweite Drehachse
	V	Verschieberichtung
35	v Z	Breite des Türflügelelements
00	r	Radius des Teilzahnradelements
	x I1	Länge im dritten Gehäusebauteil
	12	erste Länge von zwei Seiten der Weiche
40	I L	zweite Länge von vier Seiten der Weiche
70		

Patentansprüche

1. Schiebewandsystem, umfassend:

45

50

- mindestens eine Deckenführung (2), und
- mindestens ein Türflügelelement (3), welches an mindestens einem Rollenwagen (23) befestigt und in der Deckenführung (2) verschiebbar angerordnet ist,
- wobei der mindestens eine Rollenwagen (23) einen Grundkörper (24) aufweist, an welchem mindestens eine Laufrolle (25) und/oder mindestens eine Führungsrolle (26) angeordnet sind, wobei die Laufrolle (25) und/oder die Führungsrolle (26) einen Rollenkörper (27) aufweisen, und
- wobei der Rollenwagen (23) mittels des auf mindestens einer Laufläche (29) der Deckenführung (2) abrollenden Rollenkörpers (27) in der Deckenführung (2) verschiebbar angeordnet ist

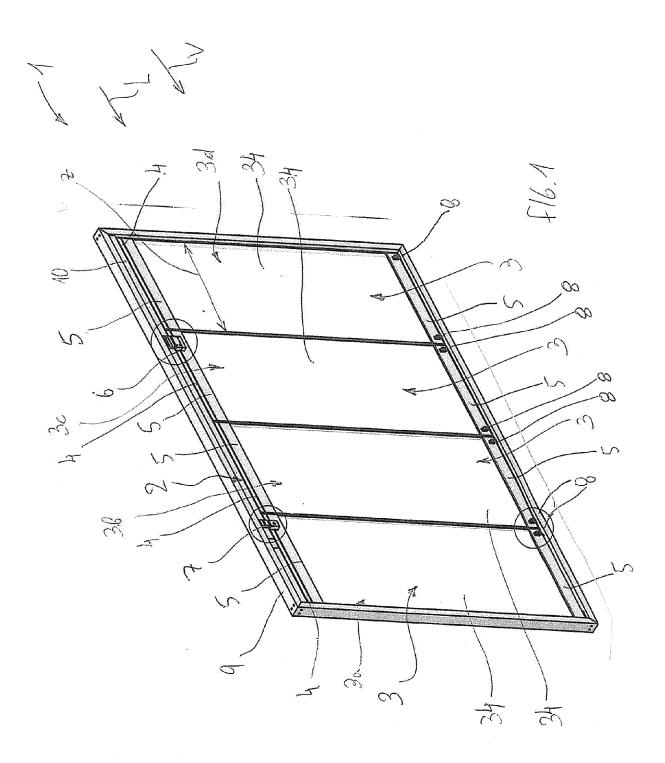
55 dadurch gekennzeichnet dass:

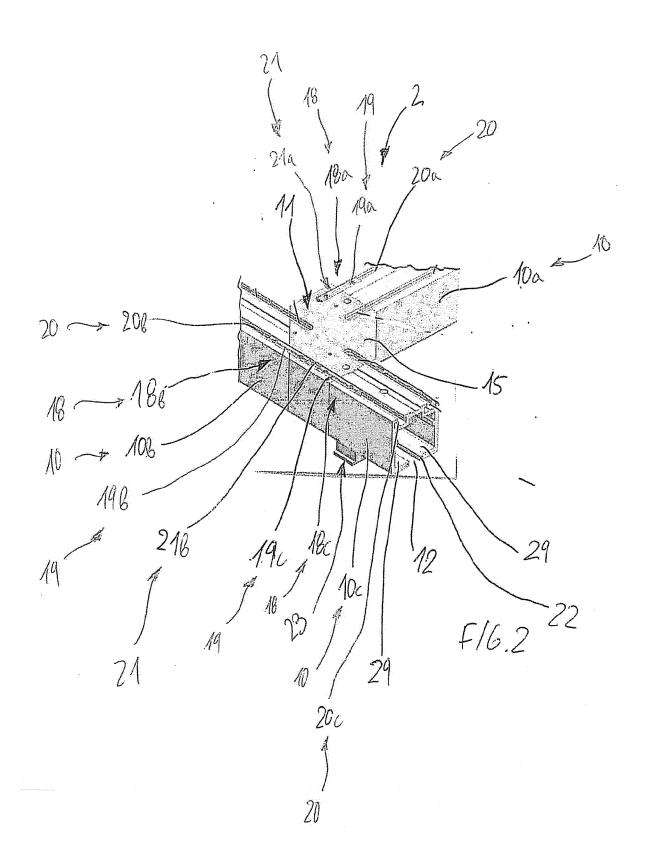
- der Grundkörper (24) einen Elastizitätsmodul bei 20°C von 70 kN/mm² bis 100 kN/mm², bevorzugt ca. 85 kN/mm², einen Schubmodul bei 20°C von 20 kN/mm² bis 60 kN/mm², bevorzugt ca. 40 kN/mm² und eine Dichte

bei 20°C von 2 g/cm³ bis 7 g/cm³, bevorzugt ca. 6,7 g/cm³, aufweist,

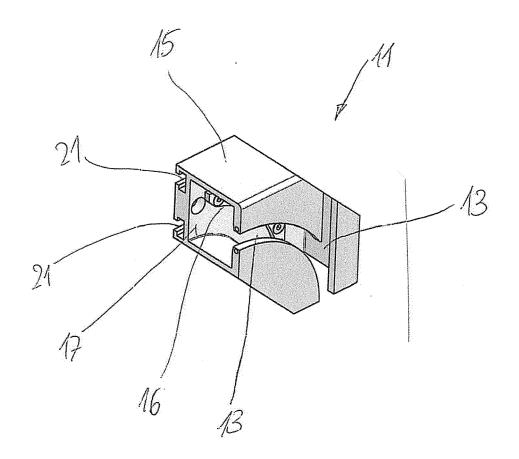
- der Rollenkörper (27) einen Elastizitätsmodul bei 20°C von 2 kN/mm² bis 4 kN/mm², bevorzugt ca. 3 kN/mm², einen Schubmodul bei 20°C von 0,5 kN/mm² bis 1 kN/mm², bevorzugt ca. 0,8 kN/mm² und eine Dichte bei 20°C von 1 g/cm³ bis 2 g/cm³, bevorzugt ca.1,4 g/cm³, aufweist, und
- die Lauffläche (29) einen Elastizitätsmodul bei 20°C von 60 kN/mm² bis 80 kN/mm², bevorzugt ca. 70 kN/mm², einen Schubmodul bei 20°C von 10 kN/mm² bis 40 kN/mm², bevorzugt ca. 27 kN/mm², und eine Dichte bei 20°C von 2 g/cm³ bis 5 g/cm³, bevorzugt ca. 3 g/cm³ aufweist,
- wobei die Lauffläche (29) zumindest abschnittsweise eine Rillung im Wesentlichen parallel zu einer Verschieberichtung (V) des Türflügelelements (3) aufweist.
- 2. Schiebewandsystem nach einem der vorherigen Ansprüche, wobei die Rillung der Lauffläche (29) eine Oberflächenrauhigkeit Ra von $0.05~\mu m$ bis $1.0~\mu m$, bevorzugt ca. $0.5~\mu m$ aufweist.
- Schiebewandsystem nach einem der vorherigen Ansprüche, wobei die Rollenfläche des Rollenkörpers (27) eine
 Oberflächenrauhigkeit Ra von 0,01 μm bis 3 μm, bevorzugt von 0.05 μm bis 2μm, aufweist.
 - **4.** Schiebewandsystem nach einem der vorherigen Ansprüche, wobei der Rollenkörper (31) mittels eines geschlossenen Kugellagers (31) am Rollenwagen (23) gelagert ist.
- 5. Schiebewandsystem nach einem der vorherigen Ansprüche, wobei die Lauffläche (29) der Deckenführung (2) aus einem stranggepresstem Material ausgebildet ist.
 - **6.** Schiebewandsystem nach einem der vorherigen Ansprüche, wobei die Lauffläche (29) der Deckenführung (2) einstückig mit der Deckenführung (2) ausgebildet ist.
 - 7. Schiebewandsystem nach einem Ansprüche 9 bis 12, wobei die Lauffläche (29) der Deckenführung (2) größer als die Rollenfläche (28) ausgebildet ist.
- 8. Schiebewandsystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die statische Flächenpressung zwischen der Laufrolle (25) und der Lauffläche (29) der Deckenführung (2) mindestens 2,5 kg/mm², bevorzugt zwischen 2,5 kg/mm² bis 100 kg/mm² beträgt.
 - Schiebewandsystem nach einem der vorherigen Ansprüche, wobei der Rollenkörper (27) eine Achse (32) mit mindestens einer Rändelung (33) aufweist, mittels welcher der Rollenkörper (27) am Grundkörper (24) des Rollenwagens (23) verdrehfest befestigt ist.
 - **10.** Schiebewandsystem nach einem der Ansprüche 4 bis 9, wobei die Achse (32) des Rollenkörpers (27) mit einem Innenring des geschlossenen Kugellagers (31) einstückig ausgebildet ist.
- **11.** Schiebewandsystem nach einem der vorherigen Ansprüche, ferner umfassend eine Glasscheibe (34) mit einer zähelastischen Folie, wobei die Folie eine schalldämmende Funktion aufweist.
 - 12. Schiebewandsystem nach einem der vorherigen Ansprüche, wobei der Rollenkörper (27) eine Wasseraufnahme bei Normalklima aufweist.
 - **13.** Schiebewandsystem nach einem der vorherigen Ansprüche, wobei der Rollenkörper eine Wasseraufnahme von 1.4% bei Wasserlagerung aufweist.
- 14. Schiebewandsystem nach einem der vorherigen Ansprüche, wobei der Rollenkörper eine Abflachung kleiner als 0,7 % in Bezug auf den Durchmesser des Rollenkörpers (27) nach 8 Stunden Stillstand des Rollenkörpers (27) aufweist.
 - **15.** Schiebewandsystem nach einem der vorherigen Ansprüche, **dadurch gekennzeichnet**, **dass** die durchschnittliche Verfahrgeschwindigkeit des Rollenwagens (23) zwischen 0,05 m/s und 0,5 m/s, bevorzugt ca. 0,2 m/s beträgt.

55

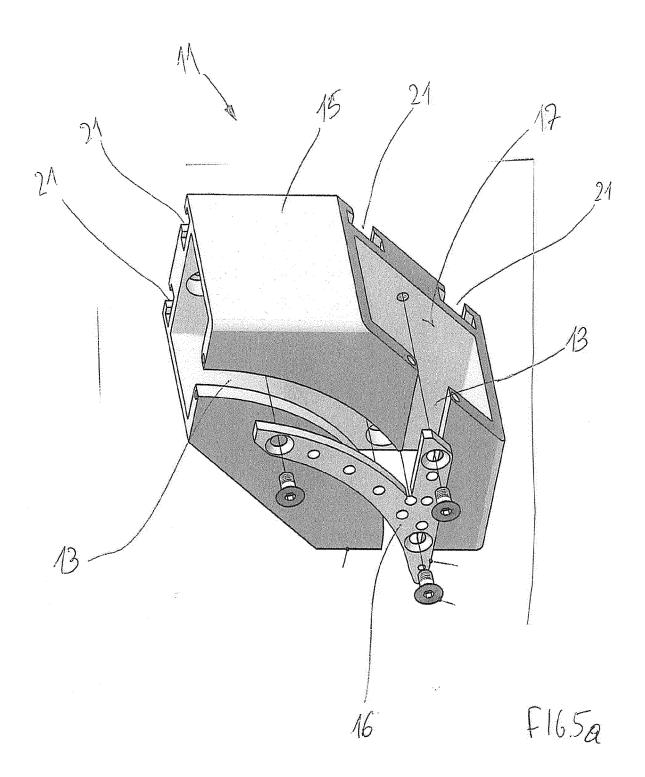

5

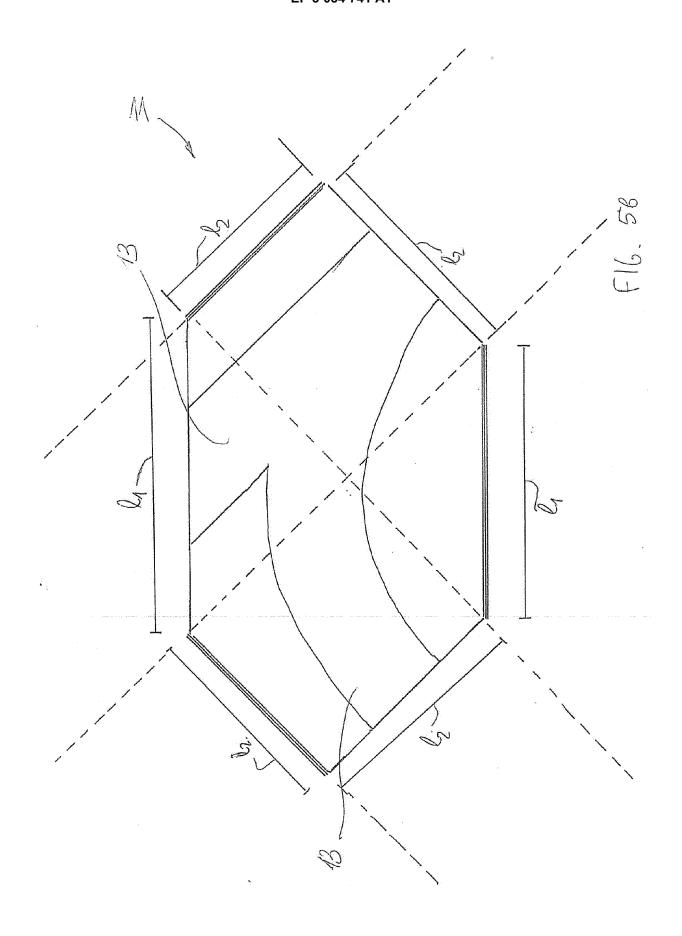

10

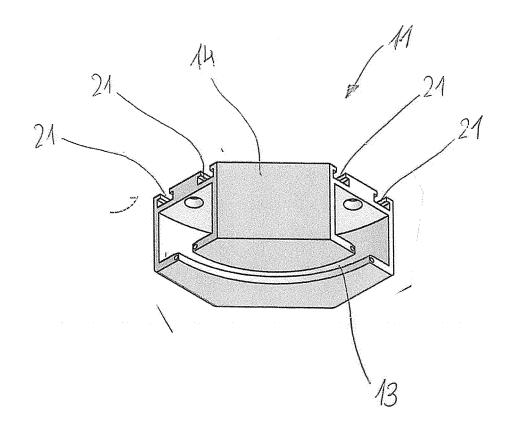
25

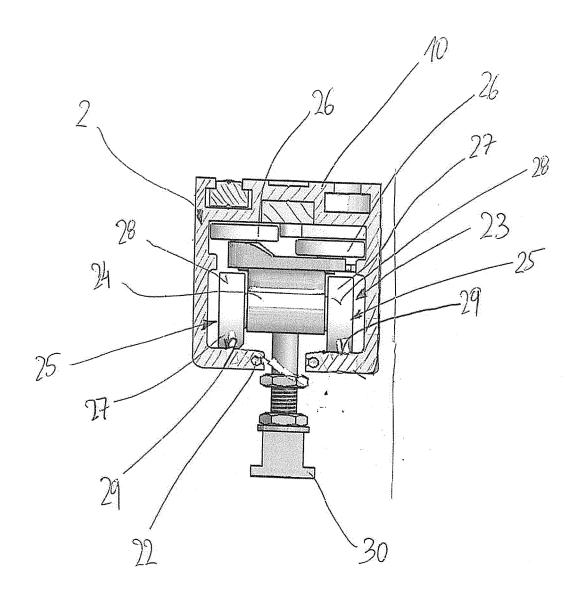

35

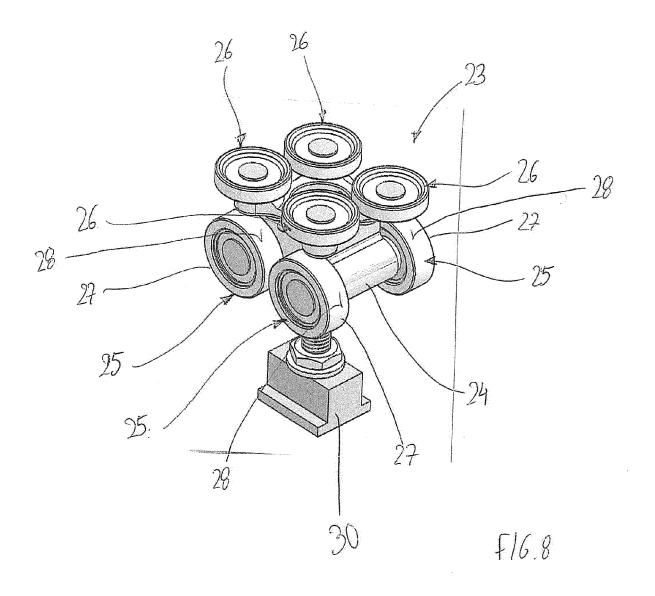
45

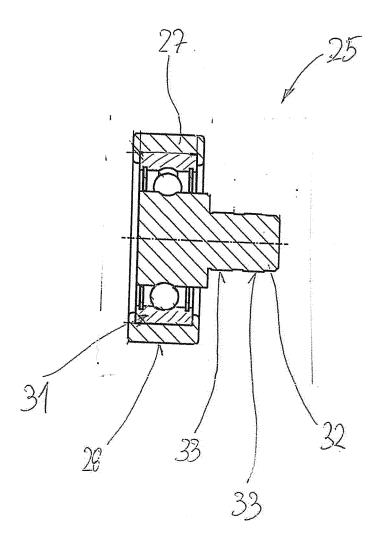




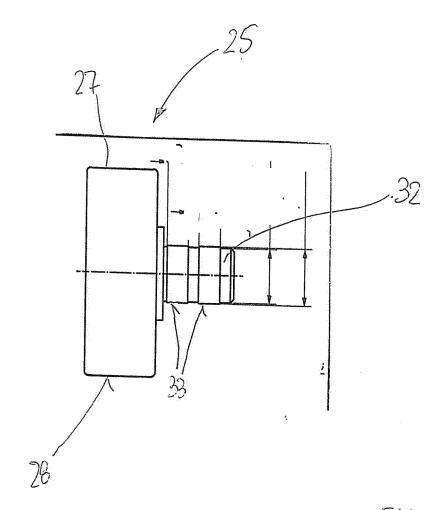


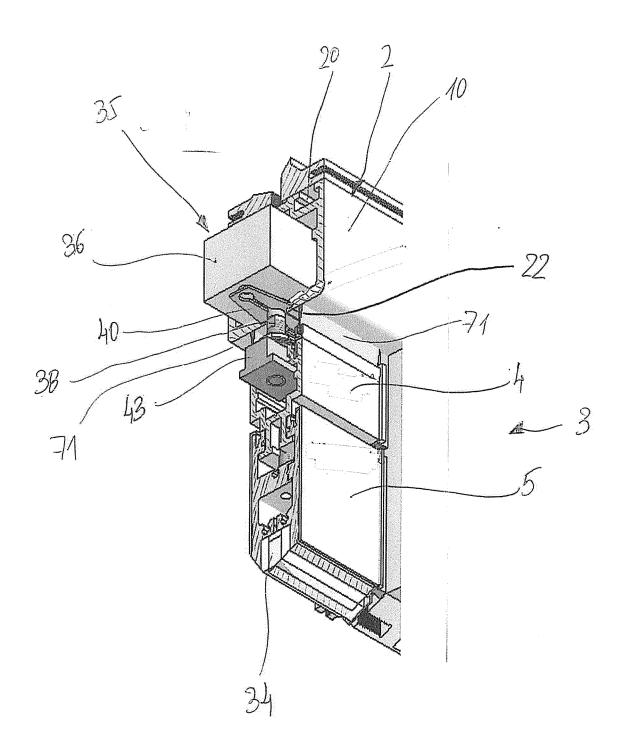

F16.4

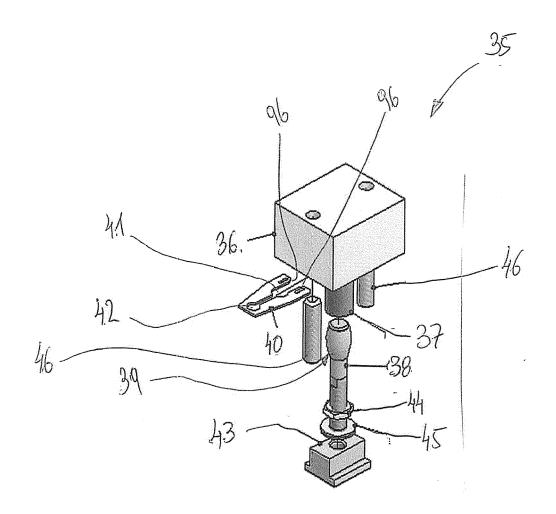




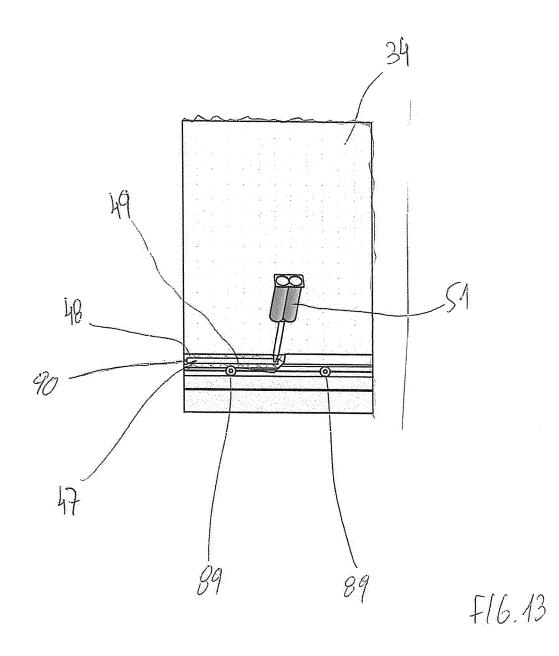
F16.6

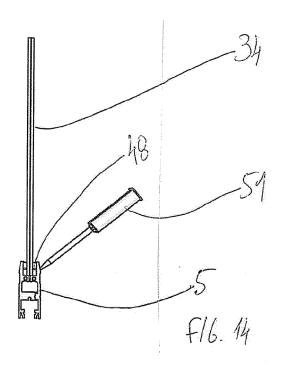


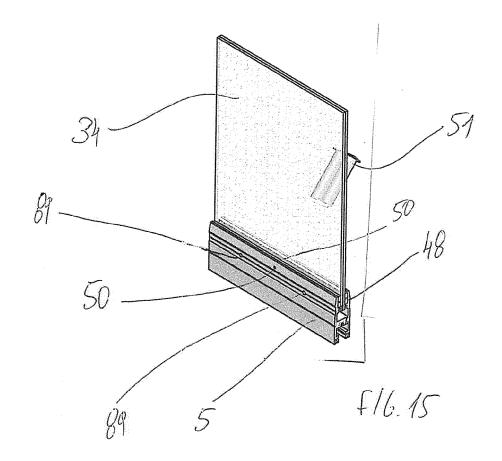

F16.7

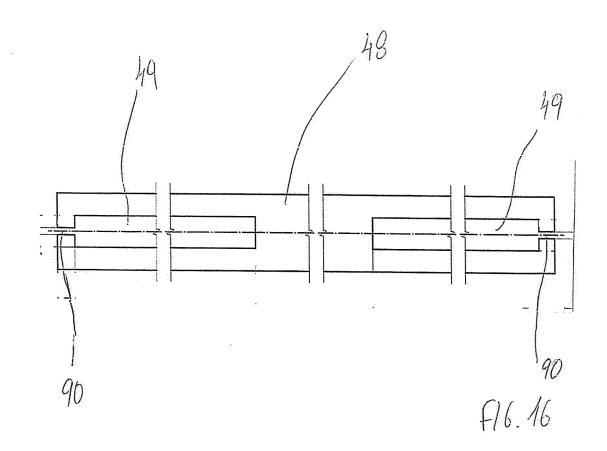


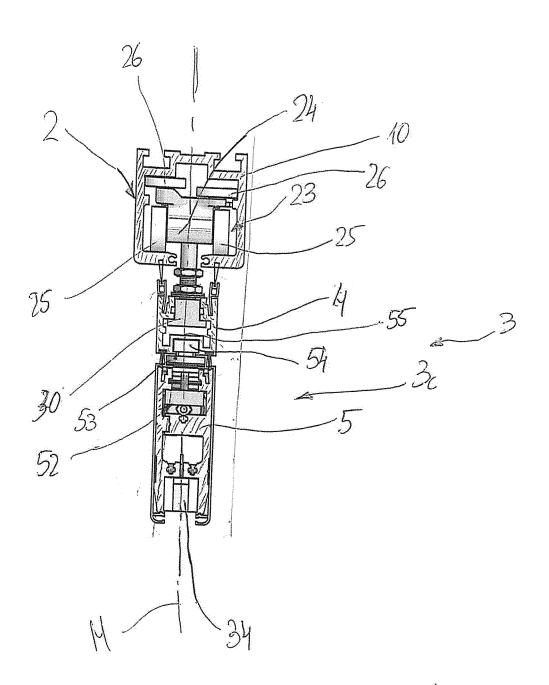
£16.9

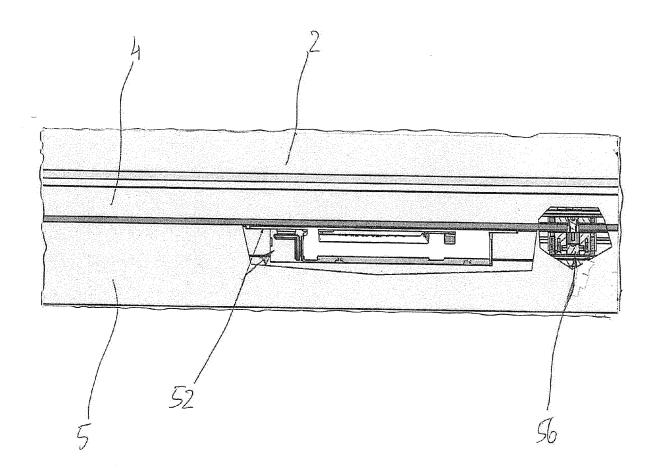


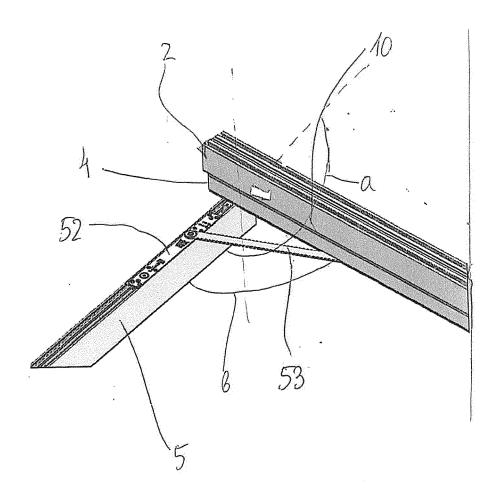


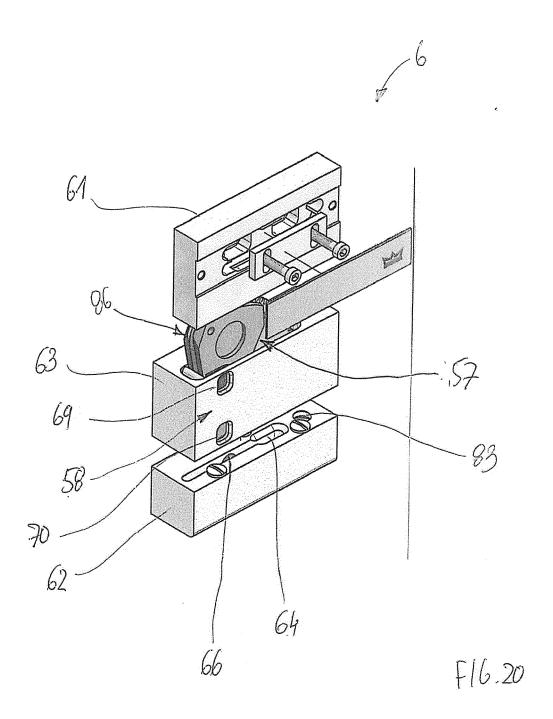

F16.11

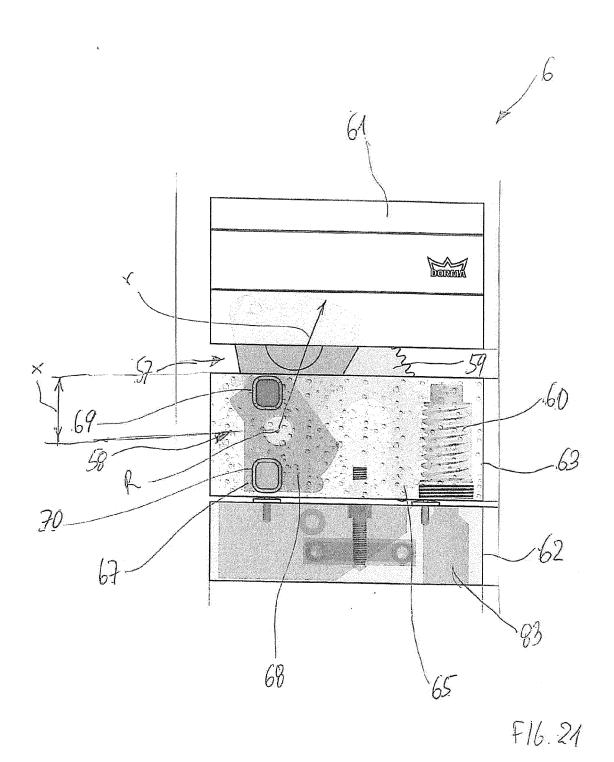


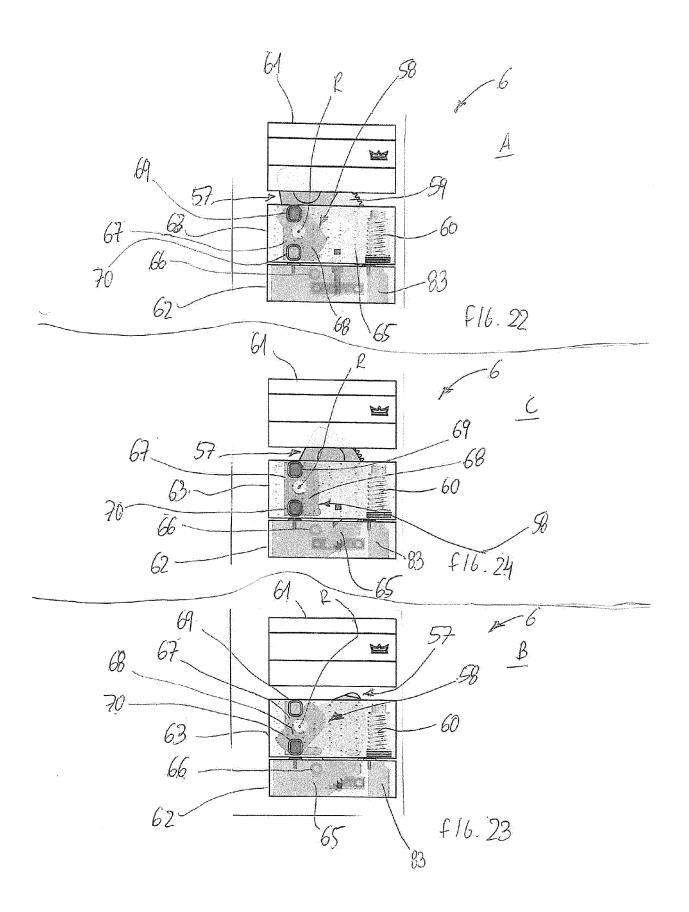

£16.12

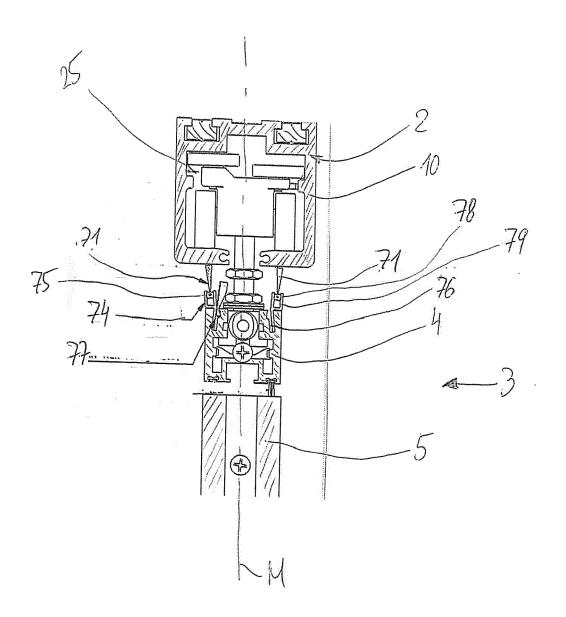




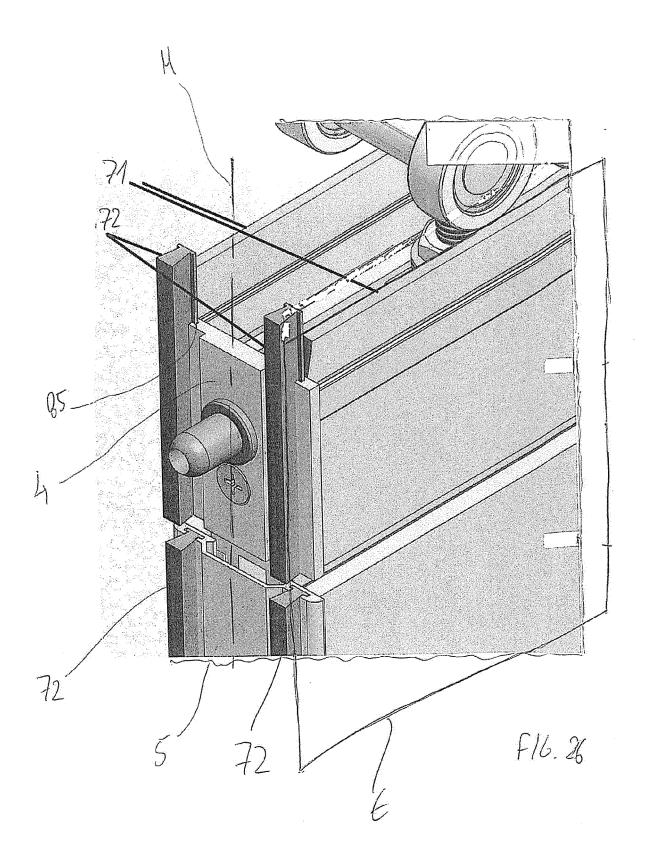

F16.17

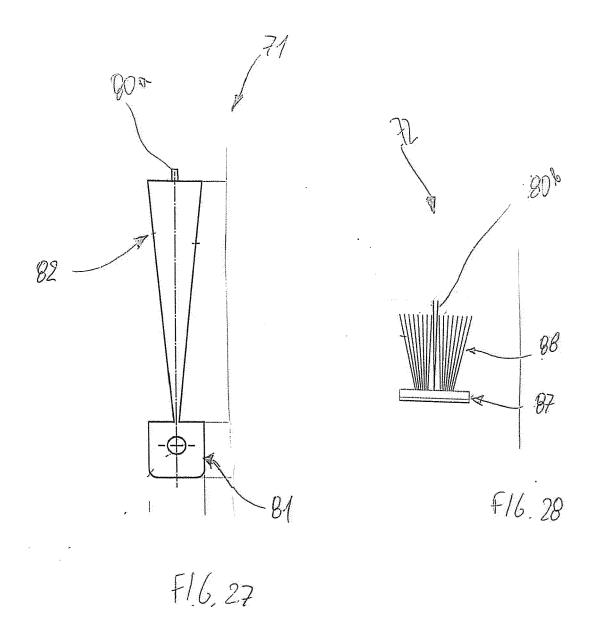



F16.18



F16.19





F/6.25

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 14 19 8061

5

Ü		
10		
15		
20		
25		
30		
35		
40		
45		
50		

-
6
Š
(
÷
9
ă
щ
_
c
Ca
٤
Σ
_
503
ċ
īč
=
5
5
ц
Ö
ñ
-
0
×
ш
Ш

55

_	EINSCHLÄGIGE	DOKUMENTE					
Kategorie	Kennzeichnung des Dokun der maßgebliche		erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)		
Х	EP 1 403 459 A2 (ME 31. März 2004 (2004 * Absatz [0003]; Ab	-03-31)	R [AT])	1-15	INV. E05D15/06		
A	& CO KG [DE]) 24. J	10 2012 105182 A1 (HETTICH HEINZE GMBH 3,4, CO KG [DE]) 24. Januar 2013 (2013-01-24) Absatz [0031]; Abbildungen *					
A		P 2 188 473 A1 (DORMA GMBH & CO KG [DE]) 9 6. Mai 2010 (2010-05-26) Abbildung 3B *					
A	GB 232 014 A (JOHN BALL BEARING COMPAN 16. April 1925 (192 * Abbildung 4 *	IY LT)	; SKEFKO	10			
A	US 2011/162167 A1 (7. Juli 2011 (2011- * Absatz [0057] *)	1,2	RECHERCHIERTE		
A	[DE]; SMITH JAMES G	096933 A1 (BOMBARDIER TRANSP GMBH 1,2,5 ITH JAMES GREGORY [US]) st 2011 (2011-08-11) [0027] *					
A	DE 199 15 188 A1 (D 26. Oktober 2000 (2 * Zusammenfassung;	2000-10-26)	KG [DE])	1			
Der vo	rliegende Recherchenbericht wu	·					
	Recherchenort	Abschlußdatum de			Prüfer		
	Den Haag	24. Apri	il 2015	Wi-	tasse-Moreau, C		
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung schenliteratur	tet r mit einer D : i yorie L : a & : I	T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument				

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 14 19 8061

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

24-04-2015

6		Recherchenbericht hrtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	EP	1403459	A2	31-03-2004	KEINE	
	DE	102012105182	A1	24-01-2013	KEINE	
	EP	2188473	A1	26-05-2010	CN 101784740 A DE 102007038846 A1 EP 2188473 A1 ES 2390633 T3 JP 2010537083 A US 2010139037 A1 WO 2009021627 A1	21-07-2010 19-02-2009 26-05-2010 14-11-2012 02-12-2010 10-06-2010 19-02-2009
	GB	232014	Α	16-04-1925	KEINE	
	US	2011162167	A1	07-07-2011	KEINE	
	WO	2011096933	A1	11-08-2011	CN 102892966 A EP 2531682 A1 WO 2011096933 A1	23-01-2013 12-12-2012 11-08-2011
	DE	19915188	A1	26-10-2000	KEINE	
EPO FORM P0461						
EPO F(

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82