|
(11) | EP 3 043 784 B9 |
| (12) | CORRECTED EUROPEAN PATENT SPECIFICATION |
| Note: Bibliography reflects the latest situation |
|
|
| (54) |
ARYL ETHERS AND USES THEREOF ARYLETHER UND VERWENDUNGEN DAVON ARYLÉTHERS ET UTILISATIONS DE CEUX-CI |
|
|
|||||||||||||||||||||||||||||||||||||||
| Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). |
Summary
n is 1, 2, 3 or 4;
R1 is phenyl or pyridyl, wherein said phenyl or pyridyl is substituted with at least one substituent selected from the group consisting of halo, C1-C4 alkyl, C1-C4 alkoxy, and cyano;
R4 is cyano, fluoroalkyl, sulfonamide, sulfinyl, sulfonyl or sulfoximinyl;
R5 is hydrogen, halo or unsubstituted alkyl;
R8 is hydrogen, hydroxy, unsubstituted alkylamino, unsubstituted alkoxy or amino;
R9 is hydrogen, unsubstituted alkyl, unsubstituted alkenyl or unsubstituted alkynyl; or R8 and R9 in combination form oxo or oxime; and
each of Rio is independently selected from the group consisting of hydrogen, fluoro, chloro, hydroxy, and unsubstituted alkyl; or two Rio and the carbon atom(s) to which they are attached form a 3- to 8-membered unsubstituted cycloalkyl or unsubstituted heterocycloalkyl.
Brief Description of Figures
Figure 1 shows treatment of renal cell carcinoma 786-O xenograft bearing mice at 0 mg/kg (denoted as "Veh"), 10 mg/kg, 30 mg/kg, and 100 mg/kg of Compound 15 three times each at 12 hour intervals. Figure 1 shows that Compound 15 treatment of renal cell carcinoma 786-O xenograft bearing mice reduced the mRNA levels of HIF-2α and HIF-2α-regulated genes (PAI-1, CCND1, VEGFA, and GLUT1) in tumor. Compound 15 had no significant effect on the mRNA level of HIF-1α or non-HIF-2α-regulated genes (PGK1 and PDK1).
Figure 2 shows treatment of renal cell carcinoma 786-O xenograft bearing mice at 0 mg/kg (denoted as "Vehicle") and 10 mg/kg of Compound 163 three times each at 12 hour intervals. Figure 2 shows that Compound 163 treatment of renal cell carcinoma 786-O xenograft bearing mice reduced the mRNA levels of HIF-2α and HIF-2α-regulated genes (PAI-1 and CCND1) in tumor. Compound 163 had no significant effect on the mRNA levels of HIF-1α and non-HIF-2α-regulated genes (PGK1 and PDK1).
Figure 3 shows treatment of 786-0 xenograft bearing mice at 0 mg/kg (denoted as "Veh"), 10 mg/kg, 30 mg/kg, and 100 mg/kg of Compound 15 three times each at 12 hour intervals. Figure 3 shows that Compound 15 treatment of 786-0 xenograft bearing mice reduced HIF-2α-regulated EPO gene expression in mouse kidney, but had no significant effect on the expression of HIF-1α-regulated PGK1 gene.
Figure 4 shows treatment of 786-0 xenograft bearing mice at 0 mg/kg (denoted as "Veh"), 10 mg/kg, 30 mg/kg, and 100 mg/kg of Compound 15 three times each at 12 hour intervals. Figure 4 shows that Compound 15 treatment of 786-0 xenograft bearing mice reduced the levels of HIF-2α and CyclinD1 proteins in tumor.
Figure 5 shows human VEGF levels of 786-0 xenograft bearing mice before (denoted as "Prior to treatment") and after treatment (denoted as "12h post treatment") at 0 mg/kg (denoted as "Vehicle"), 10 mg/kg, 30 mg/kg, and 100 mg/kg of Compound 15 three times each at 12 hour intervals. Figure 5 shows that Compound 15 treatment of 786-O xenograft bearing mice reduced the plasma level of human VEGFA.
Figure 6 shows treatment of 786-0 xenograft bearing mice at 0 mg/kg (denoted as "Vehicle") and 10 mg/kg of Compound 163 three times each at 12 hour intervals. Figure 6 shows that Compound 163 treatment of 786-0 xenograft bearing mice reduced the plasma level of human VEGFA.
Figure 7 shows treatment of 786-0 xenograft bearing mice at 0 mg/kg (denoted as "Vehicle"), 3 mg/kg, 10 mg/kg, 30 mg/kg, and 100 mg/kg of Compound 15 BID and 40 mg/kg of sutent QD, respectively, for 20 days. Figure 7 shows that Compound 15 treatment of 786-O xenograft bearing mice as a single agent led to tumor size reduction and regression.
Figure 8 shows that Compound 163 treatment of 786-0 xenograft bearing mice at 0 mg/kg (denoted as "Vehicle") and 10 mg/kg BID of Compound 163 BID for 28 days. Figure 8 shows that Compound 163 treatment of 786-O xenograft bearing mice as a single agent led to tumor size reduction and regression.
Detailed Description of the Invention
DAST = Diethylaminosulfur trifluoride
DCM = Dichloromethane
MTBE = Methyl t-butyl ether
HATU = O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
NBS = N-Bromosuccinimide
NMP = N-Methyl-2-pyrrolidone
e.e. or ee = Enantiomeric excess
PPTS = Pyridinium p-toluenesulfonate
DMAP = 4-Dimethylaminopyridine
DMF = N,N-Dimethylformamide
Compounds
R1 is aryl or heteroaryl;
R2 is nitro, carboxaldehyde, carboxylic acid, ester, amido, cyano, halo, sulfonyl or alkyl;
R3 is hydrogen, halo, cyano, alkyl, heteroalkyl, alkenyl, alkynyl, alkylamino, carboxaldehyde, carboxylic acid, oxime, ester, amido or acyl, or R2/R3 and atoms they are attached to form a 5- or 6-membered carbocycle with at least one sp3 hybridized carbon;
R4 is nitro, halo, cyano, alkyl, sulfinyl, sulfonamide, sulfonyl or sulfoximinyl; and
R5 is hydrogen, halo or alkyl.
R2 is nitro, carboxaldehyde, carboxylic acid, ester, amido, cyano, halo, sulfonyl or alkyl;
R3 is hydrogen, halo, cyano, oxime, alkyl, heteroalkyl, alkenyl, alkynyl, alkylamino or acyl, or R2/R3 and atoms they are attached to form a 5- or 6-membered carbocycle with at least one sp3 hybridized carbon;
R4 is nitro, halo, cyano, alkyl, sulfinyl, sulfonamide, sulfonyl, or sulfoximinyl;
R5 is hydrogen, halo or alkyl.
X is N or CR7;
R6 is cyano, halo, alkyl, or alkoxy; and
R7 is hydrogen, cyano, halo, alkyl, or alkoxy.
R2 is nitro, carboxaldehyde, carboxylic acid, ester, amido, cyano, halo, sulfonyl, or alkyl;
R3 is hydrogen, halo, cyano, oxime, alkyl, heteroalkyl, alkenyl, alkynyl, alkylamino, or acyl; or R2/R3 and atoms they are attached to form a 5- or 6-membered carbocycle with at least one sp3 hybridized carbon;
R4 is nitro, halo, cyano, alkyl, sulfinyl, sulfonamide, sulfonyl, or sulfoximinyl;
R5 is hydrogen, halo or alkyl;
n is 1, 2, 3, or 4; and
Rc is hydrogen, cyano, halo, alkyl or alkoxy.
n is 1, 2, 3 or 4;
R1 is phenyl or pyridyl, wherein said phenyl or pyridyl is substituted with at least one substituent selected from the group consisting of halo, C1-C4 alkyl, C1-C4 alkoxy, and cyano;
R4 is cyano, fluoroalkyl, sulfinyl, sulfonamide, sulfonyl, or sulfoximinyl;
R5 is hydrogen, halo or unsubstituted alkyl;
R8 is hydrogen, hydroxy, unsubstituted alkoxy, unsubstituted alkylamino, or amino;
R9 is hydrogen, unsubstituted alkyl, unsubstituted alkenyl, or unsubstituted alkynyl,
or R8 and R9 in combination form oxo or oxime; and
each of R10 is independently selected from the group consisting of hydrogen, fluoro, chloro,
hydroxy, and unsubstituted alkyl; or two Rio and the carbon atom(s) they are attached
to form a 3- to 8-membered unsubstituted cycloalkyl or unsubstituted heterocycloalkyl.
R1 is aryl or heteroaryl;
R4 is nitro, halo, cyano, alkyl, sulfinyl, sulfonamide, sulfonyl, or sulfoximinyl;
R5 is hydrogen, halo or alkyl; and
R8 is hydrogen, hydroxy, alkoxy, alkylamino or amino.
R1 is aryl or heteroaryl;
R4 is halo, cyano, alkyl, sulfonamide, sulfinyl, sulfonyl or sulfoximinyl;
R5 is hydrogen, halo or alkyl; and
R8 is hydroxy or amino.
| Example Number | Structure |
| 1 |
|
| 2 |
|
| 6 |
|
| 8 |
|
| 9 |
|
| 11 |
|
| 15 |
|
| 17 |
|
| 25 |
|
| 26 |
|
| 27 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
|
| 61 |
|
| 62 |
|
| 63 |
|
| 64 |
|
| 65 |
|
| 67 |
|
| 115 |
|
| 155 |
|
| 158 |
|
| 159 |
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
|
| 165 |
|
| 166 |
|
| 167 |
|
| 185 |
|
| 186 |
|
| 187 |
|
| 188 |
|
| 191 |
|
| 192 |
|
| 196 |
|
| 198 |
|
| 200 |
|
| 206 |
|
| 215 |
|
| 221 |
|
| 223 |
|
| 224 (Reference Example) |
|
| 225 |
|
| 227 |
|
| 228 |
|
| 229 |
|
| 230 |
|
| 231 |
|
| 232 |
|
| 233 |
|
| 234 |
|
| 235 |
|
| 236 |
|
| 237 |
|
| 240 |
|
| 241 (Reference Example) |
|
| 245 |
|
| 247 |
|
| 251 |
|
| 252 |
|
| 254 |
|
| 256 |
|
| 260 |
|
| 266 (Reference Example) |
|
| 267 |
|
| 270 |
|
| 273 |
|
| 274 |
|
| 275 |
|
| 276 |
|
| 277 |
|
| 285 |
|
| 286 |
|
| 289 |
|
| 290 |
|
| 292 |
|
| 302 |
|
| 303 |
|
| 304 |
|
| 305 |
|
| 306 |
|
| 309 |
|
| 310 |
|
| 314 |
|
| 315 |
|
| 316 |
|
| 317 |
|
| 336 |
|
| 338 |
|
| 342 |
|
Method of Use
Pharmaceutical Compositions and Dosage Forms
Method of Making
Experiments
Column: Lux® 5u Cellulose-4 5.0 µm 1000 Å, 150 x 4.60 mm
Flow rate: 1.5 mL/min
Mobile phase A: 0.1% Formic acid in water
Mobile phase B: 0.1% Formic acid in Acetonitrile
Strong needle wash: 90% Acetonitrile, 10% Water
Weak needle wash: 10% Water, 90% Acetonitrile
Injection volume: 2 µL
Column temperature: 40 °C
Autosampler temperature: Room temperature
Run time: 5.0 min
Gradient: 60% mobile phase A and 40% moble phase B
Example 1
(R)-4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 1)
Step A: Preparation of O-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate: A mixture of 4-fluoro-7-hydroxy-indan-1-one (17.0 g, 102 mmol), DMF (340 mL), N,N-dimethylcarbamothioyl chloride (37.9 g, 307 mmol), and 1,4-diazabicyclo[2.2.2]octane (34.4 g, 307 mmol) was stirred at ambient temperature for 2 hours. The reaction was poured into cold water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The resulting solid was recrystallized from 1:1 hexane:EtOAc (240 mL) to give O-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate as a white solid (12.0 g). The mother liquid was concentrated and purified by flash chromatography on silica gel (0-1% EtOAc in dichloromethane) to give a solid, which was triturated with 4:1 hexane:EtOAc to give additional O-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (6.9 g, combined yield 18.9 g, 73%). LCMS ESI (+) m/z 254 (M+H).
Step B: Preparation of S-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate: A mixture of O-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (18.9 g, 74.6 mmol) and diphenyl ether (200 mL) was heated at 220 °C under nitrogen for 30 minutes. After cooling, the reaction mixture was diluted with hexane. The mixture was passed through a short silica gel pad eluting with hexane to remove diphenyl ether. Further elution with EtOAc afforded the crude product, which was purified by flash chromatography on silica gel (15-40% EtOAc/hexane) to afford S-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (18.0 g, 95%) as a solid. LCMS ESI (+) m/z 254 (M+H).
Step C: Preparation of 4-fluoro-7-sulfanyl-indan-1-one : A stirred mixture of S-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (25.0 g, 98.7 mmol), 95% ethanol (490 mL) and 3N NaOH (173 mL, 691 mmol) was heated under nitrogen at reflux for 30 minutes. After cooling, the reaction mixture was cooled to 0 °C using an ice bath. 3N HCl was added dropwise to adjust the pH to 4-5. Most ethanol was evaporated under reduced pressure. The precipitated solid was collected by filtration, washed with water and dried to give 4-fluoro-7-sulfanyl-indan-1-one (17.0 g, 95%), which was used in the next step without further purification.
Step D: Preparation of 7-(difluoromethylsulfanyl)-4-fluoro-indan-1-one : To a stirred solution of 4-fluoro-7-sulfanyl-indan-1-one (crude from Step C, 17.0 g, 93.3 mmol) in acetonitrile (490 mL) was added a solution of KOH (104.7 g, 1866 mmol) in water (490 mL). The reaction mixture was purged with nitrogen and then cooled to -78 °C. Bromodifluoromethyl diethylphosphonate (33.2 mL, 187 mmol) was added all in once. The resulting mixture was allowed to warm to ambient temperature and vigorously stirred for 2 hours. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organics were washed with water and brine, dried over Na2SO4, filtered, and concentrated to dryness. The residue was purified by passing through a short silica gel pad eluting with 10% EtOAc in hexane to give 7-(difluoromethylsulfanyl)-4-fluoro-indan-1-one (18.3 g, 84%), which was used in the next step without further purification. LCMS ESI (+) m/z 233 (M+H).
Step E: Preparation of 7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydro-1H-inden-1-one: Sodium periodate (41.9 g, 196 mmol) was added all at once to 7-(difluoromethylsulfanyl)-4-fluoro-indan-1-one (18.2 g,78.4 mmol) and ruthenium(III) chloride (0.41 g, 2.0 mmol) in acetonitrile (392 mL) / carbon tetrachloride (392 mL) / water (392 mL) . The reaction mixture was stirred at ambient temperature for 5 hours. Solids were removed by filtration through Celite and rinsed with CH2Cl2. The organic layer was separated. The aqueous layer was extracted with CH2Cl2. The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was passed through a short silica gel pad eluting with 30% EtOAc/hexane to give 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (18.8 g, 91%) as a white solid. LCMS ESI (+) m/z 265 (M+H).
Step F: Preparation of (1R)-7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol: A pear-shaped flask was charged with 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (992 mg, 3.75 mmol), formic acid (0.178 mL, 4.69 mmol), triethylamine (0.576 mL, 4.13 mmol), and dichloromethane (25 mL). The reaction mixture was backfilled with nitrogen. RuCl(p-cymene)[(R,R)-Ts-DPEN] (48 mg, 0.08 mmol) was added in one portion, and the reaction mixture was stirred at ambient temperature overnight. The reaction was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (5-20% EtOAc in hexanes) to give (1R)-7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol (990 mg, 99%) as a solid. The ee was determined to be 98% by 19F NMR analysis of the corresponding Mosher ester. LCMS ESI (+) m/z 267 (M+H); ESI (-) m/z 311 (M-H+46).
Step G: Preparation of (R)-4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 1): A solution of 3-chloro-5-fluoro-phenol (24 mg, 0.17 mmol) and (1R)-7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol (40 mg, 0.15 mmol) in NMP (1 mL) at ambient temperature was treated with NaHCO3 (37 mg, 0.45 mmol). The reaction mixture was stirred at 90 °C under nitrogen for 4 hours. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash 12+M column, 10-60% CH3CN/water) to give Compound 1 (25 mg, 42%). The ee was determined to be 98% by 19F NMR analysis of the corresponding Mosher ester. LCMS ESI (+) m/z 393 (M+H); ESI (-) m/z 437, 439 (M-H+46); 1H NMR (400 MHz, CDCl3): δ 7.81 (d, 1H), 7.00-6.89 (m, 3H), 6.73-6.71 (m, 1H), 6.35 (t, 1H), 5.66-5.65 (m, 1H), 3.19-3.13 (m, 2H), 2.96-2.90 (m, 1H), 2.50-2.40 (m, 1H), 2.30-2.24 (m, 1H).
Step A: A solution of (7-fluoro-3-oxo-indan-4-yl) trifluoromethanesulfonate (237.0 mg, 0.79 mmol) and Xantphos (50.6 mg, 0.09 mmol) in 1,4-Dioxane (3 mL) was sparged with nitrogen for 3 mins. The reaction mixture was then treated sequentially with S-Potassium Thioacetate (136.1 mg, 1.19 mmol) and Tris(dibenzylideneacetone)dipalladium(0) (36.4 mg, 0.04 mmol) under continuous nitrogen stream. The vessel was sealed and heated to 100 °C for 4 hours. The reaction mixture was filtered to remove insolubles with CH2Cl2 used as a rinse. The filtrate was concentrated and purification was achieved by chromatography on silica using 10%-30% EtOAc/hexane to give S-(7-fluoro-3-oxo-indan-4-yl) ethanethioate (99 mg, 0.44 mmol, 46% yield). LCMS ESI (+) m/z 225 (M+H).
Step B: To a round bottom flask containing S-(7-fluoro-3-oxo-indan-4-yl) ethanethioate (99.0 mg, 0.4400 mmol) dissolved in 4.4 mL of degassed THF (sparged with nitrogen for 5 min) was added ammonium hydroxide (620 µL, 4.45 mmol). The resulting reaction mixture stirred for 40 minutes under nitrogen atmosphere. TLC indicates consumption of starting material and LCMS identifies the desired product. The reaction mixture was concentrated to remove excess THF and then poured into 1 mL of 1 M NaOH and 15 mL of water and rinsed with 2 x 20 mL of CH2Cl2. The remaining aqueous phase was acidified with 10 mL of 1 M HCl and extracted with 3 x 20 mL of CH2Cl2. The combined organic extracts were dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification to give 4-fluoro-7-sulfanyl-indan-1-one (44 mg, 0.24 mmol, 55% yield).
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Step A: Preparation of 7-((difluoromethyl)sulfonyl)-4-fluoro-3-methyl-2,3-dihydro-1H-inden-1-ol: To a solution of 7-(difluoromethylsulfonyl)-4-fluoro-3-methyl-indan-1-one (55 mg, 0.2 mmol, prepared similarly as described in Example 1 using 4-fluoro-7-hydroxy-3-methyl-2, 3-dihydro-1H-inden-1-one in place of 4-fluoro-7-hydroxy-2,3-dihydro-1H-inden-1-one in Step A) in methanol (5 mL) at room temperature was added sodium borohydride (15 mg, 0.4 mmol) portion wise. The reaction was stirred at room temperature until starting material disappeared by TLC analysis. The reaction mixture was diluted with brine and extracted with EtOAc. The combined extract was dried over MgSO4, filtered and concentrated. The crude product was used in the next step without further purification.
Step B: A mixture of 7-(difluoromethylsulfonyl)-4-fluoro-3-methyl-indan-1-ol (55 mg, 0.2 mmol, crude from step A), 3-chloro-5-fluoro-phenol (57 mg, 0.39 mmol), and cesium bicarbonate (76 mg, 0.39 mmol) in 1-methyl-2-pyridone (2 mL) was heated under N2 at 90 °C for 1 hour. LCMS indicated the presence of both product and starting material in the reaction mixture. The flask was resealed and heated at 100 °C for 2 hours. The reaction mixture was cooled to room temperature, diluted with brine and extracted with EtOAc. The combined organic extracts were dried over MgSO4, filtered and concentrated. Purification with preparative TLC with EtOAc/hexane (10%) followed by reverse phase column chromatography with water/acetonitrile (10% to 90%) gave racemic Compound 7a (2.4 mg, 3% from step A) and racemic Compound 7b (0.7 mg, 1% from step A). LCMS ESI (+) m/z 254 (M+H). Characterization for 7a: LCMS ESI (+) m/z 429, 431 (M+Na); 1H NMR (400 MHz, CDCl3): δ 7.81 (d, 1H), 7.01-6.98 (m, 1H), 6.91-6.89 (m, 2H), 6.75-6.71 (m, 1H), 6.34 (t, 1H), 5.58-5.53 (m, 1H), 3.48-3.40 (m, 1H), 3.22 (d, 1H), 2.66-2.59 (m, 1), 1.98-1.93 (m, 1H), 1.46 (d, 3H). Characterization for 7b: LCMS ESI (+) m/z 429, 431 (M+Na); 1H NMR (400 MHz, CDCl3): δ 7.81 (d, 1H), 7.01-6.97 (m, 1H), 6.92 (d, 1H), 6.89-6.88 (m, 1H), 6.73-6.69 (m, 1H), 6.38 (t, 1H), 5.70-5.67 (m, 1H), 3.71-3.64 (m, 1H), 3.25 (d, 1H), 2.47-2.41 (m, 1H), 2.14-2.06 (m, 1H), 1.36 (d, 3H).
Example 8
Step A: Preparation of 7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (Compound 8): A mixture of 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (114 mg, 0.43 mmol), ethylene glycol (4 mL, 0.43 mmol), p-toluenesulfonic acid monohydrate (4 mg, 0.02 mmol) and toluene (20 mL) was refluxed with azotropic removal of H2O using a Dean-Stark trap. The reaction was monitored by LCMS and ethylene glycol was added twice (4 mL each time). After refluxing for about 6 hours, LCMS indicated about 50% conversion. The mixture was cooled to room temperature, diluted with saturated aqueous NaHCO3, and extracted with EtOAc. The organic layer was dried over Na2SO4, filtered, and concentrated. The residue was purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, 10-50% CH3CN/water) to give incomplete separation of starting material and product. Fractions containing starting material and product were combined and used in the next step. LCMS ESI (+) m/z 309 (M+H).
Step B: Preparation of 4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]. Prepared analogously to Step B of Example 7 using 7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] in place of 7-((difluoromethyl)sulfonyl)-4-fluoro-3-methyl-2,3-dihydro-1H-inden-1-ol. LCMS ESI (+) m/z 435/437 (M+H).
Step C: Preparation of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-one: To a solution of 4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (5 mg, 0.012 mmol) in acetone (1 mL) at room temperature was added pyridinium p-toluenesulfonate (PPTS, 3 small crystals) and water (0.2 mL). The reaction was heated at 85 °C in a sealed tube for 1 hour. LCMS indicated a clean reaction with about 1:1 mixture of product: starting material. Additional 4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (45 mg) in acetone (3 mL) was added, followed by PPTS (20 mg, 0.08 mmol) and water (0.3 mL). The reaction mixture was heated at 90 °C for 4 hours, concentrated, and purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, 10-90% CH3CN/water) to give 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-one (42 mg, 0.11 mmol, 94% yield). LCMS ESI (+) m/z 391/393 (M+H).
Step D: Preparation of (E, Z)-N-butyl-4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine: A mixture of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-one (42 mg, 0.11 mmol), 4 Å molecule sieves (300 mg, 0.11 mmol), trifluoroacetic acid (5 drops) and butan-1-amine (840 mg, 11.5 mmol) in benzene (1.2 mL) was heated under nitrogen in a sealed tube at 80 °C for 2 hours. The reaction was not complete by 1HNMR analysis. The reaction mixture was transferred to a round bottom flask. Additional benzene (20 mL) and butane-1-amine (0.5 mL) were added. The reaction mixture was refluxed with azeotropic removal of water using a Dean-Stark trap. After one hour, additional benzene (10 mL) and butane-1-amine (0.5 mL) were added. The procedure was repeated one more time. After refluxing for two additional hours, the reaction mixture was concentrated and then dissolved in t-butyl ethyl ether. The organic layer was washed with saturated aqueous NaHCO3 and then brine, dried over Na2SO4, filtered, and concentrated. The crude imine (E, Z)-N-butyl-4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine was used in the next step without further purification.
Step E: Preparation of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)-2,2-difluoro-indan-1-one: A mixture of (E, Z)-N-butyl-4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-imine (48 mg, 0.11 mmol, crude from Step D), sodium sulfate (200 mg, 0.11 mmol) and Selectfluor® (95 mg, 0.27 mmol) in anhydrous acetonitrile (10 mL) was heated at 85 °C under N2 for 4 hours. After the reaction mixture was cooled to room temperature, HCl (37%, 1 mL) was added. The reaction mixture was stirred at room temperature for 15 minutes, and concentrated. The residue was diluted with EtOAc, washed with saturated NaHCO3 and brine, dried over Na2SO4, filtered, and concentrated. The crude product was used in the next step without further purification. LCMS ESI (+) m/z 444/446 (M+NH4).
Step F: Preparation of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)-2,2-difluoro-indan-1-ol (Compound 8): To a solution of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)-2,2-difluoro-indan-1-one (crude from Step E) in methanol (4 mL) was added sodium borohydride (100 mg, 2.64 mmol). The reaction was stirred at room temperature for 20 minutes. The reaction mixture was poured into brine, extracted with EtOAc, dried over MgSO4, filtered, and concentrated. The residue was purified twice by preparative TLC with EtOAc/hexane (15%) to give Compound 8 (14 mg, 30% from Step E). LCMS ESI (+) m/z 429, 431 (M+H). 1H NMR (400 MHz, CDCl3): δ 7.90 (d, 1H), 7.06-7.03 (m, 1H), 6.98 (d, 1H), 6.94-6.92 (m, 1H), 6.78-6.74 (m, 1H), 6.42 (t, 1H), 5.50 (d, 1H), 3.61-3.43 (m, 2H), 3.24 (s, 1H).
Example 9
Example 10
7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)indan-1-ol (Compound 10)
Step A: Preparation of 4-bromo-7-(3-chloro-5-fluoro-phenoxy)indan-1-one: A mixture of 4-bromo-7-fluoro-indan-1-one (50 mg, 0.22 mmol), 3-chloro-5-fluoro-phenol (48 mg, 0.33 mmol) and cesium bicarbonate (50.8 mg, 0.26 mmol) in 1-methyl-2-pyrrolidone (1.5 mL) was heated at 100 °C for 2 hours. LCMS indicated about 40% conversion. The reaction mixture was heated for another 2 hours at 110 °C and directly purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, 10-80% CH3CN/water) to give 4-bromo-7-(3-chloro-5-fluoro-phenoxy)indan-1-one (27 mg, 0.08 mmol, 35% yield). LCMS ESI (+) m/z 355, 357, 359 (M+H).
Step B: Preparation of S-[7-(3-chloro-5-fluoro-phenoxy)-1-oxo-indan-4-yl] ethanethioate: A mixture of 4-bromo-7-(3-chloro-5-fluoro-phenoxy)indan-1-one (22 mg, 0.06 mmol), Pd2(dba)3 (2.8 mg), xantphos (3.58 mg, 0.01 mmol) and S-potassium thioacetate (17.7 mg, 0.15 mmol) was heated in a microwave at 150 °C under N2 for 30 minutes. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography with EtOAc/hexane (0% to 30%) to give S-[7-(3-chloro-5-fluoro-phenoxy)-1-oxo-indan-4-yl] ethanethioate (8.3 mg, 0.02 mmol, 38% yield). LCMS ESI (+) m/z 351, 353 (M+H).
Step C: Preparation of 7-(3-chloro-5-fluoro-phenoxy)-4-sulfanyl-indan-1-one: To a solution of S-[7-(3-chloro-5-fluoro-phenoxy)-1-oxo-indan-4-yl] ethanethioate (8.3 mg, 0.02 mmol) in tetrahydrofuran (6 mL) at room temperature under nitrogen was added ammonium hydroxide (0.2 mL). The reaction mixture was stirred at room temperature for 1.5 hours and then concentrated. The residue was dissolved in EtOAc and washed with 1 N HCl, dried over MgSO4, filtered, and concentrated. The crude product was used in the next step without further purification. LCMS ESI (-) m/z 307, 309 (M-H).
Step D: Preparation of 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfanyl)indan-1-one: To a mixture of KOH (13.27 mg, 0.24 mmol) and 7-(3-chloro-5-fluoro-phenoxy)-4-sulfanyl-indan-1-one (7.3 mg, 0.02 mmol) in a mixture of water (0.4 mL) and acetonitrile (1.5 mL) at -5 °C was added bromodifluoromethyl diethylphosphonate (0.01 mL, 0.07 mmol). The reaction mixture was stirred at room temperature for 3 hours, diluted with brine, and extracted with EtOAc. The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified by flash column chromatography with EtOAc/hexane (0% to 40%) to give 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfanyl)indan-1-one (3.5 mg, 0.01 mmol, 41% yield). LCMS ESI (+) m/z 359, 361 (M+H).
Step E: Preparation of 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)indan-1-one: A mixture of 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfanyl)indan-1-one (3.5 mg, 0.01 mmol), ruthenium trichloride (0.1 mg), and sodium periodate (6.3 mg, 0.03 mmol) in a mixture of acetonitrile (1 mL), carbon tetrachloride (1 mL), and water (2 mL) was stirred at room temperature for 3 hours. The reaction mixture was diluted with brine, extracted with EtOAc. The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified by flash column chromatography with EtOAc/hexane (0% to 60%) to give 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfanyl)indan-1-one (3.5 mg, 0.01 mmol, quant.). LCMS ESI (+) m/z 391, 393 (M+H).
Step F: Preparation of 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)indan-1-ol (Compound 10): To a solution of 7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)indan-1-one (4 mg, 0.01 mmol) in methanol (1 mL) at room temperature was added sodium borohydride (10 mg, 0.26 mmol) portion wise. The reaction mixture was stirred at room temperature for 30 minutes and directly purified by preparative TLC with EtOAc/hexane (35%) to give Compound 10 (2.8 mg, 0.007 mmol, 70% yield). LCMS ESI (+) m/z 375, 377 (M-OH). 1H NMR (400 MHz, CDCl3): δ 7.85 (d, 1H), 7.04-7.00 (m, 1H), 6.97-6.95 (m, 1H), 6.84-6.77 (m, 2H), 6.18 (t, 1H), 5.58-5.53 (m, 1H), 3.59-3.50 (m, 1H), 3.34-3.26 (m, 1H), 2.60-2.50 (m, 1H), 2.31 (d, 1H), 2.21-2.13(m, 1H).
Example 11
Example 12
Example 13
Example 14
2-[7-(3,5-difluorophenoxy)-3-hydroxy-indan-4-yl]sulfonylacetonitrile (Compound 14)
Step A: Preparation of 2-(7-fluoro-3-oxo-indan-4-yl)sulfanylacetonitrile: A mixture of 4-fluoro-7-sulfanyl-indan-1-one (prepared from 1 g of S-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate according to Step C of Example 1), sodium carbonate (1 g, 9.43 mmol) and bromoacetonitrile (719.7 mg, 6 mmol) was heated at 60 °C overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography with EtOAc/hexane (0% to 30%) to give 980 mg of 2-(7-fluoro-3-oxo-indan-4-yl)sulfanylacetonitrile as a brown solid (quant. yield).
Steps B-F: 2-[7-(3,5-Difluorophenoxy)-3-hydroxy-indan-4-yl]sulfonylacetonitrile (Compound 14) was prepared analogously to the procedures in Example 1. LCMS ESI (-) m/z 364 (M-H); 1H NMR (400 MHz, CDCl3): δ 7.9 (d, 1H), 6.97 (d, 1H), 6.73-6.67 (m 1H), 6.64-6.58 (m, 1H), 5.83-5.79 (m, 1H), 6.57-6.53 (m, 1H), 4.22 (d, 1H), 3.20-3.10 (m, 1H), 2.95-2.85 (m, 2H), 2.60-2.50 (m, 1H), 2.25-2.16 (m, 1H).
Example 15
3-[(1S)-7-(difluoromethylsulfonyl)-2,2-difluoro-1-hydroxy-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 15)
Step A: Preparation of 3-((7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-5-fluorobenzonitrile: A mixture of 3-fluoro-5-hydroxy-benzonitrile (1.33 g, 9.7 mmol), 7'-(difluoromethylsulfonyl)-4'-fluoro-spiro[1,3-dioxolane-2,1'-indane] (1.0 g, 3.24 mmol), and cesium bicarbonate (1.26 g, 6.5 mmol) in 1-methyl-2-pyrrolidone (1.8 mL) was heated under N2 at 110 °C (microwave) for 1 hour and 5 minutes. The reaction was repeated ten times. The reaction mixtures were combined, diluted with EtOAc, and washed twice with 1 N NaOH. The combined aqueous layer was extracted with EtOAc. The EtOAc extracts were combined and washed with brine, dried over Na2SO4, filtered, and concentrated to about 100 mL to give a suspension. The suspension was filtered to give 3-((7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-5-fluorobenzonitrile as an off-white solid (6.25 g). The filtrate was diluted with EtOAc, washed with brine (3X), dried over Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel with EtOAc/hexane (0% to 40%) to give additional 3-((7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-5-fluorobenzonitrile (3.3 g, 69% combined yield) as a white solid. LCMS ESI (+) m/z 426 (M+H).
Step B: Preparation of 3-((7-((difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A mixture of 3-((7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-5-fluorobenzonitrile (10.9 g, 25.6 mmol) and PPTS (667 mg, 2.66 mmol) in acetone (100 mL)/water (15 mL) was heated at 82 °C for 5 hours and then 75 °C overight. The reaction mixture was cooled to room temperature, concentrated under reduced pressure, diluted with EtOAc, washed with saturated aqueous NaHCO3, dried over MgSO4, filtered, and concentrated. The residue was filtered and washed with water. The solid obtained was briefly dried under vacuum at 50 °C and then triturated with EtOAc/hexane to give 3-((7-((difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (8 g). Flash column chromatography of the mother liquor on silica gel with EtOAc/hexane (0% to 80%) provided additional 3-((7-((difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (1.3 g, combined 9.3 g, quant. yield). LCMS ESI (+) m/z 382 (M+H).
Step C: Preparation of (E, Z)-3-((1-(butylimino)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A mixture of 3-((7-((difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (1.42 g, 3.72 mmol), butylamine (6.0 mL) and 5 drops of trifluoroacetic acid (∼ 0.1 mL) in benzene (40 mL) was refluxed overnight with removal of water using a Dean-Stark trap. The reaction mixture was concentrated under reduced pressure, diluted with methyl tert-butyl ether, washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered, and concentrated. The residue was used in the next step without further purification.
Step D: Preparation of 3-((7-((difluoromethyl)sulfonyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A mixture of (E, Z)-3-((1-(butylimino)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (1.29 g, 3 mmol, crude from step C), Selectfluor®(2.62 g, 7.4 mmol) and sodium sulfate (4 g, 28.2 mmol) under N2 was heated at 82 °C for 4 hours. After cooling to room temperature, concentrated HCl (37%, 3 mL) was added. The mixture was stirred at room temperature for 15 minutes and then concentrated under reduced pressure. The residue was diluted with methyl t-butyl ether, washed with half saturated aqueous NaHCO3 and then brine, dried over Na2SO4, filtered, and triturated with EtOAc/hexane to give 3-((7-((difluoromethyl)sulfonyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile as an off-white solid (0.5 g). The mother liquor was purified by flash column chromatography with EtOAc/hexane (5% to 40%) to give additional 3-((7-((difluoromethyl)sulfonyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (0.13 g, 51% combined yield). LCMS ESI (+) m/z 418 (M+H) and 435 (M+NH4).
Step E: Preparation of (S)-3-((7-((difluoromethyl)sulfonyl)-2,2-difluoro-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 15): An ice cold solution of RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.6 mg) in dichloromethane (0.2 mL) was added by syringe under nitrogen to an ice cold solution of 3-[7-(difluoromethylsulfonyl)-2,2-difluoro-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (28 mg, 0.07 mmol), triethylamine (18.7 µL, 0.13 mmol) and formic acid (7.6 µL, 0.2 mmol) in dichloromethane (0.5 mL) and then placed in a refrigerator at 4 °C overnight. The reaction mixture was directly purified on preparative TLC with EtOAc/hexane (40%) to give Compound 15 (23.4 mg, 0.06 mmol, 83% yield). The ee was determined to be greater than 95% by 19F NMR analysis of the corresponding Mosher ester. LCMS ESI (+) m/z 420 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.94 (d, 1H), 7.33-6.98 (m, 4H), 6.44 (t, 1H), 5.51 (d, 1H), 3.61-3.45 (m, 2H).
Example 16
Example 17
4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 17)
Step A: Preparation of 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol: To a stirred solution of 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (110 mg, 0.42 mmol) in methanol (4 mL) was added sodium borohydride (24 mg, 0.62 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. Saturated aqueous NH4Cl solution was added dropwise. The mixture was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated in vacuo to give 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol (100 mg, 90%), which was used in the next step without further purification. LCMS ESI (+) m/z 267 (M+H); ESI (-) m/z 311 (M-H+46).
Step B: Preparation of 4-(3-chloro-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 17): Prepared similarly as described in Example 1 Step G using 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol in place of (1R)-7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol. LCMS ESI (+) m/z 393 (M+H); ESI (-) m/z 437, 439 (M-H+46).
Example 18
Example 19
7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-amine (Compound 19)
Step A: Preparation of 7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-one: Prepared as described in Example 18 using (R)-7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-ol (Compound 2) in place of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-ol (Compound 17). LCMS ESI (+) m/z 375 (M+H).
Step B: Preparation of 7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-amine (Compound 19): A mixture of 7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-one (25 mg, 0.07 mmol) and NH4OAc (51 mg, 0.67 mmol) in i-PrOH (0.77 mL) was stirred at ambient temperature for 1 hour. NaBH3CN (17 mg, 0.27 mmol) was added. The mixture was heated at reflux for 1 hour. After cooling, the reaction was quenched by the addition of saturated aqueous NaHCO3 solution. The aqueous layer was extracted with dichloromethane. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (2-12% MeOH in dichloromethane) to give Compound 19, which was converted to HCl salt by treatment with 4N HCl in dioxane (4 mg, 16% yield). LCMS ESI (+) m/z 376 (M+H). 1H NMR for free base (400 MHz, CDCl3): δ 7.81 (d, 1H), 6.92 (d, 1H), 6.72-6.67 (m, 1H), 6.62 (t, 1H), 6.63-6.59 (m, 2H), 4.96-4.94 (m, 1H), 3.18-3.10 (m, 1H), 2.99-2.92 (m, 1H), 2.51-2.41 (m, 1H), 2.30-2.00 (m, 3H).
Example 20
Reference Example 21
Example 22
4-((Difluoromethyl)sulfonyl)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-2-ol (Compound 22)
Step A: Preparation of 2-((difluoromethyl)sulfonyl)-5-(3,5-difluorophenoxy)-1a,6a-dihydro-6H-indeno[1,2-b]oxirene: To a stirred solution of 4-(difluoromethylsulfonyl)-7-(3,5-difluorophenoxy)-1H-indene (Compound 21) (30 mg, 0.08 mmol) in dichloromethane (0.4 mL) was added 3-chloroperbenzoic acid (38 mg, 0.17 mmol). The reaction mixture was stirred for 40 hours at ambient temperature. The reaction mixture then diluted with dichloromethane, washed with 20% sodium carbonate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (15% EtOAc in hexane) to afford 2-((difluoromethyl)sulfonyl)-5-(3,5-difluorophenoxy)-1a,6a-dihydro-6H-indeno[1,2-b]oxirene (24 mg, 77%). LCMS ESI (-) m/z 357 (M-H-16).
Step B: Preparation of 4-((difluoromethyl)sulfonyl)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-2-ol (Compound 22): To a stirred solution of 2-((difluoromethyl)sulfonyl)-5-(3,5-difluorophenoxy)-1a,6a-dihydro-6H-indeno[1,2-b]oxirene (24 mg, 0.06 mmol) in 1,2-dichloroethane (0.6 mL) was added diiodozinc (31 mg, 0.1 mmol) and sodium cyanoborohydride (8.1 mg, 0.13 mmol). The reaction mixture was heated to reflux for 16 hours. After cooling, the reaction was quenched by the addition of 1N HCl. The mixture was extracted with dichloromethane. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-30% EtOAc in hexane) to give Compound 22 (7 mg, 29%). LCMS ESI (-) m/z 421 (M-H+46); 1H NMR (400 MHz, CDCl3): δ 7.79 (d, 1H), 6.90 (d, 1H), 6.72-6.66 (m, 1H), 6.64-6.57 (m, 2H), 6.19 (t, 1H), 4.85-4.81 (m, 1H), 3.60-3.44 (m, 3H), 3.21-2.99 (m, 2H).
Example 23
Reference Example 24
(7-((Difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-yl)methanol (Compound 24)
Step A: Preparation of 7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-indene-1-carbaldehyde: Lithium bis(trimethylsilyl)amide (1.0 M solution in THF, 0.32 mL, 0.32 mmol) was added dropwise to a stirred suspension of (methoxy methyl)triphenylphosphonium chloride (103 mg, 0.30 mmol) in dry THF (1 mL) at 0 °C under nitrogen. The mixture was stirred at 0 °C for 1 hour. A solution of 7-(difluoromethylsulfanyl)-4-fluoro-indan-1-one (50 mg, 0.22 mmol) in THF (1 mL) was added dropwise. The mixture was stirred at 0 °C for 1 hour and at ambient temperature overnight. Water was added and the mixture was partitioned between EtOAc and brine. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The crude was dissolved in tetrahydrofuran (2 mL). Concentrated HCl (0.11 mL) was added. The reaction mixture was stirred at ambient temperature for 4 hours, and then extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-50% EtOAc/hexane) to give 7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-indene-1-carbaldehyde (24 mg, 45%). LCMS ESI (-) m/z 245 (M-H).
Step B: Preparation of (7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol: To a stirred solution of 7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-indene-1-carbaldehyde (24 mg, 0.10 mmol) in MeOH (1 mL) was added sodium borohydride (5.5 mg, 0.15 mmol). The reaction mixture was stirred at ambient temperature for 30 minutes. Water was added dropwise to quench the reaction. The mixture was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-50% EtOAc/hexane) to give (7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol (17 mg, 70% yield). LCMS ESI (-) m/z 247 (M-H).
Step C: Preparation of (7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol: To a stirred solution of (7-((difluoromethyl)thio)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol (17 mg, 0.07 mmol) in dichloromethane (0.7 mL) was added 3-chloroperbenzoic acid (35 mg, 0.21 mmol). The reaction mixture was stirred at ambient temperature overnight. The reaction was quenched by the addition of saturated aqueous NaHCO3 solution and saturated aqueous Na2S2O3 solution and then extracted twice with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-30% EtOAc/hexane) to give (7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol (14 mg, 73%). LCMS ESI (+) m/z 281 (M+H).
Step D: Preparation of (7-((difluoromethyl)sulfonyl)-4-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-1-yl)methanol (Compound 24): Prepared similarly as described in Example 1 Step G using (7-((difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydro-1H-inden-1-yl)methanol in place of (1R)-7-(difluoromethylsulfonyl)-4-fluoro-indan-1-ol. LCMS ESI (+) 391 m/z (M+H); 1H NMR (400 MHz, CDCl3): δ 7.77 (d, 1H), 6.90 (d, 1H), 6.71-6.65 (m, 1H), 6.62-6.36 (m, 2H), 6.23 (t, 1H), 3.94-3.71 (m, 3H), 2.97-2.89 (m, 2H), 2.84 (s, 1H), 2.40-2.22 (m, 2H).
Example 25
(S)-4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-ol (Compound 25)
Step A: Preparation of 3-chloro-5-((7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)pyridine: 7-((Difluoromethyl)sulfonyl)-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (3.0 g, 9.7 mmol) was combined with 5-chloropyridin-3-ol (1.89 g, 14.6 mmol) and sodium bicarbonate (2.45 g, 29.2 mmol) then the solids were suspended in N-methylpyrrolidinone (28.5 mL). The mixture was heated to 90 °C for 14 hours then stirred at ambient temperature for 34 hours. The reaction mixture was diluted with ethyl acetate and water and the layers were separated. The aqueous was washed with ethyl acetate and the combined organic layers were washed five times with water, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a cream-colored solid (4.36 g). LCMS ESI (+) m/z (M+H) 418, 420.
Step B: Preparation of 4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: 3-Chloro-5-((7-((difluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)pyridine (5.07 g, 12.1 mmol) was dissolved in 6:1 acetone / water (100 mL) and treated with pyridinium p-toluenesulfonate (304 mg, 1.21 mmol). The mixture was heated to 82 °C for 22 hours then stirred at ambient temperature for 38 hours. The reaction mixture was treated with additional pyridinium p-toluenesulfonate (304 mg, 1.21 mmol) and reheated to 90 °C for 24 hours. The reaction was cooled and concentrated in vacuo. The remaining aqueous was treated with saturated NaHCO3 and ethyl acetate then separated. The aqueous was washed with ethyl acetate and the combined organics were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a tan solid (4.25 g). LCMS ESI (+) m/z (M+H) 374, 376.
Step C: Preparation of N-butyl-4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine: 4-((5-Chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (4.25 g, 11.4 mmol) was suspended in benzene (250 mL) and treated with butylamine (45 mL, 454 mmol) and trifluoroacetic acid (0.44 mL, 5.7 mmol). The reaction flask was heated through a Dean-Stark trap while monitoring the reaction by 1H NMR. After 3.5 hours, the reaction mixture was cooled and concentrated in vacuo then the residue was redissolved in MTBE and water. After separation, the organic layer was washed three times with water, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a tan solid (4.8 g).
Step D: Preparation of 4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-one: N-Butyl-4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine (4.8 g, 11.2 mmol) was dissolved in dry acetonitrile (110 mL) and treated with Selectfluor® (9.9 g, 28 mmol) and sodium sulfate (16 g, 112 mmol). The mixture was heated to 100 °C for 8 hours then stirred for 3 hours at ambient temperature. The mixture was treated with concentrated aqueous HCl (14 mL, 169 mmol) and stirred for 10 minutes. The mixture was concentrated in vacuo then the resulting suspension was diluted with water (250 mL) and ethyl acetate. After separation, the aqueous was washed twice with ethyl acetate and the combined organic layer was washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a dark semi-solid. The crude product was redissolved in methylene chloride and chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane. The desired material was collected and concentrated in vacuo to a cream-colored solid (1.76 g). LCMS ESI (+) m/z (M+H) 409.9 / 411.9.
Step E: Preparation of (S)-4-((5-chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-ol (Compound 25): 4-((5-Chloropyridin-3-yl)oxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-one (1.76 g, 4.3 mmol) was dissolved in methylene chloride (46 mL), treated with triethylamine (1.2 mL, 8.6 mmol) and formic acid (0.49 mL, 12.9 mmol) then cooled to 0°C. The solution was treated with solid RuCl(p-cymene)[(R,R)-Ts-DPEN] (27 mg, 0.04 mmol). The homogeneous reaction mixture was transferred to the refrigerator and allowed to stand at 4°C for 14 hours. The mixture was concentrated in vacuo and chromatographed on SiO2 eluting with a gradient of ethyl acetate and hexanes. After chromatography, the desired product was concentrated in vacuo. The remaining oil was dissolved in Et2O, concentrated in vacuo, and dried under high vacuum to give Compound 25 as a white foam (1.64 g). LCMS ESI (+) m/z (M+H) 410, 412. 1H NMR (400 MHz, CDCl3) δ 8.55-8.54 (m, 1H), 8.40-8.39 (m, 1H), 7.91 (d, 1H), 7.52-7.49 (m, 1H), 6.93 (d, 1H), 6.44 (t, 1H), 5.53-5.49 (m, 1H), 3.64-3.48 (m, 2H), 3.35 (d, 1H).
Example 26
(S)-4-(3-Chloro-4-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-ol (Compound 26)
Step A: Preparation of 7-((difluoromethyl)sulfonyl)-2,4-difluoro-2,3-dihydro-1H-inden-1-one: A mixture of 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (100 mg, 0.38 mmol), methanol (4 mL) and Accufluor® (50% on aluminum oxide, 158 mg, 0.490 mmol) was heated at reflux for 5 hours. After cooling, the solvent was removed under reduced pressure. The residue was taken up in dichloromethane and filtered. The filtrate was washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-25% EtOAc/hexane) to give 7-((difluoromethyl)sulfonyl)-2,4-difluoro-2,3-dihydro-1H-inden-1-one (55 mg, 51%). LCMS ESI (+) m/z 283 (M+H).
Step B: Preparation of tert-butyl((4-((difluoromethyl)sulfonyl)-2,7-difluoro-1H-inden-3-yl)oxy)dimethylsilane: To a stirred solution of 7-((difluoromethyl)sulfonyl)-2,4-difluoro-2,3-dihydro-1H-inden-1-one (352 mg, 1.25 mmol) and triethylamine (1.04 mL, 7.48 mmol) in dichloromethane (10 mL) was added dropwise [tert-butyl(dimethyl)silyl] trifluoromethanesulfonate (0.43 mL, 1.87 mmol) at 0 °C under nitrogen. The reaction mixture was allowed to warm to ambient temperature and stir for 3 hours. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (+) m/z 397 (M+H).
Step C: Preparation of 7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-one: To a stirred solution of tert-butyl((4-((difluoromethyl)sulfonyl)-2,7-difluoro-1H-inden-3-yl)oxy)dimethylsilane (crude, 494 mg, 1.25 mmol) in acetonitrile (12 mL) was added Selectfluor® (574 mg, 1.62 mmol). The resulting mixture was stirred at ambient temperature for 3 hours. The solvent was evaporated in vacuo. The residue was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organics were washed with water and brine, dried over Na2SO4, filtered, and concentrated to dryness. The residue was purified by flash chromatography on silica gel (8-28% EtOAc in hexane) to give 7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-one (315 mg, 84%). LCMS ESI (+) m/z 301 (M+H).
Step D: Preparation of (S)-7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-ol: Prepared analogously to the procedure for in Example 1 Step F. LCMS ESI (-) m/z 347 (M-H+46).
Step E: Preparation of (S)-tert-butyl((7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane: To a stirred solution of (S)-7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-ol (140 mg, 0.46 mmol) in dichloromethane (5 mL) was added 2,6-dimethylpyridine (0.21 mL, 1.9 mmol) under nitrogen. The reaction was cooled to -78 °C. [tert-Butyl(dimethyl)silyl]trifluoromethanesulfonate (0.27 mL, 1.2 mmol) was added dropwise. The resulting mixture was allowed to warm to ambient temperature and stirred for 3 hours. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organics were washed with water and brine, dried over Na2SO4, filtered, and concentrated to dryness. The residue was purified by flash column chromatography on silica gel (2-10% EtOAc in hexane) to give (S)-tert-butyl((7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (155 mg, 80%). LCMS ESI (+) m/z 417 (M+H).
Step F: Preparation of (S)-tert-butyl((4-(3-chloro-4-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane: A mixture of (S)-tert-butyl((7-((difluoromethyl)sulfonyl)-2,2,4-trifluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (100 mg, 0.24 mmol), 3-chloro-4-fluoro-phenol (70 mg, 0.48 mmol) and sodium hydrogen carbonate (61 mg, 0.72 mmol) in 1-methyl-2-pyrrolidone (0.8 mL) was heated at 70 °C under nitrogen for 3 hours. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na2SO4, and concentrated. The residue was purified by flash chromatography on silica gel (3-15% EtOAc/hexane) affording (S)-tert-butyl((4-(3-chloro-4-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (41 mg, 31%). LCMS ESI (-) m/z 541, 543 (M-H).
Step G: Preparation of (S)-4-(3-chloro-4-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-ol (Compound 26): To a stirred solution of (S)-tert-butyl((4-(3-chloro-4-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (41 mg, 0.08 mmol) in tetrahydrofuran (0.8 mL) was added tetrabutylammonium fluoride (1.0 M solution in THF, 0.08 mL, 0.08 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. The reaction mixture was then partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash 12+M column, 20-95% CH3CN/water) to give Compound 26 (17 mg, 53%) as a white solid. The ee was determined to be >95% by 19F NMR analysis of the corresponding Mosher ester. LCMS ESI (-) m/z 473, 475 (M-H+46); 1H NMR (400 MHz, CDCl3): δ 7.86 (d, 1H), 7.26-7.22 (m, 2H), 7.05-6.95 (m, 1H), 6.86 (d, 1H), 6.41 (t, 1H), 5.51-5.47 (m, 1H), 3.58-3.51 (m, 2H), 3.26 (brd s, 1H).
Example 27
Reference Example 28
2-Chloro-6-(3-chloro-5-fluorophenoxy)-3-((trifluoromethyl)sulfonyl)benzonitrile (Compound 28)
Step A: Preparation of 2-bromo-3-chloro-4-((trifluoromethyl)thio)aniline: To a stirred solution of 3-chloro-4-((trifluoromethyl)thio)aniline (3.0 g, 13.2 mmol) in DMF (60 mL) was added dropwise a solution of NBS (2.7 g, 15.2 mmol) in DMF (30 mL) at 0 °C under nitrogen. The reaction mixture was stirred at ambient temperature overnight. The reaction mixture was poured into water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (1-5% EtOAc in hexane) to give 2-bromo-3-chloro-4-((trifluoromethyl)thio)aniline (1.10 g, 27%). LCMS ESI (-) m/z 304, 306, 308 (M-H).
Step B: Preparation of (3-bromo-2,4-dichlorophenyl)(trifluoromethyl)sulfane: To a stirred solution of 2-bromo-3-chloro-4-((trifluoromethyl)thio)aniline (0.80 g, 2.61 mmol) in acetic acid (8 mL) was added concentrated HCl (4 mL) dropwise. The reaction mixture was stirred for 10 minutes. A solution of NaNO2 (0.216 g, 3.13 mmol) in water (2 mL) was added dropwise. In a separate flask, a solution of CuCl (388 mg, 3.92 mmol) in concentrated HCl (4 mL) was prepared. The reaction mixture of the diazonium salt prepared beforehand was then quickly added dropwise to the solution of the copper salt. The resulting reaction mixture was stirred at ambient temperature for 2 hours. The reaction mixture was then poured into ice-cooled water and the aqueous phase was extracted twice with EtOAc. The combined organic layers were dried, filtered and then evaporated. The resulting crude product was purified by column chromatography on silica gel (1-3% EtOAc in hexane) to yield (3-bromo-2,4-dichlorophenyl)(trifluoromethyl)sulfane (0.38 g, 47%). LCMS ESI (-) m/z 319, 321, 323 (M-H).
Step C: Preparation of 2,6-dichloro-3-((trifluoromethyl)thio)benzonitrile: To a solution of (3-bromo-2,4-dichlorophenyl)(trifluoromethyl)sulfane (68 mg, 0.21 mmol) in NMP (1 mL) in a microwave reaction vessel was added CuCN (22 mg, 0.25 mmol). The reaction mixture was heated at 190 °C in a microwave reactor for 30 minutes. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was purified by flash chromatography on silica gel (2-5% EtOAc/hexane) to give 2,6-dichloro-3-((trifluoromethyl)thio)benzonitrile (25 mg, 44%).
Step D: Preparation of 2,6-dichloro-3-((trifluoromethyl)sulfonyl)benzonitrile: To a stirred mixture of 2,6-dichloro-3-((trifluoromethyl)thio)benzonitrile (35 mg, 0.13 mmol), acetonitrile (3 mL), CCl4 (3 mL) and water (6 mL) were added NaIO4 (69 mg, 0.32 mmol) and RuCl3 (1 mg, 0.003 mmol). The reaction mixture was stirred at ambient temperature for 3 hours. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (2-10% EtOAc/hexane) to give 2,6-dichloro-3-((trifluoromethyl)sulfonyl)benzonitrile (25 mg, 64%). 1H NMR (400 MHz, CDCl3): δ 8.31 (d, 1H), 7.75 (d, 1H).
Step E: Preparation of 2-chloro-6-(3-chloro-5-fluorophenoxy)-3-((trifluoromethyl)sulfonyl)benzonitrile (Compound 28): To a pear-shaped flask were added 2,6-dichloro-3-((trifluoromethyl)sulfonyl)benzonitrile (25 mg, 0.082 mmol), 3-chloro-5-fluorophenol (12 mg, 0.08 mmol) and NMP (1 mL). Cs2CO3 (16 mg, 0.05 mmol) was added. The reaction mixture was stirred at ambient temperature for 3 hours and then partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash 12+M column, 20-100% CH3CN/water) to give Compound 28 (18 mg, 53%) as a white solid. LCMS ESI (-) m/z 412, 414 (M-H); 1H NMR (400 MHz, CDCl3): δ 8.27 (d, 1H), 7.17-7.14 (m, 1H), 7.03-7.02 (m, 1H), 6.97 (d, 1H), 6.88-6.85 (m, 1H).
Reference Example 29
Reference Example 30
2-Chloro-6-(3-cyano-5-fluorophenoxy)-3-((difluoromethyl)sulfonyl)benzonitrile (Compound 30)
Step A: Preparation of 3-bromo-2,4-dichlorobenzenethiol: To a stirred solution of triphenylphosphine (2.43 g, 9.25 mmol) in dichloromethane (8 mL) and DMF (0.5 mL) was added dropwise a solution of 3-bromo-2,4-dichlorobenzene-1-sulfonyl chloride (1.00 g, 3.08 mmol) in dichloromethane (8 mL) at 0 °C. The reaction mixture was allowed to gradually warm to ambient temperature over 2 hours. The reaction mixture was concentrated. To the residue was added 1 N NaOH solution and extracted with ether. The aqueous layer was acidified with 3 N HCl and extracted with EtOAc. The combined organic layers were washed with brine, dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel affording 3-bromo-2,4-dichlorobenzenethiol (0.207 g, 26%) as a white solid. LCMS ESI (-) m/z 255, 257, 259 (M-H).
Step B: Preparation of (3-bromo-2,4-dichlorophenyl)(trifluoromethyl)sulfane: Prepared similarly as described in Example 1 Step D using 3-bromo-2,4-dichlorobenzenethiol in place of 4-fluoro-7-sulfanyl-indan-1-one. 1H NMR (400 MHz, CDCl3): δ 7.57 (d, 1H), 7.41 (d, 1H), 6.90 (t, 1H).
Step C: Preparation of (2-chloro-6-(3-cyano-5-fluorophenoxy)-3-((difluoromethyl)sulfonyl)benzonitrile (Compound 30): Prepared analogously to the procedures for Compound 28 in Reference Example 28 Step C to Step E. LCMS ESI (-) m/z 385, 387 (M-H); 1H NMR (400 MHz, CDCl3): δ 8.28 (d, 1H), 7.42-7.40 (m, 1H), 7.31-7.26 (m, 1H), 7.22-7.19 (m, 1H), 6.97 (d, 1H), 6.45 (t, 1H).
Reference Example 31
6-(3-Cyanophenoxy)-3-((difluoromethyl)sulfonyl)-2-methylbenzonitrile (Compound 31)
Step A: 3-Bromo-6-fluoro-2-methyl-benzonitrile: 2-Fluoro-6-methyl-benzonitrile (1000 mg, 7.4 mmol) was added to trifluoromethanesulfonic acid (4.98 mL, 56.2 mmol) cooled in ice. The resulting cold solution was treated with N-bromosuccinimide (1380 mg, 7.8 mmol). The mixture was allowed to stir at ambient temperature. After 30 min, the reaction mixture was poured into ice water and extracted with 2 portions dichloromethane. The combined dichloromethane layers were washed with brine, dried over MgSO4, filtered, and evaporated to yield 3-bromo-6-fluoro-2-methyl-benzonitrile (1560 mg, 7.3 mmol, 98% yield) as a light brown oil that solidified.
Step B: S-(3-Cyano-4-fluoro-2-methyl-phenyl) ethanethioate: To a solution of 3-bromo-6-fluoro-2-methyl-benzonitrile
(1500 mg, 7.0 mmol) in 1,4-dioxane (35 mL) was added acetylsulfanylpotassium (840
mg, 7.4 mmol). The mixture was sparged with nitrogen and then (5-diphenylphosphanyl-9,9-dimethyl-xanthen-4-yl)-diphenyl-phosphane
(487 mg, 0.8 mmol) and tris(dibenzylideneacetone)dipalladium(0) (3523 mg, 0.4 mmol)
were added. The sparging was stopped, and the flask was heated at reflux under nitrogen.
After 4.5 hours, the reaction mixture was diluted with EtOAc and brine, filtered,
and partitioned. The EtOAc was washed with brine, dried over MgSO4, filtered and evaporated.
The residue was chromatographed on a Biotage 50 g SNAP column with a 10% to 60% EtOAc:hexane
gradient. The product containing fractions were combined to afford S-(3-cyano-4-fluoro-2-methyl-phenyl)
ethanethioate (441 mg, 2.1 mmol, 30% yield).
Step C: 6-Fluoro-2-methyl-3-sulfanyl-benzonitrile: Lithium hydroxide monohydrate (265 mg, 6.3 mmol) was added to a degassed (N2) solution of S-(3-cyano-4-fluoro-2-methyl-phenyl) ethanethioate (441 mg, 2.1 mmol) in methanol (12 mL) and water (3 mL). The mixture was stirred at ambient temperature under nitrogen. After 45 minutes, the reaction mixture was evaporated, the aqueous residue was neutralized with 10% HCl, and the mixture was extracted with EtOAc. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford 6-fluoro-2-methyl-3-sulfanyl-benzonitrile (370 mg, 2.2 mmol, 100% yield).
Step D: 3-(Difluoromethylsulfanyl)-6-fluoro-2-methyl-benzonitrile: Potassium hydroxide (1862 mg, 33 mmol) was added to a degassed frozen slurry of 6-fluoro-2-methyl-3-sulfanyl-benzonitrile (370 mg, 2.2 mmol) and bromodifluoromethyl diethylphosphonate (886 mg, 3.3 mmol) in acetonitrile (6 mL) and water (6 mL) cooled in dry ice/acetone under nitrogen. The mixture was allowed to warm to ambient temperature. After 20 minutes, the reaction mixture was partitioned between MTBE and brine. The MTBE was washed with brine, dried over MgSO4, filtered, and evaporated to yield a yellow oil. This was chromatographed on a Biotage 50 g SNAP column with a 0% to 40% EtOAc:hexane gradient. 3-(Difluoromethylsulfanyl)-6-fluoro-2-methyl-benzonitrile was obtained as a pale yellow oil (239 mg, 1.1 mmol, 50 % yield).
Step E: 3-(Difluoromethylsulfonyl)-6-fluoro-2-methyl-benzonitrile: 3-Chloroperbenzoic acid (740 mg, 3.3 mmol) was added to a solution of 3-(difluoromethylsulfanyl)-6-fluoro-2-methyl-benzonitrile (239 mg, 1.1 mmol) in dichloromethane (10 mL). The reaction mixture was stirred at ambient temperature overnight. Additional 3-chloroperbenzoic acid (246 mg, 1.1 mmol) was added and the mixture was heated at reflux for 24 hours. The reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and aqueous sodium thiosulfate (1 M), water, brine, dried over MgSO4, filtered, and evaporated to afford a white solid. This was chromatographed on a Biotage 25 g SNAP column with a 20% to 60% EtOAc:hexane gradient. 3-(Difluoromethylsulfonyl)-6-fluoro-2-methyl-benzonitrile was obtained as a white solid (138 mg, 0.6 mmol, 50% yield).
Step F: 6-(3-Cyanophenoxy)-3-((difluoromethyl)sulfonyl)-2-methylbenzonitrile (Compound 31): 3-Hydroxybenzonitrile (7.17 mg, 0.06 mmol) was added to a solution of 3-(difluoromethylsulfonyl)-6-fluoro-2-methyl-benzonitrile (15 mg, 0.06 mmol) and sodium hydrogen carbonate (10 mg, 0.12 mmol) in DMF (0.5 mL) in a vial. The vial was sealed and heated at 50 °C. After 50 minutes, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 20% to 80% EtOAc:hexane gradient to give Compound 31 as a white solid (18.4 mg, 0.05 mmol, 88% yield). 1H NMR (400 MHz, CDCl3): δ 8.14 (d, 1H), 7.67-7.61 (m, 2H), 7.48-7.47 (m, 1H), 6.80 (d, 1H), 6.24 (t, 1H), 2.98 (s, 3H). m/z (ES-API-neg) [M-H] = 374.
Reference Example 32
Reference Example 33
Reference Example 34
Reference Example 35
6-(3-Chloro-5-fluorophenoxy)-3-((difluoromethyl)sulfonyl)-2-(hydroxymethyl)benzonitrile (Compound 35)
Step A: 2-(Bromomethyl)-6-(3-chloro-5-fluoro-phenoxy)-3-(difluoromethylsulfonyl)benzonitrile: N-Bromosuccinimide (24 mg, 0.14 mmol) was added to a solution of 6-(3-chloro-5-fluoro-phenoxy)-3-(difluoromethylsulfonyl)-2-methylbenzonitrile Compound 32 (50.8 mg, 0.14 mmol) in carbon tetrachloride (3 mL). The suspension was treated with AIBN (1.1 mg, 0.01 mmol) and heated at reflux for 9 days, with additional N-bromosuccinimide and AIBN being added as needed to drive the reaction to completion. Finally, the reaction mixture was diluted with dichloromethane, washed with water, brine, dried over MgSO4, filtered, and evaporated to yield a colorless glass. This was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient. 2-(Bromomethyl)-6-(3-chloro-5-fluoro-phenoxy)-3-(difluoromethylsulfonyl)benzonitrile was obtained as a white solid (26.4 mg, 0.06 mmol, 43% yield).
Step B: [3-(3-Chloro-5-fluoro-phenoxy)-2-cyano-6-(difluoromethylsulfonyl)phenyl]methyl acetate: 2-(Bromomethyl)-6-(3-chloro-5-fluoro-phenoxy)-3-(difluoromethylsulfonyl)benzonitrile (12 mg, 0.03 mmol) in DMF (0.50mL) was treated with potassium acetate (13.2 mg, 0.13 mmol). The solution was stirred at ambient temperature. After 30 minutes, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford a residue. This was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give [3-(3-Chloro-5-fluoro-phenoxy)-2-cyano-6-(difluoromethylsulfonyl)phenyl]methyl acetate (4.4 mg, 0.01 mmol, 38 % yield). m/z (ES-API-pos) [M+H] = 451.
Step C: 6-(3-Chloro-5-fluorophenoxy)-3-((difluoromethyl)sulfonyl)-2-(hydroxymethyl)benzonitrile (Compound 35): Lithium hydroxide hydrate (0.85 mg, 0.02 mmol) was added to a solution of [3-(3-chloro-5-fluoro-phenoxy)-2-cyano-6-(difluoromethylsulfonyl)phenyl]methyl acetate (4.4 mg, 0.01 mmol) in methanol (0.80 mL) and water (0.40 mL). After 15 minutes, the reaction mixture was treated with a few drops of 1M HCl and evaporated. The residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford a white film. This was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient. Further purification was completed using a 2 mm preparative TLC plate and developed 4 times with 4:1 dichloromethane:hexane to give Compound 35 (1.0 mg, 0.003 mmol, 25% yield) as a white solid. 1H NMR (400 MHz, CDCl3): δ 8.07 (d, 1H), 7.13-7.05 (m, 1H), 7.04-6.95 (m, 2H), 6.89-6.85 (m, 1H), 6.26 (t, 1H), 5.60 (s, 2H). m/z (ES-API-neg) [M-1] = 391.
Reference Example 36
Reference Example 37
6-(3-Chloro-5-fluorophenoxy)-3-((difluoromethyl)sulfinyl)-2-methylbenzonitrile (Compound 37)
Step A: (3-Cyano-4-fluoro-2-methyl-phenyl)-(difluoromethyl)-oxido-sulfonium: 3-Chloroperbenzoic acid (740 mg, 3.3 mmol) was added to a solution of 3-(difluoromethylsulfanyl)-6-fluoro-2-methyl-benzonitrile (239 mg, 1.1 mmol) in dichloromethane (10 mL). The reaction mixture was stirred at ambient temperature overnight. Additional 3-chloroperbenzoic acid (246 mg, 1.1 mmol) was added and the mixture was heated at reflux for 24 hours. The reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and aqueous sodium thiosulfate (1 M), water, brine, dried over MgSO4, filtered, and evaporated to afford a white solid. This was chromatographed on a Biotage 25g SNAP column with a 20% to 60% EtOAc:hexane gradient to give 3-(difluoromethylsulfonyl)-6-fluoro-2-methyl-benzonitrile (138 mg, 0.55 mmol, 50 % yield) as a white solid and (3-cyano-4-fluoro-2-methyl-phenyl)-(difluoromethyl)-oxido-sulfonium (28.7 mg, 0.12 mmol, 11 % yield) as a colorless glass.
Step B: 6-(3-Chloro-5-fluorophenoxy)-3-((difluoromethyl)sulfinyl)-2-methylbenzonitrile (Compound 37): 3-Chloro-5-fluoro-phenol (0.0022 mL, 0.0200 mmol) was added to a solution of (3-cyano-4-fluoro-2-methyl-phenyl)-(difluoromethyl)-oxido-sulfonium (5.0 mg, 0.02 mmol) and potassium carbonate (4.4 mg, 0.03 mmol) in DMF (0.5 mL) in a vial. The vial was sealed and heated at 50 °C. After 75 min, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 37 (6.8 mg, 0.02 mmol, 88% yield) as a colorless glass. 1H NMR (400 MHz, CDCl3): δ 8.07 (d, 1H), 7.07-7.03 (m, 1H), 7.01 (d, 1H), 6.96-6.94 (m, 1H), 6.81-6.77 (m, 1H), 6.15 (t, 1H), 2.68 (s, 3H). m/z (ES-API-neg) [M-H] = 358.
Reference Example 38
2-Chloro-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)benzonitrile (Compound 38)
Step A: 2-Chloro-3-fluoro-6-sulfanyl-benzonitrile: A flask containing a solution of 2-chloro-3,6-difluoro-benzonitrile (2.0 g, 11.5 mmol) in DMF (10 mL) was sparged with nitrogen, cooled in ice, and treated with sodiosulfanylsodium (944 mg, 12.1 mmol). The yellow suspension was stirred and slowly allowed to warm to ambient temperature. After 45 min, the reaction mixture was diluted with 1M NaOH, washed with 2 portions of dichloromethane, acidified to pH 2 with conc. HCl, and extracted with 2 portions of dichloromethane. The dichloromethane was washed with two portions of brine, dried over MgSO4, filtered, and evaporated to yield 2-chloro-3-fluoro-6-sulfanyl-benzonitrile (1.44 g, 7.7 mmol, 67% yield) as a waxy pale yellow solid. m/z (ES-API-neg) [M-H] = 186.
Step B: 2-Chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzonitrile: Bromodifluoromethyl diethylphosphonate (384 mg, 1.44 mmol) was added to a degassed frozen slurry of 2-chloro-3-fluoro-6-sulfanyl-benzonitrile (180 mg, 0.96 mmol) and potassium hydroxide (807 mg, 14.4 mmol) in acetonitrile (4 mL) and water (4 mL) cooled in dry ice/acetone under nitrogen. The mixture was allowed to warm to ambient temperature. After 20 min, the reaction mixture was partitioned between MTBE and brine. The MTBE was washed with brine, dried over MgSO4, filtered, and evaporated to yield a yellow oil. This was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzonitrile (77 mg, 0.33 mmol, 34% yield) as a colorless oil.
Step C: 2-Chloro-6-(difluoromethylsulfonyl)-3-fluoro-benzonitrile: A solution of 2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzonitrile (77 mg, 0.33 mmol) and 3-chloroperbenzoic acid (197 mg, 1.14 mmol) in dichloromethane (10 mL) was heated at reflux overnight. An additional 100 mg 3-chloroperbenzoic acid was added and refluxing continued overnight. The reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and 1M sodium thiosulfate, water, brine, dried over MgSO4, filtered, and evaporated to afford a white solid. This was chromatographed on a Biotage 10 g SNAP column with a 20% to 80% EtOAc:hexane gradient to give 2-chloro-6-(difluoromethylsulfonyl)-3-fluoro-benzonitrile (68 mg, 0.25 mmol, 76% yield) as a waxy white solid. m/z (ES-API-neg) [M-H] = 266.
Step D: (2-Chloro-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)phenyl)methanol (Compound 38): As solution of 2-chloro-6-(difluoromethylsulfonyl)-3-fluoro-benzonitrile (10 mg, 0.04 mmol) and 3-chloro-5-fluorophenol (0.004 mL, 0.04 mmol) in acetonitrile (0.5 mL) was treated with sodium hydrogen carbonate (6 mg, 0.07 mmol). The mixture was heated at 50 °C. After 3 hours, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 38 (6.8 mg, 0.02 mmol, 46% yield) as a colorless glass. 1H NMR (400 MHz, CDCl3): δ 8.03 (d, 1H), 7.24 (d, 1H), 7.12-7.08 (m, 1H), 6.96-6.94 (m, 1H), 6.81-6.77 (m, 1H), 6.41 (t, 1H). m/z (ES-API-neg) [M-H+18] = 413.
Reference Example 39
Reference Example 40
Reference Example 41
(2-Chloro-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)phenyl)methanol (Compound 41)
Step A: 2-Chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzaldehyde: Diisobutylaluminum hydride solution (1.18 mL, 1.18 mmol, 1M in heptane) was added to an ice cold solution of 2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzonitrile (200 mg, 0.84 mmol) in dichloromethane (5 mL). After 1 hour, the reaction mixture was treated with ∼2 mL methanol, then 2 mL 10% HCl. This was stirred for 1h. The mixture was concentrated and the aqueous residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford a pale yellow oil. This was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzaldehyde (124 mg, 0.5 mmol, 61% yield) as a colorless glass.
Step B: [2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-phenyl]methanol: Sodium borohydride (29 mg, 0.77 mmol) was added to an ice cold solution of 2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-benzaldehyde (124 mg, 0.52 mmol) in methanol (10 mL). The reaction mixture was allowed to slowly warm to ambient temperature. After 1.5 hours, the reaction was quenched with saturated aqueous NH4Cl and concentrated. The aqueous slurry was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield [2-chloro-6-(difluoromethylsulfanyl)-3-fluorophenyl]methanol (110 mg, 0.45 mmol, 88 % yield) as a colorless oil.
Step D: [2-chloro-6-(difluoromethylsulfonyl)-3-fluoro-phenyl]methanol: 3-Chloroperbenzoic acid (235 mg, 1.36 mmol) was added to a solution of [2-chloro-6-(difluoromethylsulfanyl)-3-fluoro-phenyl]methanol (110 mg, 0.45 mmol) in dichloromethane (10 mL). The vial was sealed and heated at 45 °C. After 4.5 hours, the reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and 1M sodium thiosulfate, then with water, brine, dried over MgSO4, filtered, and evaporated to afford a colorless oil that solidified. This was chromatographed on a Biotage 10 g SNAP column with a 10% to 80% EtOAc:hexane gradient to give [2-chloro-6-(difluoromethylsulfonyl)-3-fluoro-phenyl]methanol (94 mg, 0.34 mmol, 76% yield) as a waxy white solid.
Step E: (2-Chloro-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)phenyl)methanol (Compound 41): 3-Chloro-5-fluoro-phenol (0.004 mL, 0.04 mmol) was added to a solution of [2-chloro-6-(difluoromethylsulfonyl)-3-fluoro-phenyl]methanol (10 mg, 0.04 mmol) and sodium hydrogen carbonate (6.12 mg, 0.07 mmol) in DMF (0.5 mL) in a vial. The vial was sealed and heated at 80 °C. After 3 hours, the reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 41 (8.8 mg, 0.02 mmol, 60% yield) as a white solid. 1H NMR (400 MHz, CDCl3): δ 8.01 (d, 1H), 7.06 (d, 1H), 7.04-7.01 (m, 1H), 6.91-6.88 (m, 1H), 6.76-6.71 (m, 1H), 6.47 (t, 1H), 5.21 (d, 2H), 2.69 (t, 1H). m/z (ES-API-neg) [M-H+46] = 445.
Reference Example 42
Reference Example 43
Reference Example 44
2-Chloro-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)-3-(methoxymethyl)benzene (Compound 44)
Step A: 2-Chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]methyl methanesulfonate: Methanesulfonyl chloride (0.0039 mL, 0.05 mmol) was added to an ice cold solution of [2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]methanol (Compound 41, 16.9 mg, 0.04 mmol) and triethylamine (0.01 mL, 0.11 mmol) in dichloromethane (2 mL). The mixture was allowed to slowly warm to ambient temperature. After 2 hours, the reaction mixture was diluted with dichloromethane, washed with water, brine, dried over MgSO4, filtered, and evaporated to afford [2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]methyl methanesulfonate as a colorless film.
Step B: 2-Chloro-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)-3-(methoxymethyl)benzene (Compound 44): A solution of 25% sodium methanolate in methanol (0.01 mL, 0.04 mmol) was added to a solution of [2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]methyl methanesulfonate (20 mg, 0.04 mmol) in methanol (1 mL). The mixture was heated at 50 °C. Another equivalent of 25% sodium methoxide in methanol was added. After 2 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute brine. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporate. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 44 as a colorless film (0.9 mg, 0.002 mmol, 5% yield). 1H NMR (400 MHz, CDCl3): δ 8.01 (d, 1H), 7.06 (d, 1H), 7.04-7.01 (m, 1H), 6.91-6.88 (m, 1H), 6.76-6.71 (m, 1H), 6.47 (t, 1H), 5.21 (d, 2H), 2.69 (t, 1H). m/z (ES-API-neg) [M-H+46] = 445.
Reference Example 45
Reference Example 46
Reference Example 47
Reference Example 48
Reference Example 49
Reference Example 50
6-(3 -Chloro-5 -fluorophenoxy)-2-methyl-3-(methylsulfonyl)benzonitrile (Compound 50)
Step A: 6-Fluoro-2-methyl-3-methylsulfanyl-benzonitrile: Dimethyl sulfate (0.13 mL, 1.38 mmol) was added to a mixture of potassium carbonate (273 mg, 1.97 mmol) and 6-fluoro-2-methyl-3-sulfanyl-benzonitrile (220 mg, 1.32 mmol) in DMF (5 mL). This was stirred at ambient temperature for 10 minutes. The mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford 6-fluoro-2-methyl-3-methylsulfanyl-benzonitrile (220 mg, 1.2 mmol, 92% yield) as a tan solid.
Step B: 6-Fluoro-2-methyl-3-methylsulfonyl-benzonitrile: 3-Chloroperbenzoic acid (628 mg, 3.64 mmol) was added to a solution of 6-fluoro-2-methyl-3-methylsulfanyl-benzonitrile (220 mg, 1.2 mmol) in dichloromethane (20 mL). The solution was stirred at ambient temperature overnight. The reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and 1M sodium thiosulfate, then with water, brine, dried over MgSO4, filtered, and evaporated to afford 6-fluoro-2-methyl-3-methylsulfonyl-benzonitrile (250 mg, 1.17 mmol, 97% yield) as a white solid.
Step C: 6-(3-Chloro-5-fluorophenoxy)-2-methyl-3-(methylsulfonynbenzonitrile (Compound 50): 3-Chloro-5-fluorophenol (0.01 mL, 0.05 mmol) was added to a solution of sodium hydrogen carbonate (7.9 mg, 0.09 mmol) and 6-fluoro-2-methyl-3-methylsulfonyl-benzonitrile (10 mg, 0.05 mmol) in DMF (0.5 mL) in a vial. The vial was sealed and heated at 50 °C. After 3 hours, the reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 50 (7.7 mg, 0.02 mmol, 48% yield). 1H NMR (400 MHz, CDCl3): δ 8.20 (d, 1H), 7.08-7.04 (m, 1H), 6.96-6.94 (m, 1H), 6.87 (d, 1H), 6.81-6.77 (m, 1H), 3.12 (s, 3H), 2.97 (s, 3H). m/z (ES-API-neg) [M-H] = 338.
Reference Example 51
Reference Example 52
Reference Example 53
1-(3-Chloro-5-fluorophenoxy)-2-(difluoromethyl)-3-methyl-4-(methylsulfonyl)benzene (Compound 53)
Step A: 6-(3-Chloro-5-fluoro-phenoxy)-2-methyl-3-methylsulfonyl-benzaldehyde: 1M DIBAL in heptane (0.45 mL, 0.45 mmol) was added to an ice cold solution of 6-(3-chloro-5-fluoro-phenoxy)-2-methyl-3-methylsulfonyl-benzonitrile Compound 50 (109 mg, 0.32 mmol) in dichloromethane (5 mL). After 30 min, the reaction mixture was treated with 1.5 mL methanol, then 1.5 mL 10% HCl. After stirring for 1h, the mixture was concentrated and the aqueous residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford 6-(3-chloro-5-fluoro-phenoxy)-2-methyl-3-methylsulfonyl-benzaldehyde (99.1 mg, 0.3 mmol, 90% yield) as a white solid. m/z (ES-API-pos) [M+H] = 444.
Step B: 1-(3-Chloro-5-fluorophenoxy)-2-(difluoromethyl)-3-methyl-4-(methylsulfonyl)benzene (Compound 53): Diethylaminosulfur trifluoride (0.084 mL, 0.64 mmol) was added to a solution of 6-(3-chloro-5-fluoro-phenoxy)-2-methyl-3-methylsulfonyl-benzaldehyde (99.1 mg, 0.29 mmol) in dichloromethane (10 mL). After addition, ethanol (0.001 mL, 0.01 mmol) was added. The reaction mixture was stirred at ambient temperature overnight. Additional diethylaminosulfur trifluoride was added over 2 days until the starting aldehyde was consumed, as determined by LC/MS. The reaction mixture was diluted with dichloromethane and treated with saturated aqueous NaHCO3. The dichloromethane layer was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 53 (65 mg, 0.18 mmol, 62% yield). 1H NMR (400 MHz, CDCl3): δ 8.18 (br d, 1H), 7.26 (t, 1H), 7.01-6.97 (m, 1H), 6.89-6.84 (m, 2H), 6.71-6.67 (m, 1H), 3.15 (s, 3H), 2.95 (t, 3H). m/z (ES-API-neg) [M-H] = 363.
Reference Example 54
(3-(3-Chloro-5-fluorophenoxy)-2-(difluoromethyl)-6-(methylsulfonyl)phenyl)methanol (Compound 54)
Step A: 3-(Bromomethyl)-1-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-4-methylsulfonylbenzene: Benzoyl peroxide (1.84 mg, 0.01 mmol) was added to a solution of 1-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-3-methyl-4-methylsulfonyl-benzene Compound 53 (55.5 mg, 0.15 mmol) and N-bromosuccinimide (27 mg, 0.15 mmol) in carbon tetrachloride (4 mL). The mixture was heated at reflux overnight, with additional benzoyl peroxide and N-bromosuccinimide added until the starting material was consumed. The reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford a colorless oil. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 3-(bromomethyl)-1-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-4-methylsulfonylbenzene (40.2 mg, 0.09 mmol, 60% yield) as a colorless glass.
Step B: [3-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-6-methylsulfonyl-phenyl]methyl acetate: 3-(Bromomethyl)-1-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-4-methylsulfonyl-benzene (40.2 mg, 0.09 mmol) in DMF (1.5 mL) was treated with potassium acetate (44 mg, 0.45 mmol). The solution was stirred at ambient temperature for 20 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford [3-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-6-methylsulfonyl-phenyl]methyl acetate (38 mg, 0.09 mmol, 100% yield). m/z (ES-API-neg) [M-H] = 421.
Step C: (3-(3-Chloro-5-fluorophenoxy)-2-(difluoromethyl)-6-(methylsulfonyl)phenyl)methanol (Compound 54): Lithium hydroxide hydrate (11.3 mg, 0.27 mmol) was added to a solution of [3-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-6-methylsulfonyl-phenyl]methyl acetate (38 mg, 0.09 mmol) in methanol (4 mL) and water (1 mL). The mixture was stirred at ambient temperature for 10 minutes. The reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 54 (25.2 mg, 0.07 mmol, 74% yield) and as a colorless glass. 1H NMR (400 MHz, CDCl3): δ 8.21 (d, 1H), 7.31 (t, 1H), 7.03-6.98 (m, 2H), 6.89-6.87 (m, 1H), 6.74-6.70 (m, 1H), 5.27 (d, 2H), 3.30 (s, 3H), 2.96-2.91 (m, 1H). m/z (ES-API-neg) [M-H+46] = 425.
Example 55
(R)-4-(3,5-Difluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 55)
Step A: 4-Fluoro-7-(trifluoromethylsulfanyl)indan-1-one: Methyl viologen dichloride hydrate (22.6 mg, 0.09 mmol) and 4-fluoro-7-sulfanyl-indan-1-one (320 mg, 1.76 mmol) were dissolved in DMF (3 mL) in a vial. The solution was cooled in dry ice/acetone and trifluoromethyl iodide gas (688 mg, 3.5 mmol) was condensed into the cooled solution. Triethylamine (0.34 mL, 2.46 mmol) was added and the vial was sealed. This was stirred at ambient temperature overnight. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 50 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 4-fluoro-7-(trifluoromethylsulfanyl)indan-1-one (130 mg, 0.52 mmol, 30% yield) as a colorless glass. m/z (ES-API-neg) [M-H] = 281.
Step B: 4-Fluoro-7-(trifluoromethylsulfonyl)indan-1-one: Sodium periodate (457.8 mg, 2.14 mmol) was added to a mixture of 4-fluoro-7-sulfanyl-indan-1-one (130 mg, 0.71 mmol) and ruthenium(III) chloride (4.44 mg, 0.02 mmol) in carbon tetrachloride (2 mL), acetonitrile (2 mL), and water (4 mL). The mixture was stirred at ambient temperature for 2 hours. The reaction mixture was partitioned between dichloromethane and water. The dichloromethane was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 4-fluoro-7-(trifluoromethylsulfonyl)indan-1-one (127 mg, 0.45 mmol, 63% yield) as a white solid.
Step C: (1R)-4-Fluoro-7-(trifluoromethylsulfonyl)indan-1-ol: To a solution of 4-fluoro-7-(trifluoromethylsulfonyl)indan-1-one (127 mg, 0.45 mmol) in dichloromethane (5 mL) was added formic acid (0.02 mL, 0.56 mmol) and triethylamine (0.07 mL, 0.5 mmol). The reaction mixture was sparged with nitrogen and RuCl(p-cymene)[(R,R)-Ts-DPEN] (5.7 mg, 0.01 mmol) was added in one portion. The reaction mixture was stirred at room temperature overnight under nitrogen. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give (1R)-4-fluoro-7-(trifluoromethylsulfonyl)indan-1-ol (115 mg, 0.4 mmol, 90% yield) as a colorless oil. 19F NMR (CDCl3) showed e.e. >93% based on Mosher ester CF3 resonances.
Step D: (R)-4-(3,5-Difluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 55): 3,5-Difluorophenol (8.66 mg, 0.07 mmol) was added to a solution of (1R)-4-fluoro-7-(trifluoromethylsulfonyl)indan-1-ol (17.2 mg, 0.06 mmol) and sodium hydrogen carbonate (10.17 mg, 0.12 mmol) in DMF (0.5 mL). This was heated at 80 °C. After 2 hours, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 5% to 40% EtOAc:hexane gradient to give an impure product. This was rechromatographed on a Biotage 10 g SNAP column with a 40% to 100% dichloromethane:hexane gradient to give a product with a small amount of impurity. This was rechromatographed on a Biotage 10 g SNAP column with a 5% to 35% EtOAc:hexane gradient to give Compound 55 (6.5 mg, 0.02 mmol, 27% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.84 (d, 1H), 6.95 (d, 1H), 6.76-6.70 (m, 1H), 6.66-6.60 (m, 2H), 5.65-5.60 (m, 1H), 3.25-3.15 (m, 2H), 3.00-2.92 (m, 1H) 2.47-2.28 (m, 2H). m/z (ES-API-neg) [M-H] = 393.
Example 56
Example 57
Example 58
(R)-4-(3,5-Difluorophenoxy)-7-(trifluoromethyl)-2,3-dihydro-1H-inden-1-ol (Compound 58)
Step A: 4-Fluoro-7-(trifluoromethyl)indan-1-one: A solution of 7-bromo-4-fluoro-indan-1-one (1.00 g, 4.37 mmol) in DMF (15 mL) in a microwave vial was treated with copper(I) iodide (1.66 g, 8.73 mmol) and methyl 2,2-difluoro-2-fluorosulfonyl-acetate (2.78 mL, 21.8 mmol). The vial was sealed and heated in a heating bath at 100 °C overnight. CAUTION: Pressure buildup from released CO2 is likely. Additional aliquots of methyl 2,2-difluoro-2-sulfonylacetate and CuI were added, the vial was resealed, and heating continued for another 24 hours. The reaction mixture was diluted with water and EtOAc, filtered through celite, and the layers separated. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 50 g SNAP column with a 10% to 60% dichloromethane:hexane gradient to give 4-fluoro-7-(trifluoromethyl)indan-1-one (209 mg, 0.96 mmol, 22% yield) as a tan solid.
Step B: (1R)-4-fluoro-7-(trifluoromethyl)indan-1-ol: To a solution of 4-fluoro-7-(trifluoromethyl)indan-1-one (209 mg, 0.96 mmol) in dichloromethane (7 mL) was added formic acid (0.05 mL, 1.2 mmol) and triethylamine (0.15 mL, 1.05 mmol). The reaction mixture was sparged with nitrogen and RuCl(p-cymene)[(R,R)-Ts-DPEN] (12.2 mg, 0.02 mmol) was added in one portion. The reaction mixture was stirred at room temperature overnight under nitrogen. The solvent was evaporated and the residue was chromatographed on a Biotage 25 g SNAP column with a 5% to 30% EtOAc:hexane gradient to give (1R)-4-fluoro-7-(trifluoromethyl)indan-1-ol (169 mg, 0.77 mmol, 80% yield) as a tan solid. Mosher ester analysis (1H NMR (CDCl3)) of the methoxy signal integrations indicated a 90 % enantiomeric excess.
Step C: (R)-4-(3,5-Difluorophenoxy)-7-(trifluoromethyl)-2,3-dihydro-1H-inden-1-ol (Compound 58): 3,5-Difluorophenol (13 mg, 0.10 mmol) was added to a mixture of (1R)-4-fluoro-7-(trifluoromethyl)indan-1-ol (21 mg, 0.10 mmol) and cesium carbonate (46.6 mg, 0.14 mmol) in DMF (0.5 mL) in a vial. The vial was sealed and heated at 135 °C for 24 hours. The reaction mixture was partitioned between EtOAc and 0.3 M aqueous NaOH. The EtOAc was washed with dilute aqueous NaOH, water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 5% to 40% EtOAc:hexane gradient to give an impure product. This was rechromatographed on a Biotage 10 g SNAP column with a 5% to 30% EtOAc:hexane gradient followed by rechromatographing on a Biotage 12M RP column with a 20% to 90% acetonitrile:water gradient to give Compound 58 (2.4 mg, 0.007 mmol, 8% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.53-7.49 (m, 1H), 6.98-6.95 (m, 1H), 6.62-6.55 (m, 1H), 6.53-6.46 (m, 2H), 5.53 (br s, 1H), 3.11-3.01 (m, 1H), 2.84-2.76 (m, 1H), 2.41-2.31 (m, 1H) 2.25-2.18 (m, 1H), 2.04 (br s, 1H). m/z (ES-API-neg) [M-H] = 329.
Example 59
(R)-4-(3,5-Difluorophenoxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 59)
Step A: 4-Fluoro-7-methylsulfinyl-indan-1-one: 3-Chloroperbenzoic acid (37 mg, 0.15 mmol) was added to an ice-cold solution of 4-fluoro-7-methylsulfanyl-indan-1-one (30 mg, 0.15 mmol) in dichloromethane (5 mL). After 5 minutes, the reaction mixture was concentrated, diluted with EtOAc, washed twice with a mixture of saturated aqueous NaHCO3 and 1M sodium thiosulfate, water, brine, dried over MgSO4, filtered, and evaporated to afford 4-fluoro-7-methylsulfinyl-indan-1-one (26 mg, 0.12 mmol, 80% yield) as a white solid. m/z (ES-API-pos) [M+H] = 213.
Step B: 4-Fluoro-7-(fluoromethylsulfanyl)indan-1-one: Diethylaminosulfur trifluoride (5.5 mL, 41.9 mmol) was added dropwise to an ice cold solution of 4-fluoro-7-methylsulfinyl-indan-1-one (1480 mg, 7 mmol) and trichlorostibane (795 mg, 3.5 mmol) in dichloromethane (140 mL). The mixture was stirred at ambient temperature. After 3 hours the reaction mixture was quenched with dropwise addition of saturated aqueous NaHCO3. The mixture was diluted with dichloromethane and washed with saturated aqueous NaHCO3, brine, dried over MgSO4, filtered, and evaporated to yield 4-fluoro-7-(fluoromethylsulfanyl)indan-1-one (1550 mg, 7.24 mmol, 100% yield).
Step C: 4-Fluoro-7-(fluoromethylsulfonyl)indan-1-one: 3-Chloroperbenzoic acid (5.35 g, 21.7 mmol) was added to a solution of 4-fluoro-7-(fluoromethylsulfanyl)indan-1-one (1550 mg, 7.24 mmol) in dichloromethane (145 mL). After 4.5 hours, additional 3-chloroperbenzoic acid (5.35 g, 21.7 mmol) was added. After 6.5 hours, the reaction mixture was concentrated, diluted with EtOAc, washed with 2 portions of a mixture of 1M Na2S2O3 and saturated aqueous NaHCO3, brine, dried over MgSO4, filtered, and evaporated to afford a tan solid. This was chromatographed on a Biotage 100 g SNAP column with a 20% to 80% EtOAc:hexane gradient to give 4-fluoro-7-(fluoromethylsulfonyl)indan-1-one (700 mg, 2.84 mmol, 39% yield) as a white solid. m/z (ES-API-pos) [M+H] = 247.
Step D: 4-Fluoro-7-(fluoromethylsulfonyl)indan-1-ol: 4-Fluoro-7-(fluoromethylsulfonyl)indan-1-one (17.9 mg, 0.07 mmol) was added to a solution of sodium borohydride (4.13 mg, 0.11 mmol) in methanol (2 mL). The reaction mixture was allowed to stir at ambient temperature. After 1.25 hours, the reaction was quenched with saturated aqueous NH4Cl and concentrated. The aqueous slurry was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield 4-fluoro-7-(fluoromethylsulfonyl)indan-1-ol (15.3 mg, 0.06 mmol, 85% yield).
Step E: 4-(3,5-Difluorophenoxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 59): 3,5-Difluorophenol (12.0 mg, 0.09 mmol) was added to a mixture of 4-fluoro-7-(fluoromethylsulfonyl)indan-1-ol (15.3 mg, 0.06 mmol) and cesium hydrogen carbonate (23.9 mg, 0.12 mmol) in DMF (1 mL). The mixture was stirred at 80 °C for a total of 6 hours. The reaction mixture was partitioned between EtOAc and dilute NaOH. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 40% EtOAc:hexane gradient to give an impure product. This was rechromatographed on a Biotage 12M RP column with a 20% to 90% ACN:water gradient to give Compound 59 (1.7 mg, 0.005 mmol, 8% yield) as a colorless glass. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, 1H), 6.97 (d, 1H), 6.70-6.64 (m, 1H), 6.61-6.55 (m, 2H), 5.70-5.66 (m, 1H), 5.41-5.14 (m, 2H), 3.29 (d, 1H), 3.18-3.09 (m, 1H), 2.92-2.83 (m, 1H), 2.51-2.42 (m, 1H) 2.27-2.19 (m, 1H). m/z (ES-API-neg) [M-H+46] = 403.
Example 60
(R)-4-(3,5-Difluorophenoxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 60)
Step A: (1R)-4-fluoro-7-(fluoromethylsulfonyl)indan-1-ol: To a solution of 4-fluoro-7-(fluoromethylsulfonyl)indan-1-one (227 mg, 0.92 mmol) in dichloromethane (10 mL) was added formic acid (0.04 mL, 1.15 mmol) and triethylamine (0.14 mL, 1 mmol). The reaction mixture was sparged with nitrogen and RuCl(p-cymene)[(R,R)-Ts-DPEN] (11.7 mg, 0.02 mmol) was added in one portion. The reaction mixture was stirred at room temperature overnight under nitrogen. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 25 g SNAP column with a 10% to 80% EtOAc:hexane gradient to give (1R)-4-fluoro-7-(fluoromethylsulfonyl)indan-1-ol (230 mg, 0.93 mmol, 100% yield) as a colorless oil that solidified on standing. m/z (ES-API-neg) [M-H+46] = 293.0. 19FNMR (CDCl3) showed an enantiomeric excess of > 90% based on the Mosher ester trifluoromethyl resonances.
Step B: (R)-4-(3,5-Difluorophenoxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 60): 3,5-Difluorophenol (15.7 mg, 0.12 mmol) was added to a mixture of (1R)-4-fluoro-7-(fluoromethylsulfonyl)indan-1-ol (20 mg, 0.08 mmol) and sodium hydrogen carbonate (20.3 mg, 0.24 mmol) in DMF (1 mL). The mixture was stirred and heated at 80 °C overnight, then at 100 °C for 24 hours. The reaction mixture was partitioned between EtOAc and dilute NaOH. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 50% EtOAc:hexane gradient to give Compound 60 (10.5 mg, 0.03 mmol, 36% yield). 1H NMR (400 MHz, CDCl3): δ 7.81 (d, 1H), 6.97 (d, 1H), 6.70-6.64 (m, 1H), 6.61-6.55 (m, 2H), 5.70-5.66 (m, 1H), 5.42-5.13 (m, 2H), 3.30 (d, 1H), 3.18-3.09 (m, 1H), 2.92-2.83 (m, 1H), 2.51-2.42 (m, 1H) 2.27-2.19 (m, 1H). m/z (ES-API-neg) [M-H+46] = 403.
Example 61
Example 62
Example 63
(S)-3-((2,2-difluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 63)
Step A: 4'-Fluoro-7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]: Trimethylsilyl trifluoromethanesulfonate (0.1 mL, 0.570 mmol) was added to a solution of 4-fluoro-7-(fluoromethylsulfonyl)indan-1-one (700 mg, 2.8 mmol) and trimethyl(2-trimethylsilyloxyethoxy)silane (1.4 mL, 5.7 mmol) in dichloromethane (50 mL) cooled to -78 °C. The reaction mixture was allowed to warm to ambient temperature. After 5.5 hours, the reaction mixture was quenched with triethylamine (1.58 mL, 11.4 mmol) and evaporated. The residue was partitioned between EtOAc and dilute NaCl. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford 4'-fluoro-7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (630 mg, 2.2 mmol, 76% yield).
Step B: 3-Fluoro-5-[7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile: A solution of sodium hydrogen carbonate (108.5 mg, 1.29 mmol), 3-fluoro-5-hydroxy-benzonitrile (85.0 mg, 0.62 mmol), and 4'-fluoro-7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (150 mg, 0.52 mmol) in DMF (3 mL) in a vial were heated at 110 °C overnight. The reaction mixture was partitioned between EtOAc and dilute NaOH. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 3-fluoro-5-[7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile (101 mg, 0.25 mmol, 48% yield) as a colorless glass.
Step C: 3-Fluoro-5-[7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-benzonitrile: 3-Fluoro-5-[7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile (101 mg, 0.25 mmol) was added to a solution of 4-methylbenzenesulfonate pyridin-1-ium (62.3 mg, 0.25 mmol) in acetone (6 mL) and water (0.75 mL) in a vial. The vial was sealed and the mixture was heated at 85 °C. After 2.5 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield 3-fluoro-5-[7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-benzonitrile (84.5 mg, 0.23 mmol, 94% yield). m/z (ES-API-pos) [M+H] = 364.
Step D: 3-[E,Z)-1-Butylimino-7-(fluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile: Trifluoroacetic acid (0.0036 mL, 0.05 mmol) was added to a solution of 3-fluoro-5-[7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-benzonitrile (84.5 mg, 0.23 mmol) and butan-1-amine (2.3 mL, 23.3 mmol) in benzene (10 mL). The mixture was heated at reflux for 5 hours with a Dean-Stark trap attached. The reaction mixture was evaporated and the residue was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield 3-[(E,Z)-1-butylimino-7-(fluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (99 mg, 0.24 mmol, 100% yield).
Step E: 3-[2,2-Difluoro-7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile: 1-(Chloromethyl)-4-fluoro-1 ,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (209 mg, 0.59 mmol) was added to a solution of 3-[(E,Z)-1-butylimino-7-(fluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (99 mg, 0.240 mmol) and sodium sulfate (33.6 mg, 0.24 mmol) in acetonitrile (6 mL) in a vial. The vial was sealed and heated at 100 °C for 6 hours. The reaction mixture was treated with ∼1 mL 6 M HCl and stirred for 5 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 3-[2,2-difluoro-7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (37.2 mg, 0.09 mmol, 39% yield) as a white solid.
Step F: (S)-3-((2,2-difluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 63): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.19 mg, 0.002 mmol) was added to a nitrogen-sparged solution of 3-[2,2-difluoro-7-(fluoromethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (37.2 mg, 0.09 mmol), formic acid (0.0044 mL, 0.12 mmol), and triethylamine (0.014 mL, 0.10 mmol) in dichloromethane (6 mL). This was stirred at ambient temperature for 3.5 hours. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 40% EtOAc:hexane gradient to give Compound 63 (30.8 mg, 0.08 mmol, 82% yield). 1H NMR (400 MHz, CDCl3): δ 7.93 (d, 1H), 7.30-7.26 (m, 1H), 7.20-7.19 (m, 1H), 7.10-7.07 (m, 1H), 7.00 (d, 1H), 5.59-5.13 (m, 3H), 3.58-3.38 (m, 1H). m/z (ES-API-neg) [M-H+46] = 446. 19F NMR (CDCl3) showed an e.e. of 89% based on the Mosher ester analysis of the trifluoromethyl resonance.
Example 64
Example 65
Example 66
(R)-7-(3,5-Difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-indene-4-carbonitrile (Compound 66)
Step A: 7-Fluoro-3-oxo-indane-4-carbonitrile: A mixture of 7-bromo-4-fluoro-indan-1-one (500 mg, 2.2 mmol) and copper cyanide (254 mg, 2.8 mmol) in 1-methyl-2-pyrrolidone (11 mL) was heated at 190 °C for 45 minutes in a microwave. The reaction mixture was partitioned between water and EtOAc, filtered through celite, and the EtOAc layer was washed with 2 portions of water, brine, dried over MgSO4, filtered, and evaporated to yield 7-fluoro-3-oxo-indane-4-carbonitrile (300 mg, 1.7 mmol, 79% yield).
Step B: 7-(3,5-Difluorophenoxy)-3-oxo-indane-4-carbonitrile: 3,5-Difluorophenol (48.0 mg, 0.370 mmol) was added to a mixture of sodium hydrogen carbonate (51.6 mg, 0.61 mmol) and 7-fluoro-3-oxo-indane-4-carbonitrile (53.8 mg, 0.310 mmol) in DMF (2 mL). The mixture was stirred at 100 °C overnight. The reaction mixture was partitioned between EtOAc and dilute aqueous NaCl. The EtOAc was washed with dilute aqueous NaOH, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 7-(3,5-difluorophenoxy)-3-oxo-indane-4-carbonitrile (32.2 mg, 0.11 mmol, 37% yield).
Step C: (R)-7-(3,5-Difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-indene-4-carbonitrile Compound 66: RuCl(p-cymene)[(R,R)-Ts-DPEN] (13.4 mg, 0.020 mmol) was added to a nitrogen-sparged solution of 7-(3,5-difluorophenoxy)-3-oxo-indane-4-carbonitrile (30 mg, 0.11 mmol), triethylamine (0.02 mL, 0.12 mmol), and formic acid (0.005 mL, 0.13 mmol) in dichloromethane (5 mL). The mixture was stirred at ambient temperature under nitrogen for 4 hours and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 20% to 80% EtOAc:hexane gradient to give Compound 66 (27.2 mg, 0.09 mmol, 90% yield). 1H NMR (400 MHz, CDCl3): δ 7.55-7.52 (m, 1H), 6.90 (d, 1H), 6.65-6.60 (m, 1H), 6.55-6.49 (m, 2H), 5.56-5.51 (m, 1H), 3.08-3.00 (m, 1H), 2.80-2.71 (m, 1H), 2.68-2.64 (m, 1H) 2.60-2.50 (m, 1H), 2.17-2.08 (m, 1H). m/z (ES-API-neg) [M-H] = 286. 19F NMR (CDCl3) showed an e.e. of 95% based on analysis of the Mosher ester trifluoromethyl resonance.
Example 67
(S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-carbonitrile (Compound 67)
Step A: (E,Z)-3-Butylimino-7-(3,5-difluorophenoxy)indane-4-carbonitrile: A solution of 7-(3,5-difluorophenoxy)-3-oxo-indane-4-carbonitrile (82.7 mg, 0.29 mmol), butan-1-amine (2.87 mL, 29 mmol), and trifluoroacetic acid (0.0044 mL, 0.058 mmol) in benzene (20 mL) was heated at reflux for 9 hours with a Dean-Stark trap attached. The reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford (E, Z)-3-butylimino-7-(3,5-difluorophenoxy)indane-4-carbonitrile (92 mg, 0.27 mmol, 93% yield).
Step B: 7-(3,5-Difluorophenoxy)-2,2-difluoro-3-oxo-indane-4-carbonitrile: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (239 mg, 0.68 mmol) was added to a solution of (E, Z)-3-butylimino-7-(3,5-difluorophenoxy)indane-4-carbonitrile (92 mg, 0.27 mmol) and sodium sulfate (38.4 mg, 0.270 mmol) in acetonitrile (6 mL) in a vial. The vial was sealed and heated at 100 °C for 6 hours. After cooling, the reaction mixture was treated with ∼1 mL 6 M HCl and stirred for 15 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give 7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-indane-4-carbonitrile (29.8 mg, 0.09 mmol, 34% yield) as a white solid. m/z (ES-API-pos) [M+H+18] = 339.
Step C: (S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-carbonitrile (Compound 67): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.2 mg, 0.002 mmol) was added to a nitrogen-sparged solution of 7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-indane-4-carbonitrile (29.8 mg, 0.09 mmol), formic acid (0.004 mL, 0.12 mmol), and triethylamine (0.014 mL, 0.100 mmol) in dichloromethane (6 mL). The mixture was stirred at ambient temperature for 3.5 hours. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to give Compound 67 (24.5 mg, 0.08 mmol, 82% yield) as a waxy white crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.62 (d, 1H), 6.94 (d, 1H), 6.72-6.67 (m, 1H), 6.61-6.54 (m, 2H), 5.36-5.30 (m, 1H), 3.54-3.30 (m, 2H), 3.13-3.10 (m, 1H). m/z (ES-API-neg) [M-H+46] = 368. 19F NMR (CDCl3) showed an e.e. of 50% based on the Mosher ester analysis of the trifluoromethyl resonance.
Example 68
(N-((7-(3-Cyano-5-fluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 68)
Step A: N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)-λ4-sulfanylidene)cyanamide: (Diacetoxyiodo)benzene (902 mg, 2.8 mmol) was added to an ice-cold solution of 4-fluoro-7-methylsulfanyl-indan-1-one (500 mg, 2.55 mmol) and cyanamide (128 mg, 3.1 mmol) in acetonitrile (25 mL). The reaction mixture was stirred at ice-bath temperature for 40 minutes, and allowed to warm to ambient temperature. After 6 hours, the reaction mixture was evaporated. The residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford the desired product (600 mg, 2.5 mmol, 100% yield). m/z (LCMS ESI-pos) [M+H] = 237.
Step B: N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium periodate (271 mg, 1.27 mmol) was added to a mixture of (E,Z)-N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)-λ4-sulfanylidene)cyanamide (100 mg, 0.42 mmol) and ruthenium(III) chloride (2.63 mg, 0.013 mmol) in carbon tetrachloride (4 mL), acetonitrile (4 mL), and water (8 mL). The mixture was stirred overnight at ambient temperature. The reaction mixture was partitioned between dichloromethane and water. The dichloromethane was washed with brine, dried over MgSO4, filtered, and evaporated to afford the desired product (100 mg; 0.4 mmol; 94% yield). m/z (LCMS ESI-pos) [M+H] = 253.
Step C: N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium hydrogen carbonate (60 mg, 0.71 mmol) was added to a vial containing a solution of 3-fluoro-5-hydroxy-benzonitrile (65 mg, 0.48 mmol) and N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (60 mg, 0.48 mmol) in DMF (1.5 mL). The sealed vial was heated at 70 °C overnight. The reaction mixture was partitioned between EtOAc and dilute NaCl. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 30% to 100% EtOAc:hexane gradient to give the desired product (3.0 mg; 0.008 mmol; 3% yield). m/z (LCMS ESI-pos) [M+H] = 370.
Step D: N-((7-(3-Cyano-5-fluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 68): Sodium borohydride (0.4 mg, 0.007 mmol) was added to an ice-cold solution of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (2.6 mg, 0.007 mmol) in methanol (1 mL). The mixture was stirred at ambient temperature overnight. The reaction mixture was quenched with saturated aqueous NH4Cl and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 20% to 80% EtOAc:hexane gradient to give Compound 68 (1.2 mg, 0.003 mmol, 46% yield). m/z (LCMS ESI-pos) [M+H] = 372; 1H NMR (400 MHz, CDCl3): δ 7.87 (d, 1H), 7.25-7.22 (m, 1H), 7.15-7.13 (m, 1H), 7.08-6.97 (m, 2H), 5.86-5.80 (m, 1H), 3.51 (s, 3H), 3.19-3.06 (m, 2H), 2.95-2.78 (m, 1H), 2.65-2.55 (m, 1H), 2.27-2.14 (m, 1H).
Reference Example 69
2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonimidoyl)benzene (Compound 69)
Step A: 2-bromo-4-((difluoromethyl)sulfinyl)-1-fluorobenzene : To a solution of (3-bromo-4-fluorophenyl)(difluoromethyl)sulfane (530 mg, 2.06 mmol) in MeOH (10 mL) cooled to 0 °C was added OXONE® (633.7 mg, 1.03 mmol) as a solution in 8 mL of water. The OXONE® solution was added in 2 portions each 15 minutes apart. The resulting suspension was allowed to warm to room temperature over 2 hours. One milliliter of 1 M sodium thiosulfate solution was added to quench any left over oxidant, then the volatiles were removed by concentration under reduced pressure. The leftover residue was solutbilized with 90 mL of water and extracted with 3 x 40 mL EtOAc. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica gel using 0-30% EtOAC/hexane as eluent to give the desired product (100 mg, 18% yield).
Step B: 2-bromo-4-(S-(difluoromethyl)sulfonimidoyl)-1-fluorobenzene: A suspension of 2-bromo-4-((difluoromethyl)sulfinyl)-1-fluorobenzene (100 mg, 0.37 mmol), 2,2,2-trifluoroacetamide (83 mg, 0.73 mmol), bis(rhodium(α,α,α',α'-tetramethyl-1,3-benezenedipropionic acid)) (11 mg, 4 mol%), and magnesium oxide (74 mg, 1.83 mmol) in 1.7 mL of dichloromethane was treated with diacetoxy iodobenzene (236 mg, 0.73 mmol) and left to stir overnight. The reaction mixture was filtered through celite, concentrated to dryness, and then redissolved in 4 mL of MeOH. The resulting reaction mixture was treated with K2CO3 (5 mg) and stirred for 2 hours at room temperature. The reaction mixture was concentrated to dryness and the residue purified by chromatography on silica 50-100% CH2Cl2/hexane as eluent to give 2-bromo-4-(S-(difluoromethyl)sulfonimidoyl)-1-fluorobenzene (73 mg, 0.25 mmol, 69% yield). LCMS ESI (+) m/z 288, 290 (M+H).
Step C: 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonimidoyl)benzene (Compound 69): 2-Bromo-4-(S-(difluoromethyl)sulfonimidoyl)-1-fluorobenzene (35 mg, 0.12 mmol) and 3-chloro-5-fluorophenol (23 mg, 0.16 mmol) were dissolved in 0.5 mL of DMF and treated with cesium carbonate (48 mg, 0.146 mmol). The reaction was heated to 90 °C for 1.5 hours. The reaction mixture was poured into 60 mL of water and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The crude residue was purified on silica using 0-30% EtOAc/hexane as eluent to give Compound 69 (29 mg, 0.70 mmol, 58% yield) as a clear oil. LCMS ESI (+) m/z 414, 416, 418 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.34 (d, 1H), 7.96 (m, 1H), 7.08 (d, 1H), 6.99 (m, 1H), 6.86 (m, 1H), 6.70 (m, 1 H), 6.16 (t, 1H), 3.35 (br s, 1H).
Reference Example 70
Reference Example 71
2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonimidoyl)benzene (Compound 71)
Step A: 1-fluoro-2-bromo-4-((trifluoromethyl)sulfinyl)benzene: To a solution of (3-bromo-4-fluorophenyl)(trifluoromethyl)sulfane (530 mg, 1.93 mmol) in MeOH (10 mL) at 25 °C was added OXONE®(592 mg, 0.96 mmol) as a solution in 8 mL of water. The OXONE® solution was added in 2 portions each 15 minutes apart. The reaction mixture was heated to 50 °C and left to stir overnight. One milliliter of 1 M sodium thiosulfate solution was added to quench any leftover oxidant. Volatile solvents were removed by concentration under reduced pressure. The residue was solubilized with 60 mL of water and extracted with 3 x 30 mL EtOAc. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The crude residue was purified on silica gel using 0-20% EtOAC/hexane as eluent (90 mg, 16%).
Step B: (3-bromo-4-fluorophenyl)(imino)(trifluoromethyl)-λ6-sulfanone: A sample of 1-fluoro-2-bromo-4-((trifluoromethyl)sulfinyl)benzene (88 mg, 0.30 mmol) was dissolved in 0.6 mL of fuming sulfuric acid (20 % SO3), cooled to 0 °C, and treated with sodium azide (21 mg, 0.32 mmol). The sample was heated to 70 °C for 1.5 hours (CAUTION: explosion potential, use appropriate caution and protective apparatus). Due to incomplete conversion as judged by LCMS, the reaction mixture was cooled back to 0 °C and treated with an additional portion of sodium azide (21 mg, 0.32 mmol) and reheated. The reaction mixture was cooled to room temperature, poured onto ice, and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 20 mL saturated aqueous sodium bicarbonate, rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The crude residue was purified on silica using 0-40% EtOAc/hexane as eluent. (3-Bromo-4-fluorophenyl)(imino)(trifluoromethyl)-λ6-sulfanone was isolated as a biege oil (54.6 mg, 0.18 mmol, 59% yield). LCMS ESI (-) m/z 304, 306 (M-H).
Step C: 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonimidoyl)benzene: Prepared analogously as described in step C of the preparation for Compound 69. Purified by chromatography on silica using 0-15% EtOAc/hexane as eluent to give Compound 71 as a clear oil (45 mg, 0.10 mmol, 58% yield). LCMS ESI (-) m/z 430, 432, 434 (M-H); 1H NMR (400 MHz, CDCl3): δ 8.42 (d, 1H), 8.03 (m, 1H), 7.07 (d, 1H), 7.01 (m, 1H), 6.89 (m, 1H), 6.73 (m, 1 H), 3.65 (br s, 1H).
Reference Example 72
Reference Example 73
Reference Example 74
Reference Example 75
(3-bromo-2-chloro-4-(3-chloro-5-fluorophenoxy)phenyl)(imino)(trifluoromethyl)-λ6-sulfanone (Compound 75)
Step A: 2-bromo-1,3-dichloro-4-((trifluoromethyl)sulfinyl)benzene: A solution of 2-bromo-1,3-dichloro-4-(trifluoromethylsulfanyl)benzene (135 mg, 0.41 mmol) in dichloromethane (4.1 mL) at 25 °C was treated with 3-chloroperbenzoic acid (92.8 mg, 0.41 mmol) and stirred at 25 °C overnight. After stirring overnight, an additional 3-chloroperbenzoic acid (30.9 mg, 0.33 equivalent) was added and the reaction was left to stir for 2 more days. The reaction mixture was poured into 10 mL of 1 N NaOH and extracted with 3 x 10 mL of CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification.
Step B: (3-bromo-2,4-dichlorophenyl)(imino)(trifluoromethyl)-λ6-sulfanone: See step B from the preparation for Compound 71. The crude residue was purified on silica using 0 -> 25% EtOAc/hexane as eluent to give the desired product (24.8 mg, 0.07 mmol, 17% yield). LCMS ESI (+) m/z: 356, 358, 360.
Step C: (3-bromo-2-chloro-4-(3-chloro-5-fluorophenoxy)phenyl)(imino)(trifluoromethyl)-λ6-sulfanone: A solution of 3-chloro-5-fluoro-phenol (10.2 mg, 0.070 mmol) and (3-bromo-2,4-dichlorophenyl)(imino)(trifluoromethyl)-λ6-sulfanone (24.8 mg, 0.07 mmol) in DMF (0.7 mL) at room temperature was treated with potassium carbonate (325 mesh, 9.6 mg, 0.07 mmol) and stirred at 85 °C until complete by LCMS (∼1 hour). The reaction mixture was purified directly on reverse phase by injection of the DMF reaction solution. 30%-100% CH3CN/Water was used as eluent. Repurification was achieved by chromatography on silica using 40%-100% CH2Cl2/hexane to give Compound 75 as glassy solid (1.6 mg, 5% yield). LCMS ESI (-) m/z 464, 466, 468 (M-H); 1H NMR (400 MHz, CDCl3): δ 8.33 (d, 1H), 7.03 (m, 1H), 6.98 (d, 1H), 6.90 (m, 1H), 6.74 (m, 1H), 3.88 (br s, 1H).
Reference Example 76
Reference Example 77
Example 78
Reference Example 79
Reference Example 80
Reference Example 81
Reference Example 82
Methyl 2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfinyl)benzoate (Compound 82)
Step A: Methyl 2-bromo-6-((difluoromethyl)sulfinyl)-3-fluorobenzoate. Prepared by an analogous set of procedures delineated in the preparation of Compound 96. Purification was achieved on silica using 5%-25% EtOAc/hexane as eluent (88 mg, 53% yield).
Step B: Methyl 2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfinyl)benzoate. See step C from the preparation of Compound 69. Purified by chromatography on silica using 5%-25% EtOAc/hexane as eluent to give Compound 82 as a colorless oil (13.2 mg, 11% yield). LCMS ESI (+) m/z 457, 459, 461 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.05 (d, 1H), 7.28 (d, 1H), 6.96 (m, 1H), 6.83-6.81 (m, 1H), 6.66 (m, 1H), 6.58 (m, 1H), 4.04 (t, 3H).
Reference Example 83
tert-Butyl (2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)benzyl)carbamate (Compound 83)
Step A: Preparation of tert-butyl (2-bromo-6-((difluoromethyl)thio)-3-fluorobenzyl)carbamate. 2-Bromo-6-((difluoromethyl)thio)-3-fluorobenzonitrile was prepared by an analogous set of procedures delineated in the preparation of Compound 98. A solution of 2-bromo-6-(difluoromethylsulfanyl)-3-fluoro-benzonitrile (45 mg, 0.16 mmol) in tetrahydrofuran (1mL) was treated with dimethylsulfonioboranuide (46.6 µL, 0.48 mmol) and stirred at 60 °C for 4 hours. The reaction mixture was quenched by the addition of 1 mL of MeOH and 0.8 mL of 4 M HCl in dioxane. The resulting mixture stirred for 15 minutes at room temperature and 30 minutes at 50 °C. The reaction mixture was quenched by the addition of 2 mL of saturated NaHCO3 and then concentrated under reduced pressure. The residue was solubilized with 10 mL of 1:1 CH2Cl2/water. The biphasic mixture was treated with tert-butoxycarbonyl tert-butyl carbonate (34.8 mg, 0.16 mmol) and left to stir for 1 hour. The reaction mixture was extracted with 3 x 15 mL 30% iso-propyl alcohol in CHCl3. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5%-30% EtOAc/hexane as eluent to give the desired product (56 mg, 91% yield). LCMS ESI (+) m/z 286, 288 [MH+-CO2-C4H8].
Step B: Preparation of tert-butyl-(2-bromo-6-((difluoromethyl)sulfonyl)-3-fluorobenzyl)carbamate. A procedure similar to Step E in Example 1 was followed. LCMS ESI (+) m/z 362, 364 [MH+-C4H8].
Step C: Preparation of tert-butyl-(2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((difluoromethyl)sulfonyl)benzyl)carbamate: A procedure similar to Step F in Example 1 was followed. Purification was achieved by chromatography on silica using 5%-30% EtOAc/hexane to give Compound 83 as a clear film (51 mg, 51% yield). LCMS ESI (+) m/z 488, 490, 492 [MH+-C4H8]; 1H NMR (400 MHz, CDCl3): δ 8.04 (d, 1H), 7.02 (m, 1H), 6.99 (d, 1H), 6.90-6.88 (m, 1H), 6.73 (m, 1H), 6.62 (br t, 1H), 5.22 (br s, 1H), 4.95 (d, 2H), 1.45 (s, 9H).
Reference Example 84
7-(3-Chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)isobenzofuran-1(3H)-one (Compound 84)
Step A: Preparation of [2-bromo-6-(difluoromethylsulfanyl)-3-fluoro-phenyl]methanol. A procedure similar to Step D in Example 1 was followed. LCMS ESI (+) m/z 269, 271 (M+H-16).
Step B: Preparation of 4-(difluoromethylsulfanyl)-7-fluoro-3H-isobenzofuran-1-one. A solution of [2-bromo-6-(difluoromethylsulfanyl)-3-fluoro-phenyl]methanol (51 mg, 0.18 mmol) in 1-methyl-2-pyrrolidone (0.8 mL) was treated with copper(I) cyanide (19.1 mg, 0.21 mmol) and stirred at 160 °C by microwave irradiation for 35 minutes. The reaction mixture was purified directly on reverse phase by injection of the reaction solution. 10%-70% CH3CN/Water was used as eluent to give 4-(difluoromethylsulfanyl)-7-fluoro-3H-isobenzofuran-1-one (18 mg, 0.08 mmol, 43% yield). LCMS ESI (+) m/z 235 (M+H).
Step C: Preparation of 4-((difluoromethyl)sulfonyl)-7-fluoroisobenzofuran-1(3H)-one. A solution of 3-chloroperbenzoic acid (60.3 mg, 0.27 mmol) in dichloromethane (2 mL) at 0 °C was treated with 4-(difluoromethylsulfanyl)-7-fluoro-3H-isobenzofuran-1-one (18 mg, 0.08 mmol) and left to stir 2 days at room temperature. The reaction mixture was poured into 10 mL of 1 M NaOH and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10% -40% EtOAc/hexane provided 4-((difluoromethyl)sulfonyl)-7-fluoroisobenzofuran-1(3H)-one (19 mg, 0.07 mmol, 92% yield). LCMS ESI (-) m/z 265 (M-H).
Step D: Preparation of 7-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)isobenzofuran-1(3H)-one: A procedure similar to Step F of Example 1 was followed. Sodium bicarbonate was used in place potassium carbonate. Purification was achieved by chromatography on silica using 5%-30% EtOAc/hexane to give Compound 84 as a white solid (21.7 mg, 78% yield). LCMS ESI (+) m/z 393, 395 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.07 (d, 1H), 7.11 (m, 1H), 7.04-6.99 (m, 2H), 6.87 (m, 1H), 6.26 (t, 1H), 5.61 (d, 2H).
Reference Example 85
Reference Example 86
Reference Example 87
Reference Example 88
Reference Example 89
Example 90
4-(3-Chloro-5-fluorophenoxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 90)
Step A: 4-fluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-ol: A solution of 4-fluoro-7-methylsulfanyl-indan-1-one (88 mg, 0.45 mmol) in methanol (2.2 mL) at 25 °C was treated with sodium borohydride (25 mg, 0.67 mmol) and stirred at 25 °C for 30 minutes. The reaction mixture was quenched by the addition of 1 mL of water. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of water and extracted with 3 x 20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The resulting product was used immediately without further purification. LCMS ESI (+) m/z 181 (M+H-16).
Step B: 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol: 4-Fluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-ol (0.45 mmol) was dissolved in dichloromethane (2.2 mL) and treated with 3-chloroperbenzoic acid (301.5 mg, 1.35 mmol). The reaction mixture was left to stir at 25 °C overnight. The reaction mixture was poured into 10 mL of 1 N NaOH and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness (35 mg, 34% yield). The resulting product was used immediately without further purification. LCMS ESI (+) m/z 213 (M+H-16).
Step C: 4-(3-chloro-5-fluorophenoxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol: A suspension of 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (12 mg, 0.05 mmol), 3-chloro-5-fluoro-phenol (7.6 mg, 0.05 mmol), and cesium bicarbonate (11.1 mg, 0.06 mmol) in 1-methyl-2-pyrrolidone (0.5 mL) was heated to 145 °C for 4 hours. The reaction mixture was poured into 20 mL of water and extracted with 3x10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20%-60% EtOAc/hexane to give Compound 90 as a thin film (4.9 mg, 26% yield). LCMS ESI (+) m/z 339, 341 (M+H-16); 1H NMR (400 MHz, CDCl3): δ 7.80 (d, 1H), 6.95 (d, 1H), 6.93 (m, 1H), 6.84-6.82 (m, 1H), 6.66 (m, 1H), 5.68 (m, 1H), 3.64 (d, 1H), 3.20 (s, 3H), 3.15-3.06 (m, 1H), 2.83 (m, 1H), 2.53-2.43 (m, 1H), 2.27-2.18 (m, 1H).
Example 91
Reference Example 92
3-(3-Chloro-5-fluorophenoxy)-2-(difluoromethyl)-6-(methylsulfonyl)benzonitrile (Compound 92)
Step A: 2-bromo-3-(difluoromethyl)-1,4-difluoro-benzene: A solution of 2-bromo-3,6-difluoro-benzaldehyde (5 g, 22.6 mmol) in dichloromethane (113 mL) at 0 °C was treated with diethylaminosulfur trifluoride (7.17 mL, 54.3 mmol). The ice bath was removed from the resulting reaction mixture and it stirred for 2 hours at room temperature. The reaction mixture was cooled to 0 °C and quenched by the careful addition of 60 mL of saturated aqueous NaHCO3 (CO2 evolution occured). The reaction mixture was vigorously stirred for 30 minutes. An additional portion of 30 mL of saturated aqueous NaHCO3 was added and the reaction stirred for a further 30 minutes. The reaction mixture was extracted with 3 x 40 mL CH2Cl2. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness to give 2-bromo-3-(difluoromethyl)-1,4-difluoro-benzene. The product was used without further purification.
Step B: 2-(difluoromethyl)-3,6-difluorobenzonitrile: A solution of 2-bromo-3-(difluoromethyl)-1,4-difluoro-benzene (5.12 g, 21.1 mmol) in 1-methyl-2-pyrrolidone (42 mL) was treated with copper(I) cyanide (2.45 g, 27.4 mmol) and stirred at 180 °C for 1 hour and 45 minutes. The reaction mixture was cooled to room temperature and diluted with 200 mL of ether. The resulting suspension was filtered through celite. The filtrate was poured into 500 mL of water, separated, and extracted further with 3 x 70 mL Et2O. The combined organics were rinsed with 50 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20%-70% CH2Cl2/hexane. Product is a white solid that can sublime under prolonged exposure to high vacuum (3.0 g, 15.9 mmol, 76% yield).
Step C: 2-(difluoromethyl)-3-fluoro-6-methylsulfanyl-benzonitrile: To a solution of 2-(difluoromethyl)-3,6-difluoro-benzonitrile (5.27 g, 27.9 mmol) in tetrahydrofuran (120 mL) was added methylsulfanylsodium (2.05 g, 29.3 mmol) at 0 °C. After addition, the reaction mixture was stirred at 0 °C for 8 hours and then warmed to ambient temperature overnight. Water (50 mL) and MTBE (100 mL) were added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure to give 2-(difluoromethyl)-3-fluoro-6-methylsulfanyl-benzonitrile (6 g, 27.6 mmol, 99% yield) as yellow solid, which was used directly in the next step without purification. Alternatively, purification was achieved by chromatography on silica using 10%-35% EtOAc/hexane. LCMS ESI (+) m/z 218 (M+H).
Step D: 2-(difluoromethyl)-3-fluoro-6-methylsulfonyl-benzonitrile: A suspension of 2-(difluoromethyl)-3-fluoro-6-methylsulfanyl-benzonitrile (6.3 g, 29 mmol), Oxone® (53.56 g, 87.01 mmol) in acetonitrile (70 mL) and water (35 mL) was stirred at 56 °C for 3 hours. After cooling to ambient temperature, solid was removed by filtration and washed with MTBE (200 mL). The volatile solvent was removed under reduced pressure from the filtrate. The resulting solution was extracted with MTBE (400 mL), washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting solid was suspended in 2:1 hexane/MTBE (150 mL) and stirred for 10 minutes. The resulting white solid was collected by filtration and dried to give 2-(difluoromethyl)-3-fluoro-6-methylsulfonyl-benzonitrile (4.46 g,17.9 mmol, 62% yield). LCMS ESI (+) m/z 250 (M+H).
Step E: 3-(3-chloro-5-fluorophenoxy)-2-(difluoromethyl)-6-(methylsulfonyl)benzonitrile: A solution of 2-(difluoromethyl)-3-fluoro-6-methylsulfonyl-benzonitrile (150 mg, 0.6 mmol), 3-chloro-5-fluoro-phenol (88.2 mg, 0.6 mmol), and cesium bicarbonate (116.7 mg, 0.6 mmol) in DMF (1.5 mL) was stirred at 50 °C for 6 hours. The reaction mixture was poured into 50 mL of water containing 1 mL of 1 M NaOH and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10%-40% EtOAc/hexane as eluent to give Compound 92 as a white solid (121 mg, 53% yield). LCMS ESI (+) m/z 393, 395 (M+NH4); 1H NMR (400 MHz, CDCl3): δ 8.29-8.25 (m, 1H), 7.27-7.23 (m, 1H), 7.22 (t, 1H), 7.10-7.06 (m, 1H), 6.93-6.91 (m, 1H), 6.76 (m, 1H), 3.35 (s, 3H).
Reference Example 93
Reference Example 94
Reference Example 95
3-Fluoro-5-((5-hydroxy-4-(methylsulfonyl)-5,6,7,8-tetrahydronaphthalen-1-yl)oxy)benzonitrile (Compound 95)
Step A: 8-bromo-5-hydroxy-tetralin-1-one: Glassware was flame dried prior to the reaction. A solution of 8-bromo-5-methoxy-tetralin-1-one (510.2 mg, 2 mmol) in 1,2-dichloroethane (10 mL) was treated with aluminum trichloride (1173.4 mg, 8.8 mmol) and the resulting suspension was stirred at 85 °C for 3.5 hours. The reaction mixture was carefully poured into 34 mL of 10% HCl and stirred for 2 hours. The reaction mixture was diluted with 22 mL of CH2Cl2 and vigorously stirred. The mixture was filtered through celite to remove black-colored insoluble materials to give 8-bromo-5-hydroxy-tetralin-1-one (198 mg crude product), which was used without further purification. LCMS ESI (+) m/z 241, 243 (M+H).
Step B: 3-(8-bromo-1-oxo-tetralin-5-yl)oxy-5-fluoro-benzonitrile: A suspension of 3,5-difluorobenzonitrile (211.2 mg, 1.52 mmol), 8-bromo-5-hydroxy-tetralin-1-one (183 mg, 0.76 mmol), and cesium bicarbonate (161.9 mg, 0.83 mmol) in 1-methyl-2-pyrrolidone (3.0 mL) was stirred at 150 °C by microwave irradiation for 30 minutes. The reaction mixture was poured into 40 mL of water and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness to give 3-(8-bromo-1-oxo-tetralin-5-yl)oxy-5-fluoro-benzonitrile (71.5 mg crude product). The product was isolated as a mixture of bromo and des-bromo derivatives and used without further purification. LCMS ESI (+) m/z 360, 362 (M+H).
Step C: 3-fluoro-5-((4-(methylsulfonyl)-5-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)oxy)benzonitrile: A solution of 3-(8-bromo-1-oxo-tetralin-5-yl)oxy-5-fluoro-benzonitrile (51.5 mg, 0.14 mmol), methanesulfinic acid sodium salt (16.1 mg, 0.16 mmol) and copper(I) iodide (136.2 mg, 0.7 mmol) in dimethyl sulfoxide (1 mL) was heated to 100 °C for 30 minutes. The reaction mixture, while vigorously stirred, was diluted with 4 mL of Et2O and then diluted with 2 mL of water. The resulting suspension was filtered through celite and the filter cake rinsed extensively with Et2O. The filtrate was poured into 20 mL of water and extracted with 3 x 10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10%-50% EtOAc/hexane to give 3-fluoro-5-((4-(methylsulfonyl)-5-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)oxy)benzonitrile (31.8 mg, 0.15 mmol, 62% yield). LCMS ESI (+) m/z 360 (M+H).
Step D: 3-fluoro-5-((5-hydroxy-4-(methylsulfonyl)-5,6,7,8-tetrahydronaphthalen-1-yl)oxy)benzonitrile: A procedure similar to step C of Example 90 was followed. Purification was achieved by chromatography on silica using 20%-60% EtOAc/hexane to give Compound 95 as a thin film (10 mg, 84% yield). LCMS ESI (+) m/z 379 (M+NH4); 1H NMR (400 MHz, CDCl3): δ 7.98 (d, 1H), 7.17 (m, 1H), 7.05-7.03 (m, 1H), 6.97 (m, 1H), 6.95 (d, 1H), 5.44-5.39 (m, 1H), 3.72 (m, 1H), 3.25 (s, 3H), 3.04-2.95 (m, 1H), 2.58-2.47 (m, 1H), 2.29-2.22 (m, 1H), 2.16-2.03 (m, 1H), 1.91-1.73 (m, 2H).
Reference Example 96
2-Bromo-3-(3-chloro-5-fluorophenoxy)-6-iodobenzonitrile (Compound 96)
Step A: Preparation of 2-bromo-3-fluoro-6-iodobenzoic acid: 2-Bromo-3-fluoro-benzoic acid (7.5 g, 34.3 mmol) was combined with palladium (II) acetate (384 mg, 1.7 mmol), iodine (8.7 g, 34.3 mmol), diacetoxy iodobenzene (11.0 g, 34.3 mmol) and DMF (165 mL). The resulting suspension was heated to 120 °C for 28 hours then stirred at ambient temperature for 40 hours. The reaction was concentrated to remove most of the DMF then the residue was poured into 0.1 M HCl (resultant pH <3) and extracted with Et2O. Solid Na2S2O3 was added to dissipate some of the iodine color. After separation, the aqueous was washed three times with Et2O (100 mL each) then the combined organic layers were washed with 1M Na2S2O3 to remove the remaining purple color. The organic layer was washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product solidified after standing under vacuum (8 g, 67%).
Step B: Preparation of 2-bromo-3-fluoro-6-iodobenzamide: 2-Bromo-3-fluoro-6-iodobenzoic acid (2.33 g, 6.76 mmol) was dissolved in THF (20 mL) and cooled to 0 °C. The solution was treated with DMF (10 drops) followed by dropwise addition of thionyl chloride (1.0 mL, 10.1 mmol) then stirred for 10 minutes. The reaction was warmed to ambient temperature and stirred for 2 hours. The mixture was recooled to 0 °C and treated with concentrated ammonium hydroxide (5 mL) and the mixture was allowed to warm to ambient temperature with the bath and stirred overnight. The mixture was concentrated in vacuo then redissolved in saturated NaHCO3 and ethyl acetate. The layers were separated and the organic phase was washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to give a white solid (2.20 g, 94%).
Step C: Preparation of 2-bromo-3-fluoro-6-iodobenzonitrile: 2-Bromo-3-fluoro-6-iodobenzamide (10 g, 29 mmol) was suspended in phosphorus oxychloride (41 mL), treated with triethylamine (12.2 mL, 87.2 mmol) then the mixture was heated to 75 °C for 3 hours. The reaction was cooled to ambient temperature with the bath and stirred overnight. The mixture was concentrated in vacuo to remove excess POCl3 then the semi-dry residue was treated with ice and some water. The mixture was stirred until the ice melted and the beige solid was collected by filtration, washed with water and air-dried (8.04 g, quant.).
Step D: Preparation of 2-bromo-3-(3-chloro-5-fluorophenoxy)-6-iodobenzonitrile (Compound 96): 2-Bromo-3-fluoro-6-iodobenzonitrile (25.2 mg, 0.08 mmol) was combined with 3-chloro-5-fluorophenol (11 mg, 0.08 mmol) and 325-mesh potassium carbonate (13 mg, 0.09 mmol) in acetonitrile (0.25 mL). The mixture was heated to 210 °C in an Initiator® microwave reactor for 30 minutes. After cooling, the reaction was diluted with Et2O and water then separated. The aqueous phase was washed with Et2O and the combined organic layers were washed twice with 10% Na2CO3, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product was chromatographed on reversed-phase SiO2 eluting with a gradient of MeCN/water. The first material to elute from the column was concentrated in vacuo then the residue was partitioned between water and ethyl acetate. The organic layer was washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo to give Compound 96 (10 mg, 27%). 1H NMR (400 MHz, CDCl3): δ 7.85 (d, 1H), 6.94 (d, 1H), 6.93-6.90 (m, 1H), 6.74-6.73 (m, 1H), 6.61-6.57 (m, 1H).
Reference Example 97
2-Bromo-3-chloro-1-(3-chloro-5-fluorophenoxy)-4-(trifluoromethyl)benzene (Compound 97)
Step A: Preparation of 2-chloro-4-(3-chloro-5-fluorophenoxy)-3-nitro-1-(trifluoromethyl)benzene: 1,3-Dichloro-2-nitro-4-(trifluoromethyl)benzene (0.50 g, 1.9 mmol) was treated with cesium carbonate (1.25 g, 3.9 mmol) and slurried in NMP (4 mL). The suspension was cooled to 0 °C and treated with 3-fluoro-5-chlorophenol (282 mg, 1.9 mmol) dissolved in NMP (2 mL). The mixture was stirred while the ice bath warmed to ambient temperature for 14 hours. The reaction mixture was diluted with water and Et2O then separated. The aqueous was washed with Et2O and the combined organic layers were washed twice with 10% Na2CO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The material was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane and the fractions containing the desired material were concentrated in vacuo to a white solid (125 mg, 17%).
Step B: Preparation of 2-chloro-6-(3-chloro-5-fluorophenoxy)-3-(trifluoromethyl)aniline: 2-Chloro-4-(3-chloro-5-fluorophenoxy)-3-nitro-1-(trifluoromethyl)benzene (110 mg, 0.30 mmol) was dissolved in 95% ethanol (2 mL) and treated with tin (II) chloride pentahydrate (335 mg, 1.2 mmol). The mixture was heated to reflux for 5 hours then stirred at ambient temperature for 55 hours. The mixture was concentrated in vacuo then redissolved in ethyl acetate. The organic layer was washed three times with 10% NaOH, water, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a light oil (105 mg, quant.).
Step C: Preparation of 2-bromo-3-chloro-1-(3-chloro-5-fluorophenoxy)-4-(trifluoromethyl)benzene (Compound 97): 2-Chloro-6-(3-chloro-5-fluorophenoxy)-3-(trifluoromethyl)aniline (102 mg, 0.30 mmol)) was dissolved in dioxane (0.7 mL), diluted with concentrated HCl (0.7 mL) then cooled to 0 °C. A solution of sodium nitrite (21 mg, 0.30 mmol) in water (50 µL) was added dropwise then stirred 15 minutes after the addition. The diazonium intermediate was treated with a cooled (0 °C) solution of copper (I) bromide (52 mg, 0.36 mmol) dissolved in 6N HCl (0.34 mL). The mixture was stirred for 15 minutes then warmed to 60 °C for 16 hours. The reaction was quenched with water and ethyl acetate and the aqueous layer was separated from the dark organic layer. The organic layer was washed several times with saturated NH4Cl, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane to give Compound 97 as a colorless oil (55 mg, 45%). 1H NMR (400 MHz, CDCl3): δ 7.68 (d, 1H), 6.99-6.94 (m, 2H), 6.85-6.84 (m, 1H), 6.71-6.67 (m, 1H).
Reference Example 98
2-Bromo-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzonitrile (Compound 98)
Step A: Preparation of S-(3-bromo-2-cyano-4-fluorophenyl) ethanethioate: 2-Bromo-3-fluoro-6-iodobenzonitrile [Compound 96, Step C] (6.5 g, 19.9 mmol) and Xantphos (1.38 g, 2.39 mmol) were suspended in 2:1 toluene / acetone (80 mL). The mixture was sparged with argon then treated with tris(dibenzylideneacetone)dipalladium (1.0 g, 1.1 mmol) and potassium ethanethioate (2.84 g, 24.9 mmol). The mixture was sealed under argon and heated to 70 °C for 3 hours then stirred at ambient temperature overnight. The reaction was filtered through celite, the retained solids were washed with methylene chloride and the filtrate was concentrated in vacuo. The crude product was chromatographed on SiO2 eluting with a gradient of ethyl acetate and hexane. All fractions (including higher and lower Rf materials) containing the desired material were collected and concentrated to a crude dark brown solid (4.0 g, 73%). This material was used without further purification.
Step B: Preparation of 2-bromo-3-fluoro-6-mercaptobenzonitrile: S-(3-Bromo-2-cyano-4-fluorophenyl) ethanethioate (4.0 g, 14.6 mmol) was dissolved in THF (130 mL) and the solution was sparged with argon gas for 10 minutes. Concentrated ammonium hydroxide (15M, 18 mL) was added and the resultant solution was sparged for an additional 5 minutes then stirred for 40 minutes. The reaction mixture was concentrated in vacuo then redissolved in Et2O and some water plus 10% NH4OH to adjust to pH 10. The aqueous layer was separated and washed twice with Et2O. The aqueous layer was adjusted to pH 2 with 1M KHSO4 then extracted three times with Et2O. The combined organics were washed with water, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a tan solid (1.92 g, 56%).
Step C: Preparation of 2-bromo-3 -fluoro-6-((trifluoromethyl)thio)benzonitrile: 2-Bromo-3-fluoro-6-mercaptobenzonitrile (1.92 g, 8.3 mmol) was dissolved in DMF (11 mL) and treated with methyl viologen dichloride (213 mg, 0.83 mmol) and triethylamine (2.9 mL, 20.7 mmol). This solution was cooled to -78 °C and excess trifluoromethyliodide gas (18.5 g) was condensed into the solution. The reaction vessel was sealed, warmed directly to ambient temperature and stirred for 18 hours. The reaction was cooled to -78 °C, opened carefully and the volatile reagents were removed with vigorous nitrogen flow through the solution. The mixture was poured into saturated NaCl, diluted with Et2O and separated. The aqueous phase was washed three times with Et2O and the combined organics were washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product was purified on SiO2 eluting with a gradient of ethyl acetate and hexane to give 2-bromo-3-fluoro-6-((trifluoromethyl)thio)benzonitrile (2.46 g, quant.).
Step D: Preparation of 2-bromo-3-fluoro-6-((trifluoromethyl)sulfonyl)benzonitrile: 2-Bromo-3-fluoro-6-((trifluoromethyl)thio)benzonitrile (145 mg, 0.48 mmol) was dissolved in a mixture of MeCN, CCl4 and water (1:1:2, 4.8 mL) then ruthenium (III) chloride (3 mg, 0.01 mmol) and sodium periodate (310 mg, 1.45 mmol) were added. The suspension was stirred at ambient temperature for 4 hours. The mixture was diluted with methylene chloride and filtered through a pad of celite. The filtrate was separated and the aqueous layer was washed with fresh methylene chloride. The combined organic extracts were passed through a small pad of Florisil® (pre-wetted with methylene chloride). The filter media was washed with methylene chloride then the combined filtrates were concentrated in vacuo to a white solid (145 mg, quant.).
Step E: Preparation of 2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzonitrile (Compound 98): 2-Bromo-3-fluoro-6-((trifluoromethyl)sulfonyl)benzonitrile (26 mg, 0.08 mmol) was combined with sodium bicarbonate (13 mg, 0.16 mmol) in acetonitrile (0.25 mL) and the suspension was cooled to 0 °C. A solution of 3-chloro-5-fluorophenol (11 mg, 0.08 mmol) in acetonitrile (0.25 mL) was added dropwise to the cold suspension. The mixture was stirred at 0 °C for 30 minutes then warmed to ambient temperature for 6 hours. The mixture was diluted with ethyl acetate and water then separated. The organic layer was washed twice with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product was chromatographed on SiO2 eluting with a gradient of ethyl acetate /hexane to give Compound 98 as a free-flowing white solid (22.7 mg, 62%). LCMS ESI (-) m/z (M-H) 456, 458; 1H NMR (400 MHz, CDCl3): δ 8.12 (d, 1H), 7.18 (d, 1H), 7.14-7.11 (m, 1H), 6.97-6.96 (m, 1H), 6.82-6.79 (m, 1H).
Reference Example 99
Reference Example 100
Reference Example 101
2-Bromo-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzaldehyde (Compound 101)
Step A: Preparation of 2-bromo-3-fluoro-6-((trifluoromethyl)sulfonyl)benzaldehyde: 2-Bromo-3-fluoro-6-(trifluoromethylsulfonyl)benzonitrile (500 mg, 1.5 mmol) [Compound 98, Step D] was dissolved in dichloromethane (8 mL) and cooled to 0 °C. The solution was treated slowly with a solution of diisobutylaluminum hydride (1M in heptane, 1.81 mL, 1.81 mmol) and the mixture was stirred at 0 °C for 5 hours. Additional diisobutylaluminum hydride (1M in heptane, 0.3 mL, 0.3 mmol) was added dropwise and the reaction mixture was stirred at 0 °C for an additional 2 hours. The reaction was quenched at 0 °C by addition of cold 1N HCl (8 mL). The suspension was warmed to ambient temperature and stirred for 1 hour. The mixture was neutralized by addition of solid NaHCO3 and the resultant precipitate was filtered and washed with ethyl acetate. The filtrate was separated, the aqueous was washed with ethyl acetate and the combined organics were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to give the desired product (458 mg, 90%).
Step B: Preparation of 2-bromo-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzaldehyde: 2-Bromo-3-fluoro-6-(trifluoromethylsulfonyl)benzaldehyde (458 mg, 1.37 mmol) was treated with sodium bicarbonate (230 mg, 2.73 mmol) and 3-chloro-5-fluoro-phenol (210 mg, 1.44 mmol) and the solids were slurried in acetonitrile (4 mL) then the mixture was stirred at 50 °C for 20 hours. The reaction was concentrated in a stream of nitrogen gas then diluted with water and ethyl acetate. The layers were separated and the aqueous was washed three times with ethyl acetate. The combined organic layers were washed three times with 10% K2CO3, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a light yellow oil. The crude material was chromatographed on SiO2 eluting with a gradient of hexane/ethyl acetate to give Compound 101 as a colorless oil (525 mg, 83%). 1H NMR (400 MHz, CDCl3): δ 10.31 (s, 1H), 7.99 (d, 1H), 7.10 (d, 1H), 7.10-7.07 (m, 1H), 6.96-6.94 (m, 1H), 6.81-6.77 (m, 1H).
Reference Example 102
Reference Example 103
Reference Example 104
Reference Example 105
Reference Example 106
Reference Example 107
Reference Example 108
Reference Example 109
Reference Example 110
Reference Example 111
2-Chloro-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzonitrile Compound 111)
Step A: Preparation of 2-chloro-3-fluoro-6-mercaptobenzonitrile: 2-Chloro-3,6-difluoro-benzonitrile (7.35 g, 42.4 mmol) in DMF (38 mL) was sparged with nitrogen gas for 5 minutes, cooled to 0 °C, and treated with sodium sulfide (3.47 g, 44.5 mmol). The yellow suspension was stirred at 0 °C for 45 minutes. The reaction was diluted with methylene chloride and 1M NH4OH. After separation, the aqueous was washed with methylene chloride. The aqueous was adjusted to pH 2 with 10% KHSO4 then extracted twice with methylene chloride. The combined organics were washed with water, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to light yellow oil (6.1 g, 75%).
Step B: Preparation of 2-chloro-3-fluoro-6-((trifluoromethyl)thio)benzonitrile: 2-Chloro-3-fluoro-6-mercaptobenzonitrile (6.1 g, 32 mmol) was dissolved in DMF (42 mL) and treated with methyl viologen dichloride (0.42 g, 1.6 mmol). This suspension was cooled to -78 °C treated with triethylamine (11.3 mL, 81 mmol) then trifluoromethyliodide gas (5.2 g) was condensed into the solution. The reaction vessel was sealed and the mixture was warmed directly to ambient temperature and stirred for 14 hours. The reaction vessel was opened carefully then the volatile reagents were removed with vigorous nitrogen flow into the solution. The mixture was poured into saturated NaCl, diluted with Et2O and separated. The aqueous phase was washed three times with Et2O and the combined organic layers were washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo to dark oil (4.9 g). The crude product was chromatographed on SiO2, eluting with a gradient of ethyl acetate/hexane. The desired product was obtained as a light yellow oil (3.0 g, 37%).
Step C: Preparation of 2-chloro-3-fluoro-6-((trifluoromethyl)sulfonyl)benzonitrile: 2-Chloro-3-fluoro-6-((trifluoromethyl)thio)benzonitrile (0.38 g, 1.5 mmol) was dissolved in a mixture of MeCN, CCl4 and water (volumn ratio 1:1:2, 15 mL) and ruthenium (III) chloride (9.1 mg, 0.04 mmol) was added. Sodium periodate (0.94 g, 4.4 mmol) was added in a single portion and the mixture was stirred at ambient temperature for 4 hours. The mixture was diluted with methylene chloride and filtered through a pad of celite. The filtrate was separated and the aqueous was washed with fresh methylene chloride. The combined extracts were passed through a pad of Florisil® (pre-wetted with methylene chloride). The pad was washed with methylene chloride then the combined colorless filtrates were gently concentrated in vacuo to a dark oil. The crude product was chromatographed on SiO2, eluting with a gradient of ethyl acetate/hexane. The product was obtained as a light oil which formed a white solid on standing (145 mg, 33%).
Step D: Preparation of 2-chloro-3-(3-chloro-5-fluorophenoxy)-6-((trifluoromethyl)sulfonyl)benzonitrile: 2-Chloro-3 -fluoro-6-((trifluoromethyl)sulfonyl)benzonitrile (1.08 g, 3.75 mmol) was combined with sodium bicarbonate (573 mg, 6.82 mmol) in acetonitrile (10 mL) and the suspension was cooled to 0 °C. 3-Chloro-5-fluoro-phenol (0.5 g, 3.4 mmol) was added to the suspension and the mixture was allowed to warm to ambient temperature and stirred for 60 hours. The reaction was diluted with 10% Na2CO3 and ethyl acetate then separated. The organic layer was washed three times with 10% Na2CO3, saturated NaHCO3, dried over Na2SO4 and concentrated in vacuo. The crude material was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane to give Compound 111 as colorless oil (339 mg, 21%). LCMS ESI (+) m/z (M+NH4) 431, 433; 1H NMR (400 MHz, CDCl3): δ 8.08 (d, 1H), 7.23 (d, 1H), 7.14-7.11 (m, 1H), 6.98-6.96 (m, 1H), 6.83-6.79 (m, 1H).
Reference Example 112
Reference Example 113
Reference Example 114
Example 115
(S)-4-((5-Chloropyridin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 115)
Step A: Preparation of 4-((5-chloropyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: 3-Chloro-5-((7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)pyridine [Prepared similarly as described in Example 8, Step B utilizing 3-chloro-5-hydroxypyridine.] (340 mg, 0.89 mmol) was dissolved in 6:1 acetone/water (4.4 mL) and treated with pyridinium p-toluenesulfonate (22.4 mg, 0.090 mmol). The mixture was heated to 82 °C in a sealed bottle for 18 hours. The reaction was cooled and concentrated in a stream of nitrogen gas. The resulting solid was redissolved in ethyl acetate and the organic phase was washed twice with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a white solid (300 mg, quant.).
Step B: Preparation of (E,Z)-N-butyl-4-((5-chloropyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-imine: 4-((5-Chloropyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (300 mg, 0.89 mmol) was dissolved in benzene (10 mL) and treated with butylamine (1.67 mL, 16.9 mmol) and trifluoroacetic acid (0.03 mL, 0.44 mmol) then the mixture was refluxed through a Dean-Stark trap for 2.5 hours. The progress of the reaction was followed by 1H NMR. The reaction mixture was cooled and concentrated in vacuo. The residue was redissolved in ethyl acetate and saturated NaHCO3 then separated. The organic layer was washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a sticky residue (355 mg). 1H NMR of this material showed both imine isomers were present.
Step C: Preparation of 4-((5-chloropyr, quant.idin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: (E, Z)-N-butyl-4-((5-chloropyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-imine (150 mg, 0.38 mmol) was treated with sodium sulfate (542 mg, 3.8 mmol) then dissolved in dry MeCN (4.8 mL). The suspension was treated with Selectfluor® (338 mg, 0.95 mmol). The flask and condenser were flushed with argon and heated to 82 °C for 5.5 hours under argon then stirred for 9 hours at ambient temperature. The mixture was treated with concentrated hydrochloric acid (0.95 mL, 11.4 mmol) and stirred for 20 minutes at ambient temperature. The whole mixture was concentrated in vacuo to remove volatile solvents. The resulting suspension was diluted with ethyl acetate and water then separated. The organic layer was washed with water, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a solid. The crude material was purified on SiO2 eluting with a gradient of ethyl acetate/hexane. The desired material was collected and concentrated to a white solid (91 mg, 63%).
Step D: Preparation of (S)-4-((5-chloropyridin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol: 4-((5-Chloropyridin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (89 mg, 0.24 mmol) was dissolved in methylene chloride (1.1 mL), treated with triethylamine (0.07 mL, 0.48 mmol) and formic acid (0.03 mL, 0.7 mmol) then cooled to 0 °C. The solution was treated with a cold solution of RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.5 mg) dissolved in methylene chloride (1.1 mL). The reaction mixture was transferred to the refrigerator and allowed to stand at 4 °C for 60 hours. The mixture was concentrated in vacuo and chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane. The product was concentrated in vacuo to a colorless oil. The oil was dissolved in methylene chloride and hexane and re-concentrated to give Compound 115 as a white solid (64 mg, 70%). The stereopurity was >95% ee, as determined by Mosher ester analysis. LCMS ESI (+) m/z (M+H) 376, 378; 1H NMR (400 MHz, CDCl3): δ 8.50-8.49 (m, 1H), 8.36-8.35 (m, 1H), 7.89 (d, 1H), 7.43 (t, 1H), 6.93 (d, 1H), 5.62-5.58 (m, 1H), 3.62-3.40 (m, 3H), 3.22 (s, 3H).
Reference Example 116
2-Bromo-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonyl)benzene (Compound 116)
Step A: Preparation of (3-bromo-4-fluorophenyl)(trifluoromethyl)sulfane: Trifluoromethyliodide (2.84 g, 14.5 mmol) was condensed into a solution containing 3-bromo-4-fluorobenzenethiol (1.00 g, 4.8 mmol), methyl viologen dichloride (118 mg, 0.48 mmol) and Et3N (1.68 mL, 12.1 mmol) in DMF (6.4 mL) at -78 °C. The sealed tube was quickly capped with a threaded Teflon cap and tightly sealed. The reaction mixture was then warmed to room temperature and stirred for 39 hours. The reaction mixture was cooled to-78 °C and opened carefully, poured into brine (20 mL), extracted with Et2O (5 x 40 mL), washed with brine (20 mL), dried (Na2SO4) and concentrated in vacuo. The crude product was purified on silica gel (50 g SNAP, 16 CV, 1-20% EtOAc/hexanes) affording (3-bromo-4-fluorophenyl)(trifluoromethyl)sulfane (1.2 g, 90% yield) as a clear, colorless oil.
Step B: Preparation of 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene: Sodium periodate (2.80 g, 13.1 mmol) was added all at once to (3-bromo-4-fluorophenyl)(trifluoromethyl)sulfane (1.20 g, 4.4 mmol) and RuCl3 (22.6 mg, 0.11 mmol) in MeCN (10 mL)/CCl4 (10 mL)/H2O (20 mL) at room temperature and stirred for 2 hours. The reaction mixture was extracted with EtOAc (3 x 50 mL), washed with brine (30 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (25 g SNAP, 14 CV, 2-20% EtOAc/hexane) affording 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene (1.14 g, 85%) as a clear, colorless oil which became a white solid upon standing.
Step C: Preparation of 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonyl)benzene (Compound 116): Cesium carbonate (358 mg, 1.1 mmol) was added all at once to 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene (307 mg, 1.0 mmol) and 3-chloro-5-fluorophenol (161 mg, 1.1 mmol) in NMP (3.0 mL) then warmed to 50 °C and stirred for 1.5 hours. The mixture was cooled to room temperature and purified directly on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording Compound 116 (389 mg, 90% yield) as a white solid. LCMS ESI (-) m/z 431 (M-H). 1H-NMR (400 MHz, CDCl3): δ 8.30 (d, 1 H), 7.93 (m, 1 H), 7.08-7.02 (m, 2 H), 6.93-6.91 (m, 1 H), 6.78-6.74 (m, 1 H).
Reference Example 117
Reference Example 118
Reference Example 119
Reference Example 120
Reference Example 121
Reference Example 122
Reference Example 123
Reference Example 124
Reference Example 125
2-(3-Chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzamide (Compound 125)
Step A: Preparation of 2-(3-chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzoic acid: Lithium hydroxide monohydrate (46 mg, 1.1 mmol, 10 equivalent) added all at once to methyl 2-(3-chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzoate (45 mg, 0.11 mmol, 1.0 equiv) in 4:1 THF/water (1.25 mL) and stirred at room temperature for 6 hours. The mixture was diluted with 4 N HCl (4 mL), extracted with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), filtered and concentrated. The residue was purified on reverse phase column (12+M, 14 CV, 20-100% MeCN/water) to afford 2-(3-chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzoic acid (27.8 mg, 64% yield) as a sticky white foam.
Step B: Preparation of 2-(3-chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzamide (Compound 125): N-[(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide, (HATU) (42.0 mg, 0.11 mmol) was added all at once to a solution of 2-(3-chloro-5-fluorophenoxy)-5-((trifluoromethyl)sulfonyl)benzoic acid (22.0 mg, 0.055 mmol), NH4Cl (6.0 mg, 0.11 mmol) and N,N-diisopropylethylamine (29 µL, 0.165 mmol) in DMF (0.5 mL) at room temperature then stirred for 16 hours in a sealed reaction vial. Purification directly on reverse phase column (12+M, 14 CV, 20-100% MeCN/water) affording Compound 125 (15.4 mg, 70% yield). LCMS ESI (-) m/z 396 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.95 (d, 1 H), 8.07-8.04 (m, 1 H), 7.21 (br s, 1 H), 7.15-7.12 (m, 1 H), 7.05 (d, 1 H), 7.02-7.01 (m, 1 H), 6.86-6.83 (m, 1 H), 6.01 (br s, 1 H).
Reference Example 126
3-[2-(3-Chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl)phenyl]propan-1-ol (Compound 126)
Step A: Preparation of 2-allyl-1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)benzene: Allyl(tributyl)stannane (0.13mL, 0.43 mmol) was added by syringe to a degassed mixture of 2-bromo-1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)benzene (116 mg, 0.27 mmol) and tetrakis(triphenylphosphine)palladium(0) (30.9 mg, 0.03 mmol) in DMF (2 mL) at room temperature to a microwave vial equipped with a septum under nitrogen. The septa was quickly replaced with a microwave cap and sealed under a blanket of nitrogen. The reaction mixture was then warmed to 160 °C for 30 minutes in a microwave reactor. After cooling to room temperature, the mixture was filtered through Celite, washed with MTBE (10 mL) then stirred with saturated KF (10 mL) for 30 minutes. The phases were separated, the aqueous extracted with MTBE (3 x 10 mL), then the combined organics were washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 0-25% EtOAc/hexane) affording 2-allyl-1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)benzene (95 mg, 0.24 mmol, 90% yield) as a clear oil.
Step B: Preparation of 3-[2-(3-chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl)phenyl]propan-1-ol (Compound 126): 9-Borabicyclo[3.3.1]nonane (0.4 M in THF, 0.25 mL, 0.10 mmol) was added dropwise to 2-allyl-1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)benzene (26.0 mg, 0.07 mmol) in tetrahydrofuran (0.50 mL) at room temperature and stirred for 18 hours. The reaction mixture was cooled to-10 °C followed by the addition of 1 N NaOH (1 mL) and 30% H2O2 (100 µL) and stirred for 1 hour. The reaction was extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 12-100% EtOAc/hexane) affording Compound 126 (6.0 mg, 0.015 mmol, 22% yield) as a colorless oil. LCMS ESI (-) m/z 457 (M+HCO2-); 1H-NMR (400 MHz, CDCl3): δ 7.96 (d, 1 H), 7.84 (m, 1 H), 7.02-6.98 (m, 2 H), 6.88-6.87 (m, 1 H), 6.73-6.69 (m, 1 H), 3.74-3.60 (m, 2 H), 2.91-2.87 (m, 2 H), 1.97-1.90 (m, 2 H), 1.40-1.37 (m, 1 H).
Reference Example 127
2-[2-(3-Chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl)phenyl]ethanol (Compound 127)
Step A: Preparation of 1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)-2-vinyl-benzene: Tributyl(vinyl)stannane (0.05 mL, 0.17 mmol) was added to a degassed mixture of 2-bromo-1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)benzene (64 mg, 0.15 mmol) and tetrakis(triphenylphosphine)palladium(0) (17 mg, 0.01 mmol) in DMF (1 mL) in a microwave vial at room temperature under nitrogen. The septum was quickly replaced with a crimp cap and the reaction vial was sealed. The reaction mixture was then warmed to 160 °C for 45 minutes in a microwave reactor. The crude mixture was purified directly on reverse phase column (25+M, 14 CV, 20-100% MeCN/water) affording 1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)-2-vinyl-benzene (40 mg, 0.1 mmol, 67% yield) as a yellow oil.
Step B: Preparation of 2-[2-(3-chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl)phenyl]ethanol (Compound 127): 9-Borabicyclo[3.3.1]nonane (0.4 M in THF, 0.8 mL, 0.32 mmol) was added dropwise to 1-(3-chloro-5-fluoro-phenoxy)-4-(trifluoromethylsulfonyl)-2-vinyl-benzene (38.0 mg, 0.10 mmol) in tetrahydrofuran (0.20 mL) at room temperature. The reaction mixture was stirred for 20 hours. The reaction mixture was then added carefully to ice water (10 mL), MTBE (10 mL), 3 N NaOH (0.5 mL) and 30% H2O2 (100 µL) and stirred for 30 minutes. The mixture was extracted with MTBE (3 x 10 mL), washed with brine (20 mL), dried over MgSO4, filtered and concentrated. The crude product was purified on silica gel (10 g SNAP, 14 CV, 2-40% EtOAc/hexane) affording Compound 127 (9.0 mg, 0.02 mmol, 22% yield) as a clear, colorless oil. LCMS ESI (-) m/z 397 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.02 (d, 1 H), 7.86 (m, 1 H), 7.02-6.99 (m, 2 H), 6.89-6.87 (m, 1 H), 6.74-6.70 (m, 1 H), 3.98-3.93 (m, 2 H), 3.06 (t, 2 H), 1.50-1.47 (m, 1 H).
Reference Example 128
2-Chloro-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonyl)benzene (Compound 128)
Step A: Preparation of (3-chloro-4-fluorophenyl)(trifluoromethyl)sulfane: Trifluoromethyliodide (2.17 g, 11.1 mmol) was condensed into a solution of 3-chloro-4-fluorobenzenethiol (0.6 g, 3.7 mmol, 1.0 equiv), methyl viologen dichloride (95 mg, 0.37 mmol, 0.1 equiv) and Et3N (1.3 mL, 9.2 mmol, 2.5 equiv) in DMF (5.0 mL) at -78 °C. The septum was quickly replaced with a threaded Teflon cap and tightly sealed. The reaction mixture was then warmed to room temperature and stirred for 60 hours. The reaction mixture was cooled to -78 °C and opened carefully, poured into brine (20 mL), extracted with Et2O (5 x 20 mL), washed with brine (20 mL), dried (Na2SO4) and concentrated in vacuo using a low temperature water bath. The crude product was purified on silica gel (25 g SNAP, 14 CV, 1-10% EtOAc/hexane) affording (3-chloro-4-fluorophenyl)(trifluoromethyl)sulfane (600 mg) as a clear, colourless oil which was used in the next reaction immediately.
Step B: Preparation of 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene: Sodium periodate (1.80 g, 8.4 mmol, 3.23 equiv) was added all at once to (3-chloro-4-fluorophenyl)(trifluoromethyl)sulfane (600 mg, 2.6 mmol, 1.0 equiv) and RuCl3 (13.5 mg, 0.065 mmol, 0.025 equiv) in MeCN (6 mL)/CCl4 (6 mL)/H2O (12 mL) at room temperature and stirred for 2 hours. The reaction mixture was filtered, the filter cake rinsed with CH2Cl2 (30 mL), then extracted with CH2Cl2 (3 x 30 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (25 g SNAP, 14 CV) eluting with 1-20% EtOAc/hexane affording 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene (530 mg, 55% yield over 2 steps) as a clear, colorless oil which turned into a white solid upon cooling to -78 °C.
Step C: Preparation of 2-chloro-1-(3-chloro-5-fluorophenoxy)-4-((trifluoromethyl)sulfonyl)benzene (Compound 128): Cesium carbonate (41.0 mg, 0.126 mmol) was added all at once to 2-chloro-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene (30.0 mg, 0.11 mmol) and 3-fluoro-5-chlorophenol (18.0 mg, 0.13 mmol) in NMP (0.5 mL) then warmed to 50 °C and stirred for 1.5 hours. After cooling to room temperature, the mixture was purified directly on reverse phase column (12+M, 14 CV, 30-100% MeCN/water) affording Compound 128 (41.6 mg, 0.13 mmol, 94% yield) as a clear oil. LCMS ESI (-) m/z 387 (M-H).
Reference Example 129
1-(3-Chloro-5-fluorophenoxy)-4-(trifluoromethyl)-2-((trifluoromethyl)sulfonyl)benzene (Compound 129)
Step A: Preparation of (2-chloro-5-(trifluoromethyl)phenyl)(trifluoromethyl)sulfane: To a pressure vessel equipped with a septum, stir bar and methyl viologen dichloride (60 mg, 0.24 mmol, 0.1 equiv) under Ar was added DMF (3.0 mL), 2-chloro-5-(trifluoromethyl)benzenethiol (500 mg, 2.4 mmol, 1.0 equiv) and Et3N (819 µL, 5.9 mmol, 2.5 equiv) at room temperature. The reaction mixture was then cooled to -78 °C where CF3I (1.38 g, 7.1 mmol) was added through tygon tubing equipped with a needle along the cooled wall of the vessel (vented to a bubbler). The septum was then quickly replaced with a threaded Teflon cap and the reaction vessel was tightly sealed and warmed to room temperature where it was stirred for 18 hours. The reaction mixture was cooled to -78 °C and opened carefully. The contents of the vessel were then poured into water (10 mL), extracted with Et2O (5 x 10 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated. The crude product was purified on silica gel (25 g SNAP, 14 CV) eluting with 5-40% EtOAc/hexane affording (2-chloro-5-(trifluoromethyl)phenyl)(trifluoromethyl)sulfane (450 mg, 68% yield) as a pale yellow liquid.
Step B: Preparation of 1-chloro-4-(trifluoromethyl)-2-((trifluoromethyl)sulfonyl)benzene: Sodium periodate (1.03 g, 4.8 mmol, 3.0 equiv) was added all at once to (2-chloro-5-(trifluoromethyl)phenyl)(trifluoromethyl)sulfone (450 mg, 1.6 mmol, 1.0 equiv) and RuCl3 (3.3 mg, 0.02 mmol, 0.01 equiv) in 1/1/2 MeCN/CCl4/H2O (8 mL) at room temperature and stirred vigorously for 15 hours. The reaction mixture was diluted with water (20 mL), extracted with CH2Cl2 (3 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated. The crude product was purified on silica gel (10 g SNAP, 14 CV) eluting with 2-30% EtOAc/hexane affording 1-chloro-4-(trifluoromethyl)-2-((trifluoromethyl)sulfonyl)benzene (426 mg, 85% yield) as a white solid.
Step C: Preparation of 1-(3-chloro-5-fluorophenoxy)-4-(trifluoromethyl)-2-((trifluoromethyl)sulfonyl)benzene (Compound 129): Potassium carbonate (31 mg, 0.221 mmol, 1.5 equiv) was added to 1-chloro-4-(trifluoromethyl)-2-((trifluoromethyl)sulfonyl)benzene (46 mg, 0.147 mmol, 1.0 equiv) and 3-chloro-5-fluorophenol (32 mg, 0.221 mmol, 1.5 equiv) in benzene (2.0 mL) then warmed to reflux overnight. The reaction was cooled to room temperature and concentrated in vacuo. Purification on reverse phase column (12+M, 14 CV, 30-100% MeCN/water) yielded Compound 129 (39.4 mg, 63% yield) as a white solid. LCMS ESI (-) m/z 421 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.39-8.38 (m, 1 H), 7.98-7.95 (m, 1 H), 7.15 (d, 1 H), 7.08-7.05 (m, 1 H), 6.95-6.94 (m, 1 H), 6.80-6.77 (m, 1 H).
Reference Example 130
2-Bromo-1-(3-chloro-5-fluorophenoxy)-4-(vinylsulfonyl)benzene (Compound 130)
Step A: Preparation of 2-((3-bromo-4-fluorophenyl)thio)ethyl acetate: Sodium bicarbonate (609 mg, 7.24 mmol, 3.0 equiv) was added all at once to 3-bromo-4-fluorobenzenethiol (500 mg, 2.42 mmol, 1.0 equiv) and 2-bromoethyl acetate (807 mg, 4.83 mmol, 2.0 equiv) in 1:1 dioxane/water (14.0 mL) at room temperature then stirred for 62 hours under nitrogen. The reaction mixture was diluted with water (20 mL), extracted with EtOAc (3 x 25 mL), washed with brine (25 mL), dried (MgSO4), filtered and concentrated. Crude 2-((3-bromo-4-fluorophenyl)thio)ethyl acetate was used without purification in the next reaction.
Step B: Preparation of 2-((3-bromo-4-fluorophenyl)sulfonyl)ethyl acetate: Crude 2-((3-bromo-4-fluorophenyl)thio)ethyl acetate (709 mg, 2.4 mmol, 1.0 equiv) in MeOH (12.0 mL) was added dropwise to Oxone® (3.28 g, 5.3 mmol, 2.2 equiv) in water (12.0 mL) by addition funnel over 10 minutes, then stirred an additional 2 hours. The reaction mixture was filtered, extracted with MTBE (4 x 25 mL), washed with brine (25 mL), dried (MgSO4), filtered and concentrated. The crude product was purified on silica gel (25 g SNAP, 14 CV, 10-100% EtOAc/hexane) affording 2-((3-bromo-4-fluorophenyl)sulfonyl)ethyl acetate (530 mg, 67% over 2 steps) as a clear oil that slowly became a white solid upon standing.
Step C: Preparation of 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-(vinylsulfonyl)benzene (Compound 130): Cesium carbonate (48 mg, 0.15 mmol, 1.2 equiv) was added all at once to 2-((3-bromo-4-fluorophenyl)sulfonyl)ethyl acetate (40 mg, 0.12 mmol, 1.0 equiv) and 3-chloro-5-fluorophenol (22 mg, 0.15 mmol, 1.2 equiv) in NMP (0.5 mL) then warmed to 50 °C and stirred for 16 hours. The reaction mixture Cooled to room temperature and purified directly on reverse phase silica gel (12+M, 14 CV, 20-100% MeCN/water) then silica gel (10 g SNAP, 14 CV, 7-60% EtOAc/hexanes) affording Compound 130 (9.5 mg, 20% yield) as a clear oil. LCMS ESI (-) m/z 389 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.18 (d, 1 H), 7.83-7.80 (m, 1 H), 7.07 (d, 1 H), 6.97-6.94 (m, 1 H), 6.82-6.81 (m, 1 H), 6.70-6.64 (m, 2 H), 6.54-6.50 (m, 1H), 6.13-6.11 (m, 1H).
Reference Example 131
2-Bromo-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)benzene (Compound 131)
Step A: Preparation of (3-bromo-4-fluorophenyl)(difluoromethyl)sulfane: Diethyl (bromodifluoromethyl)phosphonate (2.58 g, 9.66 mmol) was added all at once by syringe to a degassed mixture of 3-bromo-5-fluorobenzenethiol (1.00 g, 4.8 mmol) and KOH (5.42 g, 96.6 mmol) in MeCN (24.0 mL) and water (24.0 mL) at -78 °C under nitrogenThe cooling bath was removed immediately and the mixture was stirred at room temperature for 30 minutes. The reaction was diluted with water (20 mL), extracted with MTBE (4 x 50 mL), washed with brine (50 mL), dried (Na2SO4), filtered and concentrated in vacuo. Crude (3-bromo-4-fluorophenyl)(difluoromethyl)sulfane (1.24 g) was used directly in the following reaction. 1HNMR (400 MHz, CDCl3): δ 7.82-7.80 (m, 1 H), 7.54-7.50 (m, 1 H), 7.15 (t, 1 H), 6.80 (t, 1H).
Step B: Preparation of 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene: Sodium periodate (2.58 g, 12.06 mmol) was added all at once to (3-bromo-4-fluorophenyl)(difluoromethyl)sulfane (1.24 g, 4.83 mmol) and RuCl3 (25 mg, 0.12 mmol) in MeCN (10 mL)/CCl4 (10 mL)/H2O (20 mL) at room temperature and stirred for 2 hours. The reaction mixture was filtered, the filter cake washed with dichloromethane, then the organic filtrate was washed with brine (30 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (25 g SNAP, 14 CV, 5-40% EtOAc/hexanes) affording 2-bromo-1-fluoro-4-((trifluoromethyl)sulfonyl)benzene (1.16 g, 83% yield over 2 steps) as a clear, colorless oil which became a white solid upon standing.
Step C: Preparation of 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((difluoromethyl)sulfonyl)benzene (Compound 131): Cesium carbonate (358 mg, 1.1 mmol) was added all at once to 2-bromo-4-((difluoromethyl)sulfonyl)-1-fluorobenzene (289 mg, 1.0 mmol) and 3-chloro-5-fluorophenol (161 mg, 1.1 mmol) in NMP (3.0 mL) then warmed to 50 °C and stirred for 2 hours and 45 minutes. The mixture was cooled to room temperature and purified directly on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording Compound 131 (369 mg, 89% yield) as a white solid. LCMS ESI (-) m/z 413 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.26 (d, 1 H), 7.89-7.87 (m, 1 H), 7.07 (d, 1 H), 7.04-7.00 (m, 1 H), 6.90-6.89 (m, 1 H), 6.75-6.72 (m, 1 H), 6.21 (t, 1 H).
Reference Example 132
3-(2-Bromo-4-((difluoromethyl)sulfonyl)phenoxy)-5-fluorobenzonitrile (Compound 132)
Reference Example 133
Reference Example 134
2-(3-Cyano-5-fluorophenoxy)-5-((difluoromethyl)sulfonyl)benzonitrile (Compound 134)
Step A: Preparation of 2-fluoro-5-mercaptobenzonitrile: 3-Cyano-4-fluorobenzene-1-sulfonyl chloride (5.00 g, 22.77 mmol, 1.0 equiv) in CH2Cl2 (24.0 mL) was added dropwise by addition funnel over 20 minutes to an ice cold solution of PPh3 (17.91 g, 68.30 mmol, 3.0 equiv) in CH2Cl2 (24.0 mL) and DMF (1.3 mL) then stirred at room temperature for 60 hours. The mixture was diluted with 1 N HCl (50 mL), extracted with CH2Cl2 (3 x 50 mL) then concentrated. MTBE (200 mL) was added, Ph3PO was removed by filtration, the filter cake rinsed with MTBE (150 mL), and the organics were combined and concentrated. Purification on silica gel (100 g SNAP, 14 CV, 12-80% CH2Cl2/hexanes) afforded 2-fluoro-5-mercaptobenzonitrile (2.90 g, 83% yield) as a fluffy white solid.
Step B: Preparation of 5-((difluoromethyl)thio)-2-fluorobenzonitrile: Diethyl (bromodifluoromethyl)phosphonate (1.66 g, 6.2 mmol, 2.0 equiv) was added all at once by syringe to a degassed mixture of 2-fluoro-5-mercaptobenzonitrile (475 mg, 3.1 mmol, 1.0 equiv) and KOH (3.48 g, 62 mmol, 20.0 equiv) in MeCN (15.0 mL) and water (15.0 mL) at -78 °C under nitrogen. The reaction was immediately removed from the cooling bath and stirred at room temperature for 30 minutes. The mixture was diluted with water (10 mL), extracted with MTBE (4 x 20 mL), washed with brine (30 mL), dried (Na2SO4), filtered and concentrated in vacuo. Crude 5-((difluoromethyl)thio)-2-fluorobenzonitrile (630 mg) was used directly in the following reaction.
Step C: Preparation of 5-((difluoromethyl)sulfonyl)-2-fluorobenzonitrile: Sodium periodate (1.66 g, 7.8 mmol, 2.5 equiv) was added all at once to 5-((difluoromethyl)thio)-2-fluorobenzonitrile (630 mg, 3.1 mmol, 1.0 equiv) and RuCl3 (16 mg, 0.078 mmol, 0.025 equiv) in 1:1:2 MeCN/CCl4/water (30 mL) at room temperature and stirred for 1 hour. The reaction was filtered, washed the filter cake with CH2Cl2 (30 mL), extracted with CH2Cl2 (2 x 25 mL), washed with brine (25 mL), dried (Na2SO4), filtered through a 3 cm pad of Florisil® and concentrated. The crude product was purified on silica gel (10 g SNAP, 14 CV, 7-60% EtOAc/hexane affording 5-((difluoromethyl)sulfonyl)-2-fluorobenzonitrile (528 mg, 72% yield over 2 steps) as a white solid.
Step D: Preparation of 2-(3-cyano-5-fluorophenoxy)-5-((difluoromethyl)sulfonyl)benzonitrile (Compound 134): Cesium carbonate (70.0 mg, 0.22 mmol) was added all at once to 2-bromo-4-((difluoromethyl)sulfonyl)-1-fluorobenzene (46.0 mg, 0.20 mmol) and 5-((difluoromethyl)sulfonyl)-2-fluorobenzonitrile (30.0 mg, 0.22 mmol) in NMP (0.5 mL) then warmed to 50 °C and stirred for 1.5 hours. The mixture was cooled to room temperature and purified directly on reverse phase silica gel (12+M, 14 CV, 20-100% MeCN/water) affording Compound 134 (44.8 mg, 0.13 mmol, 65% yield) as a white solid. LCMS ESI (-) m/z 351 (M-H). 1HNMR (400 MHz, CDCl3): δ 8.34 (d, 1 H), 8.15-8.12 (m, 1 H), 7.40-7.37 (m, 1 H), 7.31-7.29 (m, 1 H), 7.22-7.19 (m, 1 H), 7.10 (d, 1 H), 6.26 (t, 1 H).
Reference Example 135
1-(3-Chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)-2-methyl-benzene (Compound 135)
Step A: Preparation of 4-(difluoromethylsulfanyl)-1-fluoro-2-methyl-benzene: Bromodifluoromethyl diethylphosphonate (1.88 g, 7.0 mmol) was added by syringe to a degassed mixture of 4-fluoro-3-methyl-benzenethiol (500.0 mg, 3.5 mmol) and potassium hydroxide (3.95 g, 70.33 mmol) in acetonitrile (15 mL) and water (15 mL) at -78 °C under nitrogen. The reaction mixture was then immediately warmed to room temperature and stirred vigorously for 30 minutes. The mixture was extracted with EtOAc (3 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. Crude 4-(difluoromethylsulfanyl)-1-fluoro-2-methyl-benzene was used as is in the next reaction.
Step B: Preparation of 4-(difluoromethylsulfonyl)-1-fluoro-2-methyl-benzene: Sodium periodate (1.51 g, 7.0 mmol) was added all at once to 4-(difluoromethylsulfanyl)-1-fluoro-2-methyl-benzene (676 mg, 3.52 mmol) and ruthenium(III) chloride (18.25 mg, 0.09 mmol) in carbon tetrachloride (8 mL)/acetonitrile (8 mL)/water (16 mL) at room temperature and stirred for 3 hours. The mixture was filtered, diluted with water (20 mL), washed with CH2Cl2 (3 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo affording 4-(difluoromethylsulfonyl)-1-fluoro-2-methyl-benzene (480 mg, 2.14 mmol, 61% yield).
Step C: Preparation of 1-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)-2-methyl-benzene (Compound 135): Cesium carbonate (80 mg, 0.25 mmol) was added all at once to 4-(difluoromethylsulfonyl)-1-fluoro-2-methyl-benzene (50 mg, 0.22 mmol) and 3-chloro-5-fluoro-phenol (36 mg, 0.25 mmol) in 1-methyl-2-pyrrolidone (1.0 mL) at room temperature then the reaction vial was sealed with a threaded cap. The reaction mixture was then warmed to 50 °C and continued to stir at this temperature until completion as judged by LC-MS. The mixture was cooled to room temperature then purified directly on reverse phase column (25+M, 14 CV, 20-100% MeCN/water) affording Compound 135 (43.6 mg, 0.12 mmol, 53% yield) as a brown oil. LCMS ESI (-) m/z 349 (M-H). 1HNMR (400 MHz, CDCl3): δ 7.86 (d, 1 H), 7.80-7.77 (m, 1 H), 7.01 (d, 1 H), 6.98-6.95 (m, 1 H), 6.84-6.83 (m, 1 H), 6.69-6.65 (m, 1 H), 6.19 (t, 1 H), 2.39 (s, 3 H).
Reference Example 136
Reference Example 137
2-Bromo-1-(3-chloro-5-fluorophenoxy)-4-((fluoromethyl)sulfonyl)benzene (Compound 137)
Step A: Preparation of (fluoromethyl)(4-fluorophenyl)sulfane: (Diethylamino)sulfur trifluoride (1.46 mL, 11.1 mmol) dissolved in CH2Cl2 (1.8 mL) was added drop-wise to a solution of 1-fluoro-4-(methylsulfinyl)benzene (1.0 g, 6.3 mmol) and SbCl3 (43 mg, 0.190 mmol) in CH2Cl2 (32 mL) at -5 °C under nitrogen then stirred for 14 hours while gradually warming to room temperature. The reaction mixture was carefully quenched by the drop-wise addition of saturated NaHCO3 (10 mL), stirred for 30 minutes, extracted with CH2Cl2 (2 x 30 mL), washed with brine (30 mL), dried (Na2SO4), filtered and concentrated. The crude product was purified on silica gel (25 g SNAP, 14 CV, 5-50% EtOAc/hexane) affording (fluoromethyl)(4-fluorophenyl)sulfane (748 mg, 74% yield) as a yellow oil.
Step B: Preparation of 1-fluoro-4-((fluoromethyl)sulfonyl)benzene: (Fluoromethyl)(4-fluorophenyl)sulfane (748 mg, 4.7 mmol) in MeOH (20.0 mL) was added dropwise to an ice cold solution of Oxone® (6.32 g, 10.3 mmol) in water (20.0 mL) with vigorous stirring. The reaction mixture was then warmed to room temperature and stirred an additional 14 hours. Solids were removed by filtration, the filtrate was diluted with brine (50 mL), extracted with EtOAc (3 x 50 mL), washed with brine (50 mL), dried (MgSO4), filtered and concentrated. The crude product was purified on reverse phase column (25+M, 14 CV, 20-100% MeCN/water) affording 1-fluoro-4-((fluoromethyl)sulfonyl)benzene as a clear oil.
Step C: Preparation of 2-bromo-1-fluoro-4-((fluoromethyl)sulfonyl)benzene: N-Bromosuccinimide (228 mg, 1.28 mmol) was added in two equal portions over 30 minutes to 1-fluoro-4-((fluoromethyl)sulfonyl)benzene (205 mg, 1.07 mmol) in H2SO4 (1.2 mL) at room temperature then stirred overnight. The reaction mixture was poured onto ice, extracted with dichloromethane (4 x 10 mL), washed with 3 N NaOH (10 mL), brine (20 mL), dried (Na2SO4), filtered and concentrated. The crude product was purified on reverse phase column (25+M, 14 CV, 20-100% MeCN/water) affording 2-bromo-1-fluoro-4-((fluoromethyl)sulfonyl)benzene (217 mg, 75% yield) as a white solid.
Step D: Preparation of 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-((fluoromethyl)sulfonyl)benzene (Compound 137): Cesium carbonate (47 mg, 0.144 mmol) was added to 2-bromo-1-fluoro-4-((fluoromethyl)sulfonyl)benzene (30 mg, 0.11 mmol) and 3-chloro-5-fluorophenol (21 mg, 0.144mmol) in NMP (0.5 mL) then warmed to 100 °C for 1 hour. The mixture was cooled to room temperature then purified on reverse phase column(12+M, 14 CV, 20-100% MeCN/water) affording Compound 137 (31.7 mg, 72% yield). LCMS ESI (-) m/z 395 (M-H).1H-NMR (400 MHz, CDCl3): δ 8.25 (d, 1 H), 7.89-7.86 (m, 1 H), 7.09 (d, 1 H), 7.00-6.97 (m, 1 H), 6.87-6.86 (m, 1 H), 6.72-6.69 (m, 1 H), 5.17 (d, 2 H).
Reference Example 138
2-Bromo-1-(3-chloro-5-fluorophenoxy)-4-(methylsulfonyl)benzene (Compound 138)
Step A: Preparation of 2-bromo-1-fluoro-4-(methylsulfonyl)benzene: N-Bromosuccinimide (579 mg, 3.25 mmol, 1.1 equiv) was added in two equal portions over 30 minutes at room temperature to 1-fluoro-4-(methylsulfonyl)benzene (515 mg, 2.96 mmol) in concentrated H2SO4 (3.0 mL) and stirred for 6 hours. The mixture was carefully poured onto ice and water (10 mL), extracted with CH2Cl2 (4 x 15 mL), washed with 3 N NaOH (10 mL), brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified on silica gel (10 g SNAP, 14 CV, 6-50% EtOAc/hexane) to afford 2-bromo-1-fluoro-4-(methylsulfonyl)benzene (530 mg, 71% yield) as a white solid.
Step B: Preparation of 2-bromo-1-(3-chloro-5-fluorophenoxy)-4-(methylsulfonyl)benzene (Compound 138): Cesium carbonate (176 mg, 0.54 mmol) was added to 2-bromo-1-fluoro-4-(methylsulfonyl)benzene (114 mg, 0.45 mmol) and 3-chloro-5-fluorophenol (79 mg, 0.54 mmol) in NMP (2.0 mL) then warmed to 50 °C for 20 hours. The crude reaction mixture was purified on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording Compound 138 (113 mg, 66% yield) as a white solid. LCMS ESI (-) m/z 377 (M-H).
Reference Example 139
Reference Example 140
3-Bromo-1-(3-chloro-5-fluoro-phenoxy)-2-methyl-4-(trifluoromethylsulfonyl)benzene (Compound 140)
Step A: Preparation of 2,4-dibromo-3-methyl-benzenesulfonyl chloride: 1,3-dibromo-2-methyl-benzene (5.5 mL, 40 mmol) was added dropwise by addition funnel over 10 minutes to sulfurochloridic acid (10 mL, 150 mmol) at room temperature and stirred for 2 hours then warmed to 40 °C and stirred for an additional 2 hours. The mixture was carefully poured into water/ice (250 mL) and an off-white solid was collected by filtration, washed with water then dried under vacuum. Crude 2,4-dibromo-3-methyl-benzenesulfonyl chloride (13.3 g, 91%) was used without further purification.
Step B: Preparation of 2,4-dibromo-3-methyl-benzenethiol: A solution of 2,4-dibromo-3-methyl-benzenesulfonyl chloride (5 g, 14.4 mmol) in dichloromethane (20 mL) was added dropwise over 20 minutes to an ice-cold solution of triphenylphosphine (8.28 g, 31.57 mmol) in dichloromethane (20 mL) and DMF (1.2 mL). The reaction mixture was gradually warmed to room temperature over 4 hours. The mixture was quenched with 1 N HCl (30 mL), extracted with CH2Cl2 (3 x 30 mL), washed with brine (20 mL), dried over Na2SO4, filtered and concentrated in vacuo. Ph3PO was removed by stirring the crude product in MTBE (100 mL) and then filtered. The filtrate was concentrated. The crude product was purified on silica gel (50 g SNAP, 14 CV, 0-20% EtOAc/hexanes) affording 2,4-dibromo-3-methyl-benzenethiol (1.7 g, 5.7 mmol, 40% yield) as a white solid.
Step C: Preparation of 1,3-dibromo-2-methyl-4-(trifluoromethylsulfanyl)benzene: Trifluoromethyl iodide (1.77 g, 9.0 mmol) was condensed into a degassed solution of 2,4-dibromo-3-methyl-benzenethiol (850 mg, 3.0 mmol), triethylamine (1.05 mL, 7.5 mmol) and methyl viologen dichloride hydrate (77.5 mg, 0.3 mmol) in DMF (8.2 mL) at -78 °C in a pressure vessel through a septum vented to a bubbler. The reaction vessel was then quickly sealed with a threaded teflon cap and stirred at room temperature for 24 hours. The mixture was diluted with Et2O (50 mL), washed with saturated NaHCO3 (20 mL), the aqueous phase was back-extracted with Et2O (3 x 30 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. Crude 1,3-dibromo-2-methyl-4-(trifluoromethylsulfanyl)benzene was used without further purification in the next reaction.
Step D: Preparation of 1,3-dibromo-2-methyl-4-(trifluoromethylsulfonyl)benzene: Sodium periodate (1.34 g, 6.3 mmol) was added all at once to 1,3-dibromo-2-methyl-4-(trifluoromethylsulfanyl)benzene (1 g, 2.9 mmol) and ruthenium(III) chloride (14.8 mg, 0.07 mmol) in acetonitrile (7 mL)/carbon tetrachloride (7 mL)/water (14 mL) at room temperature and stirred for 16 hours. The mixture was filtered, diluted with water (20 mL), washed with CH2Cl2 (3 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo affording 1,3-dibromo-2-methyl-4-(trifluoromethylsulfonyl)benzene (660 mg, 1.7 mmol, 60% yield) as a white solid.
Step E: Preparation of 3-bromo-1-(3-chloro-5-fluoro-phenoxy)-2-methyl-4-(trifluoromethylsulfonyl)benzene (Compound 140): Cesium hydrogen carbonate (183 mg, 0.94 mmol) was added all at once to 1,3-dibromo-2-methyl-4-(trifluoromethylsulfonyl)benzene (328 mg, 0.86 mmol) and 3-chloro-5-fluoro-phenol (138 mg, 0.94 mmol) in 1-methyl-2-pyrrolidone (3.5 mL) at room temperature then the reaction vial was sealed with a threaded cap. The reaction mixture was then warmed to 50 °C and continued to stir at this temperature until completion as judged by LC-MS. The mixture was cooled to room temperature then purified directly on reverse phase column (25+M, 14 CV, 20-100% MeCN/water) affording Compound 140 (140 mg, 0.3 mmol, 35% yield). LCMS ESI (-) m/z 445 (M-H); 1HNMR (400 MHz, CDCl3): δ 8.07 (d, 1 H), 7.03-7.00 (m, 1 H), 6.94 (d, 1 H), 6.87-6.86 (m, 1 H), 6.72-6.68 (m, 1 H), 2.52 (s, 3 H).
Reference Example 141
Reference Example 142
Reference Example 143
3-Chloro-1-(3-chloro-5-fluoro-phenoxy)-2-methyl-4-(trifluoromethylsulfonyl)benzene (Compound 143)
Step A: Preparation of 1,3-dichloro-2-methyl-4-(trifluoromethylsulfanyl)benzene: Trifluoromethyl iodide (3.6 g, 18.3 mmol) was condensed into a degassed solution of 2,4-dichloro-3-methyl-benzenethiol (1.18 g, 6.1 mmol), triethylamine (2.1 mL, 15.3 mmol) and methyl viologen dichloride hydrate (157 mg, 0.6 mmol) in DMF (8.2 mL) at -78 °C in a pressure vessel. The reaction vessel was then quickly sealed with a threaded teflon cap and stirred at room temperature for 24 hours. The mixture was diluted with Et2O (50 mL), washed with saturated NaHCO3 (20 mL), the aqueous was back-extracted with Et2O (3 x 30 mL). The combined organic layers were washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. 1,3-Dichloro-2-methyl-4-(trifluoromethylsulfanyl)benzene (1.59 g, 6.1 mmol, 99.6% yield) was used without further purification in the next reaction assuming quantitative yield.
Step B: Preparation of 1,3-dichloro-2-methyl-4-(trifluoromethylsulfonyl)benzene: Sodium periodate (3.26 g, 15.2 mmol) was added all at once to 1,3-dichloro-2-methyl-4-(trifluoromethylsulfanyl)benzene (1.59 g, 6.1 mmol) and ruthenium (III) chloride (31.6 mg, 0.15 mmol) in acetonitrile (15 mL)/carbon tetrachloride (15 mL)/water (30 mL) at room temperature and stirred for 16 hours. The reaction mixture was filtered, diluted with water (20 mL), washed with CH2Cl2 (3 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo affording 1,3-dichloro-2-methyl-4-(trifluoromethylsulfonyl)benzene (1.2 g, 4.1 mmol, 67% yield over 2 steps) as a white solid.
Step C: Preparation of 3-chloro-1-(3-chloro-5-fluoro-phenoxy)-2-methyl-4-(trifluoromethylsulfonyl)benzene (Compound 143): Cesium carbonate (71 mg, 0.22 mmol) added all at once to a solution of 1,3-dichloro-2-methyl-4-(trifluoromethylsulfonyl)benzene (70 mg, 0.24 mmol) and 3-chloro-5-fluoro-phenol (32 mg, 0.22 mmol) in 1-methyl-2-pyrrolidone (1 mL) at room temperature and stirred for 45 minutes, warmed to 50 °C and stirred for 2 hours. The reaction mixture was cooled to room temperature and purified directly on reverse phase silica gel (25+M, 14 CV, 30-100% MeCN/water) affording Compound 143 (67 mg, 0.16 mmol, 72% yield) as a white solid. LCMS ESI (-) m/z 401 (M-H). 1H-NMR (400 MHz, CDCl3): δ 8.03 (d, 1 H), 7.03-7.00 (m, 1 H), 6.90 (d, 1 H), 6.88-6.86 (m, 1 H), 6.72-6.69 (m, 1 H), 2.47 (s, 3 H).
Reference Example 144
Reference Example 145
Step A: Preparation of 3-fluoro-5-[2-methyl-4-(trifluoromethylsulfonyl)-3-vinyl-phenoxy]benzonitrile: Tributyl(vinyl)stannane (300 µL, 1.0 mmol) was added to a degassed mixture of 3-[3-chloro-2-methyl-4-(trifluoromethylsulfonyl)phenoxy]-5-fluorobenzonitrile (250 mg, 0.63 mmol) and bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II) (45 mg, 0.06 mmol) in DMF (3.6 mL) at room temperature. The microwave vial was then evacuated and back-filled with nitrogen three times. The septum was quickly replaced with a crimp cap, sealed then the reaction was warmed to 160 °C for 30 minutes in a microwave reactor. Once cooled to room temperature, the reaction mixture was diluted with MTBE (5 mL) and saturated KF (10 mL) followed by stirring for 30 minutes. The aqueous layer was extracted with MTBE (3x10 mL), washed with brine (10 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 2-50% EtOAc/hexane) affording 3-fluoro-5-[2-methyl-4-(trifluoromethylsulfonyl)-3-vinyl-phenoxy]benzonitrile (179 mg, 0.46 mmol, 73% yield) as a clear, colorless oil.
Step B: Preparation of 3-fluoro-5-[3-formyl-2-methyl-4-(trifluoromethylsulfonyl)phenoxy]benzonitrile (Compound 145): Tetraoxoosmium (0.07 mL, 0.01 mmol) was added dropwise by syringe to 3-fluoro-5-[2-methyl-4-(trifluoromethylsulfonyl)-3-vinyl-phenoxy]benzonitrile (85 mg, 0.22 mmol) and sodium periodate (142 mg, 0.66 mmol) in tetrahydrofuran (0.9 mL) and water (0.3 mL) at room temperature then stirred overnight. The mixture was diluted with water (5 mL), extracted with EtOAc (3x10 mL), washed with brine (10 mL), dried over MgSO4, filtered and concentrated. Purified on silica gel (25 g SNAP, 14 CV, % EtOAc/hexane) affording Compound 145 (50 mg, 0.13 mmol, 59% yield). LCMS ESI (-) m/z 386 (M-H); 1HNMR (400 MHz, CDCl3): δ 10.62 (s, 1 H), 7.97 (d, 1 H), 7.30-7.27 (m, 1 H), 7.16-7.15 (m, 1 H), 7.10 (d, 1 H), 7.07-7.03 (m, 1 H), 2.40 (s, 3 H).
Reference Example 146
Reference Example 147
Reference Example 148
Ethyl (E)-3-(3-(3-cyano-5-fluorophenoxy)-2-methyl-6-((trifluoromethyl)sulfonyl)phenyl)acrylate (Compound 148)
Step A: Preparation of (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoic acid: Lithium hydroxide monohydrate (66.31 mg, 1.58 mmol) was added all at once to methyl (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoate (140 mg, 0.32 mmol) in tetrahydrofuran (1 mL) and water (1 mL) at room temperature then stirred for 2 hours. The reaction was quenched with 1 N HCl (1 mL), extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), dried over Na2SO4, filtered and concentrated. Crude (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoic acid (120 mg, 0.28 mmol, 88% yield) was used without further purification.
Step B: Preparation of ethyl (E)-3-(3-(3-cyano-5-fluorophenoxy)-2-methyl-6-((trifluoromethyl)sulfonyl)phenyl)acrylate (Compound 148): [(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide, (HATU) (14.7 mg, 0.04 mmol) was added all at once to (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoic acid (11 mg, 0.03 mmol), N,N-diisopropylethylamine (6.6 mg, 0.05 mmol) and ethanol (5.9 mg, 0.13 mmol) in DMF (0.20 mL) at room temperature. The reaction mixture was stirred for 2 hours then purified directly on reverse phase column (12+M, 14 CV, 20-100% MeCN/water) affording Compound 148 (6.7 mg, 0.015 mmol, 57% yield) as a yellow oil. LCMS ESI (+) m/z 458 (M+H). 1HNMR (400 MHz, CDCl3): δ 8.02 (s, 1 H), 7.99 (d, 1 H), 7.28-7.25 (m, 1 H), 7.16-7.15 (m, 1 H), 7.07-7.03 (m, 1 H), 6.98 (d, 1 H), 6.02 (d, 1 H), 4.31 (q, 2 H), 2.34 (s, 3 H), 1.36 (t, 3 H).
Reference Example 149
Reference Example 150
3-Fluoro-5-[2-methyl-3-[(E)-2-(1,3,4-oxadiazol-2-yl)vinyl]-4-(trifluoromethylsulfonyl)phenoxy]benzonitrile (Compound 150)
Step A: Preparation of (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enehydrazide: Isobutyl chloroformate (17 µL, 0.13 mmol) added dropwise to (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoic acid (50 mg, 0.12 mmol) and triethylamine (49 µL, 0.35 mmol) in tetrahydrofuran (1.2 mL) at 0 °C and stirred for 1 hour. Hydrazine monohydrate (28.25 µL, 0.5800 mmol) was added at 0 °C and stirred an additional 2 hours. The reaction was diluted with water (2 mL), extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), dried over MgSO4, filtered and concentrated then the crude product was used without further purification.
Step B: Preparation of 3-fluoro-5-[2-methyl-3-[(E)-2-(1,3,4-oxadiazol-2-yl)vinyl]-4-(trifluoromethylsulfonyl)phenoxy]benzonitrile (Compound 150): p-Toluenesulfonic acid monohydrate (2 mg, 0.01 mmol) was added to a well stirred solution of (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enehydrazide (23 mg, 0.05 mmol) in triethyl orthoformate (460 µL, 3.0 mmol) followed by warming the reaction mixture to 90 °C until completion as judged by LC-MS. The mixture was cooled to room temperature then concentrated in vacuo. The reaction mixture was then purified directly on reverse phase silica gel (12+M, 14 CV, 20-100% MeCN/water) affording Compound 150 (21 mg, 0.05 mmol, 89% yield). LCMS ESI (+) m/z 454 (M+H). 1HNMR (400 MHz, CDCl3): δ 8.47 (d, 1 H), 8.05 (d, 1 H), 7.98 (d, 1 H), 7.31-7.27 (m, 1 H), 7.19-7.18 (m, 1 H), 7.10-7.07 (m, 1 H), 7.01 (d, 1 H), 6.72 (d, 1 H), 2.42 (s, 3 H).
Reference Example 151
Reference Example 152
2-chloro-6-(3-cyano-5-fluorophenoxy)-3-(methylsulfonyl)benzonitrile (Compound 152)
Step A: Preparation of 3-bromo-2,4-dichloro-benzenesulfonyl chloride: 2-Bromo-1,3-dichloro-benzene (5.0 g, 22.1 mmol) was added to sulfurochloridic acid (6.68 mL, 66 mmol) slowly. After addition, the mixture was stirred at 82 °C for 3 hours. After cooled to ambient temperature, the mixture was added slowly to ice water (200 mL) with vigorous stirring. The solid that formed was collected by filtration and dried to give 3-bromo-2,4-dichloro-benzenesulfonyl chloride (5.9 g, 18.2 mmol, 82% yield) as solid.
Step B: Preparation of 3-bromo-2,4-dichloro-benzenethiol: 3-bromo-2,4-dichloro-benzenesulfonyl chloride (24.3 g, 74.9 mmol) in CH2Cl2 (80 mL) was added to triphenylphosphine (58.94 g, 225 mmol) in CH2Cl2 (80 mL) and N,N-dimethylformamide (5.8 mL, 75 mmol) at 0 °C. After addition, the mixture was warmed to ambient temperature and stirred for 2 hours. Hydrochloric acid (1 N, 80 mL) and CH2Cl2 (50 mL) were added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting solid was suspended in 1:5 MTBE/hexane (200 mL) and stirred for 30 minutes. The solid was removed by filtration and washed with 100 mL 1:5 hexane/MTBE. The filtrate was extracted with 1 N potassium carbonate solution (3x50 mL). The combined aqueous layers were extracted with MTBE (2x50 mL). The aqueous was acidified with 1 N HCl to pH∼5 and extracted with MTBE (200 mL). The organic was washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 1:1 hexanes/ CH2Cl2 to give 3-bromo-2,4-dichloro-benzenethiol (17.6 g, 68 mmol, 91% yield) as solid.
Step C: Preparation of 2-bromo-1,3-dichloro-4-methylsulfanyl-benzene: Iodomethane (1.45 mL, 23.3 mmol) was added to a mixture of 3-bromo-2,4-dichloro-benzenethiol (2.0 g, 7.8 mmol) and potassium carbonate (2.14 g, 15.5 mmol) in DMF (5 mL) at ambient temperature. The reaction mixture was stirred at ambient temperature for 2 hours. Water (20 mL) and ethyl acetate (30 mL) were added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 1:1 hexane/ethyl acetate to give 2-bromo-1,3-dichloro-4-methylsulfanyl-benzene (2.08 g, 7.6 mmol, 98% yield) as solid.
Step D: Preparation of 2,6-dichloro-3-methylsulfanyl-benzonitrile: A mixture of 2-bromo-1,3-dichloro-4-methylsulfanyl-benzene (2.08 g, 7.7 mmol) and copper (I) cyanide (0.82 g, 9.2 mmol) in NMP (14 mL) was stirred at 190 °C in a microwave for 30 minutes. After cooling to ambient temperature, water (30 mL) and MTBE (50 mL) were added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 15:1 hexanes/ethyl acetate to give 2,6-dichloro-3-methylsulfanyl-benzonitrile (1.2 g, 5.5 mmol, 71% yield) as solid.
Step E: Preparation of 2,6-dichloro-3-methylsulfonyl-benzonitrile: Sodium periodate (1.87 g, 8.7 mmol) was added to 2,6-dichloro-3-methylsulfanyl-benzonitrile (0.76 g, 3.5 mmol) and ruthenium (III) chloride (0.02 g, 0.09 mmol) in a mixture of acetonitrile (10 mL), carbon tetrachloride (10 mL) and water (22 mL) at ambient temperature. The reaction mixture was stirred at ambient temperature for 18 hours. The mixture was filtered through a pad of celite and washed with MTBE (30 mL). The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 15:1 hexane/ethyl acetate to give 2,6-dichloro-3-methylsulfonyl-benzonitrile (0.3 g, 1.2 mmol, 34% yield) as solid.
Step F: Preparation of 2-chloro-6-(3-cyano-5-fluorophenoxy)-3-(methylsulfonyl)benzonitrile (Compound 152): A solution of 3-fluoro-5-hydroxybenzonitrile (27.41 mg, 0.2 mmol) in 1-methyl-2-pyrrolidone (0.5 mL) was added dropwise to an ice cold mixture of 2,6-dichloro-3-methylsulfonyl-benzonitrile (50.0 mg, 0.2 mmol) and cesium carbonate (39 mg, 0.12 mmol) in 1-methyl-2-pyrrolidone (0.5 mL). The reaction mixture was stirred at 0 °C for two hours then warmed to 50 °C for 16 hours. The reaction mixture was cooled to room temperature then directly purified on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording Compound 152 (38 mg, 0.1 mmol, 51% yield) as a white solid. LCMS ESI (-) m/z 349 (M-H); 1HNMR (400 MHz, CDCl3): δ 8.32 (d, 1 H), 7.38-7.35 (m, 1 H), 7.26-7.25 (m, 1 H), 7.18-7.15 (m, 1 H), 6.97 (d, 1 H), 3.30 (s, 3 H).
Reference Example 153
6-(3-chloro-5-fluorophenoxy)-2-fluoro-3-((trifluoromethyl)sulfonyl)benzonitrile (Compound 153)
Step A: Preparation of 3-bromo-2,6-difluorobenzonitrile: A solution of 2,6-difluorobenzonitrile (5.0 g, 36 mmol) in concentrated sulfuric acid (25 mL) was treated with NBS (7.0 g, 29.5 mmol) at 0 °C and stirred at ambient temperature for 24 hours. Ice (about 100 g) was added to the reaction mixture. After melting, the mixture was extracted with MTBE (100 mL). The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 5:1 to 1:2 hexanes/ethyl acetate to give both 3-bromo-2,6-difluorobenzonitrile (5.5 g, 70% yield) as solid and 3-bromo-2,6-difluorobenzamide (2.1 g, 25%) as solid.
Step B: Preparation of 2,6-difluoro-3-mercaptobenzonitrile: A mixture of 3-bromo-2,6-difluorobenzonitrile (4.4 g, 20 mmol), potassium ethanethioate (2.88 g, 25 mmol), Pd2(dba)3 (0.555 g, 0.61 mmol) and Xantphos (0.70 g, 1.2 mmol) in p-dioxane (30 mL) was stirred at 102 °C for 15 hours. After cooling to ambient temperature, 28% aqueous ammonium hydroxide (12.3 g, 202 mmol) was added. The mixture was stirred at ambient temperature for 1 hour. Water (50 mL) and 2:1 MTBE/hexanes (200 mL) were added. The aqueous layer was separated, acidified with 1 N HCl to pH∼5 and extracted with MTBE (50 mL). The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 3:1 hexane/CH2Cl2 to give 2,6-difluoro-3-mercaptobenzonitrile (0.74 g, 21%) as solid.
Step C: Preparation of 2,6-difluoro-3-((trifluoromethyl)thio)benzonitrile: Trifluoromethyliodide (2.29 g, 11.7 mmol) was condensed into a degassed solution of 2,6-difluoro-3-mercaptobenzonitrile (0.50 g, 2.9 mmol), methyl viologen dichloride (75 mg, 0.29 mmol) and Et3N (1.0 mL, 7.3 mmol) in DMF (4.0 mL) at -78 °C in a sealed tube. The septum was quickly replaced with a threaded teflon cap and tightly sealed. The reaction mixture was then warmed to room temperature and stirred for 60 hours. The reaction mixture was cooled to -78 °C and opened carefully, poured into brine (10 mL), extracted with Et2O (5 x 20 mL), washed with brine (20 mL), dried (Na2SO4), filtered through a 4 cm plug of Florisil® and concentrated in vacuo. Crude 2,6-difluoro-3-((trifluoromethyl)thio)benzonitrile (698 mg) was used without purification in the following reaction.
Step D: Preparation of 2,6-difluoro-3-((trifluoromethyl)sulfonyl)benzonitrile: Sodium periodate (1.56 g, 7.3 mmol) was added all at once to crude 2,6-difluoro-3-((trifluoromethyl)thio)benzonitrile (698 mg, 2.92 mmol) and RuCl3 (15 mg, 0.073 mmol) in MeCN (7 mL)/CCl4 (7 mL)/water (14 mL) at room temperature then stirred vigorously for 2 hours. The mixture was diluted with water (20 mL), extracted with CH2Cl2 (4 x 25 mL), washed with brine (25 mL), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified on silica gel (25 g SNAP, 14 CV, 20-60% EtOAc/hexanes) afforded 2,6-difluoro-3-((trifluoromethyl)sulfonyl)benzonitrile (560 mg, 71% yield over 2 steps) as a white solid.
Step E: Preparation of 6-(3-chloro-5-fluorophenoxy)-2-fluoro-3-((trifluoromethyl)sulfonyl)benzonitrile (Compound 153): Sodium bicarbonate (17 mg, 0.2 mmol) was added all at once to 3-chloro-5-fluorophenol (15 mg, 0.1 mmol) and 2,6-difluoro-3-((trifluoromethyl)sulfonyl)benzonitrile (27.6 mg, 0.1 mmol) in MeCN (0.5 mL) then stirred at room temperature for 1.5 hours then warmed to 50 °C and stirred for an additional 7 hours. The mixture was concentrated then purified on reverse phase silica gel (12+M, 14 CV, 20-100% MeCN/water) affording Compound 153 (14 mg, 35% yield) as a white solid. LCMS ESI (-) m/z 396 (M-H). 1HNMR (400 MHz, CDCl3): δ 8.01 (d, 1 H), 7.22 (d, 1 H), 7.09-7.05 (m, 1 H), 6.94-6.92 (m, 1 H), 6.80-6.77 (m, 1 H).
Reference Example 154
Example 155
Example 156
Example 157
Example 158
Example 159
4-(3,5-Difluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 159)
Step A: Preparation of 4-fluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-one: A stirred mixture of S-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (50 g, 199 mmol), 95% ethanol (690 mL) and 3 N NaOH solution (398 mL, 1.6 mol) was heated at reflux for 30 minutes. After cooling, the reaction mixture was cooled to 0 °C using an ice bath. Iodomethane (16 mL, 259 mmol) was added dropwise to the reaction mixture. The reaction mixture was stirred at 0 °C for 1 hour, and then concentrated under reduced pressure to remove EtOH. The residue was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (+) m/z 197 (M+H).
Step B: Preparation of 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one:A solution of Oxone® (117 g, 191 mmol) in water (580 mL) was added dropwise to a suspension of 4-fluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-one (crude from Step A, 17 g, 86.6 mmol) in methanol (580 mL) at ambient temperature. The temperature slightly increased during the addition. The reaction mixture was stirred at ambient temperature for 5 hours. Residual solids were removed by filtration and washed with EtOAc. The organics were removed from the filtrate in vacuo. The residue was extracted with EtOAc (3x), washed with brine and dried. The aqueous layer was further extracted with dichloromethane (2x). The organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The resulting solid was triturated with EtOAc/hexane (1:5) to give 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one as a white solid (16.8 g). The mother liquor was concentrated and purified by flash chromatography on silica gel (10-80% EtOAc in hexane) to afford additional 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (2.30 g, combined 19.1 g, 96%). LCMS ESI (+) m/z 229 (M+H).
Step C: Preparation of 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: Trimethylsilyl trifluoromethanesulfonate (4.8 mL, 26.6 mmol) was added dropwise to a solution of 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (19.1 g, 83.6 mmol) and trimethyl(2-trimethylsilyloxyethoxy)silane (28.5 mL, 116 mmol) in dichloromethane (310 mL) which was cooled to -78 °C under nitrogen. The reaction mixture was allowed to warm to ambient temperature. After 6 hours, the reaction was quenched with triethylamine (46.6 mL, 334 mmol) and evaporated. The residue was partitioned between EtOAc and brine. The organic layer was washed with water and brine, dried over MgSO4, filtered, and evaporated. Dichloromethane was added to the residue which caused a solid to form. The precipitated product was collected by filtration, washed with 50% dichloromethane/hexanes and air-dried to afford 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (9.95 g). The filtrate was concentrated and purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give additional 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (4.58 g, combined 14.5 g, 64%). LCMS ESI (+) m/z 273 (M+H).
Step D: Preparation of 4-(3,5-difluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 159): Sodium borohydride (3.03 mg, 0.08 mmol) was added all at once to 4-(3,5-difluorophenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-one (15.0 mg, 0.04 mmol, prepared from 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] following procedures in Example 8) in methanol (0.5 mL) at room temperature and stirred for 5 minutes. The reaction was quenched with 1 N HCl (1 mL), extracted with EtOAc (3 x 5 mL), washed with brine (5 ml), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP ULTRA, 14 CV, 20-100% EtOAc/hexane) affording Compound 159 (9 mg, 0.024 mmol, 60% yield). LCMS ESI (-) 421 (M+HCO2-); 1HNMR (400 MHz, CDCl3): δ 7.89 (d, 1 H), 7.01 (d, 1 H), 6.74-6.68 (m, 1 H), 6.62-6.58 (m, 2 H), 5.61-5.57 (m, 1H), 3.54-3.40 (m, 3 H), 3.22 (s, 3 H).
Example 160
(1S)-4-(3-Chloro-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-ol (Compound 160)
Step A: Preparation of 4'-(3-chloro-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]: Cesium hydrogen carbonate (320 mg, 1.65 mmol) was added all at once to 4'-fluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (300 mg, 1.1 mmol) and 3-chloro-5-fluoro-phenol (242 mg, 1.65 mmol) in 1-methyl-2-pyrrolidone (4.4 mL) at room temperature in a microwave reaction vial equipped with a stir bar, flushed with nitrogen then sealed with a crimp cap. The reaction mixture was heated at 160 °C for 2 hours using microwave heating. Additional CsHCO3 (100 mg) was added and the reaction was heated to 160 °C for an additional 30 minutes. The crude product was purified directly on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording 4'-(3-chloro-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (303 mg, 0.76 mmol, 69% yield).
Step B: Preparation of 4-(3-chloro-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-one: Pyridinium para-toluenesulfonate (191 mg, 0.76 mmol) was added all at once to a solution of 4'-(3-chloro-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1 '-indane] (303 mg, 0.76 mmol) in acetone (4 mL)/water (1 mL) at room temperature then warmed to reflux for 5 hours. The reaction was concentrated in vacuo then purified on silica gel (10 g SNAP, 14 CV, 20-100% EtOAc/hexanes) affording 4-(3-chloro-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-one (263 mg, 0.74 mmol, 97% yield).
Step C: Preparation of N-butyl-4-(3-chloro-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-imine: Butan-1-amine (2.93 mL, 29.65 mmol) was added to 4-(3-chloro-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-one (263 mg, 0.74 mmol) and trifluoroacetic acid (11.35 µL, 0.15 mmol) in benzene (10 mL) at room temperature. The reaction was warmed to reflux with the azeotropic removal of water by a Dean-Stark apparatus for 4 hours, then cooled to room temperature and concentrated in vacuo. The residue was diluted with water (10 mL), extracted with MTBE (3 x 10 mL), washed with brine, dried over Na2SO4, filtered and concentrated. The crude product was used without purification in the next step immediately.
Step D: Preparation of 4-(3-chloro-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-one: Selectfluor® (654 mg, 1.85 mmol) was added to crude N-butyl-4-(3-chloro-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-imine (303 mg, 0.74 mmol) and sodium sulfate (157 mg, 1.1 mmol) in acetonitrile (8 mL) then warmed to reflux for 6 hours. The reaction was cooled to room temperature, concentrated HCl (1 mL, 12 mmol) was added and the mixture was stirred for 15 minutes. The solution was diluted with water (10 mL), extracted with EtOAc (3 x 10 mL), washed with brine (10 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (25 g SNAP, 14 CV, 20-100% EtOAc/hexane) affording 4-(3-chloro-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-one (200 mg, 0.5 mmol, 69% yield).
Step E: Preparation of (1S)-4-(3-chloro-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-ol (Compound 160): An ice cold solution of RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.1 mg, 0.0017 mmol) in dichloromethane (0.9 mL) was added by syringe to an ice cold solution of 4-(3-chloro-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-one (68 mg, 0.17 mmol), triethylamine (48.4 µL, 0.35 mmol) and formic acid (19.7 µL, 0.52 mmol) in dichloromethane (0.9 mL). The reactor was sealed then placed in a refrigerator at 4 °C overnight. The crude product was purified directly on silica gel (10 g SNAP ULTRA, 14 CV, 10-60% EtOAc/hexane) affording Compound 160 (60 mg, 0.15 mmol, 87% yield). The ee was determined to be >99% by 19F NMR analysis of the corresponding Mosher ester. LCMS ESI (+) m/z 393 (M+H). 1HNMR (400 MHz, CDCl3): δ 7.90-7.87 (m, 1 H), 7.01-6.97 (m, 2 H), 6.88-6.87 (m, 1 H), 6.73-6.69 (m, 1 H), 5.61-5.57 (m, 1 H), 3.57-3.37 (m, 3 H), 3.22 (s, 3 H).
Example 161
Example 162
Example 163
(S)-3-((2,2-Difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 163)
Step A: Preparation of 4'-(3-bromo-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]: Cesium hydrogen carbonate (142 mg, 0.73 mmol) was added all at once to 4'-fluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (100 mg, 0.37 mmol) and 3-bromo-5-fluoro-phenol (105 mg, 0.55 mmol) in 1-methyl-2-pyrrolidone (1.5 mL) at room temperature in a microwave reaction vial equipped with a stir bar. The flask was flushed with nitrogen then sealed with a crimp cap. The reaction was heated to 150 °C for 7 hours, cooled to ambient temperature then purified directly on reverse phase silica gel (25+M, 14 CV, 20-100% MeCN/water) affording 4'-(3-bromo-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (118 mg, 0.26 mmol, 72% yield).
Step B: Preparation of 3-fluoro-5-(7'-methylsulfonylspiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile: Dichloro[1;1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct (784 mg, 0.97 mmol) was quickly added to a degassed mixture of 4'-(3-bromo-5-fluoro-phenoxy)-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (4.3 g, 9.7 mmol), zinc cyanide (1.14 g, 9.7 mmol) and zinc powder (761 mg, 11.6 mmol) in DMF (60 mL) under nitrogen. The reaction mixture was then warmed to 110 °C for 2 hours. After cooling, the mixture was filtered through a pad of celite. The filtrate was diluted with water (100 mL), extracted with MTBE (5 x 100 mL), washed with brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (100 g SNAP, 14 CV, 15-100% EtOAc/hexanes) then purified again on silica gel (25 g Ultra SNAP, 14 CV, 0-20% dichloromethane/EtOAc) affording 3-fluoro-5-(7'-methylsulfonylspiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (3.77 g, 9.7 mmol, 100% yield) .
Step C: Preparation of 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile: Pyridinium para-toluenesulfonate (354 mg, 1.4 mmol) was added all at once to a solution of 3-fluoro-5-(7'-methylsulfonylspiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (550 mg, 1.4 mmol) in acetone (6 mL)/water (2 mL) at room temperature and then warmed to reflux until completion. The mixture was concentrated in vacuo then purified on silica gel (10 g SNAP, 14 CV, 20-100% EtOAc/hexane) affording 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (450 mg, 1.3 mmol, 92% yield).
Step D: Preparation of 3-[(E, Z)-1-butylimino-7-methylsulfonyl-indan-4-ylloxy-5-fluoro-benzonitrile: Butan-1-amine (5.15 mL, 52 mmol) was added to 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (450 mg, 1.3 mmol) and trifluoroacetic acid (19.96 µL, 0.26 mmol) in benzene (10 mL) at room temperature then warmed to reflux with the azeotropic removal of water by a Dean-Stark apparatus. Progress of the reaction was monitored by 1H-NMR. When complete, the reaction was cooled to room temperature then concentrated in vacuo. The residue was diluted with water (10 mL), extracted with MTBE (3 x 10 mL), washed with brine and dried over Na2SO4, filtered and concentrated. Crude 3-[(E, Z)-1-butylimino-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile was used immediately without purification in the next step.
Step E: Preparation of 3-(2,2-difluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile: Selectfluor® (1.15 g, 3.25 mmol) was added to crude 3-[(E, Z)-1-butylimino-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (520 mg, 1.3 mmol) and sodium sulfate (369 mg, 2.6 mmol) in acetonitrile (10 mL) then warmed to reflux for 6 hours. The reaction was cooled to room temperature, concentrated HCl (1.0 mL, 12 mmol) was added and stirred for 15 minutes. The mixture was diluted with water (10 mL), extracted with EtOAc (3 x 10 mL), washed with brine (10 mL), dried over MgSO4, filtered and concentrated in vacuo. The residue was purified on silica gel (25 g SNAP, 14 CV, 20-100% EtOAc/hexane) afforded 3-(2,2-difluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-5-fluorobenzonitrile (437 mg, 1.2 mmol, 88% yield).
Step F: Preparation of (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 163): An ice cold solution of RuCl(p-cymene)[(R,R)-Ts-DPEN] (40.7 mg, 0.06 mmol) in CH2Cl2 (30 mL) was added by syringe under nitrogen to an ice cold solution of 3-(2,2-difluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (2.44 g, 6.4 mmol), triethylamine (1.78 mL, 12.8 mmol) and formic acid (724 µL, 19.2 mmol) in CH2Cl2 (30 mL). The reaction was placed in a refrigerator at 4 °C for 16 hours. The mixture was concentrated to 10 mL then purified directly on silica gel (25 g SNAP ULTRA, 14 CV, 10-50% EtOAc/hexane) affording Compound 163 (2.15 g, 5.6 mmol, 87% yield). Enantiomeric excess (98%) was determined by chiral HPLC. Retention time for (S)-enantiomer:1.93 minutes; retention time for (R)-enantiomer: 2.32 minutes. LCMS ESI (-) 428 (M+HCO2-). 1HNMR (400 MHz, CDCl3): δ 7.93 (d, 1 H), 7.27-7.24 (m, 1 H), 7.15-7.14 (m, 1 H), 7.07-7.03 (m, 1 H), 7.00 (d, 1 H), 5.63-5.58 (m, 1 H), 3.56-3.35 (m, 3 H), 3.24 (s, 3 H).
Alternative preparation of 3-fluoro-5-((7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)benzonitrile
7-(Methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-ol
3-Fluoro-5-((7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,31dioxolan]-4-yl)oxy)benzonitrile
Alternative protocol for the synthesis of 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile:
Step A: Preparation of 2-hydroxy-5-(methylthio)benzaldehyde: To a suspension of 4-methylsulfanylphenol (50 g, 357 mmol), paraformaldehyde (72.3 g, 2407 mmol), and anhydrous magnesium chloride (50.9 g, 535 mmol) in acetonitrile (500 mL) was added triethyl amine (186 mL, 1337 mmol) at ambient temperature. After the addition, the reaction mixture was stirred at 60 °C for 5 hours. After cooling to 0 °C, 1 N HCl was added slowly until two phase separated (ca. 1.5 L). MTBE (700 mL) was added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue obtained was purified by flash chromatography on silica gel eluting with 1:1 hexane/dichloromethane to give 2-hydroxy-5-methylsulfanyl-benzaldehyde (50.5 g, 300 mmol, 84% yield) as semisolid.
Step B: Preparation of 3-(2-hydroxy-5-(methylthio)phenyl)propanoic acid: Triethylamine (2.5 mL, 17.8 mmol) was added slowly to formic acid (1.55 mL, 41.0 mmol) at 0 °C. Then 2,2-dimethyl-1,3-dioxane-4,6-dione (1.84 g, 12.9 mmol) was added, followed by a solution of 2-hydroxy-5-methylsulfanyl-benzaldehyde (2.0 g, 11.9 mmol) in N,N-dimethylacetamide (4 mL). The reaction mixture was stirred at ambient temperature for 1 hour and then it was stirred at 100 °C for 6 hours. After cooling to ambient temperature, water (100 mL) was added and the pH was adjusted with 3N NaOH to pH∼9. Ethyl acetate (50 mL) was added. The aqueous layer was separated, then acidified with saturated potassium hydrogen sulfate to pH∼3. This aqueous layer was extracted with MTBE (50 mL). The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue obtained was purified by flash chromatography on silica gel with 1:1 hexane/ethyl acetate to give 3-(2-hydroxy-5-methylsulfanyl-phenyl)propanoic acid (1.67 g, 7.9 mmol, 66% yield) as solid.
Step C: Preparation of 3-[2-(3-cyano-5-fluoro-phenoxy)-5-methylsulfanyl-phenyl]propanoic acid: A suspension of 3-(2-hydroxy-5-methylsulfanyl-phenyl)propanoic acid (2.14 g, 10 mmol), 3,5-difluorobenzonitrile (3.51 g, 25 mmol), and cesium carbonate (9.85 g, 30 mmol) in sulfolane (36 mL) and s-butanol (4 mL) was stirred at 105 °C for 4 hours. After cooled to ambient temperature, water (100 mL) and MTBE (100 mL) were added. The liquid layer was separated, acidified with saturated potassium hydrogen sulfate to pH∼3-4 and extracted with MTBE. The organic layer was washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. Water (50 mL) was added and the mixture was stirred at ambient temperature for 30 minutes. The resulting solid was collected by filtration and dried under vacuum. The filtered solid was suspended in 3:1 hexane/MTBE (∼20 mL) and stirred at ambient temperature for 30 minutes. The solid was collected by filtration, washed with hexane and dried to give 3-[2-(3-cyano-5-fluoro-phenoxy)-5-methylsulfanyl-phenyl]propanoic acid (2.9 g, 8.8 mmol, 87% yield) as solid.
Step D: Preparation of 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile: To a solution of 3-[2-(3-cyano-5-fluoro-phenoxy)-5-methylsulfanyl-phenyl]propanoic acid (8.44 g, 25.5 mmol) in dichloromethane (50 mL) was added a drop of DMF, then followed by addition of oxalyl chloride (2.62 mL, 30.6 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. Volatile solvents were removed under reduced pressure. Dichloromethane (20 mL) was added. The resulting mixture was added slowly to a suspension of trichloroalumane (6.79 g, 50.0 mmol) in dichloromethane (50 mL). The mixture was stirred at ambient temperature for 1 hour. The reaction mixture was cooled to 0 °C. Aqueous 1 N HCl (20 mL) was added slowly, followed by water (50 mL) and dichloromethane (100 mL). The organic layer was separated, washed with saturated sodium bicarbonate, dried (sodium sulfate), filtered and concentrated under reduced pressure to give 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile (7.98 g, 25.5 mmol, 100% yield) as solid.
Step E: Preparation of 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile: A suspension of 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile (7.98 g, 25.5 mmol), Oxone® (53.6 g, 87 mmol) in acetonitrile (40 mL) and water (20 mL) was stirred at ambient temperature for 18 hours. Solid was removed by filtration and washed with dichloromethane (40 mL). The organics was removed under reduced pressure. Acetone (20 mL) and water (40 mL) were added. The resulting suspension was stirred at ambient temperature for 30 minutes. The solid was collected by filtration and dried to give 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (7.3 g, 21 mmol, 83% yield) as solid.
Example 164
3-[(1R)-1-Amino-2,2-difluoro-7-methylsulfonyl-indan-4-yl]oxy-5-fluorobenzonitrile (Compound 164)
Step A: Preparation of (S)-N-((R)-4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide: Titanium tetraethoxide (54.98 µL, 0.26 mmol) was added dropwise to 3-(2,2-difluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (40 mg, 0.1 mmol) and (R)-2-methylpropane-2-sulfinamide (14 mg, 0.12 mmol) in tetrahydrofuran (1 mL) at room temperature under nitrogen then warmed to 45 °C for 8 hours. The reaction mixture was then cooled to 0 °C followed by the addition of sodium borohydride (4 mg, 0.1 mmol). After stirring for 30 minutes the reaction mixture was quenched with water (0.2 mL) at room temperature, the solids were removed by filtration and washed with EtOAc (20 mL) and the filtrate was concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 15-100% EtOAc/hexane) affording (S)-N-((R)-4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide (24 mg, 0.05 mmol, 47% yield).
Step B: Preparation of 3-[(1R)-1-amino-2,2-difluoro-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 164): Hydrogen chloride (4.0 M solution in dioxane, 103 µL, 0.41 mmol) was added all at once to a solution of (S)-N-((R)-4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide (20 mg, 0.04 mmol) in methanol (0.4 mL) at room temperature then stirred for 30 minutes. The reaction was quenched with saturated NaHCO3 (1 mL) carefully, extracted with EtOAc (3x5 mL), washed with brine (5 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 20-80% EtOAc/hexane) affording Compound 164 (11 mg, 0.03 mmol, 70% yield) as a white foam. LCMS ESI (+) 383 (M+H). 1HNMR (400 MHz, CDCl3): δ 7.93-7.91 (m, 1 H), 7.25-7.22 (m, 1 H), 7.14-7.13 (m, 1 H), 7.06-7.02 (m, 1 H), 6.96 (d, 1 H), 4.97-4.93 (m, 1 H), 3.55-3.37 (m, 2 H), 3.32 (s, 3 H).
Example 165
3-[(1S)-1-Amino-2,2-difluoro-7-methylsulfonyl-indan-4-yl]oxy-5-fluorobenzonitrile (Compound 165)
Step A: Preparation of (R)-N-(4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide: Titanium tetraethoxide (49.5 µL, 0.24 mmol) was added dropwise to 3-(2,2-difluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (30 mg, 0.08 mmol) and (S)-(-)-2-methyl-2-propanesulfinamide (11 mg, 0.09 mmol) in tetrahydrofuran (0.8 mL) at room temperature under nitrogen then warmed to 45 °C for 8 hours. The reaction was quenched with water (0.1 mL) at room temperature, the solids were removed by filtration, washed with EtOAc (20 mL) and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 15-100% EtOAc/hexane) affording (R)-N-(4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (24 mg, 0.05 mmol, 63% yield) .
Step B: Preparation of (R)-N-((S)-4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide: Sodium borohydride (5.6 mg, 0.15 mmol) was added all at once to an ice cold solution of (R)-N-[4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-ylidene]-2-methylpropane-2-sulfinamide (24 mg, 0.05 mmol) in tetrahydrofuran (0.5 mL) then stirred until complete as judged by LC-MS. Quenched with water (1 mL), extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), dried over MgSO4, filtered and concentrated in vacuo. The residue was purified on silica gel (10 g SNAP Ultra, 14 CV, 18-100% EtOAc/hexane) affording (R)-N-((S)-4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide (7 mg, 0.01 mmol, 29% yield).
Step C: Preparation of 3-[(1S)-1-amino-2,2-difluoro-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 165): Hydrogen chloride (4.0 M solution in dioxane, 0.2 mL, 0.8 mmol) was added dropwise to a solution of (R)-N-(4-(3-cyano-5-fluorophenoxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (7 mg, 0.01 mmol) in methanol (0.2 mL) at room temperature then stirred for 30 minutes. The reaction was carefully quenched by dropwise addition of saturated NaHCO3 (2 mL), extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified on silica gel (10 g SNAP, 14 CV, 15-100% EtOAc/hexane) affording Compound 165 (2.3 mg, 0.006 mmol, 42% yield). LCMS ESI (+) 383 (M+H). 1HNMR (400 MHz, CDCl3): δ 7.93-7.91 (m, 1 H), 7.25-7.22 (m, 1 H), 7.14-7.13 (m, 1 H), 7.06-7.02 (m, 1 H), 6.96 (d, 1 H), 4.97-4.93 (m, 1 H), 3.55-3.37 (m, 2 H), 3.32 (s, 3 H).
Example 166
Example 167
Reference Example 168
Reference Example 169
Reference Example 170
Reference Example 171
Reference Example 172
Reference Example 173
Reference Example 174
Reference Example 175
Reference Example 176
Reference Example 177
Reference Example 178
Reference Example 179
Reference Example 180
Reference Example 181
Example 182
Reference Example 183
N-(3-Chlorophenyl-4,6-t2)-4-nitrobenzo[c][1,2,5]oxadiazol-5-amine (Compound 183)
Step A: Synthesis of 3-chlorobenzen-4,6-t2-amine: 3-Chloro-4,6-diiodoaniline (100 mg,) was dissolved in methanol (3 mL) and added with triethylamine (0.1 mL) and submitted for overnight tritiation using 50Ci of tritium gas, at room temperature. Labile tritium was removed by dissolving the crude reaction mixture in methanol (3 mL) and bringing to dryness under vacuum. Labile removal was done in dupicate. The crude tritiated material was purified by preparative TLC (Silica gel, 1000µ) using hexane:ethylacetate:AcOH (85:14:1). The product band was eluted with ethylacetate to give 3-chlorobenzen-4,6-t2-amine (yield = 600 mCi, radiochemical purity was >98%).
Step B: Synthesis of Compound 183: A stirred mixture of 5-chloro-4-nitro-2,1,3-benzoxadiazole (20 mg, 0.1 mmol), 3-chlorobenzen-4,6-t2-amine (600 mCi) and Cs2CO3 (65 mg, 0.20 mmol) in DMF (1 mL) was heated at 60 °C for 1h. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by preparative HPLC on an ACE-5 C18 Semi-prep column, 250 x 10 mm, 100Å. Elution was carried out isocratically using 0.1% TFA in water/ Acetonitrile (35:65) to give Compound 183 (478 mCi, 80%).
Example 184
Example 185
(S)-3-((2,2-Difluoro-1-hydroxy-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 185)
Step A: 3-Fluoro-5-((1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: Dess Martin periodinane (192 mg, 0.45 mmol) was added
to a solution of 3-fluoro-5-[(1R)-1-hydroxy-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-benzonitrile Compound 57 (121 mg, 0.3 mmol) in dichloromethane (4 mL). The mixture was stirred at ambient
temperature. After 1 hour, the reaction mixture was partitioned between EtOAc and
water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP
column with a 20% to 80% EtOAc:hexane gradient to afford 3-fluoro-5-((1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (102 mg, 0.26 mmol, 85% yield) as a colorless glass.
m/z (ES-API-pos) [M+H] = 400
Step B: (E, Z)-3-((1-(Butylimino)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: Trifluoroacetic acid (0.0039 mL, 0.05 mmol) was added to a solution of 3-fluoro-5-((1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (102 mg, 0.26 mmol) and butan-1-amine (1.26 mL, 12.8 mmol) in benzene (15 mL). The mixture was heated at reflux with a Hickman still attached. After 6 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield (E, Z)-3-((1-(butylimino)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (100 mg, 0.2 mmol, 86% yield) as a green film.
Step C: 3-((2,2-Difluoro-1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (195 mg, 0.55 mmol) was added to a mixture of crude (E, Z)-3-((1-(butylimino)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (100 mg, 0.22 mmol) and sodium sulfate (31 mg, 0.22 mmol) in acetonitrile (8 mL). The reaction mixture was heated at 80 °C for 5 hours then stirred at ambient temperature overnight. The reaction mixture was treated with 6 M HCl (1 mL) and water (1 mL) and stirred for 15 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to afford 3-((2,2-difluoro-1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (55 mg, 0.13 mmol, 58% yield) as a colorless oil.
Step D: (S)-3-((2,2-difluoro-1-hydroxy-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 185): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.6 mg, 0.0025 mmol) was added to a nitrogen-sparged
ice-cold solution of 3-((2,2-difluoro-1-oxo-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (55 mg, 0.13 mmol), formic acid (0.006 mL, 0.16
mmol),
and triethylamine (0.02 mL, 0.14 mmol) in dichloromethane (5 mL). The vial was sealed
and stored at 4 °C overnight. The reaction mixture was evaporated. The residue was
chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient
to afford Compound 185 (45 mg, 0.1 mmol, 81% yield) as a colorless glass that solidified to a white solid.
1H NMR (400 MHz, CDCl3): δ 7.95 (d, 1H), 7.35-7.31 (m, 1H), 7.26-7.23 (m, 1H), 7.15-7.11 (m, 1H), 6.99 (d,
1H), 5.46-5.39 (m, 1H), 3.63-3.41 (m, 2H), 3.36 (d, 1H). m/z (ES-API-neg) [M-H] = 436. 93% e.e. based on the Mosher ester analysis of the trifluoromethyl
resonance.
Example 186
Example 187
Example 188
Example 189
N-((7-(3,5-Difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 189)
Step A: N-((7-Fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)-λ4-sulfanylidene)cyanamide: (Diacetoxyiodo)benzene (903 mg, 2.8 mmol) was added to an ice-cold solution of 4-fluoro-7-methylsulfanyl-indan-1-one (500 mg, 2.55 mmol) and cyanamide (128 mg, 3.1 mmol) in acetonitrile (25 mL). The reaction mixture was stirred at ice-bath temperature. After 6 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)-λ4-sulfanylidene)cyanamide (600 mg; 2.5 mmol; 99 % yield). m/z (ES-API-pos) [M+H] = 237.
Step B: N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium periodate (1358 mg, 6.4 mmol) was added to a mixture of N-((7-Fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)-λ4-sulfanylidene)cyanamide and ruthenium (III) chloride (13.2 mg, 0.06 mmol) in carbon tetrachloride (10 mL), acetonitrile (10 mL), and water (20 mL). The mixture was stirred at ambient temperature for 2 hours. The reaction mixture was partitioned between dichloromethane and water. The dichloromethane was washed with brine, dried over MgSO4, filtered, and evaporated to afford N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (510 mg; 2. mmol; 96% yield). m/z (ES-API-pos) [M+H] = 253.
Step C: N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium borohydride (42 mg, 1.1 mmol) was added to an ice-cold solution of N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (280 mg, 1.1 mmol) in methanol (10 mL). The mixture was stirred in an icebath. After 15 minutes, the reaction mixture was treated with saturated aqueous NH4Cl and evaporated. The residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (290 mg, 1.14mmol, 100% yield). m/z (ES-API-pos) [M+H] = 255.
Step D: N-((7-(3,5-Difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium hydrogen carbonate (70 mg, 0.83 mmol) was added to a solution of 3,5-difluorophenol (81.2 mg, 0.62 mmol) and N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)λ6-sulfanylidene)cyanamide (100 mg, 0.42 mmol) in DMF (2 mL). The vial was sealed and heated at 110 °C overnight. The reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with saturated aqueous NaHCO3, water, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient. Further manual elution with 4:1 EtOAc:hexane afforded Compound 189 (103 mg, 0.28 mmol, 68% yield) as an amber glass that solidified to a tan solid. 1H NMR (400 MHz, CDCl3): δ 7.88-7.80 (m, 1H), 6.97 (d, 1H), 6.72-6.65 (m, 1H), 6.63-6.55 (m, 2H), 5.83-5.76 (m, 1H), 3.57 (s, 1H), 3.51 (s, 3H), 3.18-3.07 (m, 1H), 2.93-2.79 (m, 1H), 2.60-2.47 (m, 1H), 2.23-2.11 (m, 1H). m/z (ES-API-pos) [M+H] = 365.
Example 190
Example 191
N-((7-(3,5-difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 191)
Step A: N-((7-(3,5-difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Dess-Martin periodinane (192 mg, 0.45 mmol) was added to a solution of N-((7-(3,5-difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 189, 86 mg, 0.24 mmol) in dichloromethane (5 mL). The mixture was stirred at ambient temperature. After 30 minutes, the reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford N-((7-(3,5-difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (95 mg, 0.26 mmol, 100% yield) as a colorless glass. m/z (ES-API-pos) [M+H] = 363.
Step B: N-((3-(butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Trifluoroacetic acid (0.004 mL, 0.05 mmol) was added to a solution of N-((7-(3,5-difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (95 mg, 0.26 mmol) and butan-1-amine (1.3 mL, 13 mmol) in benzene (15 mL). This was refluxed with a Hickman still attached for 6 hours and stirred at ambient temperature overnight. The reaction mixture was evaporated and the dark green residue partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford N-((3-(butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (110 mg; 0.26 mmol; 100% yield).
Step C: N-((7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (231 mg, 0.65 mmol) was added to a mixture of N-((3-(butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (109 mg, 0.26 mmol) and sodium sulfate (37 mg, 0.26 mmol) in acetonitrile (8 mL). The reaction mixture was heated at 80 °C for 8 hours and treated with 6 M HCl (1 mL) and water (1 mL) and stirred for 15 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 20% to 100% EtOAc:hexane gradient to afford N-((7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (5.7 mg, 0.014 mmol, 5% yield) as a pale yellow glass. m/z (ES-API-pos) [M+H] = 399.
Step D: N-((7-(3,5-difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 191): Sodium borohydride (1.08 mg, 0.03 mmol) was added to a solution of N-((7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (5.7 mg, 0.01 mmol) in methanol (1 mL). The mixture was stirred at ambient temperature for 10 minutes. The reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 20% to 100% EtOAc:hexane gradient to afford Compound 191 (3.5 mg, 0.009 mmol, 61% yield) as a colorless glass. 1H NMR (400 MHz, CDCl3): δ 7.98-7.91 (m, 1H), 7.04-7.01 (m, 1H), 6.80-6.73 (m, 1H), 6.69-6.61 (m, 2H), 5.73-5.63 (m, 1H), 3.60 (s, 1H), 3.58-3.40 (m, 5H). m/z (ES-API-pos) [M+H] = 401.
Example 192
((S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (Compound 192)
Step A: (7-(3,5-Difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone: Dess-Martin periodinane (192 mg, 0.452 mmol) was added to a solution of (7-(3,5-Difluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (Compound 190, 69 mg, 0.2 mmol) in dichloromethane (10 mL). The mixture was stirred at ambient temperature. After 15 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and a mixture of 1 M sodium thiosulfate and saturated aqueous NaHCO3. The EtOAc was washed with saturated aqueous NaHCO3, brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 80% to 100% EtOAc:hexane gradient to afford the desired ketone product. An adduct of the desired product and the periodinane (49 mg) was also obtained. The adduct was taken up in methanol (3 mL) and treated with 1 M HCl (10 drops). After 10 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 80% to 100% EtOAc:hexane gradient. Desired fractions were evaporated and combined with the previously obtained product to afford (7-(3,5-difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (36 mg, 0.11 mmol, 53% yield) as a white solid. m/z (ES-API-pos) [M+H] =338.
Step B: (3-(Butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone: Trifluoroacetic acid (0.0013 mL, 0.02 mmol) was added to a solution of (7-(3,5-difluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (27.9 mg, 0.08 mmol) and butan-1-amine (0.41 mL, 4.1 mmol) in benzene (10 mL). The mixture was refluxed with a Hickman still attached. After 6 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and saturated aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford (3-(butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (32 mg, 0.08 mmol, 100 % yield) as a yellow film.
Step C: (7-(3,5-Difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (72 mg, 0.2 mmol) was added to a mixture of crude (3-(butylimino)-7-(3,5-difluorophenoxy)-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (32 mg, 0.08 mmol) and sodium sulfate (11.6 mg, 0.08 mmol) in acetonitrile (3 mL). The reaction mixture was heated at 80 °C for 6 hours, then stirred at ambient temperature overnight. The mixture was treated with 6 M HCl (0.5 mL) and water (1 mL), and stirred for 15 minutes. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 40% to 100% EtOAc:hexane gradient to afford (7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (13.7 mg, 0.04 mmol, 45% yield) as a pale yellow glass. m/z (ES-API-pos) [M+H] =374.
Step D: ((S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (Compound 192): RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.47 mg, 0.0007 mmol) was added to a nitrogen-sparged ice-cold solution of (7-(3,5-difluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(imino)(methyl)-λ6-sulfanone (13.7 mg, 0.037 mmol), formic acid (0.0035 mL, 0.09 mmol), and triethylamine (0.01 mL, 0.07 mmol) in dichloromethane (5 mL). The mixture was stored at 4 °C overnight. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g SNAP column with a 40% to 100% EtOAc:hexane gradient to afford Compound 192 (10 mg, 0.028 mmol, 76% yield) as a colorless film. 1H NMR (400 MHz, CDCl3): δ 7.96-7.89 (m, 1H), 7.03-6.98 (m, 1H), 6.73-6.66 (m, 1H), 6.63-6.55 (m, 2H), 5.62-5.56 (m, 1H), 5.47-5.41 (m, 1H), 3.57-3.30 (m, 2H), 3.28 (s, 3H) 3.24-2.88 (m, 1H). m/z (ES-API-pos) [M+H] =376.
Example 193
Example 194
Example 195
Example 196
Example 197
Example 198
Example 199
Example 200
Reference Example 201
Reference Example 202
3-((7-((Difluoromethyl)sulfonyl)-1-fluoro-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 202)
Step A: Preparation of 3-((7-((difluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: 3-((7-((difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (prepared as described for Example 25, Steps A and B) (30 mg, 0.08 mmol) was slurried in 1,2-dichloroethane (0.5 mL), cooled to 0 °C and treated with sodium borohydride (5.9 mg, 0.16 mmol). The mixture was stirred at 0 °C for 2 hours. The reaction mixture was quenched with 10% citric acid and diluted with MTBE. After separation, the aqueous layer was washed with MTBE and the combined organic layers were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a colorless film. The crude material was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane. 3-((7-((Difluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile was isolated as a colorless film (14.5 mg). LCMS ESI (-) m/z (M+HCOOH-H) 428.
Step B: Preparation of 3-((7-((difluoromethyl)sulfonyl)-1-fluoro-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: 3-((7-((difluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (14.5 mg, 0.04 mmol) was dissolved in methylene chloride (0.2 mL) and cooled to 0 °C. The solution was treated with (diethylamino)sulfur trifluoride (DAST) (7 µL, 0.05 mmol) and stirred at 0 °C for 30 minutes. An additional aliquot of (diethylamino)sulfur trifluoride (3 µL, 0.025 mmol) was added and the mixture was stirred at 0 °C for an additional hour. The reaction was quenched with water, diluted with methylene chloride and separated. The organic layer was washed twice with water, twice with one-half saturated NaHCO3, dried over Na2SO4 and concentrated in vacuo. The crude colorless oil was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane to give Compound 202 as a colorless oil (10.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.95 (d, 1H), 7.28-7.26 (m, 1H), 7.18 (brd s, 1H), 7.08-7.03 (m, 2H), 6.64-6.47 (m, 1H), 6.34 (t, 1H), 3.23-3.14 (m, 1H), 3.04-2.95 (m, 1H), 2.57-2.42 (m, 2H).
Reference Example 203
Reference Example 204
Example 205
3-((7-(Ethylsulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 205)
Step A: Preparation of 7-(ethylsulfonyl)-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: Prepared similarly as in Example 159 substituting iodomethane with bromoethane in step A.
Step B: Preparation of 3-((7-(ethylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: Prepared similarly as in Example 163 substituting 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] with 7-(ethylsulfonyl)-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane].
Step C: Preparation of 3-((7-(ethylsulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: To a solution of 3-((7-(ethylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (0.03 g, 0.083 mmol) in MeOH (2 mL) was added sodium borohydride (0.003 g, 0.83 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 30 minutes. Water (50 mL) and dichloromethane (20 mL) were added. The organic layer was separated, washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue obtained was purified by flash chromatography on silica gel to give Compound 205 (0.02 g, 67%) as solid. 1HNMR (400 MHz, CDCl3): δ 7.79 (d, 1H), 7.18 (d, 1H), 7.09 (s, 1H), 6.98 (m, 2H), 5.65 (m, 1H), 3.69 (d, 1H), 3.29 (m, 2H), 3.08 (m, 1H), 2.83 (m, 1H), 2.45 (m, 1H), 2.24 (m, 1H), 1.36 (t, 3H).
Example 206
Example 207
(S)-3-((1-Amino-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 207)
Step A: A solution of 3-[7-(difluoromethylsulfonyl)-2,2-difluoro-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (40 mg, 0.1 mmol) and titanium(IV) ethoxide (60 µL, 0.3 mmol) in tetrahydrofuran (1.0 mL) was treated with (R)-2-methylpropane-2-sulfinamide (14 mg, 0.12 mmol) and heated by microwave irradiation to 90 °C for 30 minutes. The reaction mixture was then cooled to ambient temperature, treated with sodium triacetoxyborohydride (31 mg, 0.14 mmol) and allowed to stir for 2 hours. The reaction mixture was quenched with 1 mL of brine and the resulting suspension was vigorously stirred for 10 minutes. The filtrate was rinsed with water and the leftover aqueous phase was extracted with 2x20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 0%-40% EtOAc/CHCl3.(R)-N-((S)-4-(3-cyano-5-fluorophenoxy)-7-((difluoromethyl)sulfonyl)-2,2-difluoro-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide was isolated as a slightly impure dark green film (11 mg, 0.02 mmol, 21% yield). LCMS ESI (+) m/z 523 (M+H).
Step B: A solution of N-[(1S)-4-(3-cyano-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)-2,2-difluoro-indan-1-yl]-2-methyl-propane-2-sulfinamide (11 mg from step A, 0.02 mmol) in methanol (0.4 mL) at 25 °C was treated with hydrogen chloride (4.0 M solution in dioxane, 0.2 mL, 0.81 mmol) and stirred at 25 °C. After 3 hours, volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of aqueous saturated NaHCO3 and extracted with 3x10 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10%-35% EtOAc/hexane to give Compound 207 (4.4 mg, 0.01 mmol, 52% yield). ESI (+) m/z 419 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.94 (d, 1H), 7.32-7.28 (m, 1H), 7.22-7.19 (m, 1H), 7.12-7.07 (m, 1H), 6.94 (d, 1H), 6.83 (t, 1H), 4.91 (d, 1H), 3.60-3.40 (m, 2H), 1.91 (br s, 2H).
Example 208
3-((7-(Cyclobutylsulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 208)
Step A: Preparation of 7-(cyclobutylthio)-4-fluoro-2,3-dihydro-1H-inden-1-one: To a solution of 4-fluoro-7-sulfanyl-indan-1-one (2.5 g, 13.7 mmol) in DMSO (25 mL) was added t-BuOK at ambient temperature and stirred for 10 minutes. Then bromocyclobutane (2.78 g, 20.6 mmol) was added and the mixture was stirred at ambient temperature overnight. The mixture was poured into water and extracted with ethyl acetate. The organic phase was separated, dried (sodium sulfate), filtered and concentrated under reduced pressure to give 7-(cyclobutylthio)-4-fluoro-2,3-dihydro-1H-inden-1-one to be used directly to the next step without purification.
Step B: Preparation of 3-((7-(cyclobutylsulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 208): Prepared similarly as in Example 205 substituting 4-fluoro-7-(ethylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] with 7-(cyclobutylthio)-4-fluoro-2,3-dihydro-1H-inden-1-one in step A. 1HNMR (400 MHz, CDCl3): δ 7.73 (d, 1H), 7.18 (d, 1H), 7.08 (s, 1H), 6.95 (m, 2H), 5.62 (m, 1H), 4.02 (m, 1H), 3.77 (s, 1H), 3.07 (m, 1H), 2.81 (m, 1H), 2.61 (m, 2H), 2.45 (m 1H), 2.26 (m, 3H), 2.06 (m, 2H).
Example 209
Example 210
Example 211
7-(3,5-Difluorophenoxy)-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 211)
Step A: Preparation of 7-fluoro-3-oxo-indane-4-sulfonyl chloride: To a mixture of N-chlorosuccinimide (2.95 g, 22 mmol), acetonitrile (18 mL) and 2 N HCl (3.6 mL) cooled in an ice-water bath was added O-(7-fluoro-3-oxo-indan-4-yl)-N,N-dimethylcarbamothioate (1.40 g, 5.5 mmol) in small portions to maintain the temperature between 5 to 10 °C. The reaction mixture was stirred in the cold-water bath for 3 hours. The reaction mixture was then poured into half-saturated brine and extracted with dichloromethane. The organic layer was washed with saturated aqueous NaHCO3 solution and brine, dried over Na2SO4, filtered, and concentrated. The crude was used in the next step without further purifications. LCMS ESI (+) m/z 249, 251 (M+H).
Step B: Preparation of 7-fluoro-N-methyl-3-oxo-indane-4-sulfonamide: To a stirred mixture of 7-fluoro-3-oxo-indane-4-sulfonyl chloride (520 mg, 2.1 mmol) and methylamine hydrochloride (169 mg, 2.5 mmol) in dichloromethane (21 mL) was added dropwise triethylamine (0.87 mL, 6.27 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 2 hours. The reaction mixture was then diluted with dichloromethane, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-60% EtOAc/hexane) to give 7-fluoro-N-methyl-3-oxo-indane-4-sulfonamide (102 mg, 20%). LCMS ESI (+) m/z 244 (M+H).
Step C: Preparation of 7-(3,5-difluorophenoxy)-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide: Prepared analogously to the procedures for Compound 17. LCMS ESI (-) m/z 354 (M-H); 1H NMR (400 MHz, CDCl3): δ 7.75 (d, 1H), 6.94 (d, 1H), 6.65-6.60 (m, 1H), 6.54-6.52 (m, 2H), 5.77-5.71 (m, 1H), 5.02-4.95 (m, 1H), 3.23-3.18 (m, 1H), 3.12-3.04 (m, 1H), 2.84-2.70 (m, 1H), 2.65 (d, 3H), 2.57-2.47 (m, 1H), 2.19-2.11 (m, 1H).
Example 212
4-(4-Fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 212)
Step A: Preparation of 4-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: Trimethylsily trifluoromethanesulfonate (10.6 g, 47.8 mmol) was added dropwise to a solution of 4-fluoro-7-(trifluoromethylsulfonyl)indan-1-one (27.0 g, 95.7 mmol) and trimethyl(2-trimethylsiilyloxyethoxy)silane (23.7 g, 114.8 mmol) in dichloromethane (500 mL) at -78 °C. After addition, the reaction mixture was allowed to warm to ambient temperature. After 2 hours at ambient temperature, the reaction was quenched with triethylamine and the mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate (500 mL), washed with water (2 x 200 mL), brine (500 mL), dried (sodium sulfate), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with 20% ethyl acetate in hexane to give 4-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (25.0 g, 80%) as a white solid.
Step B: Preparation of 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: A solution of 4'-fluoro-7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (0.16 g, 0.5 mmol) and 4-fluorophenol (0.056 g, 0.5 mmol) in 1-methyl-2-pyrrolidone (10 mL) was treated with cesium carbonate (0.33 g, 1.0 mmol) at ambient temperature. The reaction was stirred at 100 °C for 1 hour. After cooling to ambient temperature, water was added and the resulting mixture was extracted with ethyl acetate. The combined organic layer was washed with water, dried (magnesium sulfate), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting 20% ethyl acetate in hexane to give 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (0.12 g, 57%) as oil.
Step C: Preparation of 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: To a solution of 4'-(4-fluorophenoxy)-7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (0.12 g, 0.29 mmol) in methanol (5 mL), 2 N HCl (2.0 mL) was added at ambient temperature. The reaction was stirred at ambient temperature for 2 hours. Water (50 mL) and ethyl acetate (25 mL) were added. The organic layer was separated, washed with brine, dried (magnesium sulfate), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (0.09 g, 84%) as solid.
Step D: Preparation of 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 212): Prepared similarly as described in Example 205 substituting 3-((7-(ethylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile with 4-(4-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one in step C. 1HNMR (400 MHz, CDCl3): δ 7.77 (d, 1H), 7.05-7.26 (m, 4H), 6.75 (d, 1H), 5.62 (m, 1H), 3.17-3.30 (m, 2H), 2.98-3.07 (m, 1H), 2.40-2.47 (m, 1H), 2.28-2.37 (m, 1H).
Example 213
Example 214
Example 215
Example 216
Example 217
Example 218
Reference Example 219
3-Fluoro-5-((2,2,5-trifluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 219)
Step A: Preparation of 5-bromo-3-fluoro-2-hydroxybenzaldehyde: To a solution of 4-bromo-2-fluoro-phenol (10 g, 52.4 mmol) in trifluoroacetic acid (50 mL) was added hexamethylenetetramine (14.7 g, 105 mmol) in three portions over 20 minutes at room temperature. The mixture was stirred at room temperature for 20 minutes, and then heated to 90 °C and stirred at 90 °C for 13 hours. The reaction mixture was cooled to room temperature. Water (60 mL) and a 50% aqueous sulfuric acid solution (30 mL) were sequentially added at room temperature, and the mixture was stirred at room temperature for two hours. The resultant mixture was extracted with ethyl acetate. The organic layer was washed with 1 N hydrochloric acid solution, brine, dried (magnesium sulfate), filtered and concentrated under reduced pressure. Ethanol (20 mL) was added and the mixture was stirred at room temperature for 30 minutes. The resulting mixture was filtered. Solid collected was washed with ethanol and dried to give 5-bromo-3-fluoro-2-hydroxybenzaldehyde (7.0 g, 61%).
Step B: Preparation of 3-(5-bromo-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoic acid: Prepared similarly as in the synthesis of 3-[2-(3-cyano-5-fluoro-phenoxy)-5-methylsulfanyl-phenyl]propanoic acid in step B.
Step C: Preparation of methyl 3-(5-bromo-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoate: To a solution of 3-(5-bromo-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoic acid (3.0 g, 7.85 mmol) in methanol (50 mL) was added concentrated H2SO4 (0.01 mL) at room temperature. The reaction was heated to 70 °C and stirred at this temperature for 2 hours. After cooling to room temperature, solvents were removed under reduced pressure. The residue was dissolved in ethyl acetate (50 mL), washed with water, brine, dried (MgSO4), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give methyl 3-(5-bromo-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoate (2.2 g, 71%) as solid.
Step D: Preparation of methyl 3-(5-(acetylthio)-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoate: A mixture of methyl 3-[5-bromo-2-(3-cyano-5-fluoro-phenoxy)-3-fluoro-phenyl]propanoate (2.2 g, 5.6 mmol), CH3COSK (0.95 g, 8.3 mmol), Pd2(dba)3 (0.51 g, 0.56 mmol) and Xantphos (0.48 g, 0.83 mmol) in toluene (40 mL) and acetone (20 mL) was stirred at 100 °C in a sealed tube for 5 hours. After cooling to room temperature, the solid was removed by filtration. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give methyl methyl 3-(5-(acetylthio)-2-(3-cyano-5-fluorophenoxy)-3-fluorophenyl)propanoate (1.0 g, 46%).
Step E: Preparation of methyl 3-(2-(3-cyano-5-fluorophenoxy)-3-fluoro-5-(methylthio)phenyl)propanoate: To a solution of methyl 3-[5-acetylsulfanyl-2-(3-cyano-5-fluoro-phenoxy)-3-fluoro-phenyl]propanoate (1.0 g, 2.55 mmol) in methanol (50 mL) was added Cs2CO3 (1.25 g, 3.83 mmol) at room temperature. After 1 hour, MeI (0.72 g, 5.11 mmol) was added and the reaction was stirred for additional 2 hours at room temperature. Water and dichloromethane were added and the organic layer was separated, washed with water, brine, dried (MgSO4), filtered and concentrated under reduced pressure. The residue obtained was purified by flash chromatography on silica gel to give methyl methyl 3-(2-(3-cyano-5-fluorophenoxy)-3-fluoro-5-(methylthio)phenyl)propanoate (0.6 g, 64%) as solid.
Step F: Preparation of 3-(2-(3-cyano-5-fluorophenoxy)-3-fluoro-5-(methylthio)phenyl)propanoic acid: To a solution of methyl 3-[2-(3-cyano-5-fluoro-phenoxy)-3-fluoro-5-methylsulfanyl-phenyl]propanoate (0.60 g, 1.65 mmol) in methanol (10 mL) and water (10 mL), LiOH (0.079 g, 3.3 mmol) was added at room temperature. The reaction was stirred at room temperature overnight. It was acidified by IN HCl to pH∼3 and extracted with ethyl acetate. The organic layer was washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure to give 3-(2-(3-cyano-5-fluorophenoxy)-3-fluoro-5-(methylthio)phenyl)propanoic acid (0.4 g, 69%).
Step G: Preparation of 3-fluoro-5-((2,2,5-trifluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 219): Prepared similarly as Example 163. 1HNMR (400 MHz, d6-DMSO): δ 7.85 (d, 1H), 7.67 (m, 1H), 7.46 (d, 1H), 6.85 (d, 1H), 5.38 (dd, 1H), 3.40-3.49 (m, 2H), 3.40 (s, 3H).
Example 220
Example 221
Example 222
Example 223
Reference Example 224
Example 225
Step A: Preparation of 5-[7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxypyridine-3-carbonitrile: Cesium carbonate (1.93 g, 5.94 mmol) was added all at once to 4'-fluoro-7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (775 mg, 2.38 mmol) and 3-cyano-5-hydroxypyridine (371 mg, 3.1 mmol) in 1-methyl-2-pyrrolidone (15 mL) then warmed to 100 °C for 90 minutes. The reaction mixture was diluted with water, extracted with methyl t-butyl ether, washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. Crude 5-[7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxypyridine-3-carbonitrile was used without further purification. LC-MS ESI (+) m/z 427 (M+H).
Step B: Preparation of 5-[1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile: Concentrated HCl (3.24 mL, 9.38 mmol) was added to 5-[7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxypyridine-3-carbonitrile (1.0 g, 2.35 mmol) in acetone (15 mL) at room temperature and stirred for 4 hours. The reaction mixture was quenched with saturated NaHCO3, extracted with ethyl acetate, washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified on silica gel (25 g SNAP Ultra, 14 CV, 20-100% ethyl acetate/hexane) affording 5-[1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile (737 mg, 1.93 mmol, 82% yield). LC-MS ESI (+) m/z 383 (M+H).
Step C: Preparation of 5-[2-fluoro-1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile: 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (499 mg, 1.4 mmol) was added all at once to 5-[1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile (269 mg, 0.7 mmol) in 2-propanol (10 mL) at room temperature then warmed to reflux until the reaction was complete as judged by LC-MS. The reaction mixture was diluted with water, extracted with ethyl acetate, washed with brine, dried over Na2SO4, filtered and dried in vacuo. The residue was purified on silica gel (10 g SNAP Ultra, 14 CV, 20-100% ethyl acetate/hexane) affording 5-[2-fluoro-1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile (260 mg, 0.65 mmol, 92% yield). LC-MS ESI (-) m/z 399 (M-H).
Step D: Preparation of 5-[(1S,2R)-2-fluoro-1-hydroxy-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3-carbonitrile (Compound 225): Chloro{[(1R,2R)-(-)-2-amino-1,2-diphenylethyl](4-toluenesulfonyl)amido}(p-cymene)ruthenium(II) (2.1 mg, 0.007 mmol) was added all at once to an ice cold mixture of 5 - [2-fluoro-1 -oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxypyridine-3 -carbonitrile (130 mg, 0.32 mmol), triethylamine (91 µL, 0.65 mmol) and formic acid (37 µL, 0.97 mmol) in dichloromethane (5 mL) then sealed with a teflon cap and placed in a 4 °C refrigerator overnight. The reaction mixture was purified directly on silica gel (10 g SNAP Ultra, 14 CV, 20-100% ethyl acetate/hexane) affording Compound 225 (112 mg, 0.28 mmol, 86% yield). LC-MS ESI (-) m/z 401 (M-H); 1H-NMR (400 MHz, CDCl3): δ 8.82 (d, 1 H), 8.70 (d, 1 H), 7.95 (d, 1 H), 7.71-7.69 (m, 1 H), 6.94 (d, 1 H), 5.64-5.59 (m, 1 H), 5.46-5.31 (m, 1 H), 3.36-3.27 (m, 2 H), 3.19 (d, 1 H).
Example 226
Example 227
Example 228
Example 229
3-[(1S)-1-Deuterio-2,2-difluoro-1-hydroxy-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 229)
Step A: Preparation of 2-hydroxy-5-(trideuteriomethylsulfanyl)benzaldehyde: To a suspension of 4-(trideuteriomethylsulfanyl)phenol (13.9 g, 77.4 mmol) and paraformaldehyde (13.9 g, 464 mmol) in acetonitrile (55 mL) at 0 °C was added magnesium chloride (11.8 g, 124 mmol) followed by triethylamine (27 mL, 193 mmol). The reaction mixture was then warmed to 68 °C in an oil bath until complete as judged by LC-MS (2.5 hours). The yellow reaction mixture was cooled to 0 °C then quenched by the dropwise addition of 1 N HCl (60 mL), and extracted with methyl t-butyl ether (3 x 60 mL). Solids was removed by filtration. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was separated and washed with methyl t-butyl ether and then dried in vacuo affording 2-hydroxy-5-(trideuteriomethylsulfanyl)benzaldehyde. Remaining crude material in the mother liquor was purified on silica gel (100 g SNAP Ultra, 14 CV, 5-100% ethyl acetate/hexane) affording 2-hydroxy-5-(trideuteriomethylsulfanyl)benzaldehyde as a yellow solid.
Step B: Preparation of 2-oxo-6-(trideuteriomethylsulfanyl)chromene-3 carboxylic acid: To a solution of 2-hydroxy-5-(trideuteriomethylsulfanyl)benzaldehyde (4.65 g, 27 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (3.91 g, 27 mmol) in 95% ethanol (70 mL) was added potassium phosphate tribasic (0.58 g, 2.7 mmol) in water (210 mL) at ambient temperature. The mixture was stirred at ambient temperature for 1 hour (slightly exothermic). The reaction mixture was acidified with 1 N HCl to pH ∼3-4. The solid was collected by filtration, washed with water and then 5:1 hexane/methyl t-butyl ether and dried to give 2-oxo-6-(trideuteriomethylsulfanyl)chromene-3-carboxylic acid (5.95 g, 25 mmol, 92% yield) as yellow solid.
Step C: Preparation of 3-[2-hydroxy-5-(trideuteriomethylsulfanyl)phenyl]propanoic acid: Triethylamine (8.3 mL, 60 mmol) was added slowly to formic acid (5.6 mL, 149 mmol) in N,N-dimethylformamide (12 mL) at 0 °C. The mixture was warmed to 100 °C (internal) then 2-oxo-6-(trideuteriomethylsulfanyl)chromene-3-carboxylic acid (5.95 g, 24.9 mmol) was added in 5 portions (∼1.2 g per 5 minutes). After the addition (ca. 30 minutes), the reaction mixture was stirred at 100 °C (internal) for 1 hour. After cooling to ambient temperature, 6N NaOH (49.74 mL, 149.2 mmol) was added. The reaction mixture was stirred at ambient temperature for 30 minutes. Methyl t-butyl ether (40 mL) was added. The aqueous layer was separated, acidified with concentrated HCl to pH ∼3-4 and extracted with methyl t-butyl ether (3x50 mL). The combined organic layer was washed with brine, dried (sodium sulfate), filtered and concentrated under reduced pressure to give 3-[2-hydroxy-5-(trideuteriomethylsulfanyl)phenyl]propanoic acid (4.8 g, 22.4 mmol, 90% yield), which was used directly in the next step without purification.
Step D: Preparation of 3-[2-(3-cyano-5-fluoro-phenoxy)-5 (trideuteriomethylsulfanyl)phenyl]propanoic acid: A suspension of 3-[2-hydroxy-5-(trideuteriomethylsulfanyl)phenyl]propanoic acid (4.82 g, 22.4 mmol), 3,5-difluorobenzonitrile (6.23 g, 44.8 mmol), and cesium carbonate (16.1 g, 49.3 mmol) in dimethyl sulfoxide (22 mL) was stirred at 72.6 °C (internal) for 7h. After cooling to ambient temperature, water (50 mL) and MTBE (50 mL) were added. The organic layer was separated, the aqueous layer was acidified with 1 N HCl to pH∼3-4 with stirring and extracted with ethyl acetate (3x50 mL). The organic layers were combined and washed with brine (30 mL), dried over Na2SO4, filtered and concentrated in vacuo affording 3-[2-(3-cyano-5-fluoro-phenoxy)-5-(trideuteriomethylsulfanyl)phenyl]propanoic acid, which was used in the next step without further purification. LC-MS ESI (-) m/z 333 (M-H).
Step E: Preparation of 3-fluoro-5-[1-oxo-7-(trideuteriomethylsulfanyl)indan-4-ylloxy-benzonitrile: DMF (10 µL) was added to 3-[2-(3-cyano-5-fluoro-phenoxy)-5-(trideuteriomethylsulfanyl)phenyl]propanoic acid (7.48 g, 22.4 mmol) in dichloromethane (40 mL) at room temperature followed by oxalyl chloride (2.1 mL, 24.6 mmol). The reaction mixture was stirred for 2.5 hours then added dropwise to trichloroalumane (5.97 g, 44.7 mmol) in dichloromethane (40 mL) and stirred for 1 hour. The reaction mixture was then cooled to 0 °C, quenched dropwise with 1 N HCl (20 mL), and extracted with dichloromethane (3x50 mL). The organic layer was washed with saturated NaHCO3 (50 mL), brine (30 mL), dried over MgSO4, filtered through a pad of silica gel, washed with 1:1 dichloromethane/ methyl t-butyl ether and concentrated in vacuo. The residue was suspended in 2:1 acetonitrile/water (35 mL) and stirred for 30 minutes, filtered, washed with 2:1 MeCN/water (10 mL) and then dried in vacuo affording 3-fluoro-5-[1-oxo-7-(trideuteriomethylsulfanyl)indan-4-yl]oxy-benzonitrile (5.0 g, 15.8 mmol, 71% yield over two steps). LC-MS ESI (+) m/z 317 (M+H).
Step F: Preparation of 3-fluoro-5-[1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-benzonitrile: Oxone® (21.4 g, 34.8 mmol) was added all at once to a suspension of 3-fluoro-5-[1-oxo-7(trideuteriomethylsulfanyl)indan-4-yl]oxy-benzonitrile (5.0 g, 15.8 mmol) in a mixture of acetonitrile (50 mL) and water (25 mL) at room temperature. The reaction mixture was stirred overnight. Solids were removed by filtration then the acetonitrile was removed in vacuo. The residue was suspended in water (25 mL) and stirred for 30 minutes. The resulting solid was rinsed with water (100 mL), washed with methyl t-butyl ether (50 mL), and then dried in vacuo affording 3-fluoro-5-[1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-benzonitrile (4.8 g,13.8 mmol, 87% yield) as a yellow solid. LC-MS ESI (+) m/z 349 (M+H).
Step G: Preparation of 3-[2,2-difluoro-1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile: 3-Methoxypropan-1-amine (913 µL, 9.0 mmol) was added to 3-fluoro-5-[1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-benzonitrile (2.6 g, 7.5 mmol) and 2,2-dimethylpropanoic acid (76 mg, 0.75 mmol) in a mixture of cyclohexane (40 mL) and toluene (40 mL) at room temperature and then warmed to reflux with the azeotropic removal of water via a Dean-Stark trap for 3 hours. The reaction mixture was cooled to room temperature, filtered through a frit, and then concentrated in vacuo to give crude 3-fluoro-5-[(1E/Z)-1-(3-methoxypropylimino)-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-benzonitrile. A solution of 3-fluoro-5-[(1E/Z)-1-(3-methoxypropylimino)-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-benzonitrile (3.13 g, 7.5 mmol) in acetonitrile (10 mL) was added dropwise by syringe to Selectfluor® (6.6 g, 18.7 mmol) and sodium sulfate (2.12 g, 14.9 mmol) in acetonitrile (40 mL) at 60°C then stirred until complete as judged by LC-MS (1 hour). The reaction mixture was cooled to room temperature, and diluted with 50 mL of water. Concentrated HCl (2.5 mL, 30 mmol) was added and the reaction mixture was stirred for 1 hour. Acetonitrile was removed in vacuo then solids were filtered, washed with water, methyl t-butyl ether and then dried in vacuo affording 3-[2,2-difluoro-1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (2.2 g, 5.7 mmol, 77% yield). LC-MS ESI (+) m/z 402 (M+NH4+).
Step H: Preparation of 3-[(1S)-1-deuterio-2,2-difluoro-1-hydroxy-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 229): RuCl(p-cymene)[(R,R)-Ts-DPEN] (58 mg, 0.09 mmol) was added all at once to an ice cold solution of 3-[2,2-difluoro-1-oxo-7-(trideuteriomethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (3.53 g, 9.17 mmol), triethylamine (2.56 mL, 18.4 mmol) and deuterio deuterioformate (1.09 mL, 27.6 mmol). The reaction flask was sealed with a rubber septum with a limp balloon and placed in a 4 °C refrigerator overnight. The reaction mixture was concentrated in vacuo until ∼10 mL of solvent remained then purified directly on silica gel (25 g SNAP Ultra, 14 CV, 10-60% EtOAc/hexane) affording Compound 229, which was further purified by dissolving in refluxing 95% ethanol (10 mL) then slowly cooled to room temperature with stirring to give a white crystalline solid (2.44 g, 6.3 mmol, 69% yield). LC-MS ESI (-) m/z 432 (M+HCO2-); 1HNMR (400 MHz, CDCl3): δ 7.92 (d, 1 H), 7.26-7.24 (m, 1 H), 7.15 (s, 1 H), 7.06-7.03 (m, 1 H), 7.01 (d, 1 H), 3.56-3.35 (m, 3 H).
Example 230
Example 231
3-Fluoro-5-(((1S,2R)-2-fluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 231)
Step A: Preparation of 3-fluoro-5-((2-fluoro-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: Selectfluor® (18.1 g, 51 mmol) was added all at once to 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (11 g, 31.9 mmol) in methanol (300 mL) at room temperature and then warmed to reflux for 24 hours. The reaction mixture was cooled to room temperature, and filtered. The solids was washed with ethyl acetate then the filtrate was concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, filtered and concentrated in vacuo affording 3-fluoro-5-(2-fluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile as a light yellow foam which was used without further purification. LC-MS ESI (+) m/z 364 (M+H).
Step B: Preparation of 3-fluoro-5-(((1S,2R)-2-fluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 231): RuCl(p-cymene)[(R,R)-Ts-DPEN] (203 mg, 0.32 mmol) was added all at once to an ice cold solution of 3-fluoro-5-(2-fluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (11.6 g, 31.8 mmol), triethylamine (8.9 mL, 63.7 mmol) and formic acid (3.6 mL, 95.5 mmol) in dichloromethane (200 mL). The reaction flask was sealed with a septum equipped with a limp balloon and placed in a 4 °C refrigerator overnight. The reaction mixture was poured into saturated NaHCO3, extracted with dichloromethane, washed with brine, dried over Na2SO4, filtered and concentrated in vacuo until ∼25 mL of solvent remained. Approximately 50% of the material precipitated on top of the column (100 g SNAP Ultra, 14 CV, 15-80% ethyl acetate/hexanes). The solid was removed and the material absorbed on the column was purified. The precipitated material was dissolved in 250-300 mL of warm dichloromethane then purified on a plug of silica gel eluting with 50% then 60% ethyl acetate/hexane affording Compound 231 (9.65 g, 26.4 mmol, 83% yield over two steps) as an off-white solid. Enantiomeric excess was determined by chiral HPLC (>99% ee). LC-MS ESI (+) m/z 383 (M+NH4+); 1HNMR (400 MHz, CDCl3): δ 7.92 (d, 1 H), 7.21-7.20 (m, 1 H), 7.12-7.11 (m, 1 H), 7.03-6.98 (m, 2 H), 5.71-5.65 (m, 1 H), 5.46-5.33 (m, 1 H), 3.66 (dd, 1 H), 3.31 (s, 3 H), 3.27-3.05 (m, 2 H).
Example 232
Example 233
Example 234
Example 235
Example 236
Example 237
Reference Example 238
4-((1H-Indazol-5-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 238)
Step A: 4-Fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: Trimethylsily trifluoromethanesulfonate (10.6 g, 47.8 mmol) was added dropwise to a solution of 4-fluoro-7-(trifluoromethylsulfonyl)indan-1-one (27 g, 95.7 mmol) and trimethyl(2-trimethylsilyloxyethoxy)silane (23.7 g, 115 mmol) in dichloromethane (500 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature. After 2 hours, the reaction was then quenched with triethylamine and evaporated. The residue was taken up in EtOAc (500 mL) and the organic layer was washed with 2 x 200 mL water then 1 x 500 mL saturated brine solution. The organic layer was separated, dried (NaSO4), and concentrated to dryness. The crude was purified by flash column chromatography eluting with 20% EtOAc in hexane to give 4-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (2.1 g, 6.4 mmol, 55% yield) as a white solid.
Step B: 5-((7-((Trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole: Sodium hydrogen carbonate (64.4 mg, 0.77 mmol) was added to a vial containing 4-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (100 mg, 0.31 mmol) and 1H-indazol-5-ol (61.7 mg, 0.46 mmol) in DMF (2.5 mL). The sealed vial was heated at 80 °C for a total of 10.5 hours. The reaction mixture was diluted with water and the resulting solid was collected by vacuum filtration. The solid was chromatographed on a Biotage 10 g SNAP column with a 10 % to 80% EtOAc:hexane gradient to afford 5-((7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole (59 mg, 0.133 mmol, 43% yield. m/z (ES-API-pos) [M+1] = 441.
Step C: 4-((1H-indazol-5-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: Hydrochloric acid (6 M, 0.066 mL, 0.4 mmol) was added to a solution of 5-((7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole (59 mg, 0.13 mmol) in acetone (3.0 mL) and water (0.50 mL). The mixture was stirred at 50 °C. After 3.5 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute aqueous NaHCO3. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford 4-((1H-indazol-5-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (48 mg, 0.12 mmol, 91% yield as a pale yellow film. m/z (ES-API-pos) [M+H] = 397.
Step D: (E/Z)-4-((1H-Indazol-5-yl)oxy)-N-(3-methoxypropyl)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine: 2,2-dimethylpropanoic acid (2.5 mg, 0.024 mmol) was added to a mixture of 4-((1H-indazol-5-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (48 mg, 0.12 mmol) and 3-methoxypropan-1-amine (0.03 mL, 0.3 mmol) in toluene (4 mL) and cyclohexane (4 mL). The reaction mixture was refluxed with a Hickman still attached. After 5 hours, the cooled reaction mixture was evaporated and the residue was used as is in the next step.
Step E: 4-((1H-Indazol-5-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (Selectfluor®, 106 mg, 0.3 mmol) was added to a flask containing (/ZE)-4-((1H-indazol-5-yl)oxy)-N-(3-methoxypropyl)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine (56 mg, 0.12 mmol) and sodium sulfate (43 mg, 0.30 mmol) in acetonitrile (5 mL). This was heated at 60 °C. After 30 minutes, 1M hydrochloric acid (0.36 mL, 0.36 mmol) was added. The reaction mixture was stirred for 20 minutes, and then partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to afford 4-((1H-indazol-5-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (31 mg, 0.073 mmol, 61% yield). m/z (ES-API-pos) [M+H] = 433.
Step F: 4-((1H-Indazol-5-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 238): Sodium borohydride (1.6 mg, 0.043 mmol) was added to a solution of 4-((1H-indazol-5-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (18 mg, 0.043 mmol) in methanol (3 mL). After 10 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated to afford Compound 238 (18 mg, 0.042 mmol, 98% yield) as a colorless film. 1H NMR (400 MHz, CDCl3): δ 10.35 (br s, 1H), 8.14 (s, 1H), 7.82 (d, 1H), 7.61 (d, 1H), 7.51 (d, 1H), 7.21-7.17 (m, 1H), 6.82 (d, 1H), 5.44 (d, 1H), 3.70-3.57 (m, 2H), 3.40 (br s, 1H). m/z (ES-API-pos) [M+H] = 435.
Reference Example 239
Example 240
Isomer 1 of N-((S)-7-(3-Cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 240)
Step A: N-((7-(3-cyano-5-fluorophenoxy)-3--hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Sodium hydrogen carbonate (79.3 mg, 0.94 mmol) was added to a solution of 3-fluoro-5-hydroxy-benzonitrile (86.27mg, 0.63 mmol) and N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (80 mg, 0.31 mmol) (Example 189, Step C) in DMF (3 mL). The vial was sealed and heated at 100 °C over a weekend. The reaction mixture was partitioned between EtOAc and dilute aqueous NaOH. The EtOAc was washed with water, two portions of brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 25M reverse phase column with a 20 % to 90 % ACN:water gradient to afford N-((7-(3-cyano-5-fluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (80 mg, 0.21 mmol, 69% yield). m/z (ES-API-pos) [M+H] = 372.
Step B: N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Dess-Martin periodinane (192 mg, 0.45 mmol) was added to a solution of N-((7-(3-cyano-5-fluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (200 mg, 0.54 mmol) in dichloromethane (50 mL). After 10 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and aqueous sodium thiosulfate and saturated aqueous NaHCO3. The EtOAc layer was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (174 mg, 0.47 mmol, 88% yield) as a colorless film. m/z (ES-API-pos) [M+H] = 370.
Step C: (E/Z)-N-((7-(3-cyano-5-fluorophenoxy)-3-((3-methoxypropyl)imino)-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: Pivalic acid (9.4 mg, 0.09 mmol) was added to a mixture of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (170 mg, 0.46 mmol) and 3-methoxypropylamine (0.12 mL, 1.2 mmol) in cyclohexane (7 mL) and toluene (7 mL). The mixture was heated at reflux with a Hickman still attached. After 1 hour, the reaction mixture was evaporated and the residue was used as is in the next step.
Step D: N-((7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide: 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (406 mg, 1.15 mmol) was added to a mixture of (E/Z)-N-((7-(3-cyano-5-fluorophenoxy)-3-((3-methoxypropyl)imino)-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (202 mg, 0.46 mmol) and sodium sulfate (162 mg, 1.15 mmol) in acetonitrile (5 mL). The mixture was heated at 70 °C. After 3.5 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was taken up in EtOAc, absorbed on silica gel, and chromatographed on a Biotage 25 g SNAP column with a 50 % to 100 % EtOAc:hexane gradient to afford N-((7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (48 mg, 0.118 mmol, 26% yield. m/z (ES-API-pos) [M+H] = 406.
Step E: N-(((S)-7-(3-cyano-5-fluorophenoxy)-2.2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 240): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.5 mg, 0.020 mmol) was added to a nitrogen-sparged, ice-cold solution of N-((7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (49 mg, 0.120 mmol), triethylamine (0.022 mL, 0.16 mmol), and formic acid (0.01 mL, 0.24 mmol) in dichloromethane (5 mL). The flask was placed in a 4 °C refrigerator over a weekend. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g SNAP Ultra column with a 20% to 80% EtOAc:hexane gradient to afford a solid, which was triturated twice with chloroform to afford Compound 240 (8.6 mg, 0.021 mmol, 18% yield) as a single diastereomer in 93% d.e. by chiral chromatography. 1H NMR (400 MHz, CD3OD): δ 8.01 (d, 1H), 7.54-7.49 (m, 1H), 7.46-7.44 (m, 1H), 7.40-7.36 (m, 1H), 7.20-7.14 (m, 1H), 5.56 (d, 1H), 3.78-3.61 (m, 1H), 3.62 (s, 3H), 3.55-3.47 (m, 1H). m/z (ES-API-pos) [M+H] = 408.
Reference Example 241
2,2-Difluoro-4-((7-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 241)
Step A: 2,2-difluoro-4-((7-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (129 mg, 0.36 mmol) was added to a flask containing (E/Z)-4-((1H-indazol-4-yl)oxy)-N-(3-methoxypropyl)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine (68 mg, 0.15 mmol) (Reference Example 243, Step C) and sodium sulfate (52 mg, 0.36 mmol) in acetonitrile (5 mL). The reaction mixture was heated at 70 °C for 6 hour, then stirred at room temperature overnight. Hydrochloric acid (1 M, 0.44 mL, 0.440 mmol) was added. The resulting mixture was stirred for 20 minutes, and partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10% to 60% EtOAc:hexane gradient to afford 2,2-difluoro-4-((7-fluoro- 1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (9 mg, 0.02 mmol, 14% yield); m/z (ES-API-neg) [M-H] = 449; 4-((1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (12 mg, 0.03 mmol, 19% yield), m/z (ES-API-neg) [M-H] = 431; and 2,2-difluoro-4-((5-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (10 mg, 0.023 mmol, 16% yield); m/z (ES-API-neg) [M-H] = 449.
Step B: 2,2-Difluoro-4-((7-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 241): Sodium borohydride (0.76 mg, 0.020 mmol) was added to a solution of 2,2-difluoro-4-((7-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (9 mg, 0.02 mmol) in methanol (3 mL). After 1 hour, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP Ultra column with a 0 % to 50 % EtOAc:dichloromethane gradient to afford Compound 241 (3.4 mg, 0.0075 mmol, 38 % yield) as a colorless film. 1H NMR (400 MHz, CDCl3): δ 10.55 (br s, 1H), 7.94 (d, 1H), 7.83 (d, 1H), 7.16-7.10 (m, 1H), 6.86 (d, 1H), 6.83-6.78 (m, 1H), 5.46 (d, 1H), 3.72-3.59 (m, 2H), 3.34 (br s, 1H); m/z (ES-API-pos) [M+1] = 453.
Reference Example 242
4-(Benzo[b]thiophen-4-yloxy)-2,2-difluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 242)
Step A: 4-(Benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: Sodium hydrogen carbonate (51 mg, 0.6 mmol) was added to a vial containing 4'-fluoro-7'-(fluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (70 mg, 0.24 mmol) (Example 63, Step A) and benzothiophen-4-ol (65 mg, 0.43 mmol) in DMF (1.5 mL). The vial was sealed and heated at 110 °C for 9.5 hours, then stirred at room temperature. The reaction mixture was partitioned between EtOAc and water. The EtOAc was washed with 2 portions of brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP column with a 10 % to 80 % EtOAc:hexane gradient to afford 4-(benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (62 mg, 0.15 mmol, 61% yield).
Step B: 4-(Benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: Pyridin-1-ium-4-methylbenzenesulfonate (43 mg, 0.17 mmol) was added to a solution of 4-(benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (62 mg, 0.15 mmol) in acetone (4 mL) and water (0.50 mL) in a vial. The vial was sealed and heated at 80° C for 5 hours. The reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 12+M reverse phase column with a 20 % to 80 % ACN:water gradient to afford 4-(benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (27 mg, 0.072 mmol, 49% yield). m/z (ES-API-pos) [M+H] = 377.
Step C: (E/Z)-4-(Benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-N-(3-methoxypropyl)-2,3-dihydro-1H-inden-1-imine: 2,2-Dimethylpropanoic acid (2.21 mg, 0.02 mmol) was added to a flask containing a suspension of 4-(benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (27 mg, 0.072 mmol) and 3-methoxypropan-1-amine (0.01 mL, 0.11 mmol) in a mixture of toluene (3 mL) and cyclohexane (3 mL). This was refluxed with a Hickman still attached. After 5 hours, the reaction mixture was evaporated and the crude product was used as is in the next step.
Step D: 4-(Benzo[b]thiophen-4-yloxy)-2,2-difluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: 1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (63 mg, 0.18 mmol) was added to a vial containing crude (E/Z)-4-(benzo[b]thiophen-4-yloxy)-7-((fluoromethyl)sulfonyl)-N-(3-methoxypropyl)-2,3-dihydro-1H-inden-1-imine (32 mg, 0.07 mmol) and sodium sulfate (25 mg, 0.18 mmol) in acetonitrile (3 mL). The vial was sealed and heated at 80 °C overnight. The reaction mixture was treated with water (1 mL) and HCl (6 M, 0.5 mL), stirred for 15 minutes, and the reaction mixture was partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g SNAP Ultra column with a 20 % to 80 % EtOAc:hexane gradient to afford 4-(benzo[b]thiophen-4-yloxy)-2,2-difluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (4 mg, 0.01 mmol, 14% yield). m/z (ES-API-pos) [M+H+H2O] = 430.
Step E: 4-(Benzo[b]thiophen-4-yloxy)-2,2-difluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 242): Sodium borohydride (0.5 mg, 0.012 mmol) was added to a solution of 4-(benzo[b]thiophen-4-yloxy)-2,2-difluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (4 mg, 0.012 mmol) in methanol (2 mL). After 20 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated to afford Compound 242 (3.6 mg, 0.009 mmol, 87% yield). 1H NMR (400 MHz, CDCl3): δ 7.83-7.76 (m, 2H), 7.47 (d, 1H), 7.40 (t, 1H), 7.21-7.19 (m, 1H), 7.05 (d, 1H), 6.76 (d, 1H), 5.61-5.11 (m, 3H), 3.71-3.57 (m, 2H), 3.30 (br s, 1H). m/z (ES-API-pos) [M+formic acid] = 459.
Reference Example 243
Reference Example 244
Example 245
Reference Example 246
Example 247
Reference Example 248
3-((7-Bromo-2,2,3,3-tetrafluoro-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 248)
Step A: Preparation of 3-(4-bromo-3-formylphenoxy)-5-fluorobenzonitrile: A solution of 2-bromo-5-hydroxy-benzaldehyde (1.50 g, 7.46 mmol) and 3,5-difluorobenzonitrile (3.11 g, 22.4 mmol) in dimethyl sulfoxide (15.5 mL) was treated with potassium phosphate tribasic (1.90 g, 8.95 mmol) and stirred at 100 °C overnight. The reaction mixture was poured into 150 mL of water and extracted with 3 x 30 mL Et2O. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-10% EtOAc/hexane to afford 3-(4-bromo-3-formylphenoxy)-5-fluorobenzonitrile (1.06 g, 44%). LCMS ESI (+) (M+H) m/z 320, 322.
Step B: Preparation of 3-(4-bromo-3-(2,2-difluorovinyl)phenoxy)-5-fluorobenzonitrile: A solution of 3-(4-bromo-3-formyl-phenoxy)-5-fluoro-benzonitrile (317.0 mg, 0.99 mmol), sodium chlorodifluoroacetate (452.9 mg, 2.97 mmol), and triphenylphosphine (259.7 mg, 0.99 mmol) in DMF (4.95 mL) was heated to 90 °C for 30 minutes. The reaction mixture was cooled to room temperature and poured into 30 mL of water and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-15% EtOAc/hexane to afford 3-(4-bromo-3-(2,2-difluorovinyl)phenoxy)-5-fluorobenzonitrile as a faint yellow oil (273 mg, 78%). 1H NMR (400 MHz, CDCl3): δ 7.62 (d, 1H), 7.24 (d, 1H), 7.11-7.08 (m, 1H), 7.04-7.01 (m, 1H), 6.93 (dt, 1H), 6.82 (dd, 1H), 5.70 (dd, 1H).
Step C: Preparation of 3-((7-bromo-2,2,3,3-tetrafluoro-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of 3-[4-bromo-3-(2,2-difluorovinyl)phenoxy]-5-fluoro-benzonitrile (273 mg, 0.77 mmol) in diglyme (anhydrous, 0.8 mL) at 180 °C was treated with sodium chlorodifluoroacetate (353 mg, 2.3 mmol) as a solution in diglyme (anhydrous, 1.2 mL) by dropwise addition over 30 minutes. The reaction mixture was heated for 12 hours at 180 °C. The reaction mixture was cooled to room temperature, poured into 20 mL of water, and extracted with 3x20 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-15% EtOAc/hexane to afford Compound 248 as a clear oil (34.4 mg, 11%). LCMS ESI (-) (M-H) m/z 402, 404; 1H NMR (400 MHz, CDCl3): δ 7.70 (d, 1H), 7.20-7.15 (m, 1H), 7.10-7.08 (m, 1H), 7.02 (dt, 1H), 6.86 (d, 1H), 3.50 (t, 2H).
Example 249
3-(Difluoromethyl)-5-((1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 249)
Step A: Preparation of 3-(difluoromethyl)-5-((7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: 3-(Difluoromethyl)-5-(7'-methylsulfonylspiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (prepared similarly according to Example 162 (18 mg, 0.043 mmol) was dissolved in 2 mL of THF and treated with 1 mL of 1 M HCl. The resulting solution was stirred for 2 hours at room temperature. Volatiles were removed by concentration under reduced pressure. The remaining reaction mixture was poured into 20 mL of saturated aqueous NaHCO3 and extracted with 3 x 10 mL EtOAc. The combined organic layer was rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-60% EtOAc/hexane to afford 3-(difluoromethyl)-5-((7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (11.1 mg, 69%). LCMS ESI (+) (M+H) m/z 378.
Step B: Preparation of 3-(difluoromethyl)-5-((1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 249): A solution of 3-(difluoromethyl)-5-((7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (11 mg, 0.03 mmol) in methanol (1mL) at 0 °C was treated with sodium borohydride (1 mg, 0.03 mmol) and stirred at 0 °C for 1 hour. The reaction mixture was quenched by the addition of 0.5 mL of water and 0.25 mL of saturated NH4Cl. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of 0.5 M NaOH and extracted with 3 x 15 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification with silica chromatography using 25-70% EtOAc/hexane followed by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash 12+M column, 20-70% CH3CN/water) gave Compound 249 as a white solid (5.4 mg, 48%). LCMS ESI (+) (M+NH4) m/z 397; 1H NMR (400 MHz, CDCl3): δ 7.83 (d, 1H), 7.60 (s, 1H), 7.41 (s, 1H), 7.37 (s, 1H), 6.94 (d, 1H), 6.65 (t, 1H), 5.72-5.68 (m, 1H), 3.64 (br d, 1H), 3.22 (s, 3H), 3.14-3.04 (m, 1H), 2.81 (ddd, 1H), 2.54-2.43 (m, 1H), 2.28-2.19 (m, 1H).
Example 250
3-((2,2-Difluoro-1-hydroxy-7-((2-hydroxyethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 250)
Step A: 3-fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile: To a suspension of 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile (16.0 g, 51.1 mmol) in formic acid (68 mL) was added dropwise 30% hydrogen peroxide solution in water (3.6 mL, 56.2 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. Water (300 mL) was added, and the reaction mixture was stirred for 15 minutes. The precipitated solid was collected by filtration, washed with water, and dried in vacuo to give 3-fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile (16.1 g, 96%). LCMS ESI (+) m/z 330 (M+H).
Step B: 3-fluoro-5-(1-oxo-7-sulfanyl-indan-4-yl)oxy-benzonitrile:Trifluoroacetic anhydride (57.8 mL, 416 mmol) was added dropwise to a solution of 3-fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile (16.1 g, 48.9 mmol) in dichloromethane (400 mL) at ambient temperature under nitrogen. The reaction mixture was stirred for 5 hours. The reaction mixture was then concentrated under reduced pressure. The residue was dissolved in MeOH (50 mL) and Et3N (50 mL), and stirred at ambient temperature for 30 minutes. The solvents were evaporated in vacuo. The residue was partitioned between methyl t-butyl ether and 1 N NaOH. The aqueous layer was separated and pH was adjusted to 3-4 by dropwise addition of 3 N HCl. The mixture was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated to give 3-fluoro-5-(1-oxo-7-sulfanyl-indan-4-yl)oxy-benzonitrile (8.6 g, 59%), which was used in the next step without further purification. LCMS ESI (-) m/z 298 (M-H).
Step C: 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfanyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile: A mixture of 3-fluoro-5-(1-oxo-7-sulfanyl-indan-4-yl)oxy-benzonitrile (300 mg, 1.00 mmol), cesium carbonate (653 mg, 2.00 mmol), 2-bromoethoxy-tert-butyl-dimethyl-silane (0.32 mL, 1.5 mmol) and 1-methyl-2-pyrrolidone (10 mL) was stirred at ambient temperature for 30 minutes. The mixture was then partitioned between methyl t-butyl ether and water. The aqueous layer was extracted with methyl t-butyl ether. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (5-20% EtOAc/hexane) to afford 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfanyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (272 mg, 59%). LCMS ESI (+) m/z 458 (M+H).
Step D: 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfonyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile: Sodium periodate (259 mg, 1.21 mmol) was added to a stirred solution of 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfanyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (222 mg, 0.49 mmol) and ruthenium (III) chloride (2.5 mg, 0.01 mmol) in acetonitrile (0.30 mL)/carbon tetrachloride (0.30 mL)/water (0.60 mL). The reaction mixture was stirred at ambient temperature for 30 minutes. Solids were removed by filtration and rinsed with EtOAc. The organic layer was separated. The aqueous layer was extracted with EtOAc. The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (10-35% EtOAc/hexane) to afford 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfonyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (202 mg, 85%) as a white solid. LCMS ESI (+) m/z 490 (M+H).
Step E: 3-[2,2-difluoro-7-(2-hydroxyethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile: A mixture of 3-[7-[2-[tert-butyl(dimethyl)silyl]oxyethylsulfonyl]-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (111 mg, 0.230 mmol), 3-methoxypropan-1-amine (0.070 mL, 0.68 mmol), 2,2-dimethylpropanoic acid (2.3 mg, 0.020 mmol), toluene (0.7 mL) and cyclohexane (0.7 mL) was heated at reflux with the azeotropic removal of water via a Dean-Stark trap for 4 hours. After cooling to ambient temperature, the solvents were evaporated under reduced pressure. The residue was dissolved in acetonitrile (2 mL). Sodium sulfate (64 mg, 0.45 mmol) and Selectfluor® (211 mg, 0.570 mmol) was sequentially added. The reaction mixture was heated at reflux for 1 hour. After cooling to ambient temperature, 1 N HCl (0.91 mL, 0.91 mmol) was added to the reaction. The reaction mixture was stirred at ambient temperature overnight. The reaction was then partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexanes) to give 3-[2,2-difluoro-7-(2-hydroxyethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (68 mg, 73%). LCMS ESI (-) m/z 410 (M-H).
Step F: 3-((2,2-difluoro-1-hydroxy-7-((2-hydroxyethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 250): To a solution of 3-[2,2-difluoro-7-(2-hydroxyethylsulfonyl)-1-oxo-indan-4-yl]oxy-5-fluoro-benzonitrile (10 mg, 0.020 mmol) in methanol (0.4 mL) was added sodium borohydride (1.4 mg, 0.040 mmol) at ambient temperature. After stirring for 30 minutes, the reaction was quenched by water. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (30-70% EtOAc/hexanes) to give Compound 250 (5 mg, 50%). LCMS ESI (+) m/z 414 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.90 (d, 1 H), 7.27-7.24 (m, 1 H), 7.16 (br s, 1 H), 7.06 (d, 1 H), 7.00 (d, 1 H), 5.62 (d, 1 H), 4.00-4.16 (m, 2 H), 3.30-3.74 (m, 4 H).
Example 251
(S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 251)
Step A: 7-(3,5-difluorophenoxy)-N-methyl-3-oxo-indane-4-sulfonamide: Prepared similarly as described in Example 18 using 7-(3,5-difluorophenoxy)-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 11) in place of 4-(3-chloro-5-fluoro-phenoxy)-7-(difluoromethylsulfonyl)indan-1-ol (Compound 17). LCMS ESI (+) m/z 354 (M+H).
Step B: (S)-7-(3,5-difluorophenoxy)-2,2-difluoro-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 251): Prepared similarly as described in Example 163 substituting 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile with 7-(3,5-difluorophenoxy)-N-methyl-3-oxo-indane-4-sulfonamide in step D. LCMS ESI (+) m/z 392 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.82 (d, 1H), 6.97 (d, 1H), 6.69 (t, 1H), 6.64-6.54 (m, 2H), 5.62 (d, 1H), 5.04-4.96 (m, 1H), 3.50-3.30 (m, 2H), 2.64 (d, 3H).
Example 252
(S)-7-(3-Cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-sulfonamide (Compound 252)
Step A: 7-fluoro-3-oxo-indane-4-sulfonamide: Prepared similarly as described in Example 211 substituting methylamine hydrochloride with ammonia solution in dioxane in Step B. LCMS ESI (+) m/z 230 (M+H).
Step B: 7'-fluorospiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide: Prepared similarly as described in Example 8 substituting 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one with 7-fluoro-3-oxo-indane-4-sulfonamide in Step A. LCMS ESI (+) m/z 274 (M+H).
Step C: (S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-sulfonamide (Compound 252): Prepared similarly as described in Example 163 substituting 4'-fluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] with 7'-fluorospiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide in step A. LCMS ESI (-) m/z 383 (M-H); 1H NMR (400 MHz, CDCl3): δ 7.93 (d, 1H), 7.26-7.20 (m, 1H), 7.12 (br s, 1H), 7.04-6.96 (m, 2H), 5.74-5.66 (m, 1H), 5.28 (br s, 2H), 3.50-3.32 (m, 2H).
Example 253
Example 254
(S)-7-(3-Cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 254)
Step A: 7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indane-4-sulfonyl chloride: A solution of 3-fluoro-5-(1-oxo-7-sulfanyl-indan-4-yl)oxy-benzonitrile (0.91 g, 3.0 mmol) in acetonitrile (4 mL) was added dropwise to a suspension of N-chlorosuccinimide (1.62 g, 12.2 mmol) in acetonitrile (4 mL) and 2 M HCl (2 mL) while maintaining the internal temperature below 15 °C using an ice bath. The reaction mixture was stirred at ambient temperature for 2 hours, and then partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried, and concentrated in vacuo to give crude 7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indane-4-sulfonyl chloride, which was used in the next step without further purification. LCMS ESI (+) m/z 366 (M+H).
Step B: 7-(3-cyano-5-fluoro-phenoxy)-N-methyl-3-oxo-indane-4-sulfonamide: Prepared similarly as described in Example 211 substituting 7-fluoro-3-oxo-indane-4-sulfonyl chloride with 7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indane-4-sulfonyl chloride in Step B. LCMS ESI (+) m/z 361 (M+H).
Step C: (S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-N-methyl-2,3-dihydro-1H-indene-4-sulfonamide (Compound 254): Prepared similarly as described in Example 163 substituting 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile with 7-(3-cyano-5-fluoro-phenoxy)-N-methyl-3-oxo-indane-4-sulfonamide in Step D. LCMS ESI (+) m/z 399 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.85 (d, 1H), 7.25-7.18 (m, 1H), 7.13 (brs, 1H), 7.08-6.92 (m, 2H), 5.68-5.56 (m, 1H), 5.05 (br s, 1H), 3.58-3.30 (m, 2H), 2.65 (s, 3H).
Reference Example 255
4-(3-Chloro-5-fluorophenoxy)-7-nitro-2,3-dihydro-1H-inden-1-ol (Compound 255)
Step A: 7-nitroindane-1,4-diol: Prepared similarly as described in Example 17 substituting 7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one with 4-hydroxy-7-nitro-indan-1-one in Step A. LCMS ESI (-) m/z 194 (M-H).
Step B: 4-(3-chloro-5-fluorophenoxy)-7-nitro-2,3-dihydro-1H-inden-1-ol (Compound 255): A mixture of (3-chloro-5-fluoro-phenyl)boronic acid (670 mg, 3.84 mmol), 4 Å molecular sieves (1 g), 7-nitroindane-1,4-diol (250 mg, 1.28 mmol) and copper acetate (233 mg, 1.28 mmol) in anhydrous dichloromethane (10 mL) was stirred for 5 minutes. Triethylamine (0.45 mL, 3.2 mmol) was added dropwise and the reaction mixture was stirred for 36 hours at ambient temperature under air atmosphere. The reaction mixture was filtered. The filtrate was concentrated to dryness. The product was purified by flash chromatography on silica gel (5-25% EtOAc/hexane) to give Compound 255 (72 mg, 17%). LCMS ESI (-) m/z 322 (M-H); 1H NMR (400 MHz, CDCl3): δ 8.06 (d, 1H), 6.97-6.93 (m, 1H), 6.85-6.83 (m, 1H), 6.69-6.66 (m, 1H), 3.37 (d, 1H), 3.20-3.12 (m, 1H), 2.93-2.85 (m, 1H), 2.52-2.43 (m, 1H), 2.32-2.25 (m, 1H).
Example 256
(S)-7-(3,5-Difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-sulfonamide (Compound 256)
Step A: 7-(3,5-difluorophenoxy)-3-oxo-indane-4-sulfonamide: Prepared similarly as described in Example 15 Steps A to B substituting 7'-(difluoromethylsulfonyl)-4'-fluoro-spiro[1,3-dioxolane-2,1'-indane] with 7'-fluorospiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide, and substituting 3-fluoro-5-hydroxy-benzonitrile with 3,5-difluorophenol. LCMS ESI (+) m/z 340 (M+H).
Step B: (S)-7-(3,5-difluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-indene-4-sulfonamide (Compound 256): Prepared similarly as described in Example 163 substituting 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile with 7-(3,5-difluorophenoxy)-3-oxo-indane-4-sulfonamide in Step D. LCMS ESI (+) m/z 378 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.89 (d, 1H), 6.98 (d, 1H), 6.72-6.60 (m, 1H), 6.62-6.52 (m, 2H), 5.72-5.64 (m, 1H), 5.29 (br s, 2H), 3.56-3.34 (m, 2H).
Example 257
Example 258
3-Fluoro-5-((1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 258)
Step A: Preparation of 4-fluoro-7-((trifluoromethyl)sulfinyl)-2,3-dihydro-1H-inden-1-one: A solution of 4-fluoro-7-(trifluoromethylsulfanyl)indan-1-one (350 mg, 1.4 mmol) in methanol (7.0 mL) and water (5.6 mL) was treated with Oxone® (430 mg, 0.70 mmol). The resulting suspension was heated to 60 °C for 18 hours. After 6 hours, an additional portion of Oxone® (215 mg, 0.35 mmol) was added. Once complete, volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 40 mL of water and extracted with 3 x 20 mL 30% isopropyl alcohol/CHCl3. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification (360 mg, 96%). LCMS ESI (+) (M+H) m/z 267.
Step B: Preparation of N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(trifluoromethyl)-λ4-sulfanylidene)acetamide: A suspension of 4-fluoro-7-(trifluoromethylsulfinyl)indan-1-one (60 mg, 0.23 mmol) and 2,6-bis(1,1-dimethylethyl)-4-methyl-pyridine (23.1 mg, 0.11 mmol) in acetonitrile (0.29mL, 5.63mmol) at -20 °C was treated with trifluoromethanesulfonic anhydride (57 µL, 0.34 mmol) and kept at -20 °C overnight (by storing in the freezer). The reaction mixture was then pulled from the freezer and immediately quenched by the addition of 0.5 mL of water. The resulting mixture was allowed to stir for 30 minutes. The reaction mixture was poured into 30 mL of water and extracted with 3 x 10 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-70% EtOAc/hexane to afford N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(trifluoromethyl)-λ4-sulfanylidene)acetamide as an off-white solid (33 mg, 48%). LCMS ESI (+) (M+H) m/z 308.
Step C: Preparation of N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide: A solution of N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(trifluoromethyl)-λ4-sulfanylidene)acetamide (33 mg, 0.11 mmol) and ruthenium(III) chloride (0.6 mg, 0.0027 mmol) in a mixture of water (1.0 mL), carbon tetrachloride (1.0 mL), and acetonitrile (1.0 mL) was treated with sodium periodate (57 mg, 0.27 mmol) and stirred at 60 °C for 2 days. The reaction mixture was cooled to room temperature and quenched by the addition of 10 mL of saturated Na2S2O3 solution. The mixture stirred for 10 minutes and was then poured into 20 mL of water and extracted with 3 x 20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-70% EtOAc/hexane to afford N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide as a white solid (20 mg, 58%). LCMS ESI (+) (M+H) m/z 324.
Step D: Preparation of 4-fluoro-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-1-yl acetate and N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide: A solution of N-((7-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide (20 mg, 0.062 mmol) in methanol (1.0 mL) at 0 °C was treated with sodium borohydride (1.2 mg, 0.031 mmol) and stirred at 0 °C for 1 hour. The reaction mixture was quenched by the addition of 0.5 mL of water and 0.5 mL of saturated aqueous NH4Cl. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of water and extracted with 3 x 10 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-50% EtOAc/hexane to afford 4-fluoro-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-1-yl acetate as a white solid (9.0 mg, 45%) and N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide as a white solid (6.7 mg, 33%). Data for 4-fluoro-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-1-yl acetate: LCMS ESI (+) (M+H) m/z 326; 1H NMR (400 MHz, CDCl3): δ 8.07 (dd, 1H), 7.30-7.24 (m, 1H), 6.69 (d, 1H), 3.66 (br s, 1H), 3.15 (dt, 1H), 3.05 (dd, 1H), 2.50-2.34 (m, 1H), 2.33-2.25 (m, 1H), 2.02 (s, 3H). Data for N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide: LCMS ESI (+) (M+H) m/z 326; 1H NMR (400 MHz, CDCl3): δ 7.83 (dd, 1H), 7.22 (t, 1H), 5.70-5.64 (m, 1H), 3.30-3.19 (m, 2H), 3.06-2.97 (dd, 1H), 2.44-2.32 (m, 2H), 2.27 (s, 3H).
Step E: Preparation of 3-fluoro-5-((1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 258): A solution of 4-fluoro-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-1-yl acetate (9.0 mg, 0.028 mmol), 3-fluoro-5-hydroxy-benzonitrile (3.8 mg, 0.028 mmol), and cesium bicarbonate (5.4 mg, 0.028 mmol) in DMF (0.5 mL) was stirred at 90 °C for 3 hours. The reaction mixture was poured into 50 mL of water and extracted with 3 x 20 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-25% EtOAc/hexane to afford an intermediate acetate derivative: LCMS ESI (+) (M+H) m/z 443. The product residue was dissolved in 0.5 mL of acetonitrile and treated with 1.0 mL of 22.5% HCl in water. The reaction mixture was left to stir overnight. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of water and extracted with 3 x 10 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-30% EtOAc/hexane to afford Compound 258 as a white solid (3.7 mg, 33%). LCMS ESI (-) (M-H) m/z 399; 1H NMR (400 MHz, CDCl3): δ 7.96 (d, 1H), 7.27-7.22 (m, 1H), 7.18-7.15 (m, 1H), 7.07-7.03 (m, 1H), 6.97 (d, 1H), 5.59 (d, 1H), 4.59 (s, 1H), 3.89 (s, 1H), 3.18 (dt, 1H), 2.96 (ddd, 1H), 2.43-2.27 (m, 2H). Retention time = 5.55 min (long HPLC method).
Example 259
Example 260
Reference Example 261
4-((6,7-Difluoro-1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 261)
Step A: Preparation of 6-fluoro-4-((7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole: A mixture of 4'-fluoro-7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (151 mg, 0.46 mmol), 6-fluoro-1H-indazol-4-ol (47 mg, 0.31 mmol) and cesium carbonate (150 mg, 0.77 mmol) in DMF (4 mL) was stirred at 90 °C for 1 hour. The reaction mixture was diluted with EtOAc, washed with brine, dried over MgSO4, filtered, and concentrated. The residue was purified by flash column chromatography with EtOAc/hexane (0% to 60%) to give 6-fluoro-4-((7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole (141 mg, 0.31 mmol, qualitative yield). LCMS ESI (+) (M+H) m/z 459.
Step B: Preparation of 4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: To a solution of 6-fluoro-4-((7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)-1H-indazole (141 mg, 0.31 mmol) in acetone (3mL) and water (0.5 mL) at room temperature was treated with concentrated HCl (37%, 0.06 mL, 0.31 mmol). The reaction mixture was heated at 55 °C for 2 hours. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NaHCO3 and brine. The organic layer was dried over Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography with EtOAc/hexane (0% to 80%) to yield 4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (16 mg, 0.039 mmol, 12% yield). LCMS ESI (+) (M+H) m/z 415.
Step C: Preparation of (E, Z)-N-butyl-4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine: To a solution of 4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (16 mg, 0.04 mmol) in benzene (15 mL) was added butylamine (0.5 mL) and then trifluoroacetic acid (0.1 mL). The reaction was refluxed with removal of water with a Dean-Stark trap. After about 1.5 hours, additional butylamine (0.5 mL) and trifluoroacetic acid (0.1 mL) were added. The reaction was refluxed for an additioanl 2 hours. The reaction mixture was concentrated under reduced pressure, diluted with EtOAc, washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered, and concentrated. The crude product was used in the next step without further purification.
Step D: Preparation of 4-((6,7-difluoro-1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one and 2,2-difluoro-4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: A mixture of (E, Z)-N-butyl-4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-imine (crude from Step C), sodium sulfate (100 mg) and SelectFluor® (34 mg, 0.1 mmol) in acetonitrile (4 mL) was stirred at 80 °C for 4 hours. After cooling to room temperature, concentrated HCl (0.15 mL) was added. The resulting mixture was stirred for 20 minutes. The reaction mixture was concentrated under reduced pressure, diluted with EtOAc and water. The mixture was washed with saturated aqueous NaHCO3 and brine. The organic layer was dried over Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography with EtOAc/hexane (30%) to give 2,2-difluoro-4-((6-fluoro-1H-indazol-4-yl)oxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (1 mg, 0.002 mmol, 12% yield), LCMS ESI (+) (M+H) m/z 451 and 4-((6,7-difluoro-1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (2 mg, 0.004 mmol, 6% yield), LCMS ESI (+) (M+H) m/z 469.
Step E: Preparation of 4-((6,7-difluoro-1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 261): To a solution of 4-((6,7-difluoro-1H-indazol-4-yl)oxy)-2,2-difluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (2 mg, 0.004 mmol) in tetrahydrofuran (2 mL) at room temperature was added sodium triacetoxyborohydride (10 mg, 0.47 mmol). The reaction was stirred at room temperature overnight. The reaction mixture was directly purified by preparative TLC with EtOAc/hexane (60%) to give Compound 261 (0.6 mg, 0.001 mmol, 30% yield). LCMS ESI (+) (M+H) m/z 471; 1H NMR (400 MHz, CDCl3): δ 7.95 -7.87 (m, 2H), 6.95 (d, 1H), 6.77 (dd, 1H), 5.46 (d, 1H), 3.66-3.58 (m, 2H), 3.25 (m, 1H).
Reference Example 262
Reference Example 263
Reference Example 264
Example 265
Diastereomer 1 of 3-((1-amino-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 265)
Step A: Diastereomer 1 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide: To a stirred mixture of 3-fluoro-5-[2-fluoro-1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-benzonitrile (150 mg, 0.36 mmol) and (S)-(-)-2-methyl-2-propanesulfinamide (52 mg, 0.43 mmol) in tetrahydrofuran (3.6 mL), titanium ethoxide (226 µL, 1.08 mmol) was added dropwise at ambient temperature under nitrogen. The reaction mixture was warmed to 60 °C and stirred overnight. After cooling to ambient temperature, water was added. Solids were removed by filtration and washed with EtOAc. The organic phase of the filtrate was separated, washed with brine, dried and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10-20% EtOAc/hexane) to give the desired product, which was further purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash, 25+M column, 10-95% CH3CN/water) to afford diastereomer 1 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (74 mg, 40%). LCMS ESI (+) m/z 521 (M+H).
Step B: (S)-N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide: To a stirred solution of the diastereomer 1 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (59 mg, 0.11 mmol) in tetrahydrofuran (1 mL) was added sodium borohydride (17 mg, 0.45 mmol) at -78 °C under nitrogen. The reaction mixture was stirred at -78 °C for 10 minutes and then quenched by the addition of water. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (5-50% EtOAc/hexane) to give (S)-N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide (46 mg, 78%) as a mixture of two diastereomers. LCMS ESI (+) m/z 521 (M+H).
Step C: Diasteromer 1 of 3-((1-amino-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 265): To a stirred solution of (S)-N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)-2-methylpropane-2-sulfinamide from Example 265 Step B (46 mg, 0.09 mmol) in methanol (0.6 mL), 4 N HCl in dioxane (0.44 mL, 1.8 mmol) was added at ambient temperature. The reaction mixture was stirred for 30 minutes, and then evaporated under reduced pressure. The residue was dissolved in EtOAc, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-30% EtOAc/hexanes) to give Compound 265 (33 mg, 90%) as the major product. LCMS ESI (+) m/z 419 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.90 (d, 1 H), 7.30-7.28 (m, 1 H), 7.19 (br s, 1 H), 7.10-7.06 (m, 1 H), 6.92 (d, 1 H), 5.44-5.26 (m, 1 H), 4.93 (t, 1 H), 3.40-3.24 (m, 2 H), 1.95 (br s, 2H).
Reference Example 266
Example 267
Example 268
Diasteromer 2 of 3-((1-amino-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 268)
Step A: Diastereomer 2 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide: To a stirred mixture of 3-fluoro-5-[2-fluoro-1-oxo-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-benzonitrile (150 mg, 0.36 mmol) and (R)-(-)-2-Methyl-2-propanesulfinamide (65 mg, 0.54 mmol) in toluene (3.6 mL), titanium ethoxide (301 µL, 1.44 mmol) was added dropwise at ambient temperature under nitrogen. The reaction mixture was warmed to 60 °C and stirred overnight. After cooling to ambient temperature, water was added. Solids were removed by filtration and washed with EtOAc. The organic phase of the filtrate was separated, washed with brine, dried and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10-20% EtOAc/hexane) to afford diastereomer 2 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (102 mg, 54%) as the less polar diastereomer. LCMS ESI (+) m/z 521 (M+H).
Step B: Diasteromer 2 of 3-((1-amino-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 268): To a stirred solution of diastereomer 2 of N-(4-(3-cyano-5-fluorophenoxy)-2-fluoro-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ylidene)-2-methylpropane-2-sulfinamide (102 mg, 0.2 mmol) in tetrahydrofuran (2 mL), sodium borohydride (30 mg, 0.78 mmol) was added at ambient temperature under nitrogen. The reaction mixture was stirred for 10 minutes and then quenched by the addition of water. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was dissolved in MeOH (1.3 mL) and 4 N HCl in dioxane (0.98 mL, 3.9 mmol) was added dropwise to the reaction mixture at ambient temperature. The reaction was stirred for 30 minutes, and then evaporated under reduced pressure. The residue was taken up in EtOAc, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-50% EtOAc/hexane) to give Compound 268 (15 mg, 18%). LCMS ESI (+) m/z 419 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.90 (d, 1 H), 7.30-7.28 (m, 1 H), 7.22 (br s, 1 H), 7.12-7.08 (m, 1 H), 6.95 (d, 1 H), 5.25-5.12 (m, 1 H), 4.95 (d, 1 H), 3.52-3.46 (m, 1 H), 3.29-3.18 (m, 1H), 1.73 (br s, 2H).
Example 269
Example 270
Example 271
Example 272
3-[(1S)-2,2-Difluoro-1-hydroxy-7-methylsulfinyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 272)
Step A: 3-Fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile: 3-Chloroperbenzoic acid (734 mg, 3.19 mmol) was added to an ice-cold solution of 3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile (1000 mg, 3.19 mmol) (Example 163) in dichloromethane (30 mL). After 5 minutes, the reaction mixture was diluted with DCM and was washed with 2 portions of saturated aqueous NaHCO3/Na2S2O3 mixture, brine, dried over MgSO4, filtered, and evaporated to afford 3-fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile (1030 mg, 3.13 mmol, 98 % yield) as a pale yellow solid. (ES-API-pos) [M+H] = 330.
Step B: (E, Z)-3-Fluoro-5-[1-(3-methoxypropylimino)-7-methylsulfinyl-indan-4-yl]oxy-benzonitrile: Pivalic acid (64 mg, 0.63 mmol) was added to a suspension of 3-fluoro-5-(7-methylsulfinyl-1-oxo-indan-4-yl)oxy-benzonitrile (1030 mg, 3.13 mmol) and 3-methoxypropylamine (1.6 mL, 15.6 mmol) in toluene (30 mL) and cyclohexane (20 mL). The mixture was heated at reflux with a Dean-Stark trap attached. After 5 hours, the reaction mixture was evaporated and the residue was used as is.
Step C: 3-(2,2-Difluoro-7-methylsulfinyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile: 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2769 mg, 7.82 mmol) was added to a solution of crude (E, Z)-3-fluoro-5-[1-(3-methoxypropylimino)-7-methylsulfinyl-indan-4-yl]oxy-benzonitrile (1252 mg, 3.13mmol) in acetonitrile (50 mL). The reaction mixture was stirred at 70 °C. After 1 h, the cooled reaction mixure was treated with 1M HCl (9.38 mL, 9.38 mmol), stirred for 15 minutes, and evaporated. The residue was partitioned between EtOAc and water. The EtOAc layer was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 50 g SNAP column with a 30% to 100% EtOAc:hexane gradient to afford 3-(2,2-difluoro-7-methylsulfinyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (430 mg, 1.18 mmol, 38% yield). (ES-API-pos) [M+H] =366.
Step D: 3-[(1S)-2,2-Difluoro-1-hydroxy-7-methylsulfinyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 272): RuCl(p-cymene)[(R,R)-Ts-DPEN] (5.2 mg, 0.01 mmol) was added to a nitrogen-sparged, ice cold solution of 3-(2,2-difluoro-7-methylsulfinyl-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (108 mg, 0.27 mmol), formic acid (0.04 mL, 1.09 mmol), and triethylamine (0.1 mL, 0.68 mmol) in dichloromethane (5 mL). The flask was sealed and kept in a 4 °C refrigerator overnight. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g ultra SNAP column with a 60% to 100% EtOAc:hexane gradient to afford Compound 272 (85 mg, 0.23 mmol, 85% yield). 1H NMR (400 MHz, CDCl3): δ 7.84-7.80 (m, 1H), 7.19-7.16 (m, 1H), 7.10 (d, 1H), 7.08-7.06 (m, 1H), 7.00-6.96 (m, 1H), 5.40 (d, 1H), 4.48-4.36 (m, 1H), 3.49-3.27 (m, 2H), 2.93 (s, 3H). (ES-API-pos) [M+1] = 368.
Example 273
3-[(1S)-2,2-Difluoro-1-hydroxy-7-(trifluoromethyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 273)
Step A: 7-Iodo-4-methoxy-indan-1-one: 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (1970 mg, 5.6 mmol) was added to an ice-cold solution of iodine (1721 mg, 6.8 mmol) in acetonitrile (100 mL). The resulting solution was stirred at 0 °C for a few minutes, then 4-methoxyindanone (1000 mg, 6.17 mmol) was added. The resulting mixture was stirred at ambient temperature. After 3 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute aqueous sodium thiosulfate. The EtOAc was washed with saturated aqueous sodium thiosulfate, brine, dried over MgSO4, filtered, and evaporated to afford 7-iodo-4-methoxy-indan-1-one (1310 mg, 4.6 mmol, 74% yield). (ES-API-pos) [M+H] = 289.
Step B: 4-Hydroxy-7-iodo-indan-1-one: Trimethylammonium chloride (1260 mg, 13.2 mmol) was added to an ice-cold suspension of aluminium chloride (3638 mg, 27.3 mmol) in DCM (10 mL). This yellow suspension was stirred in ice. After 3 hours of warming slowly to room temperature, the resulting liquid was added to a solution of 7-iodo-4-methoxy-indan-1-one (1310 mg, 4.55 mmol) in DCM (40 mL). The reaction mixture turned a dark brown color. The flask was heated at 50 °C overnight. The mixture was pipetted into 40 mL 1M HCl with stirring. The tan suspension was extracted with two portions of EtOAc. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to yield 4-hydroxy-7-iodo-indan-1-one (1260 mg, 4.6 mmol, quantitative yield). (ES-API-neg) [M-H] = 273.
Step C: 7-Iodoindane-1,4-diol: Sodium borohydride (345 mg, 9.1 mmol) was added to an ice-cold solution of 4-hydroxy-7-iodo-indan-1-one (1250 mg, 4.6 mmol) in methanol (100 mL). Additional sodium borohydride was added until LC/MS showed complete reduction. The reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute HCl. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford 7-iodoindane-1,4-diol (1230 mg, 4.5 mmol, 98% yield). (ES-API-neg) [M-H] = 275, 311.
Step D: 3-Fluoro-5-(1-hydroxy-7-iodo-indan-4-yl)oxy-benzonitrile: Potassium carbonate (300 mg, 2.2 mmol) was added to a vial containing a solution of 7-iodoindane-1,4-diol (200 mg, 0.72 mmol) and 3,5-difluorobenzonitrile (151 mg, 1.1 mmol) in DMF (5 mL). The sealed vial was heated overnight at 110 °C. The cooled reaction mixture was treated with dilute aqueous NaCl and extracted with 2 portions of EtOAc. The EtOAc was washed with 2 portions of brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 25 g SNAP column with a 10% to 60% EtOAc:hexane to afford 3-fluoro-5-(1-hydroxy-7-iodo-indan-4-yl)oxy-benzonitrile (180 mg, 0.46 mmol, 63% yield). (ES-API-pos) [M+H] = 378.
Step E: 3-Fluoro-5-(7-iodo-1-oxo-indan-4-yl)oxy-benzonitrile: Dess-Martin periodinane (192 mg, 0.45 mmol) was added to a solution of 3-fluoro-5-(1-hydroxy-7-iodo-indan-4-yl)oxy-benzonitrile (180 mg, 0.46 mmol) in dichloromethane (20 mL). After 15 minutes, the reaction mixture was evaporated and the residue was partitioned between EtOAc and aqueous sodium thiosulfate and saturated aqueous NaHCO3. The EtOAc was washed with water, brine, dried over MgSO4, filtered, and evaporated to afford 3-fluoro-5-(7-iodo-1-oxo-indan-4-yl)oxy-benzonitrile (170 mg, 0.43 mmol, 95% yield) as a colorless film. (ES-API-pos) [M+H] = 394.
Step F: (E, Z)-3-Fluoro-5-[7-iodo-1-(3-methoxypropylimino)indan-4-yl]oxy-benzonitrile: Pivalic acid (8.83 mg, 0.090 mmol) was added to a suspension of 3-fluoro-5-(7-iodo-1-oxo-indan-4-yl)oxy-benzonitrile (170 mg, 0.430 mmol) and 3-methoxypropylamine (0.22 mL, 2.16 mmol) in toluene (10 mL) and cyclohexane (5 mL). The mixture was heated at reflux overnight with a Dean-Stark trap attached. The reaction mixture was evaporated and the residue was used as is in the next step.
Step G: 3-(2,2-Difluoro-7-iodo-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile: A solution of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (381 mg, 1.1 mmol) in acetonitrile (5 mL) was treated with sodium sulfate (122 mg, 0.86 mmol) and heated to 70 °C. To this was added dropwise, a solution of crude (E, Z)-3-fluoro-5-[7-iodo-1-(3-methoxypropylimino)indan-4-yl]oxy-benzonitrile (200 mg, 0.43 mmol) in acetonitrile (5 mL). After 1 hour, the cooled reaction mixture was treated with 1M HCl (1.29 mL, 1.29 mmol) and stirred for 10 minutes at ambient temperature. The reaction mixture was concentrated and the residue was partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 25 g ultra SNAP column with a 5% to 50% EtOAc:DCM to afford 3-(2,2-difluoro-7-iodo-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (73 mg, 0.17 mmol, 39 % yield). (ES-API-pos) [M+H] = 430.
Step H: 3-[2,2-Difluoro-1-oxo-7-(trifluoromethyl)indan-4-yl]oxy-5-fluoro-benzonitrile: Methyl 2,2-difluoro-2-fluorosulfonyl-acetate (0.089 mL, 0.7 mmol) was added to a vial (equipped with a nitrogen-filled balloon) containing 3-(2,2-difluoro-7-iodo-1-oxo-indan-4-yl)oxy-5-fluoro-benzonitrile (60 mg, 0.14 mmol) and copper(I) iodide (53 mg, 0.28 mmol) in DMF (3 mL). The sealed vial was heated at 100 °C for 4 hours. The reaction mixture was partitioned between EtOAc and dilute aqueous NaCl. The EtOAc was washed with 2 portions of brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g ultraSNAP column with a 5% to 50% EtOAc:hexane to afford 3-[2,2-difluoro-1-oxo-7-(trifluoromethyl)indan-4-yl]oxy-5-fluoro-benzonitrile (29 mg, 0.078 mmol, 56% yield). (ES-API-pos) [M+H] = 372.
Step I: 3-[(1S)-2,2-Difluoro-1-hydroxy-7-(trifluoromethyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 273): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.5 mg, 0.0082 mmol) was added to a nitrogen-sparged, ice-cold solution of 3-[2,2-difluoro-1-oxo-7-(trifluoromethyl)indan-4-yl]oxy-5-fluoro-benzonitrile (29 mg, 0.078 mmol), formic acid (0.0117 mL, 0.31 mmol), and triethylamine (0.027 mL, 0.195 mmol) in dichloromethane (2 mL). The flask was sealed and kept in a 4 °C refrigerator overnight. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 10 g ultraSNAP column with a 5% to 60% EtOAc:hexane gradient to afford Compound 273 (25 mg, 0.066 mmol, 85 % yield) in 98 % e.e. by chiral HPLC analysis. 1H NMR (400 MHz, CDCl3): δ 7.63 (d, 1H), 7.21-7.18 (m, 1H), 7.11-7.09 (m, 1H), 7.03-6.97 (m, 2H), 5.29 (d, 1H), 3.51-3.28 (m, 2H), 2.76 (br s, 1H). m/z (ES-API-neg) [M+formate-H] = 418.
Examples 274 and 275
Step A: Preparation of (N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)-λ4-sulfanylidene)cyanamide: 3-fluoro-5-((7-((fluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile was prepared similarly according to Examples 272 and 59. A solution of 3-fluoro-5-((7-((fluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (620 mg, 1.87 mmol), bis(tert-butylcarbonyloxy)iodobenzene (1140 mg, 2.8 mmol), magnesium oxide (302 mg, 7.48 mmol), and cyanamide (157 mg, 3.74 mmol) in dichloromethane (25 mL) was treated with bis[rhodium(α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid)] (14.3 mg, 0.019 mmol). The vessel was sealed and left to stir at 25 °C for 3 h. The reaction mixture was filtered through celite, concentrated, and used without further purification. LCMS ESI (+) (M+H) m/z 372.
Step B: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)λ6-sulfanylidene)cyanamide: A solution of (N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)-λ4-sulfanylidene)cyanamide (691 mg, 1.87 mmol) and ruthenium(III) chloride (9.7 mg, 0.047 mmol) in a mixture of water (18.6 mL), carbon tetrachloride (18.6 mL), and acetonitrile (18.6 mL) was treated with sodium periodate (1.19 g, 5.58 mmol) and stirred at 25 °C for 2 days. The reaction mixture was cooled to room temperature and quenched by the addition of 20 mL of saturated Na2S2O3 solution. The mixture was stirred for 10 minutes and then poured into 40 mL of water and extracted with 3 x 30 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-55% EtOAc/hexane to afford N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (630 mg, 87%). LCMS ESI (+) (M+H) m/z 388.
Step C: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)-2,2,2-trifluoroacetamide: A solution of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (94 mg, 0.24 mmol) in dichloromethane (4.9 mL) at 25 °C was treated with trifluoroacetic anhydride (0.10 mL, 0.73 mmol) and stirred overnight. Volatiles were removed by concentration under reduced pressure and the resulting solid was used without further purification after drying for 1 hour under high vacuum. LCMS ESI (-) (M-H) m/z 457.
Step D: Preparation of (E, Z)-3-fluoro-5-((7-(S-(fluoromethyl)sulfonimidoyl)-1-((3-methoxypropyl)imino)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A solution of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)-2,2,2-trifluoroacetamide (110 mg, 0.24 mmol) and 2,2-dimethylpropanoic acid (4.9 mg, 0.048 mmol) in a mixture of toluene (2.4 mL) and cyclohexane (2.4 mL) was treated with 3-methoxypropan-1-amine (74 µL, 0.72 mmol). The reaction vessel was equipped with a Hickman still and a reflux condenser and heated at 104 °C for 2.5 h. LCMS analysis was achieved by taking an aliquot of the reaction mixture and adding it to a solution of MeOH containing excess NaBH4. LCMS indicated formation of the amine via imine reduction. Once complete, volatiles were removed by concentration under reduced pressure. The residue was used without further purification. LCMS ESI (+) (M+H) m/z 436.
Step E: Preparation of 3-((2,2-difluoro-7-(S-(fluoromethyl)sulfonimidoyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of (E, Z)-3-fluoro-5-((7-(S-(fluoromethyl)sulfonimidoyl)-1-((3-methoxypropyl)imino)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (104 mg, 0.24 mmol) and sodium sulfate (85 mg, 0.60 mmol) in acetonitrile (2.4 mL) was treated with 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (213 mg, 0.60 mmol) and stirred at 70 °C for 2 h. The reaction mixture was treated with 1 mL of 10% aqueous HCl solution and stirred for 20 minutes. The reaction mixture was poured into 30 mL of water and extracted with 3 x 20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-65% EtOAc/hexane to give 3-((2,2-difluoro-7-(S-(fluoromethyl)sulfonimidoyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile as a beige solid (21 mg, 21%). LCMS ESI (+) (M+H) m/z 399.
Step F: Preparation of 3-(((1S)-2,2-difluoro-7-(S-(fluoromethyl)sulfonimidoyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of 3-((2,2-difluoro-7-(S-(fluoromethyl)sulfonimidoyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (20.5 mg, 0.052 mmol) in dichloromethane (2.1 mL) was cooled to 0 °C and sparged with nitrogen for 5 minutes. During this time formic acid (5.8 µL, 0.15 mmol) and triethylamine (14.3 µL, 0.10 mmol) were sequentially added. Once sparging was complete, RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.0 mg, 3 mol%) was added to the reaction mixture under a continuous stream of nitrogen. The reaction vessel was sealed and stored at 4 °C overnight. The reaction mixture was poured into 10 mL of saturated aqueous NaHCO3 and extracted with 3 x 15 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-55% EtOAc/hexane to afford two isomers.
Example 276 and 277
Isomer 1 of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 276) and isomer 2 of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 277)
Step A: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)fluoromethy)(oxo)-λ6-sulfanylidene)cyanamide: A solution of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (103 mg, 0.27 mmol) in acetonitrile (3.0 mL) was treated with Accufluor® (171 mg, 0.27 mmol) and heated to 84 °C for 3 hours. An additional portion of Accufluor® (171 mg, 0.27 mmol) was added and the reaction mixture was heated for an additional 3 hours. The reaction mixture was poured into 40 mL of water and extracted with 3 x 15 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The residue was purified by chromatography on silica using 20-55% EtOAc/hexane to afford N-((7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (51 mg, 47%). LCMS ESI (+) (M+H) m/z 406.
Step B: Preparation of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide: A solution of N-((7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (50.6 mg, 0.125 mmol) in dichloromethane (4.0 mL) was cooled to 0 °C and sparged with nitrogen for 5 minutes. During this time formic acid (14.1 µL, 0.375 mmol) and triethylamine (34.6 µL, 0.250 mmol) were sequentially added. Once the sparging was complete, RuCl(p-cymene)[(R,R)-Ts-DPEN] (2.4 mg, 3 mol%) was added under a continuous stream of nitrogen. The reaction vessel was sealed and kept at 4 °C overnight. The reaction mixture was poured into 10 mL of saturated aqueous NaHCO3 and extracted with 3x15 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification by chromatography on silica using 15-55% EtOAc/hexane (25 g Biotage Ultra) afforded two isomers.
Reference Example 278
tert-butyl (cis-7-(3-cyano-5-fluorophenoxy)-3-hydroxy-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (Compound 278)
Step A: Preparation of 3-bromo-4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: The diaryl ether starting material, 4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane], was prepared similarly according to Example 212, Steps A-B, substituting 3-bromo-5-fluorophenol for 4-fluorophenol. A solution of 4'-(3-bromo-5-fluoro-phenoxy)-7'-(trifluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] (930 mg, 1.87 mmol) and N-bromosuccinimide (399 mg, 2.24 mmol) in carbon tetrachloride (12.5 mL) was sparged with nitrogen for 5 minutes and treated with benzoyl peroxide (91 mg, 0.37 mmol). The reaction vessel was fitted with a reflux condenser. The condenser was flushed with nitrogen for 5 minutes. The vessel was then sealed, placed under nitrogen atmosphere and stirred at 88 °C for 1 day. An additional portion of benzoyl peroxide (91 mg, 0.37 mmol) was added and the reaction was heated for an additional day. The reaction mixture was poured into 10 mL of 1 M NaOH and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-70% CH2Cl2/hexane to afford 3-bromo-4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (448 mg, 42%). LCMS ESI (+) (M+H) m/z: 575, 577, 579.
Step B: Preparation of 3-azido-4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: A solution of 3-bromo-4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (448 mg, 0.78 mmol) in DMF (4.0 mL) at 25 °C was treated with sodium azide (50.6 mg, 0.78 mmol) and stirred at 25 °C for 1 hour. The reaction mixture was poured into 40 mL of water and extracted with 3x15 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The residue was used without further purification. LCMS ESI (+) (M-N2+H) m/z: 510, 512.
Step C: Preparation of 4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-3-amine: A solution of 3-azido-4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (675 mg, 1.25mmol) in a mixture of tetrahydrofuran (6.0 mL) and water (0.4 mL) at 25 °C was treated with trimethylphosphine solution (∼1.0 M in THF, 1.5 mL, 1.5 mmol) and stirred for 30 minutes. Gas evolution was observed during this time. The reaction mixture was heated to 60 °C for 2 h. Volatiles were removed by concentration under reduced pressure. The resulting residue was dried under high vacuum overnight. Purification was achieved by chromatography on silica using 1-9% MeOH/CH2Cl2 + 1% NH4OH to afford 4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-3-amine (630 mg, 98%). LCMS ESI (+) (M+H) m/z: 512,514.
Step D: Preparation of tert-butyl (4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-3-yl)carbamate: A solution of 4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-3-amine (65 mg, 0.13 mmol) in dichloromethane (2.0 mL) at 25 °C was treated with di-tert-butyl pyrocarbonate (30.5 mg, 0.14 mmol) and stirred overnight. Volatiles were removed by concentration under reduced pressure. The product residue was used without further purification. LCMS ESI (-) (M-H) m/z: 610, 612.
Step E: Preparation of tert-butyl (7-(3-bromo-5-fluorophenoxy)-3-oxo-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate: In a pressure tube, a sample of tert-butyl (4-(3-bromo-5-fluorophenoxy)-7-((trifluoromethyl)sulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-3-yl)carbamate (77 mg, 0.13 mmol) was dissolved in a mixture of acetic acid (1.0 mL), tetrahydrofuran (0.5 mL), and water (0.5 mL). The reaction mixture was sealed and heated to 80 °C for 14 hours. LCMS analysis indicates a relatively clean reaction with formation of the desired product, unreacted starting material, and the corresponding Boc deprotected materials predominating. Volatiles were removed by concentration under reduced pressure. The leftover residue was poured into 20 mL of saturated NaHCO3 and extracted with 3 x 15 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The residue was dissolved in 3 mL of CH2Cl2 and treated with di-tert-butyl pyrocarbonate (13.8 mg, 0.063 mmol). The mixture was left to stir overnight. Volatiles were removed by concentration under reduced pressure. Purification was achieved by chromatography on silica using 5-35% EtOAc/hexane to afford tert-butyl (7-(3-bromo-5-fluorophenoxy)-3-oxo-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (50 mg, 70%). LCMS ESI (-) (M-H) m/z: 566, 568.
Step F: Preparation of tert-butyl (cis-7-(3-bromo-5-fluorophenoxy)-3-hydroxy-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate: A solution of tert-butyl (7-(3-bromo-5-fluorophenoxy)-3-oxo-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (50 mg, 0.088 mmol) in methanol (2.0 mL) at 25 °C was treated with sodium borohydride (3.3 mg, 0.088 mmol) and stirred at 25 °C for 1 hour. The reaction mixture was quenched by the addition of 0.5 mL of aqueous saturated NH4Cl and stirred for 5 minutes. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 10 mL of water and extracted with 3x10 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-35% EtOAc/hexane to afford tert-butyl (cis-7-(3-bromo-5-fluorophenoxy)-3-hydroxy-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (25 mg, 50%) as a clear solid film. LCMS ESI (-) (M-H) m/z: 568, 570.
Step G: Preparation of tert-butyl (cis-7-(3-cyano-5-fluorophenoxy)-3-hydroxy-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (Compound 278): A solution of tert-butyl (cis-7-(3-bromo-5-fluorophenoxy)-3-hydroxy-4-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-yl)carbamate (20.5 mg, 0.036 mmol) and zinc cyanide (4.6 mg, 0.04 mmol) in DMF (0.36 mL) was sparged with nitrogen for 3 minutes. The reaction mixture was then treated sequentially with dichloro[1;1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct (2.9 mg, 10 mol%) and zinc powder (2.8 mg, 0.043 mmol) under continuous nitrogen stream. The vessel was sealed and heated to 110 °C for 4 hours. The reaction mixture was poured into 30 mL of water and extracted with 3 x 10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-30% EtOAc/hexane to afford Compound 278 as a white solid (13.4 mg, 72%). LCMS ESI (-) (M+Cl-) m/z: 551, 553; 1H NMR (400 MHz, CDCl3): δ 7.97 (d, 1H), 7.27-7.23 (m, 1H), 7.17-7.13 (m, 1H), 7.07 (dt, 1H), 7.02 (d, 1H), 5.54 (dd, 1H), 5.49-5.41 (m, 1H), 5.12 (br d, 1H), 3.33 (br s, 1H), 2.73-2.64 (m, 1H), 2.22 (d, 1H), 1.35 (s, 9H).
Reference Example 279
Reference Examples 280 and 281
4-(3-chloro-5-fluorophenoxy)-3-methylene-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 280) and (1R,3S)-4-(3-chloro-5-fluorophenoxy)-3-(hydroxymethyl)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 281)
Step A: Preparation of 3,7-dibromo-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: A solution of 7'-bromo-4'-fluoro-spiro[1,3-dioxolane-2,1'-indane] (2.55 g, 9.34 mmol) and AIBN (23 mg, 0.14 mmol) in carbon tetrachloride (65 mL) was treated with N-bromosuccinimide (1.99 g, 11.2 mmol). The resulting mixture was sparged with nitrogen for 5 minutes. The reaction vessel was sealed and heated to 80 °C for 3 hours. The reaction mixture was poured into 50 mL of water and extracted with 3 x 30 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification. 1H NMR (400 MHz, CDCl3): δ 7.52 (dd, 1H), 6.98 (dt, 1H), 5.41 (dd, 1H), 4.47-4.33 (m, 2H), 4.19-4.08 (m, 2H), 2.91-2.88 (dd, 1H), 2.76 (dd, 1H).
Step B: Preparation of 7-bromo-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]-3-carbonitrile: A solution of 3,7-dibromo-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane] (3.27 g, 9.3 mmol) in DMF (9.3 mL) was treated with sodium cyanide (501 mg, 10.2 mmol) and stirred at 60 °C overnight. The reaction mixture was poured into 150 mL of water and extracted with 3 x 50 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-40% EtOAc/hexane to afford 7-bromo-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]-3-carbonitrile (750 mg, 27%). LCMS ESI (+) (M+H) m/z: 298, 300.
Step C: Preparation of 4-bromo-7-fluoro-3-oxo-2,3-dihydro-1H-indene-1-carboxylic acid: A solution of 7-bromo-4-fluoro-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]-3-carbonitrile (166 mg, 0.56 mmol) in 1,4-Dioxane (2.5 mL) was treated with concentrated aqueous HCl solution (1.9 mL) and stirred at 105 °C for 1 hour. Volatiles were removed by concentration under reduced pressure. The remaining reaction mixture was poured into 20 mL of water and extracted with 3 x 15 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness.The product was used without further purification. LCMS ESI (+) (M+H) m/z: 273, 275.
Step D: Preparation of cis-7-bromo-4-fluoro-3-(hydroxymethyl)-2,3-dihydro-1H-inden-1-ol: A solution of 4-bromo-7-fluoro-3-oxo-2,3-dihydro-1H-indene-1-carboxylic acid (581 mg, 2.1 mmol) in tetrahydrofuran (10.6 mL) was treated with borane dimethyl sulfide complex (504 µL, 5.3 mmol). The resulting mixture was stirred at 70 °C for 1 hour. The reaction mixture was cooled and an additional portion of borane dimethyl sulfide complex (504 µL, 5.3 mmol) was added. The reaction mixture was heated to 80 °C for 2 hours. After cooling to room temperature, the reaction mixture was quenched by the careful dropwise addition of water. Once effervescence had ceased, the reaction mixture was poured into 20 mL of saturated aqueous NaHCO3 and extracted with 4 x 10 mL 30% isopropyl alcohol in CHCl3. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 15-80% EtOAc/hexane to afford cis-7-bromo-4-fluoro-3-(hydroxymethyl)-2,3-dihydro-1H-inden-1-ol (210 mg, 38%). 1H NMR (400 MHz, CDCl3): δ 7.36 (dd, 1H), 6.87 (dt, 1H), 5.13-5.06 (m, 1H), 4.00 (dd, 1H), 3.91-3.83 (m, 1H), 3.81 (dd, 1H), 3.66-3.60 (m, 1H), 2.68-2.58 (m, 1H), 2.60 (ddd, 1H), 2.00 (d, 1H).
Step E: Preparation of cis-4-fluoro-3-(hydroxymethyl)-7-(methylthio)-2,3-dihydro-1H-inden-1-ol: A solution of cis-7-bromo-4-fluoro-3-(hydroxymethyl)-2,3-dihydro-1H-inden-1-ol (195 mg, 0.75 mmol) and palladium diacetate (5.0 mg, 0.022 mmol) and (R)-Josiphos (12.3 mg, 0.022 mmol) in 1,2-dimethoxyethane (2.0 mL) was sparged with nitrogen for 3 minutes. The reaction mixture was then treated with sodium thiomethoxide (78.5 mg, 1.12 mmol) under continuous nitrogen stream. The vessel was sealed and heated to 110 °C over 2 days. The reaction mixture was poured into 20 mL of water and extracted with 3 x 10 mL 30% isopropyl alcohol in CHCl3. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-60% EtOAc/hexane to afford cis-4-fluoro-3-(hydroxymethyl)-7-(methylthio)-2,3-dihydro-1H-inden-1-ol (31 mg, 18%). LCMS ESI (+) (M+Na) m/z 251.
Step F: Preparation of cis-4-fluoro-3-(hydroxymethyl)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol: A solution of cis-4-fluoro-3-(hydroxymethyl)-7-(methylthio)-2,3-dihydro-1H-inden-1-ol (31 mg, 0.13 mmol) in dichloromethane (2.7 mL) at 25 °C was treated with 3-chloroperbenzoic acid (82 mg, 0.33 mmol) and stirred at 25 °C overnight. The reaction mixture was poured into 10 mL of 1M aqueous NaOH solution and extracted with 3 x 10 mL 30% isopropyl alcohol in CHCl3. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 40-100% EtOAc/hexane to afford cis-4-fluoro-3-(hydroxymethyl)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (23 mg, 66%). LCMS ESI (+) (M+H) m/z: 261.
Step G: Preparation of 4-(3-chloro-5-fluorophenoxy)-3-methylene-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 280) and cis-4-(3-chloro-5-fluorophenoxy)-3-(hydroxymethyl)-7-((trifluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 281): A solution of cis-4-fluoro-3-(hydroxymethyl)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (23 mg, 0.089 mmol) and 3-chloro-5-fluorophenol (13 mg, 0.089 mmol) in 1-methyl-2-pyrrolidone (0.9 mL) was treated with cesium bicarbonate (21 mg, 0.11 mmol) and stirred at 145 °C for 4 hours. The reaction mixture was poured into 30 mL of water and extracted with 3 x 10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 30-100% EtOAc/hexane to afford Compound 280 as a white solid (1.3 mg, 4%) Compound 281 as a thin film (3.2 mg, 9%).
Examples 282 and 283
Example 284
N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)methanesulfonamide (Compound 284)
Step A: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)-λ4-sulfanylidene)methanesulfonamide: 3-fluoro-5-((7-((fluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile was prepared similarly according to Examples 272 and 59. A solution of 3-fluoro-5-((7-((fluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (106 mg, 0.32 mmol), bis(tert-butylcarbonyloxy)iodobenzene (196 mg, 0.48 mmol), magnesium oxide (52 mg, 1.28 mmol), and methanesulfonamide (61 mg, 0.64 mmol) in dichloromethane (3.0 mL) was treated with bis[rhodium(α, α, α', α'-tetramethyl-1,3-benzenedipropionic acid)] (12 mg, 5 mol%). The vessel was sealed and stirred at 25 °C overnight. The reaction mixture was filtered through celite, concentrated, and used without further purification. LCMS ESI (+) (M+H) m/z 425.
Step B: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidine)methanesulfonamide: A solution of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)-λ4-sulfanylidene)methanesulfonamide (170mg, 0.4 mmol) and ruthenium(III) chloride (2.1 mg, 0.01 mmol) in a mixture of water (2.0 mL), carbon tetrachloride (2.0 mL), and acetonitrile (2.0 mL) was treated with sodium periodate (257 mg, 1.2 mmol) and stirred at 60 °C for overnight. The reaction mixture was cooled to room temperature and quenched by the addition of 10 mL of saturated Na2S2O3 solution. The mixture was stirred for 10 minutes and then poured into 20 mL of water and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-65% EtOAc/hexane to afford N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)λ6-sulfanylidene)methanesulfonamide (110 mg, 62%). LCMS ESI (+) (M+H) m/z 441.
Step C: Preparation of (E, Z)-N-((7-(3-cyano-5-fluorophenoxy)-3-((3-methoxypropyl)imino)-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)methanesulfonamide: Performed similarly as described in step D of Example 274, except that 1.5 equivalents of 3-methoxypropyl amine were used. LCMS analysis was achieved by taking an aliquot of the reaction mixture and adding it to a solution of MeOH containing excess NaBH4. LCMS indicated the formation of the amine via imine reduction. LCMS ESI (+) (M+H) m/z 514.
Step D: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)methanesulfonamide: Performed similarly as described in step E of Example 274. Purification was achieved by chromatography on silica using 25-55% EtOAc/hexane to afford N-((7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)methanesulfonamide (54 mg, 47%). LCMS ESI (+) (M+H) m/z 477.
Step E: Preparation of N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)methanesulfonamide (Compound 284): Performed similarly as described in step F of Example 274. Purification was achieved by chromatography on silica using 20-55% EtOAc/hexane to afford Compound 284 as thin film (24 mg, 44%). HPLC retention time (long method) = 4.82 min; LCMS ESI (+) (M+H) m/z 479; 1H NMR (400 MHz, CDCl3): δ 8.04 (d, 1H), 7.30 (ddd, 1H), 7.22-7.19 (m, 1H), 7.10 (dt, 1H), 7.01 (d, 1H), 5.97 (dd, 1H), 5.70 (dd, 1H), 5.60 (dd, 1H), 3.68 (d, 1H), 3.61-3.39 (m, 2H), 3.23 (s, 3H).
Examples 285 and 286
Isomer 1 of N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 285) and isomer 2 of N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 286)
Example 287
Example 288
3-[(1R)-3,3-difluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 288)
Step A: [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of 3-fluoro-5-[(1R)-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (1.05 g, 3.0 mmol) in DCM (29 mL) was added 4-(dimethylamino)pyridine (0.369 g, 3.0 mmol) and triethylamine (0.84 mL, 6.1 mmol). Acetyl chloride (0.43 mL, 6.1 mmol) was added dropwise at 0 °C under nitrogen. The reaction mixture was stirred at ambient temperature for 2 hours. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexane) to give [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate (0.72 g, 61%). LCMS ESI (-) m/z 434 (M+ HCO2-).
Step B: [(1R,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate (720 mg, 1.85 mmol) in carbon tetrachloride (18 mL) was added N-bromosuccinimide (362 mg, 2.0 mmol) and 2,2'-azobisisobutyronitrile (3 mg, 0.02 mmol). The reaction mixture was heated at 80 °C for 2 hours. After cooling, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (10-40% EtOAc/hexanes) to give [(1R,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate (514 mg, 59%) and a 1: 2 mixture of (1R,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate and [(1R,3S)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate (360 mg, 41%). LCMS ESI (-) m/z: 512, 514 (M+ HCO2-).
Step C: [(1R,3S)-4-(3-cyano-5-fluoro-phenoxy)-3-hydroxy-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of [(1R,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate (423 mg, 0.9 mmol) in 1,2-dimethoxyethane (5 mL) and water (2 mL) was added silver carbonate (374 mg, 1.35 mmol). The reaction mixture was stirred at ambient temperature overnight. The mixture was diluted with EtOAc and filtered through Celite. The filtrate was washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (-) m/z 450 (M+ HCO2-).
Step D: [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-3-oxo-indan-1-yl] acetate: To a stirred solution of [(1R,3S)-4-(3-cyano-5-fluoro-phenoxy)-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (366 mg, 0.9 mmol) in DCM (9 mL) was added Dess-Martin periodinane (574 mg, 1.35 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. The reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was purified by flash chromatography on silica gel (10-50% EtOAc/hexane) to give [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-3-oxo-indan-1-yl] acetate (320 mg, 88%). LCMS ESI (-) m/z 402 (M-H).
Step E: [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl]acetate: To a plastic tube containing [(1R)-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-3-oxo-indan-1-yl] acetate (109 mg, 0.27 mmol) and DCM (1.2 mL) was added 4-(tert-butyl)-2,6-dimethylphenyl sulfur trifluoride (115 mg, 0.46 mmol) under nitrogen. Hydrogen fluoride pyridine (70%, 0.02 mL, 0.27 mmol) was added, and the mixture was stirred at ambient temperature for 4 hours. The solvent was removed under reduced pressure. The residue was taken up in EtOAc, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (10-50% EtOAc/hexane) to give [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate (97 mg, 84%). LCMS ESI (+) m/z 426 (M+H).
Step F: [(1R)-3,3-difluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 288): To a stirred solution of [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate (97 mg, 0.23 mmol) in tetrahydrofuran (1.5 mL) was added 0.5 N LiOH solution (0.68 mL, 0.34 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 1 hour. The reaction was then partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (30-70% EtOAc/hexane) to give Compound 288 (75 mg, 86%). LCMS ESI (-) m/z 428 (M+ HCO2-); 1H NMR (400 MHz, CDCl3): δ 8.08 (d, 1H), 7.29-7.23 (m, 1H), 7.19 (brs, 1H), 7.15-7.08 (m, 1H), 7.02 (d, 1H), 5.78-5.70 (m, 1H), 3.89 (d, 1H), 3.23 (s, 3H), 3.17-3.02 (m, 1H), 2.80-2.64 (m, 1H).
Example 289
3-[(1S,2S,3R)-2,3-difluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 289)
Step A: [(1S,2R)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of 3-fluoro-5-[(1S,2R)-2-fluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (2.00 g, 5.47 mmol) in DCM (27 mL) was added 4-(dimethylamino)pyridine (0.2 g, 1.64 mmol) and triethylamine (1.53 mL, 10.9 mmol). Acetic anhydride (1.00 mL, 10.9 mmol) was added dropwise at 0 °C under nitrogen. The reaction mixture was stirred at ambient temperature overnight. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-40% EtOAc/hexane) to give [(1S,2R)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (1.95 g, 87%). LCMS ESI (+) m/z 408 (M+H).
Step B: [(1S,2S,3S)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl]acetate and [(1S,2S,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of [(1S,2R)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (1.95 g, 4.79 mmol) in 1,2-dichloroethane (24 mL) was added N-bromosuccinimide (0.94 g, 5.27 mmol) and 2,2'-azobisisobutyronitrile (8 mg, 0.05 mmol). The reaction mixture was heated at 80 °C for 3 hours. After cooling, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (20-30% EtOAc/hexane) to give [(1S,2S,3S)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (1.52 g, 65%). LCMS ESI (+) m/z 486, 488 (M+H). Further elution with 30-50% EtOAc/hexane gave the more polar product [(1S,2S,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (0.583 g, 25%). LCMS ESI (+) m/z 486, 488 (M+H).
Step C: [(1S,2R,3S)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl]acetate: To a combined mixture of [(1S,2S,3S)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate and [(1S,2S,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate prepared in Step B (2.05 g, 4.22 mmol) were added 1,2-dimethoxyethane (28 mL) and water (0.050 mL) followed by silver perchlorate hydrate (1.42 g, 6.32 mmol). The reaction mixture was heated at 70 °C for 2 hours. After cooling, the reaction mixture was diluted with EtOAc and filtered through Celite. The filtrate was washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50%) to give [(1S,2R,3S)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (0.416 g, 23%) as the less polar product. LCMS ESI (+) m/z 441 (M+NH4+). Further elution with 60% EtOAc/hexane gave [(1S,2R,3R)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (0.58 g, 32 %). LCMS ESI (+) m/z 441 (M+NH4+).
Step D: [(1S,2S,3R)-4-(3-cyano-5-fluoro-phhenoxy)-2,3-difluoro-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of [(1S,2R,3S)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (416 mg, 0.98 mmol) in DCM (10 mL) was added (diethylamino)sulfur trifluoride (DAST) (0.26 mL, 2.0 mmol) at - 78 °C under nitrogen. The reaction mixture was allowed to warm to 0 °C and stirred for 15 minutes. The reaction was quenched by saturated aqueous NaHCO3. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-40% EtOAc/hexane) to give [(1S,2S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate (310 mg, 74%). LCMS ESI (+) m/z 426 (M+H).
Step E: 3-[(1S,2S,3R)-2,3-difluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 289): Prepared as described in Example 288 Step F substituting [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate with [(1S,2S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate. LCMS ESI (+) m/z 384 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.13 (d, 1H), 7.31-7.25 (m, 1H), 7.23-7.19 (m, 1H), 7.14-7.09 (m, 1H), 7.04 (d, 1H), 6.09-5.91 (m, 1H), 5.87-5.80 (m, 1H), 5.25-5.05 (m, 1H), 3.32 (s, 3H), 2.95 (d, 1H).
Example 290
Reference Example 291
3-[(1S)-2,2-difluoro-1-(2-hydroxyethylamino)-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 291)
Step A: 3-[(1S)-1-[2-[tert-butyl(dimethyl)silyl]oxyethylamino]-2,2-difluoro-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile: To a stirred solution of 3-[(1S)-1-amino-2,2-difluoro-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluorobenzonitrile (18 mg, 0.04 mmol) and 2-[tert-butyl(dimethyl)silyl]oxyacetaldehyde (36 mg, 0.21 mmol) in 1,2-dichloroethane (0.4 mL) was added NaB(OAc)3H (306 mg, 1.44 mmol). The reaction mixture was stirred at ambient temperature for 2 hours. The reaction was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (5-20% EtOAc/hexane) to give 3-[(1S)-1-[2-[tert-butyl(dimethyl)silyl]oxyethylamino]-2,2-difluoro-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (7 mg, 29%). LCMS ESI (+) m/z 595 (M+H).
Step B: 3-[(1S)-2,2-difluoro-1-(2-hydroxyethylamino)-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (Compound 291): A mixture of 3-[(1S)-1-[2-[tert-butyl(dimethyl)silyl]oxyethylamino]-2,2-difluoro-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluoro-benzonitrile (7 mg, 0.01 mmol) in DCM (0.2 mL) was treated with 5 N HCl in isopropanol (0.07 mL, 0.35 mmol) for 1 hour. The solvent was evaporated. The residue was taken up in EtOAc, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography (20-50% EtOAc/hexane) to give Compound 291 (5 mg, 88%). LCMS ESI (+) m/z 481 (M+H); 1H NMR (400 MHz, CDCl3): δ 7.95 (d, 1H), 7.35-7.31 (m, 1H), 7.24-7.22 (m, 1H), 7.14-7.10 (m, 1H), 6.95 (d, 1H), 4.59 (d, 1H), 3.77-3.52 (m, 2H), 3.42 (t, 2H), 3.06 (t, 2H).
Example 292
3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 292)
Step A: [(1S,3S)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl]acetate and [(1S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate: To a stirred solution of [(1S)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-yl] acetate (1.0 g, 2.35 mmol) in DCE (24 mL) were added N-bromosuccinimide (0.46 g, 2.59 mmol) and 2,2'-azobisisobutyronitrile (4 mg, 0.02 mmol). The reaction mixture was heated at 80 °C overnight. After cooling, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The crude product was dissolved in 1,2-dimethoxyethane (11 mL) and water (0.11 mL). Silver perchlorate hydrate (0.35 g, 1.55 mmol) was added. The reaction mixture was heated at 70 °C overnight. After cooling, the reaction mixture was diluted with EtOAc and filtered through Celite. The filtrate was washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give [(1S,3S)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (39 mg, 9% yield) as the less polar product. LCMS ESI (+) m/z 459 (M+NH4+). Further elution gave [(1S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (80 mg, 18%). LCMS ESI (+) m/z 459 (M+NH4+).
Step B: [(1S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,2,3-trifluoro-7-methylsulfonyl-indan-1-yl]acetate: Prepared as described in Example 289 Step D substituting [(1S,2R,3S)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl]acetate with [(1S,3S)-4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate. LCMS ESI (+) m/z 444 (M+H).
Step C: 3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile: Prepared as described in Example 288 Step F substituting [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate with [(1S,3R)-4-(3-cyano-5-fluoro-phenoxy)-2,2,3-trifluoro-7-methylsulfonyl-indan-1-yl] acetate. LCMS ESI (+) m/z 419 (M+NH4+); 1H NMR (400 MHz, CDCl3): δ 8.14-8.11 (m, 1H), 7.33-7.29 (m, 1H), 7.25-7.23 (m, 1H), 7.16-7.12 (m, 1H), 7.05 (d, 1H), 5.91-5.75 (m, 1H), 5.71-5.65 (m, 1H), 3.39 (d, 1H), 3.25 (s, 3H).
Alternative synthesis 1 of 3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 292)
Step A: 3-fluoro-5-(2'-fluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile: To a stirred solution of 3-fluoro-5-(7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (1.0 g, 2.48 mmol) and triethylamine (2.07 mL, 14.9 mmol) in DCM (24.8 mL) was added dropwise [tert-butyl(dimethyl)silyl] trifluoromethanesulfonate (0.85 mL, 3.7 mmol) at 0 °C under nitrogen. The reaction was allowed to warm to ambient temperature and stir overnight. The reaction was diluted with EtOAc, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The crude was dissolved in acetonitrile (25 mL). Selectfluor® (1.14 g, 3.2 mmol) was added to the reaction mixture. The reaction was stirred at ambient temperature for 1 hour. The solvent was evaporated under reduced pressure. The residue was taken up in DCM, washed with water and brine, dried over Na2SO4, filtered, and concentrated to dryness. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexane) to give 3-fluoro-5-(2'-fluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (0.81 g, 78%). LCMS ESI (+) m/z 422 (M+H).
Step B: 3-(2',2'-difluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-5-fluoro-benzonitrile: To a stirred solution of 3-fluoro-5-(2'-fluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (455 mg, 1.08 mmol) and triethylamine (0.90 mL, 6.5 mmol) in DCM (11 mL) was added dropwise [tert-butyl(dimethyl)silyl] trifluoromethanesulfonate (0.37 mL, 1.6 mmol) at 0 °C under nitrogen. The reaction was allowed to warm to ambient temperature and stir overnight. The reaction was diluted with EtOAc, washed with saturated aqueous NaHCO3 solution and brine, dried and concentrated. The crude was dissolved in acetonitrile (11 mL). Selectfluor® (612 mg, 1.73 mmol) was added and the reaction mixture was stirred at ambient temperature for 2 hours. The solvent was evaporated under reduced pressure. The residue was taken up in DCM, washed with water and brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexane) to give 3-(2',2'-difluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-5-fluorobenzonitrile (337 mg, 71%). LCMS ESI (+) m/z 440 (M+H).
Step C: 3-[(3'S)-2',2'-difluoro-3'-hydroxy-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-5-fluoro-benzonitrile: Formic acid (0.087 mL, 2.3 mmol) was added slowly to a solution of triethylamine (0.21 mL, 1.5 mmol) in DCM (8 mL) at 0 °C. 3-(2',2'-difluoro-7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-5-fluoro-benzonitrile (337 mg, 0.77 mmol) was then added followed by the addition of RuCl(p-cymene)[(R,R)-Ts-DPEN] (5.5 mg, 0.01 mmol) under nitrogen. The flask was then placed in a 4 °C refrigerator overnight. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexanes) to give 3-[(3'S)-2',2'-difluoro-3'-hydroxy-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-5-fluoro-benzonitrile (335 mg, 99%). LCMS ESI (+) m/z 424 (M+H).
Step D: 3-fluoro-5-[(3'R)-2',2',3'-trifluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile: To a stirred solution of 3-[(3'S)-2',2'-difluoro-3'-hydroxy-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-5-fluorobenzonitrile (285 mg, 0.650 mmol) in DCM (6 mL) was added (diethylamino)sulfur trifluoride (DAST) (0.17 mL, 1.3 mmol) at -78 °C under nitrogen. The reaction mixture was allowed to warm to 0 °C and stirred for 30 minutes. The reaction was quenched by the addition of saturated aqueous NaHCO3. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give 3-fluoro-5-[(3'R)-2',2',3'-trifluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile (248 mg, 87%). LCMS ESI (+) m/z 444 (M+H).
Step E: 3-fluoro-5-[(3R)-2,2,3-trifluoro-7-methylsulfonyl-1-oxo-indan-4-yl]oxy-benzonitrile: To a stirred solution of 3-fluoro-5-[(3'R)-2',2',3'-trifluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane]-4'-yl]oxy-benzonitrile (286 mg, 0.65 mmol) in DCM (6 mL) was added 70% perchloric acid (2 mL). The reaction mixture was stirred at ambient temperature for 3 days. The reaction was diluted with EtOAc, washed with water, saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (30-60% EtOAc/hexanes) to give 3-fluoro-5-[(3R)-2,2,3-trifluoro-7-methylsulfonyl-1-oxo-indan-4-yl]oxy-benzonitrile (145 mg, 56%). LCMS ESI (+) m/z 400 (M+H).
Step F: 3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 292): To a stirred solution of 3-fluoro-5-[(3R)-2,2,3-trifluoro-7-methylsulfonyl-1-oxo-indan-4-yl]oxy-benzonitrile (144 mg, 0.36 mmol) in DCM (3.6 mL) was added formic acid (0.041 mL, 1.1 mmol) followed by triethylamine (0.1 mL, 0.72 mmol). The reaction mixture was purged with nitrogen. RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.1 mg) was added under nitrogen. The reaction vial was then placed in a 4 °C refrigerator overnight. The solvents were evaporated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give Compound 292 (92 mg, 64%).
Alternative synthesis 2 of 3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 292)
Step A: 3-fluoro-5-(7-methylsulfonyl-1,3-dioxo-indan-4-yl)oxy-benzonitrile: To a stirred solution of 3-fluoro-5-(7'-methylsulfonyl-3'-oxo-spiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxy-benzonitrile (500 mg, 1.24 mmol) in tetrahydrofuran (6 mL) was added 4N HCl (3.1 mL, 12 mmol). The reaction was heated at reflux for 2 hours. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (+) m/z 360 (M+H).
Step B: 3-(2,2-difluoro-7-methylsulfonyl-1,3-dioxo-indan-4-yl)oxy-5-fluoro-benzonitrile: To a stirred solution of 3-fluoro-5-(7-methylsulfonyl-1,3-dioxo-indan-4-yl)oxy-benzonitrile (crude product from Step A, 445 mg, 1.24 mmol) in acetonitrile (12 mL) at 25 °C was added anhydrous sodium carbonate (289 mg, 2.72 mmol) under nitrogen. Selectfluor® (965 mg, 2.72 mmol) was added and the reaction mixture was stirred at 25 °C for 2 hours. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give 3-(2,2-difluoro-7-methylsulfonyl-1,3-dioxo-indan-4-yl)oxy-5-fluoro-benzonitrile (230 mg, 47%). LCMS ESI (+) m/z 396 (M+H).
Step C: 3-[(1S,3S)-2,2-difluoro-1,3-dihydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile: Formic acid (0.049 mL, 1.3 mmol) was added slowly to a solution of triethylamine (0.12 mL, 0.86 mmol) in DCM (4 mL) at 0 °C. 3-(2,2-Difluoro-7-methylsulfonyl-1,3-dioxo-indan-4-yl)oxy-5-fluoro-benzonitrile (170 mg, 0.43 mmol) was then added followed by the addition of RuCl(p-cymene)[(R,R)-Ts-DPEN] (5.5 mg, 0.01 mmol) under nitrogen. The flask was then placed in a 4 °C refrigerator overnight. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give 3-[(1S,3S)-2,2-difluoro-1,3-dihydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (70 mg, 41%) and 3-[(1S,3R)-2,2-difluoro-1,3-dihydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (65 mg, 38%). LCMS ESI (+) m/z 400 (M+H).
Step D: 3-fluoro-5-[(1S,3R)-2,2,3-trifluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 292): To a stirred solution of 3-[(1S,3S)-2,2-difluoro-1,3-dihydroxy-7-methylsulfonyl-indan-4-yl]oxy-5-fluoro-benzonitrile (70 mg, 0.18 mmol) in DCM (2 mL) was added (diethylamino)sulfur trifluoride (DAST) (0.058 mL, 0.44 mmol) at -78 °C under nitrogen. The reaction mixture was allowed to warm to -20 °C and stirred for 1 hour. The reaction was quenched by the addition of saturated aqueous NaHCO3. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give Compound 292 (31 mg, 44%).
Example 293
Example 294
Example 295
3-fluoro-5-[(1R,3S)-3-fluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 295)
Step A: [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate: Prepared as described in Example 288 Step C substituting [(1R,3R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate with [(1R)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-7-methylsulfonyl-indan-1-yl] acetate. LCMS ESI (-) m/z 450 (M+ HCO2-).
Step B: [(1R,3S)-4-(3-cyano-5-fluoro-phenoxy)-3-fluoro-7-methylsulfonyl-indan-1-yl]acetate: To a stirred solution of [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (306 mg, 0.75 mmol) in DCM (8 mL) was added (diethylamino)sulfur trifluoride (DAST) (0.2 mL, 1.5 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 30 minutes. The reaction was quenched by the addition of saturated aqueous NaHCO3. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by column chromatography on silica gel (20-40% EtOAc/hexane) to give [(1R,3S)-4-(3-cyano-5-fluoro-phenoxy)-3-fluoro-7-methylsulfonyl-indan-1-yl] acetate (144 mg, 47%) as the less polar product and [(1R,3R)-4-(3-cyano-5-fluoro-phenoxy)-3-fluoro-7-methylsulfonyl-indan-1-yl] acetate (82 mg, 27%) as the more polar product.
Step C: 3-fluoro-5-[(1R,3S)-3-fluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy-benzonitrile (Compound 295): Prepared as described in Example 288 Step F substituting [(1R)-4-(3-cyano-5-fluoro-phenoxy)-3,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate with [(1R,3S)-4-(3-cyano-5-fluoro-phenoxy)-3-fluoro-7-methylsulfonyl-indan-1-yl] acetate. LCMS ESI (+) m/z 383 (M+NH4+); 1H NMR (400 MHz, CDCl3): δ 8.04-8.01 (m, 1H), 7.25-7.22 (m, 1H), 7.18-7.16 (m, 1H), 7.11-7.06 (m, 1H), 7.00 (d, 1H), 6.09-5.79 (m, 1H), 5.69-5.61 (m, 1H), 3.54 (d, 1H), 3.23 (s, 3H), 2.94-2.80 (m, 1H), 2.52-2.41 (m, 1H).
Example 296
Example 297
Isomer 1 of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 297)
Step A: Preparation of 3-fluoro-5-(7-mercapto-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A mixture of 3-fluoro-5-((7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile and 3-fluoro-5-((7-(methylsulfinyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (ca. 1:2 ratio) was dissolved in methylene chloride (100 mL) under nitrogen. Trifluoroacetic anhydride (21.1 mL, 152 mmol) was added dropwise at ambient temperature. After about two hours, the reaction mixture was concentrated in vacuo. The residue was dissolved in MeOH (25 mL). Triethylamine (25 mL, 179 mmol) was added slowly under nitrogen. The reaction mixture was stirred at ambient temperature for 30 minutes then concentrated in vacuo. The residue was partitioned between 1 N NaOH and MTBE and the aqueous layer was separated. The aqueous was cooled to 0 °C and the pH was adjusted to 3-4 using 10% KHSO4. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude product was used in the subsequent alkylation without delay. LCMS ESI (+) m/z 300 (M+H).
Step B: Preparation of 3-((7-((difluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: 3-Fluoro-5-(1-oxo-7-sulfanyl-indan-4-yl)oxy-benzonitrile (4.54 g, 15.2 mmol) was dissolved in acetonitrile (54 mL) and treated with a solution of KOH (17.0 g, 303 mmol) in water (54 mL). The mixture was purged with argon, cooled to -20 °C then treated with bromodifluoromethyldiethylphosphonate (5.4 mL, 30.4 mmol). The resulting mixture was allowed to warm to ambient temperature and stirred for 2 hours. The mixture was concentrated gently to remove MeCN, then MTBE and water were added (ca. 50-70 mL each). The layers were separated. The aqueous layer was cooled in an ice bath and adjusted to pH 3-4 with 10% KHSO4. The aqueous was treated with MTBE/ethyl acetate (1:1, ca. 200 mL) and separated. The aqueous was extracted with ethyl acetate then the combined organics were washed with water, saturated NaHCO3, water, saturated NaCl, saturated NaHCO3, saturated NaCl, dried over Na2SO4, and then concentrated in vacuo. The residue was chromatographed on SiO2 (Biotage SNAP 10g) and eluted with a gradient of ethyl acetate/hexane to give the desired product as a pinkish solid (ca. 650 mg). The mixed fractions were re-chromatographed on SiO2 (Biotage SNAP 50g) with chloroform to give the desired product (0.87 g, combined yield of 29%). LCMS ESI (+) m/z 350 (M+H).
Step C: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)-λ4-sulfanylidene)cyanamide: A solution of 3-((7-((difluoromethyl)thio)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (573 mg, 1.64 mmol), bis(tert-butylcarbonyloxy)iodobenzene (1330 mg, 3.28 mmol), magnesium oxide (264 mg, 6.56 mmol), and cyanamide (138 mg, 3.28 mmol) in dichloromethane (22 mL) was treated with bis[rhodium(α, α,α',α'-tetramethyl-1,3-benzenepropionic acid)] (100 mg, 0.13 mmol). The reaction was stirred at ambient temperature for 90 minutes. The reaction was filtered through celite, washed with dichloromethane and concentrated in vacuo. The residue was used without further purification. LCMS ESI (+) m/z 390 (M+H).
Step D: Preparation of N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide: [[7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indan-4-yl]-(difluoromethyl)-λ4-sulfanylidene] cyanamide (638 mg, 1.64 mmol) was dissolved in a mixture of carbon tetrachloride (4 mL), acetonitrile (4 mL) and water (8 mL). This solution was treated with ruthenium (III) trichloride (6.8 mg, 0.03 mmol) followed by sodium periodate (1.05 g, 4.92 mmol). The mixture was stirred at ambient temperature for 14 hours. Additional ruthenium (III) trichloride (6.8 mg, 0.03 mmol) and sodium periodate (1.05 g, 4.92 mmol) were added and stirring was continued for an additional 24 hours. The heterogeneous mixture was diluted with methylene chloride and one-half saturated sodium thiosulfate solution and stirred for 1 hour then filtered through a pad of celite. The aqueous layer was washed with methylene chloride. The combined organic layers were washed with dilute sodium thiosulfate, water, then dried over Na2SO4 and concentrated in vacuo. The crude material was chromatographed on SiO2 (Biotage SNAP 25g) with a gradient of ethyl acetate/hexane to afford the desired product (304 mg). LCMS ESI (+) m/z 406 (M+H).
Step E: Preparation of N-(((R)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide: A solution of cyano-[[7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indan-4-yl]-(difluoromethyl)-oxo-λ6-sulfanylidene]ammonium (136 mg, 0.33 mmol) in acetonitrile (3.8 mL) was treated with [1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) on aluminum oxide (Accufluor® 50 wt%) and stirred at reflux for 9 hours then allowed to cool with the bath and stirred overnight. The solvent was removed with a stream of nitrogen gas. The crude material was chromatographed on SiO2 (Biotage SNAP 10g) with a gradient of ethyl acetate/hexane to afford the desired product (78 mg). LCMS ESI (+) m/z 424 (M+H).
Step F: Preparation of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 297): N-(((R)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-oxo-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide (78 mg, 0.18 mmol) (containing some N-((7-(3-cyano-5-fluorophenoxy)-3-oxo-2,3-dihydro-1H-inden-4-yl)(difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide from the previous reaction) was dissolved in isopropanol (0.9 mL) and treated with triethylamine (0.05 mL, 0.37 mmol), formic acid (0.02 mL, 0.55 mmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.2 mg, 0.002 mmol). The reaction mixture was stirred at ambient temperature for 14 hours. The reaction mixture was concentrated in a stream of nitrogen then chromatographed on SiO2 (Biotage SNAP 10g) with a gradient of ethyl acetate/hexane. A second purification on SiO2 (Biotage SNAP 25g Ultra) with a gradient of ethyl acetate/hexane afforded Compound 297 (2.7 mg). LCMS ESI (+) m/z 426 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.04 (d, 1H), 7.34-7.30 (m, 1H), 7.25-7.22 (m, 1H), 7.23 (t, J = 54 Hz, 1H), 7.14-7.10 (m, 1H), 7.00 (d, 1H), 5.71-5.63 (m, 1H), 5.56-5.52 (m, 0.5H), 5.43-5.39 (m, 0.5H), 3.59 (t, 1H), 3.46-3.18 (m, 2H).
Example 298
3-fluoro-5-(((1S,2S)-2-fluoro-1-hydroxy-2-methyl-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 298)
Step A: Preparation of 3-fluoro-5-((2-fluoro-2-methyl-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: 3-fluoro-5-(2-fluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (192 mg, 0.53 mmol) was dissolved in DMF (1.5 mL) and treated with cesium carbonate (343 mg, 1.06 mmol). Iodomethane (0.16 mL, 2.6 mmol) was added. The mixture was stirred at ambient temperature for 60 hours. The reaction mixture was sparged with nitrogen gas for several minutes then diluted with methylene chloride/ethyl acetate (1:1). The suspension was filtered through paper and then the filtrate was diluted with water and mixed gently. After the slow separation, the organic layer was washed twice with water, saturated NaCl, dried over Na2SO4 and concentrated in vacuo (315 mg). The crude material was chromatographed on SiO2 (Biotage SNAP Ultra 10g) with a gradient of ethyl acetate/hexane to give the desired product as colorless oil (61 mg). LCMS ESI (+) m/z 378 (M+H)
Step B: Preparation of 3-fluoro-5-(((1S,2S)-2-fluoro-1-hydroxy-2-methyl-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 298): 3-Fluoro-5-(2-fluoro-2-methyl-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (61 mg, 0.16 mmol) was suspended in methylene chloride (1.2 mL), cooled to 0 °C and treated with triethylamine (0.05 mL, 0.32 mmol), formic acid (0.02 mL, 0.48 mmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.03 mg, 0.002 mmol). The reaction mixture was stirred at 0 °C for 20 hours. The solvent was removed by exposure to a stream of nitrogen gas. The residue was purified by preparative TLC with 2% MeOH / methylene chloride to give Compound 298 (8.6 mg). LCMS ESI (+) m/z 397 (M+NH4); 1H NMR (400 MHz, CDCl3): δ 7.85 (d, 1H), 7.22-7.19 (m, 1H), 7.12-7.09 (m, 1H), 7.03-6.98 (m, 2H), 5.29-5.23 (m, 1H), 3.57-3.53 (m, 1H), 3.26-3.04 (m, 2H), 3.19 (s, 3H), 1.70 (d, J = 22 Hz, 3H)
Example 299
Example 300
Example 301
3-fluoro-5-(((1R,2R)-1-hydroxy-2-methyl-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 301)
Step A: Preparation of 3-fluoro-5-((2-methyl-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A solution of diisopropylamine (0.28 mL, 2.0 mmol) in THF (2 mL) was cooled to 0 °C and treated with n-BuLi (2.26 M in hexanes, 0.83 mL, 1.9 mmol) then stirred for 15 minutes. The solvents were removed from the mixture under high vacuum while maintaining the flask at 0 °C. The resulting white solid was dissolved in fresh THF (1.8 mL). This solution was added dropwise to a flask containing a solution of 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (500 mg, 1.45 mmol) dissolved in a mixture of THF (2 mL) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (1 mL) which was cooled to -40 °C. The dark solution was stirred for 30 minutes at -40 °C then iodomethane (0.13 mL, 2.0 mmol) was added. The mixture was allowed to warm to ambient temperature with the bath and stirred for 10 hours. The dark reaction mixture was cooled to 0 °C and poured into cold 10% KHSO4 and stirred for several minutes. Ethyl acetate was added. The pH of the aqueous was adjusted to about 8 with solid NaHCO3 and the layers were separated. The aqueous layer was washed with ethyl acetate and the combined organics were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude material was chromatographed on SiO2 (Biotage SNAP 25g) with a gradient of ethyl acetate/hexane. The desired material was isolated as a white solid (55 mg). LCMS ESI (+) m/z 360 (M+H).
Step B: Preparation of 3-fluoro-5-(((1R,2R)-1-hydroxy-2-methyl-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 301): 3-Fluoro-5-(2-methyl-7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile (26 mg, 0.07 mmol) was suspended in isopropanol (0.2 mL) and treated with triethylamine (0.02 mL, 0.14 mmol), formic acid (0.01 mL, 0.22 mmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.46 mg, 0.001 mmol). The reaction mixture was stirred at ambient temperature for 14 hours. Additional methylene chloride (about 100 µL) was added. The reaction mixture was treated with fresh triethylamine (0.02 mL, 0.14 mmol), formic acid (0.01 mL, 0.22 mmol), and RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.46 mg, 0.001 mmol) and stirring was continued at ambient temperature for 4 hours. The reaction mixture was concentrated in a stream of nitrogen gas and then chromatographed on SiO2 (Biotage SNAP 10g) with a gradient of ethyl acetate/hexane to give Compound 301 (19 mg). LCMS ESI (+) m/z 379 (M+NH4); 1H NMR (400 MHz, CDCl3): δ 7.84 (d, 1H), 7.19-7.15 (m, 1H), 7.07-7.06 (m, 1H), 6.98 (d, 1H), 6.97 (dt, 1H), 5.46-5.43 (m, 1H), 3.12 (s, 3H), 3.08 (d, 1H), 2.97-2.91 (m, 1H), 2.68-2.53 (m, 2H), 1.25 (d, 3H).
Example 302
N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 302)
Step A: Preparation of [[7-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide: [[7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (250 mg, 0.69 mmol) was dissolved in MeOH (3 mL) and treated with Selectfluor® (365 mg, 1.03 mmol). The mixture was heated to reflux for 24 hours. Additional fresh MeOH (3 mL) was added followed by Selectfluor® (365 mg, 1.03 mmol) and the mixture was heated for an additional 30 hours. The mixture was diluted with ethyl acetate and water and then separated. The organic layer was washed with water, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to give a brown solid (297 mg). The crude material was chromatographed on SiO2 (Biotage SNAP 10g) with a gradient of 10% ethyl acetate in methylene chloride to give the desired product as a mixture of isomers (17 mg). LCMS ESI (-) m/z 432 (M+HCOO-).
Step B: Preparation of N-(((2R,3S)-7-(3-cyano-5-fluorophenoxy)-2-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(methyl)(oxo)-λ6-sulfanylidene)cyanamide (Compound 302): [[7-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (17 mg, 0.04 mmol) was dissolved in methylene chloride (0.14 mL), cooled to 0 °C, and treated with triethylamine (12 µL, 0.09 mmol) and formic acid (5 µL, 0.13 mmol). A separate solution containing RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.28 mg, 0.0004 mmol) dissolved in dichloromethane (0.14 mL) was chilled to 0 °C and then added to the first solution. The reaction mixture was transferred to a refrigerator (4 °C) and allowed to stand for 120 hours. The reaction mixture was concentrated in a stream of nitrogen gas and then chromatographed on SiO2 with a stepped-gradient of hexane/ethyl acetate (3:1, 3:2, 1:1, 2:3) to give Compound 302 (8.8 mg) as a mixture of isomers at sulfur. LCMS ESI (+) m/z 390 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.00 (d, J = 8.7 Hz, 0.5H), 7.95 (d, J = 8.7 Hz, 0.5H), 7.29-7.25 (m, 1H), 7.19-7.16 (m, 1H), 7.10-7.05 (m, 1H), 7.01 (d, 1H), 5.78-5.69 (m, 1H), 5.54-5.50 (m, 0.5H), 5.40-5.37 (m, 0.5H), 3.50 (d, J = 42 Hz, 3H), 3.39-3.11 (m, 3H).
Example 303
Example 304
Examples 305 and 306
Isomer 1 of 3-(((1S)-2,2-difluoro-1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 305) and isomer 2 of 3-(((1S)-2,2-difluoro-1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 306)
Step A: Preparation of (7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(imino)(trifluoromethyl)-λ6-sulfanone: A mixture of N-((7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(oxo)(trifluoromethyl)-λ6-sulfanylidene)acetamide and 4-fluoro-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-1-yl acetate (469 mg, 1.44 mmol) in acetonitrile (7.2 mL) at 25 °C was treated with 22.5% aqueous HCl solution (3.6 mL) and stirred at 25 °C overnight. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 30 mL of water and extracted with 3x20 mL 30% isopropyl alcohol in CHCl3. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The product residue was used without further purification. LCMS ESI (+) (M+H) m/z 284.
Step B: Preparation of 3-fluoro-5-(1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A solution of (7-fluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(imino)(trifluoromethyl)-λ6-sulfanone (428 mg, 1.5 mmol), 3-fluoro-5-hydroxy-benzonitrile (207 mg, 1.5 mmol), and cesium bicarbonate (322 mg, 1.66 mmol) in DMF (6.0 mL) was stirred at 90 °C for 4.5 hours. An additional 40 mg of cesium bicarbonate was added and the reaction mixture heated for an additional hour. The reaction mixture was poured into 60 mL of water and extracted with 3x20 mL Et2O. The combined organics were rinsed with 20 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-35% EtOAc/hexane to afford 3-fluoro-5-((1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (171 mg, 28%). LCMS ESI (+) (M+H) m/z 401.
Step C: Preparation of 3-fluoro-5-((1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A solution of 3-fluoro-5-((1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (171 mg, 0.43 mmol) in dichloromethane (8.5 mL) at 0 °C was treated with Dess-Martin periodinane (217 mg, 0.51 mmol). The reaction mixture was allowed to warm to room temperature for 2 hours. An additional 40 mg of Dess-Martin periodinane was added to drive the reaction to completion. After stirring for an additional 2 hours, the reaction mixture was quenched by the addition of 10 mL of saturated aqueous Na2S2O3 and 10 mL of saturated aqueous NaHCO3. The resulting biphase was stirred for 10 minutes. The reaction mixture was poured into 20 mL of water and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-40% EtOAc/hexane to afford 3-fluoro-5-((1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (123 mg, 72%). LCMS ESI (+) (M+H) m/z 399.
Step D: Preparation of (E, Z)-3-fluoro-5-((1-((3-methoxypropyl)imino)-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: A solution of 3-fluoro-5-((1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (52.5 mg, 0.13 mmol) and 3-methoxypropan-1-amine (61 µL, 0.59 mmol) in a mixture of toluene (2.6 mL) and cyclohexane (2.6 mL) was treated with 2,2-dimethylpropanoic acid (8 mg, 0.08 mmol). The reaction vessel was equipped with a Hickman still and a reflux condenser and heated to 104 °C for 2.5 h. LCMS analysis was achieved by taking an aliquot of the reaction mixture and adding it to a solution of MeOH containing NaBH4. LCMS indicated the formation of the amine via imine reduction. LCMS ESI (+) (M+H) m/z 472. Once complete, volatiles were removed by concentration under reduced pressure. The product residue was used without further purification.
Step E: Preparation of 3-((2,2-difluoro-1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A similar procedure as described in Step E of Example 274 was followed. Purification was achieved by chromatography on silica using 10-35% EtOAc/hexane to give 3-((2,2-difluoro-1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (32 mg, 56%). LCMS ESI (+) (M+H) m/z 435.
Step F: Preparation of 3-(((1S')-2,2-difluoro-1-hydroxy-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of 3-((2,2-difluoro-1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (32 mg, 0.074 mmol) in dichloromethane (1.5 mL) was cooled to 0 °C and sparged with nitrogen for 5 minutes. During this time formic acid (8.3 µL, 0.22 mmol) and triethylamine (20.4 µL, 0.15 mmol) were sequentially added. Once the sparging was complete, RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.4 mg, 3 mol%) was added under a continuous stream of nitrogen. The reaction vessel was sealed and kept at 4 °C overnight. The reaction mixture was poured into 10 mL of saturated aqueous NaHCO3 and extracted with 3 x 20 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-40% EtOAc/hexane as eluent to afford two isomers.
Examples 307 and 308
Isomer 1 of 3-(((1S)-7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 307) and isomer 2 of 3-(((1S)-7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Compound 308)
Step A: Preparation of 3-((7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of 3-fluoro-5-((1-oxo-7-(S-(trifluoromethyl)sulfonimidoyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (25.7 mg, 0.064 mmol) and Selectfluor® (50.3 mg, 0.14 mmol) in DMF (3.0 mL) at 25 °C was treated with cesium carbonate (46.3 mg, 0.14 mmol) and stirred at 25 °C. After 1 hour, allyl iodide (7.1 µL, 0.077 mmol) and cesium carbonate (23.1 mg, 0.071 mmol) were added to the reaction mixture. The resulting mixture stirred for 1 hour and was then poured into 30 mL of water and extracted with 3 x 10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5%->35% EtOAc/hexane to afford 3-((7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (4.5 mg, 16%). LCMS ESI (+) (M+H) m/z 475.
Step B: Preparation of 3-(((1S)-7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile: A solution of 3-((7-(N-allyl-S-(trifluoromethyl)sulfonimidoyl)-2,2-difluoro-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (4.5 mg, 0.01 mmol) in dichloromethane (1.0 mL) was cooled to 0 °C and sparged with nitrogen for 5 minutes. During this time formic acid (1.1 µL, 0.029 mmol) and triethylamine (2.6 µL, 0.019 mmol) were sequentially added. Once the sparging was complete, RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.2 mg, 3 mol%) was added under a continuous stream of nitrogen. The reaction vessel was stored at 4 °C overnight. The reaction mixture was poured into 10 mL of saturated aqueous NaHCO3 and extracted with 3 x 10 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 5-25% EtOAc/hexane to afford two isomers.
Example 309
Example 310
Example 311
Example 312
Example 313
5-(((1S,2R)-2-fluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 313)
Step A: Preparation of 4-fluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-one: S-(7-Fluoro-3-oxo-indan-4-yl) N,N-dimethylcarbamothioate (10 g, 37 mmol) was suspended in 95% ethanol (140 mL) and treated with 4 M aqueous sodium hydroxide (79 mL, 320 mmol) then the mixture was heated to reflux for 30 minutes. The reaction was cooled to 0 °C and treated dropwise with iodomethane (3.2 mL, 51.5 mmol) and the mixture was stirred for 1 hour at 0 °C. The mixture was concentrated in vacuo, and then the residue was partitioned between ethyl acetate and water. After separation, the aqueous was washed with ethyl acetate and the organic layers were combined. The ethyl acetate was washed three times with water, saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a dark solid (7.1 g). The crude material was chromatographed on SiO2 eluting with a gradient of ethyl acetate/hexane to give a dark solid (5.9 g). LCMS ESI (+) m/z 197 (M+H).
Step B: Preparation of 4-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: 4-Fluoro-7-methylsulfanyl-indan-1-one (5.9 g, 30 mmol) was dissolved in MeOH (200 mL) and the reaction was treated dropwise with a solution of Oxone® (40.8 g, 66.3 mmol) which had been dissolved in water (200 mL). The mixture was stirred at ambient temperature for 20 hours. The reaction mixture was filtered, the solids were washed with ethyl acetate and the filtrate was concentrated in vacuo. The aqueous filtrate was extracted three times with ethyl acetate then the combined organics were washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a tan solid (9.43 g). LCMS ESI (+) m/z 229 (M+H).
Step C: Preparation of 4-fluoro-7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolane]: 4-Fluoro-7-methylsulfonyl-indan-1-one (6.58 g, 28.8 mmol) and trimethyl(2-trimethylsilyloxyethoxy)silane (9.9 mL, 40.4 mmol) were dissolved in dichloromethane (105 mL), cooled to -78 °C then the reaction was treated dropwise with trimethylsilyl trifluoromethanesulfonate (1.67 mL, 9.23 mmol). After the addition, the reaction mixture was allowed to warm to ambient temperature without the bath and stirred for 4.5 hours. The reaction was quenched by addition of triethylamine (16.1 mL, 115 mmol) at ambient temperature and the reaction mixture was concentrated in vacuo. The dark residue was dissolved in ethyl acetate and washed with half-saturated NaCl. The aqueous was washed with ethyl acetate and the combined organics were washed with water, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to give a dark residue. The sticky semi-solid was suspended in 3:1 hexane/ethyl acetate (250 mL) and stirred for one hour. The dark solids were collected by filtration, washed with 3:1 hexane /ethyl acetate and air-dried to a greenish solid (4.66 g). The filtrate was concentrated and triturated with acetone (ca. 25 mL) and stirred for 20 minutes. The mixture was diluted with approximately an equal portion of hexanes then filtered. The solid was washed with 9:1 hexane/ethyl acetate and air-dried to give additional product as a lighter green solid (1.1 g). LCMS ESI (+) m/z 273 (M+H).
Step D: Preparation of 5-((7-(methylsulfonyl)-2,3-dihydrospiro[indene-1,2'-[1,3]dioxolan]-4-yl)oxy)nicotinonitrile: 4'-Fluoro-7'-methylsulfonyl-spiro[1,3-dioxolane-2,1'-indane] (2.0 g, 7.4 mmol) was combined with 3-cyano-5-hydroxypyridine (1.06 g, 8.8 mmol) in NMP (14 mL) and the solution was treated with potassium phosphate tribasic (4.68 g, 22 mmol) in a single portion. The reaction was heated to 120 °C for 14 hours. The mixture was cooled to ambient temperature then diluted with ethyl acetate (50-70 mL) and the undissolved solids were removed by filtration through a frit and washed with additional ethyl acetate. The filtrate was diluted with an equal volume of water. This caused some dark solids to form in the mixture. Addition of 25% isopropanol/methylene chloride redissolved the solids and the layers were separated. The organic layer was washed five times with water, saturated NaCl, dried over Na2SO4 then concentrated to a dark solid (1.15 g). The crude material was chromatographed on SiO2 (Biotage SNAP 50g) and eluted with a gradient of ethyl acetate/hexane. The desired product was concentrated to a light pink solid (0.50 g). LCMS ESI (+) m/z 373 (M+H)
Step E: Preparation of 5-((7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile: 5-(7'-Methylsulfonylspiro[1,3-dioxolane-2,1'-indane]-4'-yl)oxypyridine-3-carbonitrile (0.5 g, 1.3 mmol) was slurried in acetone (6 mL) and treated with 10% aqueous HCl (2.3 mL, 6.7 mmol). The solution was stirred at ambient temperature for 1 hour. The reaction mixture was adjusted to pH 8 with saturated NaHCO3 then concentrated in vacuo to remove acetone. The resulting solids were collected by filtration and air-dried (0.44 g). LCMS ESI (+) m/z 329.1 (M+H).
Step F: Preparation of 5-((2-fluoro-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile: 5-(7-Methylsulfonyl-1-oxo-indan-4-yl)oxypyridine-3-carbonitrile (0.44 g, 1.3 mmol) was dissolved in MeOH (4 mL) and treated with Selectfluor® (760 mg, 2.2 mmol). The mixture was heated to reflux for 40 hours. Acetonitrile (2 mL) was added and heating continued for 7 additional hours. The mixture was stirred overnight at ambient temperature then diluted with water, ethyl acetate and methylene chloride. The suspension was filtered and the solids were washed with ethyl acetate. The filtrate was concentrated in vacuo then the residual water was treated with acetone (2 mL) and 10% HCl (2 mL) and warmed to 50 °C for 30 minutes. The mixture was adjusted to pH 8 with solid NaHCO3 then concentrated in vacuo. The resulting aqueous was washed twice with ethyl acetate and the combined organics were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a light yellow oil (447 mg). The crude material was chromatographed on SiO2 (Biotage SNAP 25g) and eluted with a gradient of MeOH/methylene chloride. The desired material was concentrated to a yellow film (274 mg). LCMS ESI (-) m/z 345.0 (M-H).
Step G: Preparation of 5-(((1S,2R)-2-fluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 313): 5-(2-Fluoro-7-methylsulfonyl-1-oxo-indan-4-yl)oxypyridine-3-carbonitrile (274 mg, 0.79 mmol) was suspended in methylene chloride (3 mL), cooled to 0 °C, then treated with triethylamine (0.22 mL, 1.6 mmol), formic acid (0.09 mL, 2.4 mmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] (5 mg, 0.01 mmol). The reaction mixture was allowed to stand at 0 °C for 15 hours. The mixture was concentrated and chromatographed on SiO2 (Biotage SNAP 10g) and eluted with a gradient of ethyl acetate/hexane to give Compound 313 as a white solid (120 mg). LCMS ESI (+) m/z 349 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.75-8.72 (m, 1H), 8.66-8.64 (m, 1H), 7.92 (d, 1H), 7.61-7.59 (m, 1H), 6.95 (d, 1H), 5.73-5.65 (m, 1H), 5.51-5.47 (m, 0.5H), 5.38-5.34 (m, 0.5H), 3.71-3.68 (m, 1H), 3.36-3.38 (m, 2H), 3.31 (s, 3H).
Examples 314 and 315
Examples 316, 317, and 318
Isomer 1 of [[(1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 316), isomer 2 of [[(1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 317), and isomer 1 of [[(1S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 318)
Step A: Preparation of 2,2,3,4-tetrafluoro-7-methylsulfanyl-indan-1-one: Diethylaminosulfur trifluoride (0.089 mL, 0.67 mmol) was added to an ice-cold solution of 2,2,4-trifluoro-3-hydroxy-7-methylsulfanyl-indan-1-one (139 mg, 0.56 mmol) in dichloromethane (10 mL). The reaction mixture was allowed to warm to ambient temperature. Additional diethylaminosulfur trifluoride was added after 1 hour to allow the reaction to go to completion. The mixture was treated carefully with aqueous NaHCO3 and partitioned between EtOAc and water. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford 2,2,3,4-tetrafluoro-7-methylsulfanyl-indan-1-one (120 mg, 0.48 mmol, 86% yield) as an orange oil. m/z (ES-API-pos) [M+H] = 250.
Step B: Preparation of [methyl-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide: (Diacetoxyiodo)benzene (170 mg, 0.53 mmol) was added to an ice-cold solution of 2,2,3,4-tetrafluoro-7-methylsulfanyl-indan-1-one (120 mg, 0.48 mmol) and cyanamide (24 mg, 0.58 mmol) in dichloromethane (10 mL). The reaction mixture was treated with bis[rhodium(α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid)] (3.6 mg, 0.0048 mmol) and allowed to warm to ambient temperature. After 1 hour, the reaction mixture was evaporated and the residue was partitioned between EtOAc and dilute aqueous sodium thiosulfate. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford [methyl-[1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide (100 mg, 0.35 mmol, 72% yield) as a brown foam. m/z (ES-API-pos) [M+H+18] =309.
Step C: Preparation of [methyl-oxo-[1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide: Ruthenium(III) chloride (1.4 mg, 0.007 mmol) was added to an ice-cold mixture of [methyl-[1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide (100 mg, 0.34 mmol) and sodium periodate (221 mg, 1.0 mmol) in a mixture of carbon tetrachloride (4 mL), acetonitrile (4 mL), and water (8 mL). The mixture was stirred vigorously in an ice bath. After 45 minutes, the reaction mixture was diluted with dichloromethane and was washed with dilute aqueous sodium thiosulfate solution. The dichloromethane was washed with brine, dried over MgSO4, filtered, and evaporated to afford [methyl-oxo-[1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide (70 mg, 0.23 mmol, 66% yield). m/z (ES-API-pos) [M+H+18] =325.
Step D: Preparation of [[7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide: Cesium bicarbonate (88.6 mg, 0.46 mmol) was added to a solution
of 3-fluoro-5-hydroxy-benzonitrile (40.7 mg, 0.3 mmol) and [methyl-oxo-[1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide (70 mg, 0.23 mmol) in N,N-dimethylformamide (3 mL). The mixture
was stirred at ambient temperature. After 25 minutes, the reaction mixture was partitioned
between EtOAc and dilute aqueous NaCl. The EtOAc was washed with 2 portions of brine,
dried over MgSO4, filtered, and evaporated.
The residue was chromatographed on a Biotage 10 g ultra SNAP column with a 20% to
80% EtOAc:hexane gradient to afford [[7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (35.5 mg, 0.084 mmol, 37% yield) as a diastereomeric mixture.
m/z (ES-API-pos) [M+H+18] = 442.
Step E: Preparation of isomer 1 of [[(1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 316), isomer 2 of [[(1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 317), and isomer 1 of [[(1S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-οxο-λ6-sulfanylidenelcyanamide (Compound 318): RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.6 mg, 0.0025 mmol) was added to a nitrogen-sparged, ice-cold solution of [[7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (35.5 mg, 0.084 mmol), formic acid (0.013 mL, 0.34 mmol), and triethylamine (0.029 mL, 0.21 mmol) in dichloromethane (5 mL). The flask was sealed and kept at 4 °C overnight. The reaction mixture was evaporated and the residue was purified by chromatography on Biotage ultra SNAP columns with EtOAc:hexane gradients to afford 3 isomers.
Examples 319, 320, 321, and 322
Isomer 1 of [[(1R,3S)-7-[(5-Cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 319); isomer 1 of [[(1R,3R)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidenelcyanamide (Compound 320); isomer 2 of [[(1R,3S)-7-[(5-cyano-3-pyridyl)oxyl-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 321); and isomer 2 of [[(1R,3R)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 322)
Step A: Preparation of (3S)-2,2,4-trifluoro-3-hydroxy-7-methylsulfanyl-indan-1-one: A solution of (3S)-2,2,4,7-tetrafluoro-3-hydroxy-indan-1-one (966 mg, 4.39 mmol) in acetonitrile (40 mL) at 0 °C was sparged with nitrogen for 5 minutes and treated with sodium thiomethoxide (354 mg, 5.05 mmol). The ice bath was removed and the reaction mixture was stirred at ambient temperature. After 2 hours, the reaction mixture was evaporated and the residue was partitioned between EtOAc and water. The aqueous layer was extracted with 2 additional portions of EtOAc. The combined EtOAc extracts were washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 100 g SNAP column with a 10% to 60% EtOAc:hexane to afford (3S)-2,2,4-trifluoro-3-hydroxy-7-methylsulfanyl-indan-1-one (870 mg, 3.51 mmol, 80% yield) as a yellow solid. m/z (ES-API-pos) [M+H] = 249.
Step B: Preparation of (3R)-2,2,3.4-tetrafluoro-7-methylsulfanyl-indan-1-one: Diethylaminosulfur trifluoride (0.08 mL, 0.6 mmol) was added to an ice-cold solution of (3S)-2,2,4-trifluoro-3-hydroxy-7-methylsulfanyl-indan-1-one (100 mg, 0.4 mmol) in dichloromethane (10 mL). The reaction mixture was stirred overnight at ambient temperature. A small amount of additional diethylaminosulfur trifluoride was added and stirring continued. After 1 hour, the mixture was treated carefully with aqueous NaHCO3, stirred for 10 minutes, and concentrated. The aqueous slurry was partitioned between EtOAc and dilute aqueous NaHCO3. The aqueous layer was extracted with another portion of EtOAc. The combined EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford (3R)-2,2,3,4-tetrafluoro-7-methylsulfanyl-indan-1-one (99 mg, 0.4 mmol, 98% yield) as a yellow semi-crystalline solid. m/z (ES-API-pos) [M+H] = 250.
Step C: Preparation of [methyl-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide diastereomers: Bis[rhodium(α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid)] (3.05 mg, 0.004 mmol) was added to an ice-cold solution of (3R)-2,2,3,4-tetrafluoro-7-methylsulfanyl-indan-1-one (100 mg, 0.4 mmol), cyanamide (33.6 mg, 0.8 mmol), and (diacetoxyiodo)benzene (155 mg, 0.48 mmol) in dichloromethane (10 mL). The reaction mixture was allowed to warm to ambient temperature. After 1 hour, the reaction mixture was evaporated and the residue was chromatographed on a Biotage 25 g ultra SNAP column with a 50% to 100% EtOAc:hexane to afford two isomers of [methyl-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide (isomer A: 59.5 mg, 0.21 mmol, 51% yield, m/z (ES-API-pos) [M+H+18] = 309; isomer B: 39.2 mg, 0.135 mmol, 34% yield, m/z (ES-API-pos) [M+H+18] = 309).
Step D: Preparation of [methyl-oxo-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide: (Parallel reactions with separated isomers from Step C) Ruthenium(III) chloride (0.85 mg, 0.004 mmol) was added to an ice-cold mixture of isomer A of [methyl-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ4-sulfanylidene]cyanamide (59.5 mg, 0.21 mmol) and sodium periodate (131 mg, 0.62 mmol) in carbon tetrachloride (3 mL), acetonitrile (3 mL), and water (6 mL). The mixture was stirred vigorously in ice. The ice bath was removed and the mixture was allowed to warm to ambient temperature. After 1.5 hours, the reaction mixture was diluted with EtOAc and was washed with dilute sodium thiosulfate solution. The aqueous layer was extracted with another portion of EtOAc. The EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated to afford isomer A of [methyl-oxo-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide (55.2 mg, 0.18 mmol, 88% yield). m/z (ES-API-pos) [M+H+18] = 325. Isomer B of [methyl-oxo-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide was prepared in a similar fashion. m/z (ES-API-pos) [M+H+18] = 325.
Step E: Preparation of [[(1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide: (Parallel reactions with each isomer from Step D) Isomer A of [methyl-oxo-[(1R)-1,2,2,7-tetrafluoro-3-oxo-indan-4-yl]-λ6-sulfanylidene]cyanamide (47.7 mg, 0.16 mmol) was added to a solution of cesium bicarbonate (45 mg, 0.23 mmol) in tetrahydrofuran (5 mL) at ambient temperature. The mixture was stirred for 10 minutes, then added to a solution of 3-cyano-5-hydroxypyridine (24.3 mg, 0.2 mmol) in tetrahydrofuran (5 mL). The reaction mixture was stirred overnight at ambient temperature. The reaction mixture was evaporated, and the residue was partitioned between EtOAc and dilute aqueous NaCl. The aqueous layer was extracted with another portion of EtOAc. The combined EtOAc was washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on a Biotage 10 g ultra SNAP column with a 50% to 100% EtOAc:hexane to afford isomer A of [[(1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (52 mg, 0.13 mmol, 82% yield) as a white solid. m/z (ES-API-pos) [M+H+18] = 425. Isomer B of [[(1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide was prepared in a similar fashion. m/z (ES-API-pos) [M+H+18] = 425.
Step F: Preparation of [[(1R,3S)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 319); [[(1R,3R)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 320); [[(1R,3S)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 321); and [[(1R,3R)-7-(3-cyano-5-fluoro-phenoxy)-1,2,2-trifluoro-3-hydroxy-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (Compound 322) (Parallel reactions with each isomer from Step E) RuCl(p-cymene)[(R,R)-Ts-DPEN] (2.44 mg, 0.0038 mmol) was added to an ice-cold nitrogen-sparged solution of isomer A of [[(1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indan-4-yl]-methyl-oxo-λ6-sulfanylidene]cyanamide (52 mg, 0.13 mmol), formic acid (0.019 mL, 0.51 mmol), and triethylamine (0.045 mL, 0.32 mmol) in dichloromethane (10 mL). The flask was sealed and stored at 4 °C overnight. The reaction mixture was evaporated and the residue was chromatographed on a Biotage 25 g SNAP ultra column with a 50% to 100% EtOAc:hexane gradient to afford 2 isomeric products.
Example 323
4-((5-Bromopyridin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (Compound 323)
Step A: Preparation of 4-((5-bromopyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: Prepared in a similar manner to that described in Example 313, Step D and E, substituting 5-bromopyridin-3-ol for 3-cyano-5-hydroxypyridine. LCMS ESI (-) m/z 380, 382 (M-H).
Step B: Preparation of 4-((5-bromopyridin-3-yl)oxy)-2,2-difluoro-7-(methylsulfonyl-2,3-dihydro-1H-inden-1-one: Prepared in a similar manner to that described in Example 163, Step D and E, substituting 4-((5-bromopyridin-3-yl)oxy)-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one for 3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile. LCMS ESI (+) m/z 418, 420 (M+H); 1H NMR (400 MHz, CD3COCD3): δ 8.65-8.63 (m, 1H), 8.60-8.59 (m, 1H), 8.15-8.12 (m, 1H), 8.02-8.00 (m, 1H), 7.60-7.57 (m, 1H), 3.86-3.79 (m, 2H), 3.39 (s, 3H).
Example 324
Example 325
Example 326
Example 327
2-Fluoro-5-(((1S,3R)-2,2,3-trifluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile (Compound 327)
Step A: Preparation of 4,7-difluoro-1H-indene-1,3(2H)-dione: A solution of 3,6 difluorophthalic anhydride (4.25 g, 23.1 mmol), tert-butyl 3-oxobutanoate (4.29 mL, 25.9 mmol) and acetic anhydride (21.0 mL, 221.6 mmol) at 25 °C was treated with triethylamine (11.7 mL, 84.3 mmol) and stirred at ambient temperature for 18 hours. The reaction mixture was cooled to 0 °C and treated with 10% hydrochloric acid (65 mL, 211 mmol) by dropwise addition. Once the addition was complete, the ice bath was removed and the mixture stirred at ambient for 10 minutes. The mixture was then heated to 75 °C for 10 minutes. During this time gas evolution was observed. The suspension slowly broke up to form a clear red mixture. The reaction mixture was poured into 100 mL of water and extracted with 3 x 50 mL CH2Cl2. The combined organics were dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification.
Step B: Preparation of 2,2,4,7-tetrafluoro-1H-indene-1,3(2H)-dione: A solution of the unpurified 4,7-difluoro-1H-indene-1,3(2H)-dione (4.2 g, 23.1 mmol) in acetonitrile (100 mL) cooled in a 25 °C water bath was treated with sodium carbonate (5.38 g, 50.7 mmol). Selectfluor® (17.97 g, 50.7 mmol) was added and the reaction mixture was stirred at ambient temperature for 1 hour. Volatiles were removed under reduced pressure and the residue was poured into 100 mL of 0.1% HCl and extracted with 3 x 50 mL EtOAc. The combined organics were rinsed with 40 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The residue was purified by flash chromatography on silica gel 1:1 hexane/ethyl acetate to give 2,2,4,7-tetrafluoro-1H-indene-1,3(2H)-dione (3.5 g, 70%) as a solid. 1H NMR (400 MHz, CDCl3): δ 7.70 (t, 2H).
Step C: Preparation of (S)-2,2,4,7-tetrafluoro-3-hydroxy-2,3-dihydro-1H-inden-1-one: To a solution of 2,2,4,7-tetrafluoro-1H-indene-1,3(2H)-dione (3.48 g, 16.0 mmol) in dichloromethane (150 mL) at 0 °C was added formic acid (600 µL, 16.0 mmol) and triethylamine (1.55 mL, 11.2 mmol). The resulting mixture was sparged with nitrogen for 5 minutes and then RuCl(p-cymene)[(S,S)-Ts-DPEN] (203.6 mg, 0.32 mmol) was added. The reaction vessel was sealed and put into a 4 °C refrigerator to stand for 18 hours. The reaction mixture was poured into 40 mL 1 N HCl. The CH2Cl2 layer was separated and the aqueous layer extracted with ethyl acetate (2x50 mL). The combined organics were dried with Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using 25% EtOAc/hexane to give (S)-2,2,4,7-tetrafluoro-3-hydroxy-2,3-dihydro-1H-inden-1-one (2.9 g, 83%) as an oil. 1H NMR (400 MHz, CDCl3): δ 7.51 (ddd, 1H), 7.29-7.23 (m, 1H), 5.44 (dd, 1H), 2.79 (dd, 1H).
Step D: Preparation of (S)-2,2,4-trifluoro-3-hydroxy-7-(methylthio)-2,3-dihydro-1H-inden-1-one: A solution of (S)-2,2,4,7-tetrafluoro-3-hydroxy-2,3-dihydro-1H-inden-1-one (966 mg, 4.39 mmol) in acetonitrile (40 mL) at 0 °C was sparged with nitrogen for 5 minutes and treated with sodium thiomethoxide (353.7 mg, 5.05 mmol). The ice bath was removed and the reaction mixture was allowed to stir at ambient temperature for 2 hours. The reaction mixture was evaporated and the residue partitioned between 40 mL of EtOAc and 40 mL of water. The aqueous layer was further extracted with 2 x 40 mL of EtOAc. The combined organic extracts were washed with brine, dried over MgSO4, filtered, and evaporated. The residue was chromatographed on silica using 10-60% EtOAc/hexane to afford (S)-2,2,4-trifluoro-3-hydroxy-7-(methylthio)2,3-dihydro-1H-inden-1-one (870 mg, 80%) as a yellow solid. LCMS ESI (+) m/z 249 (M+H).
Step E: Preparation of (S)-2,2,4-trifluoro-3-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: (S)-2,2,4-trifluoro-3-hydroxy-7-(methylthio)-2,3-dihydro-1H-inden-1-one (400 mg, 1.6 mmol) was dissolved in MeOH (10 mL) and the reaction was treated dropwise with a solution of Oxone® (2.18 g, 3.55 mmol) dissolved in water (10 mL). The mixture was stirred at ambient temperature for 14 hours. The reaction mixture was filtered, the solids were washed with ethyl acetate and the filtrate was concentrated in vacuo. The aqueous filtrate was extracted 3 x 30 mL of EtOAc and then the combined organics were washed with saturated NaCl, dried over Na2SO4 and concentrated in vacuo to a yellow solid that was used without further purification (467 mg). LCMS ESI (+) m/z 281.1 (M+H).
Step F: Preparation of (R)-2,2,3,4-tetrafluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one: (S)-2,2,4-trifluoro-3-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-one (450 mg, 1.6 mmol) was dissolved in dichloromethane (16 mL), cooled to 0 °C and treated dropwise with diethylaminosulfur trifluoride (0.32 mL, 2.4 mmol) and the mixture was stirred at 0 °C for 2 hours, then the whole homogeneous reaction mixture was placed into the refrigerator overnight. The reaction was treated with additional diethylaminosulfur trifluoride (0.32 mL, 2.4 mmol) and stirring continued for 6 hours at 0 °C. The cold reaction was treated with saturated NaHCO3 (10 mL) and stirred vigorously for 20 minutes. The mixture was diluted with additional methylene chloride and the layers were separated. The aqueous was re-extracted with methylene chloride and the combined organic layers were dried over Na2SO4 and concentrated in vacuo to a yellow solid. The crude material was chromatographed on SiO2 (Biotage SNAP Ultra) and eluted with a gradient of ethyl acetate / hexanes. The desired material was concentrated to a pale yellow solid (258 mg). LCMS ESI (+) m/z 283 (M+H).
Step G: Preparation of (R)-2-fluoro-5-((2,2,3-trifluoro-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile: (3R)-2,2,3,4-Tetrafluoro-7-methylsulfonyl-indan-1-one (0.066 g, 0.24 mmol) and 2-fluoro-5-hydroxybenzenecarbonitrile (35 mg, 0.26 mmol) were dissolved in DMF (1 mL) and treated with cesium bicarbonate (59 mg, 0.31 mmol). The mixture was stirred at ambient temperature for 3 hours. The reaction was concentrated in a stream of nitrogen to remove most of the DMF then redissolved in dichloromethane. The crude material was chromatographed on SiO2 (Biotage SNAP) and eluted with a gradient of ethyl acetate/hexane. The product was concentrated to colorless oil (97 mg). LCMS ESI (+) m/z 400.1 (M+H).
Step H: Preparation of 2-fluoro-5-(((1S,3R)-2,2,3-trifluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile Compound 327): 2-Fluoro-5-[(3R)-2,2,3-trifluoro-7-methylsulfonyl-1-oxo-indan-4-yl]oxy-benzonitrile (0.097 g, 0.24 mmol) was suspended in methylene chloride (1.6 mL), cooled to 0 °C and treated with triethylamine (0.068 mL, 0.49 mmol), formic acid (0.027 mL, 0.73 mmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.5 mg, 0.002 mmol). The reaction mixture was stirred at 0 °C in the refrigerator for 14 hours. The mixture was concentrated in a stream of nitrogen gas then chromatographed on SiO2 (Biotage SNAP) and eluted with a gradient of ethyl acetate/hexane to provide Compound 327 as off-white solid (26 mg). LCMS ESI (+) m/z 402 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.10-8.06 (m, 1H), 7.44-7.32 (m, 3H), 6.91 (d, 1H), 5.95-5.91 (m, 0.5H), 5.81-5.78 (m, 0.5H), 5.70-5.64 (m, 1H), 4.00-3.97 (m, 1H), 3.24 (s, 3H).
Example 328
(1S,2S,3R)-4-((5-Bromopyridin-3-yl)oxy)-2,3-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 328)
Step A: Preparation of (1S,2R)-4-((5-bromopyridin-3-yl)oxy)-2-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol: Prepared in a similar manner to that described in Example 313, Steps D-G substituting 5-bromopyridin-3-ol for 3-cyano-5-hydroxypyridine in Step D. LCMS ESI (+) m/z 402, 404 (M+H).
Step B: Preparation of (1S,2R)-4-((5-bromopyridin-3-yl)oxy)-2-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl acetate: (1S,2R)-4-[(5-Bromo-3-pyridyl)oxy]-2-fluoro-7-methylsulfonyl-indan-1-ol (0.88 g, 2.2 mmol) was dissolved in dichloromethane (21 mL), treated with 4-dimethylaminopyridine (80 mg, 0.66 mmol) and triethylamine (0.61 mL, 4.4 mmol) then cooled to 0 °C. The mixture was treated dropwise with acetic anhydride (0.41 mL, 4.4 mmol) then allowed to warm to ambient temperature and stirred for 2 hours. The mixture was diluted with additional methylene chloride and washed with water, IN KHSO4, water, one-half saturated NaHCO3, dried over Na2SO4 and concentrated in vacuo to white solid (0.97 g). LCMS ESI (+) m/z 444, 446 (M+H).
Step C: Preparation of (1S,2S)-3-bromo-4-((5-bromopyridin-3-yl)oxy)-2-fluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl acetate: [(1S,2R)-4-[(5-Bromo-3-pyridyl)oxy]-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (0.97 g, 2.2 mmol) was dissolved in 1,2-dichloroethane (13 mL) and treated with freshly-recrystallized N-bromosuccinimide (427 mg, 2.4 mmol) and azobisisobutyronitrile (36 mg, 0.22 mmol). The reaction mixture was placed under an argon atmosphere and heated to 80 °C for 30 minutes. Two additional portions of fresh azobisisobutyronitrile (36 mg, 0.22 mmol) were added at 30 minute intervals. After 100 minutes, the reaction was cooled and concentrated in vacuo. The residue was dissolved with methylene chloride, washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo to orange residue. This crude mixture isomers (1.1 g), was used without further purification. LCMS ESI (+) m/z 522, 524, 526 (M+H).
Step D: Preparation of (1S,2R,3S)-4-((5-bromopyridin-3-yl)oxy)-2-fluoro-3-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl acetate: [(1S,2S)-3-Bromo-4-[(5-bromo-3-pyridyl)oxy]-2-fluoro-7-methylsulfonyl-indan-1-yl] acetate (1.1 g, 2.1 mmol) was dissolved in 1,2-dimethoxyethane (15 mL) and water (0.07 mL) and the solution was treated with silver perchlorate hydrate (710 mg, 3.2 mmol). The mixture was heated to 70 °C for 1.5 hours. The reaction was cooled, diluted with hexane then with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo to an insoluble residue. The oily solid was dissolved in ethyl acetate/methylene chloride and concentrated onto powdered Na2SO4. The dry load was placed atop a column pre-equilibrated with 20% ethyl acetate/hexane and chromatographed on SiO2 (Biotage SNAP Ultra 100g) eluting with a gradient of MeOH/methylene chloride. The mixed fractions from the first column were concentrated to a yellow oil and re-chromatographed on SiO2 (Biotage SNAP Ultra 25g) and eluted with a gradient of ethyl acetate/hexane to give a colorless oil (33 mg). LCMS ESI (+) m/z 460, 462 (M+H).
Step E: Preparation of (1S,2S,3R)-4-((5-bromopyridin-3-yl)oxy)-2,3-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-yl acetate: [(1S,2R,3S)-4-[(5-Bromo-3-pyridyl)oxy]-2-fluoro-3-hydroxy-7-methylsulfonyl-indan-1-yl] acetate (0.053 g, 0.12 mmol) was dissolved in dichloromethane (1.2 mL), cooled to 0 °C and treated dropwise with diethylaminosulfur trifluoride (0.023 mL, 0.17 mmol) then stirred at 0 °C for 1 hour. The mixture was removed from the ice bath and allowed to warm to ambient temperature for 30 minutes, then the reaction was recooled to 0 °C, treated with saturated NaHCO3 (5 mL) and stirred vigorously for 20 minutes. The mixture was diluted with additional dichloromethane and separated. The aqueous was washed twice with dichloromethane and the combined organic layers were dried over Na2SO4 and concentrated in vacuo. The crude product was chromatographed on SiO2 (Biotage SNAP Ultra 10g) and eluted with a gradient of ethyl acetate/hexane to give a colorless film (47 mg). LCMS ESI (+) m/z 462, 464 (M+H).
Step F: Preparation of (1S,2S,3R)-4-((5-bromopyridin-3-yl)oxy)-2,3-difluoro-7-(methylsulfonyl)-2,3-dihydro-1H-inden-1-ol (Compound 328): [(1S,2S,3R)-4-[(5-bromo-3-pyridyl)oxy]-2,3-difluoro-7-methylsulfonyl-indan-1-yl] acetate (0.046 g, 0.10 mmol) was dissolved in THF/MeOH (1:1, 1.25 mL), cooled to 0 °C, and treated with a solution containing lithium hydroxide hydrate (7.9 mg, 0.20 mmol) in water (0.65 mL). The reaction was stirred at 0 °C for 90 minutes. The reaction was quenched at 0 °C with 10% citric acid to pH 4 then saturated NaHCO3 was added to pH 8. The aqueous was extracted three times with ethyl acetate and the combined organics were washed with saturated NaHCO3, saturated NaCl, dried over Na2SO4 and concentrated in vacuo. The crude material was chromatographed on SiO2 (Biotage SNAP 10g) and eluted with a gradient of ethyl acetate/hexane. The fractions were assayed by LCMS and those containing pure product were combined and concentrated in vacuo to give Compound 328 as white film (28 mg). LCMS ESI (+) m/z 420, 422 (M+H); 1H NMR (400 MHz, CDCl3): δ 8.63-8.61 (m, 1H), 8.45-8.43 (m, 1H), 8.11-8.07 (m, 1H), 7.66-7.64 (m, 1H), 6.96 (d, 1H), 6.13-6.11 (m, 0.5H), 5.99-5.97 (m, 0.5H), 5.86-5.82 (m, 1H), 5.24-5.04 (m, 1H), 3.30 (s, 3H), 3.03-3.00 (m, 1H).
Example 329
Example 330
Example 331
Example 332
Example 333
Example 334
Example 335
(1S,2S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2-difluoro-3-hydroxy-indane-4-sulfonamide (Compound 335)
Step A: [(1S,2R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate: To a stirred solution of (2R,3S)-7-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indane-4-sulfonamide (0.115 g, 0.32 mmol) in DCM (3 mL) was added 4-(dimethylamino)pyridine (0.012 g, 0.097 mmol) and triethylamine (0.090 mL, 0.64 mmol). Acetic anhydride (0.061 mL, 0.64 mmol) was added dropwise at 0 °C under nitrogen. The reaction mixture was allowed to warm to ambient temperature and stirred overnight. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (20-50% EtOAc/hexane) to give [(1S,2R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate (0.111 g, 77%). LCMS ESI (-) m/z 449 (M-H).
Step B: [(1S,2S)-7-(acetylsulfamoyl)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate: To a stirred solution of [(1S,2R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate (111 mg, 0.25 mmol) in DCE (2.7 mL) was added N-bromosuccinimide (66 mg, 0.37 mmol) and 2,2'-azobisisobutyronitrile (0.8 mg, 0.005 mmol). The reaction mixture was heated at 80 °C for 3 hours. After cooling, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (30-75% EtOAc/hexane) to give [(1S,2S)-7-(acetylsulfamoyl)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate (144 mg). LCMS ESI (-) m/z 527/529 (M-H).
Step C: [(1S,2R,3R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl]acetate and [(1S,2R,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl]acetate: To a stirred solution of [(1S,2S)-7-(acetylsulfamoyl)-3-bromo-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-indan-1-yl] acetate (0.144 g, 0.272 mmol) in 1,2-dimethoxyethane (0.90 mL) and water (0.090 mL) was added silver perchlorate hydrate (0.092 g, 0.41 mmol). The reaction mixture was heated at 70 °C for 30 minutes. After cooling, the reaction mixture was diluted with EtOAc and filtered through Celite. The filtrate was washed with water and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (30-60% EtOAc/hexane) to give [(1S,2R,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl] acetate, which were further purified by C18 reverse phase flash chromatography (Biotage Isolera One unit, C18 Flash) with 20-60% CH3CN/water affording [(1S,2R,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl] acetate (0.032 g, 25%). LCMS ESI (-) m/z 465 (M-H). Further elution of the silica gel column with 60-80% EtOAc/hexane gave [(1S,2R,3R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl] acetate (0.023 g, 18%). LCMS ESI (-) m/z 465 (M-H).
Step D: [(1S,2S,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2,3-difluoro-indan-1-yl] acetate: To a stirred solution of [(1S,2R,3R)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2-fluoro-3-hydroxy-indan-1-yl] acetate (23 mg, 0.050 mmol) in DCM (0.5 mL) was added (diethylamino)sulfur trifluoride (DAST) (0.013 mL, 0.099 mmol) at -78 °C under nitrogen. The reaction mixture was allowed to warm to 0 °C and stirred for 15 minutes. The reaction was quenched by saturated aqueous NaHCO3 solution. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexanes) to give [(1S,2S,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2,3-difluoro-indan-1-yl] acetate (20 mg, 87%). LCMS ESI (-) m/z 467 (M-H).
Step E: N-[(1S,2S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2-difluoro-3-hydroxy-indan-4-yl]sulfonylacetamide: To a stirred solution of (1S,2S,3S)-7-(acetylsulfamoyl)-4-(3-cyano-5-fluoro-phenoxy)-2,3-difluoro-indan-1-yl] acetate (20 mg, 0.043 mmol) in tetrahydrofuran (0.3 mL) was added 0.5 N LiOH solution (0.26 mL, 0.13 mmol) at 0 °C under nitrogen. The reaction mixture was allowed to warm to ambient temperature and stirred for 3 hours. The reaction was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (+) m/z 425 (M+H).
Step F: (1S,2S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2-difluoro-3-hydroxy-indane-4-sulfonamide (Compound 335): To a stirred solution of N-[(1S,2S,3S)-7-(3-cyano-5-fluoro-phenoxy)-1,2-difluoro-3-hydroxy-indan-4-yl]sulfonylacetamide (18 mg, 0.042 mmol) in tetrahydrofuran (0.3 mL) was added 3 N HCl (0.084 mL, 9.2 mmol). The reaction mixture was heated at reflux for 12 hours. After cooling, the reaction was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexane) to give Compound 335 (8 mg, 49%). LCMS ESI (-) m/z 383 (M-H); 1H NMR (400 MHz, CD3OD): δ 8.04 (d, 1H), 7.45-7.41 (m, 1H), 7.31-7.29 (m, 1H), 7.26-7.21 (m, 1H), 7.18 (d, 1H), 6.30-6.11 (m, 1H), 5.80 (t, 1H), 5.37-5.17 (m, 1H).
Example 336
Example 337
(1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dihydroxy-indane-4-sulfonamide (Compound 337)
Step A: 7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide: To a stirred solution of 7-(3-cyano-5-fluoro-phenoxy)-3-oxo-indane-4-sulfonamide (2.80 g, 8.1 mmol) in DCM (54 mL) was added trimethyl(2-trimethylsilyloxyethoxy)silane (2.78 mL,11.3 mmol). The reaction mixture was cooled to-78 °C. Trimethylsilyl trifluoromethanesulfonate (0.58 mL, 3.2 mmol) was added dropwise under nitrogen. The reaction mixture was allowed to warm to ambient temperature. After stirring for 2 hours, additional trimethyl(2-trimethylsilyloxyethoxy)silane (1.40 mL, 5.60 mmol) was added, and the reaction was stirred at ambient temperature for additional 1 hour. Triethylamine (3.38 mL, 24.3 mmol) was added dropwise. After stirring for 10 minutes, the reaction was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexane) to give 7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (1.41 g, 45%). LCMS ESI (-) m/z 389 (M-H).
Step B: 1'-bromo-7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide: To a stirred solution of 7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (1.41 g, 3.61 mmol) in DCE (24 mL) was added N-bromosuccinimide (0.707 g, 3.97 mmol) and 2,2'-azobisisobutyronitrile (0.006 g, 0.04 mmol). The reaction mixture was heated at 80 °C for 30 minutes. After cooling, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried and concentrated. The residue was purified by column chromatography on silica gel (20-50% EtOAc/hexane) to give 1'-bromo-7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (1.19 g, 70%). LCMS ESI (+) m/z 467, 469 (M-H).
Step C: 7'-(3-cyano-5-fluoro-phenoxy)-1'-hydroxy-spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide: To a stirred solution of 1'-bromo-7'-(3-cyano-5-fluoro-phenoxy)spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (1.19 g, 2.54 mmol) in 1,2-dimethoxyethane (21 mL) and water (7 mL) was added disilver carbonate (1.05 g, 3.8 mmol). The reaction mixture was stirred at ambient temperature overnight. The mixture was diluted with EtOAc and filtered through Celite. The filtrate was washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (-) m/z 405 (M-H).
Step D: 7'-(3-cyano-5-fluoro-phenoxy)-1'-oxo-spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide: To a stirred solution of 7'-(3-cyano-5-fluoro-phenoxy)-1'-hydroxy-spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (1.03 g, 2.53 mmol) in DCM (25 mL) was added Dess-Martin periodinane (1.61 g, 3.80 mmol). The reaction mixture was stirred at ambient temperature for 1 hour. The reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give 7'-(3-cyano-5-fluoro-phenoxy)-1'-oxo-spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (0.460 g, 45%). LCMS ESI (-) m/z 403 (M-H).
Step E: 7-(3-cyano-5-fluoro-phenoxy)-1,3-dioxo-indane-4-sulfonamide: To a stirred solution of 7'-(3-cyano-5-fluoro-phenoxy)-1'-oxo-spiro[1,3-dioxolane-2,3'-indane]-4'-sulfonamide (250 mg, 0.620 mmol) in tetrahydrofuran (3 mL) was added 4 N HCl (1.55 mL, 6.18 mmol). The reaction was heated at 60 °C for 1 hour. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. LCMS ESI (-) m/z 359 (M-H).
Step F: 7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dioxo-indane-4-sulfonamide: To a stirred solution of 7-(3-cyano-5-fluoro-phenoxy)-1,3-dioxo-indane-4-sulfonamide (223 mg, 0.620 mmol) in acetonitrile (6 mL) was added sodium carbonate (144 mg, 1.36 mmol) at ambient temperature under nitrogen. Selectfluor® (482 mg, 1.36 mmol) was added and the reaction mixture was stirred at 25 °C for 30 minutes. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexanes) to give 7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dioxo-indane-4-sulfonamide (161 mg, 66%). LCMS ESI (-) m/z 395 (M-H).
Step G: (1R,3S)-7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dihydroxy-indane-4-sulfonamide (Compound 337): Formic acid (0.092 mL, 2.4 mmol) was added slowly to a solution of triethylamine (0.227 mL, 1.63 mmol) in DCM (4 mL) at 0 °C. 7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dioxo-indane-4-sulfonamide (161 mg, 0.410 mmol) was then added followed by the addition of RuCl(p-cymene)[(R,R)-Ts-DPEN] (7.8 mg, 0.012 mmol) under nitrogen. The flask was placed in a 4 °C refrigerator overnight. The reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO3 and brine, dried, and concentrated. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give (1S,3S)-7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-1,3-dihydroxy-indane-4-sulfonamide (43 mg, 26%). LCMS ESI (-) m/z 399 (M-H). Further elution afforded Compound 337 (26 mg, 16%). LCMS ESI (-) m/z 399 (M-H). 1H NMR (400 MHz, CD3OD): δ 8.00 (d, 1H), 7.44-7.41 (m, 1H), 7.35-7.32 (m, 1H), 7.29-7.24 (m, 1H), 7.14 (d, 1H), 5.46 (d, 1H), 5.06 (d, 1H).
Example 338
Example 339
Example 340
(1R,3S)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-hydroxy-indane-4-sulfonamide (Compound 340)
Step A: (3S)-7-benzylsulfanyl-2,2,4-trifluoro-3-hydroxy-indan-1-one: To a stirred mixture of (3S)-2,2,4,7-tetrafluoro-3-hydroxy-indan-1-one (250 mg, 1.14 mmol) and cesium carbonate (555 mg, 1.7 mmol) in DMF (8 mL) was added dropwise benzyl mercaptan (0.15 mL, 1.3 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 30 minutes. The reaction was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-40% EtOAc/hexane) to give (3S)-7-benzylsulfanyl-2,2,4-trifluoro-3-hydroxy-indan-1-one (350 mg, 95%). LCMS ESI (+) m/z 342 (M+NH4+).
Step B: (3R)-7-benzylsulfanyl-2,2,3,4-tetrafluoro-indan-1-one: To a stirred solution of (3S)-7-benzylsulfanyl-2,2,4-trifluoro-3-hydroxy-indan-1-one (350 mg, 1.08 mmol) in DCM (10 mL) was added dropwise (diethylamino)sulfur trifluoride (DAST) (0.228 mL, 1.73 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 5 hours. The reaction was quenched by the addition of saturated aqueous NaHCO3. The mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (5-20% EtOAc/hexane) to give (3R)-7-benzylsulfanyl-2,2,3,4-tetrafluoro-indan-1-one (210 mg, 60%). LCMS ESI (-) m/z 325 (M-H).
Step C: (1R)-1,2,2,7-tetrafluoro-3-oxo-indane-4-sulfonamide: To a stirred suspension of (3R)-7-benzylsulfanyl-2,2,3,4-tetrafluoro-indan-1-one (290 mg, 0.89 mmol) in acetic acid (9 mL) and water (1 mL) was added N-chlorosuccinimide (356 mg, 2.67 mmol) at 0 °C. The reaction mixture was allowed to warm to ambient temperature and stirred for 2 hours. The reaction was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The crude was used in the next step without further purification. The crude was dissolved in DCM (3 mL) and added dropwise to a stirred solution of 0.5 N ammonia in dioxane (8.9 mL, 4.4 mmol) 0 °C under nitrogen. The reaction mixture was stirred for 15 minutes and then concentrated under reduced pressure. The residue was partitioned between EtOAc and water. The organic layer was washed successively with saturated aqueous NaHCO3, water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (20-50% EtOAc/hexanes) to give (1R)-1,2,2,7-tetrafluoro-3-oxo-indane-4-sulfonamide (142 mg, 56%). LCMS ESI (+) m/z 284 (M+H).
Step D: (1R)-7-[(5-cyano-3-pyridyl)oxyl-1,2,2-trifluoro-3-oxo-indane-4-sulfonamide: A mixture of (1R)-1,2,2,7-tetrafluoro-3-oxo-indane-4-sulfonamide (66 mg, 0.23 mmol), 3-cyano-5-hydroxypyridine (42 mg, 0.35 mmol) and cesium bicarbonate (59 mg, 0.3 mmol) in NMP (2.3 mL) was heated at 60 °C for 1 hour. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (30-80% EtOAc/hexane) to give (1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indane-4-sulfonamide (19 mg, 21%). LCMS ESI (-) m/z 382 (M-H).
Step E: (1R,3S)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-hydroxy-indane-4-sulfonamide (Compound 340): To a stirred solution of (1R)-7-[(5-cyano-3-pyridyl)oxy]-1,2,2-trifluoro-3-oxo-indane-4-sulfonamide (19 mg, 0.05 mmol) in DCM (0.5 mL) were added formic acid (0.0056 mL, 0.15 mmol) and triethylamine (0.014 mL, 0.10 mmol) followed by RuCl(p-cymene)[(R,R)-Ts-DPEN] (0.6 mg, 0.001 mmol) under nitrogen. The flask was then placed in a 4 °C refrigerator overnight. The reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give Compound 340 (7 mg, 37%). LCMS ESI (-) m/z 384 (M-H); 1H NMR (400 MHz, CD3OD): δ 8.81 (d, 1H), 8.73 (d, 1H), 8.11-8.07 (m, 1H), 8.06-8.04 (m, 1H), 7.18 (d, 1H), 6.04-5.86 (m, 1H), 5.57-5.51 (m, 1H).
Example 341
(1R,3S)-1,2,2-trifluoro-7-[(5-fluoro-3-pyridyl)oxy]-3-hydroxy-indane-4-sulfonamide (Compound 341)
Step A: (1R)-1,2,2-trifluoro-7-[(5-fluoro-3-pyridyl)oxy]-3-oxo-indane 4-sulfonamide: A mixture of (1R)-1,2,2,7-tetrafluoro-3-oxo-indane-4-sulfonamide (70 mg, 0.25 mmol), 3-fluoro-5-hydroxypyridine (42 mg, 0.37 mmol) and cesium bicarbonate (62 mg, 0.32 mmol) in NMP (1.2 mL) was heated at 60 °C for 8 hours. After cooling, the reaction mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (30-70% EtOAc/hexane) to give (1R)-1,2,2-trifluoro-7-[(5-fluoro-3-pyridyl)oxy]-3-oxo-indane-4-sulfonamide (28 mg, 30%). LCMS ESI (-) m/z 375 (M-H).
Step B: (1R,3S)-1,2,2-trifluoro-7-[(5-fluoro-3-pyridyl)oxy]-3-hydroxy-indane-4-sulfonamide (Compound 341): To a stirred solution of (1R)-1,2,2-trifluoro-7-[(5-fluoro-3-pyridyl)oxy]-3-oxo-indane-4-sulfonamide (28 mg, 0.070 mmol) in DCM (0.7mL) were added formic acid (0.0084 mL, 0.22 mmol) and triethylamine (0.021 mL, 0.15 mmol) followed by RuCl(p-cymene)[(R,R)-Ts-DPEN] (1 mg, 0.002 mmol) under nitrogen. The flask was then placed in a 4 °C refrigerator overnight. The reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20-60% EtOAc/hexane) to give Compound 341 (12 mg, 43%). LCMS ESI (-) m/z 377 (M-H); 1H NMR (400 MHz, CD3OD): δ 8.43 (d, 1H), 8.35 (d, 1H), 8.10-8.06 (m, 1H), 7.59-7.54 (m, 1H), 7.15 (d, 1H), 6.03-5.85 (m, 1H), 5.56-5.50 (m, 1H).
Examples 342 and 343
Examples 344 and 345
5-(((1S,3R)-2,2,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 344) and 5-(((1S,3S)-2,2,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 345)
Step A: Preparation of (R)-2,2,3,4-tetrafluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-one: A solution of (S)-2,2,4-trifluoro-3-hydroxy-7-(methylthio)-2,3-dihydro-1H-inden-1-one (402 mg, 1.62 mmol) in dichloromethane (16.2 mL) at 0 °C was treated with diethylaminosulfur trifluoride (390 µL, 2.92 mmol). The ice bath was removed from the resulting reaction mixture and the reaction mixture was stirred for 2 hours at room temperature. Volatiles were removed by concentration under reduced pressure. The residue was suspended in 30 mL of EtOAc, cooled to 0 °C, and quenched by the addition of 20 mL of saturated aqueous NaHCO3. The reaction mixture was vigorously stirred for 30 minutes and then extracted with 3 x 20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification. LCMS ESI (+) (M+H) m/z 251.
Step B: Preparation of (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)thio)-2,3-dihydro-1H-inden-1-one: A solution of (R)-2,2,3,4-tetrafluoro-7-(methylthio)-2,3-dihydro-1H-inden-1-one (393 mg, 1.57 mmol) in acetonitrile (15.7 mL) at 0 °C was treated with Selectfluor® (584.3 mg, 1.65 mmol) and stirred at 0 °C for 2 hours. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 30 mL of water and extracted with 3 x 20 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-30% EtOAc/hexane to afford (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)thio)-2,3-dihydro-1H-inden-1-one (153 mg, 36%) as a yellow oil. LCMS ESI (+) (M-F) m/z 249.
Step C: Preparation of (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one: A solution of (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)thio)-2,3-dihydro-1H-inden-1-one (91.8 mg, 0.34 mmol) in a mixture of methanol (3.4 mL) and water (3.4 mL) was treated with Oxone® (252.5 mg, 0.41 mmol). The resulting suspesnion was heated to 60 °C ovenight. Additional Oxone® (252.5 mg, 0.41 mmol) was added and the reaction mixture heated for an additional 6 hours. Volatiles were removed by concentration under reduced pressure. The reaction mixture was poured into 100 mL of water and extracted with 3 x 25 mL EtOAc. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 10-40% EtOAc/hexane to afford (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one as a white solid (73 mg, 71%). LCMS ESI (+) (M+H) m/z 301.
Step D: Preparation of (R)-5-((22,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile: A solution of (R)-2,2,3,4-tetrafluoro-7-((fluoromethyl)sulfonyl)-2,3-dihydro-1H-inden-1-one (36.9 mg, 0.12 mmol) and 3-cyano-5-hydroxypyridine (14.8 mg, 0.12 mmol) in DMF (1.2 mL) was treated with cesium bicarbonate (28.6 mg, 0.15 mmol) and stirred at 35 °C for 3 hours. The reaction mixture was poured into 30 mL of water and extracted with 3 x 10 mL Et2O. The combined organics were rinsed with 10 mL of brine, dried with MgSO4, filtered, and concentrated to dryness. Purification was achieved by chromatography on silica using 20-60% EtOAc/hexane to afford (R)-5-((2,2,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (43.4 mg, 88%) as a solid. LCMS ESI (+) m/z 419 (M+H+H2O).
Step E: Preparation of 5-(((1S,3R)-2,2,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 344) and 5-(((1S,3S)-22,3-trifluoro-7-((fluoromethyl)sulfonyl)-1-hydroxy-2,3-dihydro-1H-inden-4-yl)oxy)nicotinonitrile (Compound 345): Prepared similarly according to Example 327, step H. Purification was achieved by chromatography on silica using 20-45% EtOAc/hexane to afford Compound 344 (27.3 mg, 59%) and Compound 345 (4.2 mg, 9%).
Example 346
Example 347: Mosher Ester Analysis
Example 348: HIF-2α Scintillation Proximity Assay (SPA)
| Compound Number | Mean SPA IC50 (µM) | SD |
| 1 | 0.005 | N/A |
| 2 | <0.005 | N/A |
| 3 | 0.34 | 0.03 |
| 4 | 3.3 | N/A |
| 5 | 0.90 | 0.08 |
| 6 | <0.005 | N/A |
| 7b | 3.8 | N/A |
| 7a | 0.047 | N/A |
| 8 | <0.005 | N/A |
| 9 | <0.005 | N/A |
| 11 | <0.005 | N/A |
| 12 | 9.8 | N/A |
| 13 | 6.6 | N/A |
| 14 | 5.2 | N/A |
| 15 | 0.008 | 0.003 |
| 16 | 0.98 | N/A |
| 17 | 0.058 | 0.059 |
| 18 | 0.12 | N/A |
| 19 | 38 | N/A |
| 20 | 1.1 | 1.04 |
| 21 (Ref.) | 0.14 | 0.023 |
| 22 | 0.49 | N/A |
| 23 | 6.6 | N/A |
| 24 (Ref.) | 0.92 | N/A |
| 25 | 0.029 | 0.02 |
| 26 | <0.005 | N/A |
| 27 | 0.25 | 0.05 |
| 28 (Ref.) | 49.9 | 71 |
| 29 (Ref.) | 0.022 | N/A |
| 30 (Ref.) | 0.018 | N/A |
| 31 (Ref.) | 0.33 | N/A |
| 32 (Ref.) | 0.018 | N/A |
| 33 (Ref.) | 0.157 | N/A |
| 34 (Ref.) | <0.005 | N/A |
| 35 (Ref.) | 5.7 | 2.3 |
| 36 (Ref.) | 17 | N/A |
| 37 (Ref.) | 6.7 | N/A |
| 38 (Ref.) | 0.071 | N/A |
| 39 (Ref.) | 0.23 | N/A |
| 40 (Ref.) | 0.52 | N/A |
| 41 (Ref.) | 0.067 | N/A |
| 42 (Ref.) | 0.28 | N/A |
| 43 (Ref.) | 0.42 | N/A |
| 44 (Ref.) | 6.8 | 3.8 |
| 45 (Ref.) | 6.1 | 1.4 |
| 46 (Ref.) | 0.4 | 0.16 |
| 47 (Ref.) | 9 | N/A |
| 48 (Ref.) | 0.92 | N/A |
| 49 (Ref.) | 13 | N/A |
| 50 (Ref.) | 0.078 | N/A |
| 51 (Ref.) | 2 | N/A |
| 52 (Ref.) | 0.046 | N/A |
| 53 (Ref.) | 0.33 | N/A |
| 54 (Ref.) | 0.15 | N/A |
| 55 | <0.005 | N/A |
| 56 | <0.005 | N/A |
| 57 | 0.015 | N/A |
| 58 | <0.005 | N/A |
| 59 | <0.005 | N/A |
| 60 | <0.005 | N/A |
| 61 | 0.039 | 0.02 |
| 62 | <0.005 | N/A |
| 63 | <0.005 | N/A |
| 64 | <0.005 | N/A |
| 65 | <0.005 | N/A |
| 66 | 5 | 0.2 |
| 67 | 0.035 | N/A |
| 68 | 3.1 | N/A |
| 69 (Ref.) | 1.3 | N/A |
| 70 (Ref.) | 0.77 | N/A |
| 71 (Ref.) | 0.64 | N/A |
| 72 (Ref.) | 0.51 | N/A |
| 73 (Ref.) | 1.4 | N/A |
| 74 (Ref.) | 0.15 | N/A |
| 75 (Ref.) | 0.24 | N/A |
| 76 (Ref.) | 0.88 | N/A |
| 77 (Ref.) | 1.9 | N/A |
| 78 | 0.88 | N/A |
| 79 (Ref.) | 1.3 | N/A |
| 80 (Ref.) | 0.022 | N/A |
| 81 (Ref.) | 0.29 | N/A |
| 82 (Ref.) | 15 | N/A |
| 83 (Ref.) | 3.2 | N/A |
| 84 (Ref.) | 2.8 | 1.1 |
| 85 (Ref.) | 2.9 | N/A |
| 86 (Ref.) | 71 | 0.0003 |
| 87 (Ref.) | 8.8 | N/A |
| 88 (Ref.) | 14 | N/A |
| 89 (Ref.) | 1.4 | 0.02 |
| 90 | 0.23 | N/A |
| 91 | 0.28 | N/A |
| 92 (Ref.) | 0.037 | N/A |
| 93 (Ref.) | 0.17 | N/A |
| 94 (Ref.) | 0.13 | 0.011 |
| 95 (Ref.) | 3.6 | N/A |
| 96 (Ref.) | 3.1 | N/A |
| 97 (Ref.) | 2.2 | N/A |
| 98 (Ref.) | 0.015 | 0.011 |
| 99 (Ref.) | 0.17 | N/A |
| 100 (Ref.) | 0.094 | N/A |
| 101 (Ref.) | 0.026 | N/A |
| 102 (Ref.) | 0.12 | N/A |
| 103 (Ref.) | 0.30 | N/A |
| 104 (Ref.) | 0.27 | N/A |
| 105 (Ref.) | 12 | N/A |
| 106 (Ref.) | 1.0 | N/A |
| 107 (Ref.) | 0.16 | N/A |
| 108 (Ref.) | 5.8 | 2.7 |
| 109 (Ref.) | 2.1 | 0.012 |
| 110 (Ref.) | 1.6 | 0.32 |
| 111 (Ref.) | 0.015 | 0.008 |
| 112 (Ref.) | 0.04 | 0.007 |
| 113 (Ref.) | 2.3 | N/A |
| 114 (Ref.) | 1.1 | N/A |
| 115 | 0.35 | N/A |
| 116 (Ref.) | 0.15 | N/A |
| 117 (Ref.) | 0.21 | N/A |
| 118 (Ref.) | 0.16 | N/A |
| 119 (Ref.) | 0.071 | N/A |
| 120 (Ref.) | 0.34 | N/A |
| 121 (Ref.) | 16 | N/A |
| 122 (Ref.) | 1.7 | N/A |
| 123 (Ref.) | 0.032 | N/A |
| 124 (Ref.) | 0.038 | N/A |
| 125 (Ref.) | 8 | N/A |
| 126 (Ref.) | 5.8 | N/A |
| 127 (Ref.) | 2.8 | N/A |
| 128 (Ref.) | 0.15 | N/A |
| 129 (Ref.) | 2.2 | N/A |
| 130 (Ref.) | 5.5 | N/A |
| 131 (Ref.) | 0.31 | N/A |
| 132 (Ref.) | 0.31 | N/A |
| 133 (Ref.) | 0.50 | N/A |
| 134 (Ref.) | 0.45 | 0.17 |
| 135 (Ref.) | 0.37 | N/A |
| 136 (Ref.) | 0.23 | N/A |
| 137 (Ref.) | 0.56 | N/A |
| 138 (Ref.) | 4.0 | N/A |
| 139 (Ref.) | 2.6 | N/A |
| 140 (Ref.) | 0.029 | 0.019 |
| 141 (Ref.) | 0.065 | N/A |
| 142 (Ref.) | 13 | 1.3 |
| 143 (Ref.) | 0.02 | N/A |
| 144 (Ref.) | 0.044 | N/A |
| 145 (Ref.) | 0.074 | N/A |
| 146 (Ref.) | 0.073 | 0.06 |
| 147 (Ref.) | 0.11 | 0.07 |
| 148 (Ref.) | 0.22 | N/A |
| 149 (Ref.) | 5.7 | N/A |
| 150 (Ref.) | 1.3 | N/A |
| 151 (Ref.) | 1.1 | N/A |
| 152 (Ref.) | 0.32 | 0.25 |
| 153 (Ref.) | 0.23 | N/A |
| 154 (Ref.) | 11.7 | 0.54 |
| 155 | 0.02 | N/A |
| 156 | 0.073 | N/A |
| 157 | 0.29 | N/A |
| 158 | <0.005 | N/A |
| 159 | <0.005 | N/A |
| 160 | <0.005 | N/A |
| 161 | <0.005 | N/A |
| 162 | 0.084 | N/A |
| 163 | 0.0085 | 0.002 |
| 164 | 11 | N/A |
| 165 | 0.17 | N/A |
| 166 | <0.005 | N/A |
| 167 | 0.015 | N/A |
| 168 (Ref.) | <0.015 | N/A |
| 169 (Ref.) | 1.9 | N/A |
| 170 (Ref.) | 1.8 | N/A |
| 171 (Ref.) | 1.2 | N/A |
| 172 (Ref.) | 0.31 | N/A |
| 173 (Ref.) | 2.0 | N/A |
| 174 (Ref.) | 1.2 | N/A |
| 175 (Ref.) | 2.5 | N/A |
| 176 (Ref.) | 3.4 | N/A |
| 177 (Ref.) | 18 | 0.59 |
| 178 (Ref.) | 0.92 | N/A |
| 179 (Ref.) | 0.023 | N/A |
| 180 (Ref.) | 9.4 | N/A |
| 181 (Ref.) | 3.7 | N/A |
| 182 | 0.38 | 0.13 |
| 184 | 0.72 | N/A |
| 185 | <0.005 | N/A |
| 186 | <0.005 | N/A |
| 187 | 0.079 | N/A |
| 188 | <0.005 | N/A |
| 189 | 3.2 | N/A |
| 190 | 0.58 | N/A |
| 191 | <0.005 | N/A |
| 192 | 0.18 | N/A |
| 193 | 0.90 | N/A |
| 194 | <0.005 | N/A |
| 195 | 0.11 | N/A |
| 196 | <0.005 | N/A |
| 197 | 0.77 | N/A |
| 198 | 0.03 | N/A |
| 199 | 11.2 | N/A |
| 200 | <0.005 | N/A |
| 201 (Ref.) | <0.005 | N/A |
| 202 (Ref.) | 0.68 | N/A |
| 203 (Ref.) | 0.077 | 0.04 |
| 204 (Ref.) | 0.21 | N/A |
| 205 | 2.4 | N/A |
| 206 | 0.038 | N/A |
| 207 | 0.5 | 0.15 |
| 208 | >100 | N/A |
| 209 | 0.81 | N/A |
| 210 | 17 | 8.87 |
| 211 | 2.1 | 0.61 |
| 212 | 0.67 | N/A |
| 213 | 0.80 | N/A |
| 214 | 0.23 | N/A |
| 215 | 0.017 | N/A |
| 216 | 2.7 | N/A |
| 217 | 3.2 | N/A |
| 218 | 0.81 | N/A |
| 219 (Ref.) | 17 | N/A |
| 220 | 0.7 | N/A |
| 221 | 0.029 | N/A |
| 222 | 1.2 | N/A |
| 223 | 0.011 | .0008 |
| 224 (Ref.) | 0.083 | N/A |
| 225 | <0.005 | N/A |
| 226 | 3.1 | 1.54 |
| 227 | 0.013 | N/A |
| 228 | 0.04 | N/A |
| 229 | 0.017 | N/A |
| 230 | 0.028 | N/A |
| 231 | 0.045 | .016 |
| 232 | 0.016 | N/A |
| 233 | <0.005 | N/A |
| 234 | 0.026 | N/A |
| 235 | 0.038 | .015 |
| 236 | <0.005 | N/A |
| 237 | 0.10 | N/A |
| 238 (Ref.) | 4.9 | N/A |
| 239 (Ref.) | 1.8 | N/A |
| 240 | 0.026 | N/A |
| 241 (Ref.) | 0.068 | N/A |
| 242 (Ref.) | 0.23 | N/A |
| 243 (Ref.) | 0.25 | N/A |
| 244 (Ref.) | 1.0 | N/A |
| 245 | 0.032 | N/A |
| 246 (Ref.) | 21 | N/A |
| 247 | <0.005 | N/A |
| 248 (Ref.) | 17 | N/A |
| 249 | 0.88 | N/A |
| 250 | 1.3 | N/A |
| 251 | 0.031 | N/A |
| 252 | 0.076 | .021 |
| 253 | 18 | N/A |
| 254 | 0.1 | N/A |
| 255 (Ref.) | 1.4 | N/A |
| 256 | 0.015 | N/A |
| 257 | 1.9 | N/A |
| 258 | 0.41 | N/A |
| 259 | 1.2 | N/A |
| 260 | 0.066 | N/A |
| 261 (Ref.) | 0.64 | .52 |
| 262 (Ref.) | 4.9 | N/A |
| 263 (Ref.) | 0.025 | N/A |
| 264 (Ref.) | 0.38 | N/A |
| 265 | .09 | N/A |
| 266 (Ref.) | 0.019 | N/A |
| 267 | 0.092 | N/A |
| 268 | 3.5 | N/A |
| 269 | 0.31 | N/A |
| 270 | 0.097 | N/A |
| 271 | 0.34 | 0.15 |
| 272 | 2.0 | N/A |
| 273 | <0.005 | N/A |
| 274 | 0.094 | N/A |
| 275 | 0.076 | N/A |
| 276 | 0.058 | N/A |
| 277 | 0.135 | N/A |
| 278 (Ref.) | 2.2 | N/A |
| 279 (Ref.) | 5.1 | N/A |
| 280 (Ref.) | 3.4 | 0.42 |
| 281 (Ref.) | 0.73 | N/A |
| 282 | 7.2 | N/A |
| 283 | 1.4 | N/A |
| 284 | 5.6 | N/A |
| 285 | 0.071 | N/A |
| 286 | 0.024 | N/A |
| 287 | 0.55 | N/A |
| 288 | 6.5 | N/A |
| 289 | 0.01 | N/A |
| 290 | 0.018 | N/A |
| 291 (Ref.) | 4.9 | N/A |
| 292 | <0.005 | N/A |
| 293 | 0.72 | 0.37 |
| 294 | 1.1 | N/A |
| 295 | 0.23 | N/A |
| 296 | 1.3 | N/A |
| 297 | 12.4 | N/A |
| 298 | 16.1 | N/A |
| 299 | 16.1 | N/A |
| 300 | 2.03 | N/A |
| 301 | 1.9 | N/A |
| 302 | 0.063 | N/A |
| 303 | 0.037 | N/A |
| 304 | <0.005 | N/A |
| 305 | <0.005 | N/A |
| 306 | <0.005 | N/A |
| 307 | 0.37 | N/A |
| 308 | 0.068 | N/A |
| 309 | <0.005 | N/A |
| 310 | 0.016 | N/A |
| 311 | 8.7 | N/A |
| 312 | 0.15 | N/A |
| 313 | 1.8 | N/A |
| 314 | 0.025 | N/A |
| 315 | 0.0232 | N/A |
| 316 | <0.005 | N/A |
| 317 | <0.005 | N/A |
| 318 | 2.38 | N/A |
| 319 | 0.014 | N/A |
| 320 | 1.57 | N/A |
| 321 | 0.032 | N/A |
| 322 | 9.8 | N/A |
| 323 | 5.25 | N/A |
| 324 | 0.054 | N/A |
| 325 | 0.18 | N/A |
| 326 | 1.28 | N/A |
| 327 | 0.028 | N/A |
| 328 | 0.032 | N/A |
| 329 | <0.005 | N/A |
| 330 | 2.09 | N/A |
| 331 | 0.007 | N/A |
| 332 | 2.33 | N/A |
| 333 | 0.074 | N/A |
| 334 | 0.073 | N/A |
| 335 | 8.1 | N/A |
| 336 | 0.063 | N/A |
| 337 | 3.67 | N/A |
| 338 | 0.013 | N/A |
| 339 | 0.28 | N/A |
| 340 | 0.024 | N/A |
| 341 | 0.018 | N/A |
| 342 | 0.04 | N/A |
| 343 | 23.9 | N/A |
| 344 | 0.0067 | N/A |
| 345 | 2.1824 | N/A |
| 346 | 0.515 | N/A |
| SD: standard deviation. SDs and Means were calculated using the python programming lanugage version 2.7.5 with numpy library 1.7.1. When a compound was tested multiple times, any number less than 5 nM or more than 100 µM was excluded from the standard deviation or EC50 calculation. N/A: SD is not calculated for compounds with IC50 less than 5 nM or having a single data point. |
| Structure | IUPAC Name |
|
|
butyl (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl) phenyl]prop-2-enoate |
| [Ref. compound] | |
|
|
3-[2-bromo-4-(trifluoromethylsulfonyl)phenoxy]-5-fluoro-benzoic acid |
| [Ref. compound] | |
|
|
3-(3-chloro-5-fluoro-phenoxy)-2-nitrobenzenesulfonamide |
| [Ref.compound] | |
|
|
N-[[2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl) phenyl]methyl] tetrahydrofuran-3-amine |
| [Ref. compound] | |
|
|
(E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoic acid |
| [Ref. compound] | |
|
|
2-(3-chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl)benzoic acid |
| [Ref. compound] | |
|
|
3-[3-(1,2-dihydroxyethyl)-2-methyl-4-(trifluoromethylsulfonyl)phenoxy]-5-fluoro-benzonitrile |
| [Ref. compound] | |
|
|
2-bromo-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)benzenecarbohydroxamic acid |
| [Ref. compound] | |
|
|
6-(3-chloro-5-fluoro-phenoxy)-2-(methylamino)-3-(trifluoromethylsulfonyl) benzonitrile |
| [Ref. compound] | |
|
|
2-bromo-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)benzamide |
| [Ref. compound] | |
|
|
3-(7-chloroindan-4-yl)oxy-5-fluoro-benzonitrile |
| [Ref. compound] | |
|
|
3-[2-bromo-4-(trifluoromethylsulfonyl)phenoxy]-5-fluoro-benzamide |
| [Ref. compound] | |
|
|
methyl 3-[2-bromo-4-(trifluoromethylsulfonyl)phenoxy]-5-fluoro-benzoate |
| [Ref. compound] | |
|
|
[3-bromo-4-chloro-2-(3-chloro-5-fluoro-phenoxy)phenyl]-imino-oxo-(trifluoromethyl) -λ6-sulfane |
| [Ref. compound] | |
|
|
3-[2-amino-3-chloro-4-(trifluoromethyl)phenoxy]benzonitrile |
| [Ref. compound] | |
|
|
4-(3,5-difluorophenoxy)-7-methylsulfonyl-indane-1-carbonitrile |
| [Ref. compound] | |
|
|
3-(7-cyclobutylsulfonyl-1-hydroxy-indan-4-yl)oxy-5-fluoro-benzonitrile |
|
|
4-(3,5-difluorophenoxy)-7-morpholinosulfonyl-indan-1-ol |
|
|
3-bromo-4-(3-chloro-5-fluoro-phenoxy)-N,N-dimethyl-benzenesulfinamide |
| [Ref. compound] | |
|
|
1-(3-chlorophenoxy)-3-fluoro-2-nitro-benzene |
| [Ref. compound] | |
|
|
2-bromo-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)benzoic acid |
| [Ref. compound] | |
|
|
3-(3-chloro-5-fluoro-phenoxy)-2-(difluoromethyl)-6-(difluoromethylsulfonyl)-N-(2-hydroxyethyl) benzamide |
| [Ref. compound] | |
|
|
(E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enamide |
| [Ref. compound] | |
|
|
2-bromo-3-(3-chloro-5-fluoro-phenoxy)benzonitrile |
| [Ref. compound] | |
|
|
1-[2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]-N,N-dimethyl-methanamine |
| [Ref. compound] | |
|
|
(E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]-N-methyl-prop-2-enamide |
| [Ref. compound] | |
|
|
N-[4-(3,5-difluorophenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-yl]-4-fluoro-benzamide |
| [Ref. compound] | |
|
|
N-(2-acetamidoethyl)-2-bromo-3-(3,5-difluorophenoxy)-6-methylsulfonyl-benzamide |
| [Ref. compound] | |
|
|
3-(1-amino-2,2-difluoro-7-methylsulfonyl-indan-4-yl)oxy-5-fluoro-benzonitrile |
|
|
N-[4-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-yl]-2-methyl-propane-2-sulfinamide |
| [Ref. compound] | |
|
|
6-acetyl-2-bromo-3-(3-chloro-5-fluoro-phenoxy)benzonitrile |
| [Ref. compound] | |
|
|
N-[4-(3,5-difluorophenoxy)-2,2-difluoro-7-methylsulfonyl-indan-1-yl]acetamide |
| [Ref. compound] | |
|
|
benzyl (E)-3-[3-(3-cyano-5-fluoro-phenoxy)-2-methyl-6-(trifluoromethylsulfonyl)phenyl]prop-2-enoate |
| [Ref. compound] | |
|
|
2-bromo-1-(2-methylphenoxy)-4-(trifluoromethylsulfonyl) benzene |
| [Ref. compound] | |
|
|
4-(3-chloro-5-fluoro-phenoxy)indan-1-one |
| [Ref. compound] | |
|
|
4-(3-chloro-5-fluoro-phenoxy)indan-1-ol |
| [Ref. compound] | |
|
|
3-[2-(3-chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl) phenyl]propane-1,2-diol |
| [Ref. compound] | |
|
|
3-[[5-(difluoromethylsulfonyl)-8-quinolyl] oxy]benzonitrile |
| [Ref. compound] | |
|
|
1-[2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl)phenyl]-N-(tetrahydrofuran-3-ylmethyl) methanamine |
| [Ref. compound] | |
|
|
4'-(3-chloro-5-fluoro-phenoxy)-7'-(difluoromethylsulfonyl)spiro[1,3-dioxolane-2,1'-indane] |
| [Ref. compound] | |
|
|
3-fluoro-5-(7-methylsulfanyl-1-oxo-indan-4-yl)oxy-benzonitrile |
| [Ref. compound] | |
|
|
3-[(1R,2R)-1-amino-2-fluoro-7-(trifluoromethylsulfonyl) indan-4-yl] oxy-5-fluoro-benzonitrile |
|
|
(1R)-4-([1,2,4]triazolo[4,3-a]pyridin-8-yloxy)-7-(trifluoromethylsulfonyl) indan-1-ol |
| [Ref. compound] | |
|
|
3-fluoro-5-(1-hydroxy-5-methyl-7-methylsulfonyl-indan-4-yl)oxy-benzonitrile |
| [Ref. compound] | |
|
|
3,5-bis[[(1S)-2,2-difluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl]oxy]benzonitrile |
| [Ref. compound] | |
|
|
3-fluoro-5-(1-hydroxy-6-methyl-7-methylsulfonyl-indan-4-yl)oxy-benzonitrile |
|
|
(1S)-2,2-difluoro-4-(3-methylsulfonylphenoxy)-7-(trifluoromethylsulfonyl) indan-1-ol |
| [Ref. compound] | |
|
|
4-(1-methylpyrazol-4-yl)oxy-7-(trifluoromethylsulfonyl)indan-1-ol |
| [Ref. compound] | |
|
|
N-((R)-7-(3-cyano-5-fluorophenoxy)-3-hydroxy-2,3-dihydro-1H-inden-4-yl)(fluoromethyl)-λ4-sulfanylidene)-2,2,2-trifluoroacetamide |
| [Ref. compound] | |
|
|
3-fluoro-5-((2-methyl-7-(methylsulfonyl)-1-oxo-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile |
|
|
3-fluoro-5-(((1S,2S)-1-hydroxy-2-methyl-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile |
| Structure | IUPAC Name |
|
|
6-(3-chloro-5-fluoro-phenoxy)-2-(2-methoxyethylamino)-3-(trifluoromethylsulfonyl)benzonitrile |
| [Ref. compound] | |
|
|
7-(3-chloro-5-fluoro-phenoxy)-3-hydroxy-N,N-dimethyl-indane-4-sulfonamide |
|
|
7-(difluoromethylsulfonyl)-4-(3,5-difluorophenoxy)indan-1-amine |
|
|
4-(3,5-difluorophenoxy)-2,2-difluoro-7-morpholinosulfonyl-indan-1-ol |
|
|
[5-(3-chloro-5-fluoro-phenoxy)-2-(trifluoromethylsulfonyl) phenyl]methanol [Ref. compound] |
|
|
3-[2-(3-chloro-5-fluoro-phenoxy)-5-(trifluoromethylsulfonyl) phenyl]prop-2-yn-1-ol |
| [Ref. compound] | |
|
|
2-[[2-chloro-3-(3-chloro-5-fluoro-phenoxy)-6-(trifluoromethylsulfonyl) phenyl]methylamino] ethanol |
| [Ref. compound] | |
|
|
7-(3-chloro-5-fluoro-phenoxy)-4-(difluoromethylsulfonyl)indan-1-ol |
|
|
ethyl 3-[6-(3-chloro-5-fluoro-phenoxy)-2-cyano-3-(difluoromethylsulfonyl)phenyl]propanoate |
| [Ref. compound] | |
|
|
1-[2-bromo-3-(3-chloro-5-fluoro-phenoxy)-6-methylsulfonyl-phenyl] ethanol |
| [Ref. compound] | |
|
|
N-[[2-bromo-3-(3-chloro-5-fluoro-phenoxy)-6-(difluoromethylsulfonyl) phenyl]methyl] acetamide |
| [Ref. compound] | |
|
|
2-chloro-6-(3-chloro-5-fluoro-phenoxy)-3-(trifluoromethylsulfonyl) benzonitrile |
| [Ref. compound] | |
|
|
6-(3-chloro-5-fluoro-phenoxy)-2-(ethylamino)-3-(trifl uoromethylsulfonyl) benzonitrile |
| [Ref. compound] | |
|
|
3-[(1R,2S)-1-amino-2-fluoro-7-(trifluoromethylsulfonyl)indan-4-yl]oxy-5-fluorobenzonitrile |
|
|
4-[(5-methoxy-3-pyridyl)oxy]-7-(trifluoromethylsulfonyl) indan-1-ol |
|
|
3-(2,2-difluoro-1-hydroxy-5-methyl-7-methylsulfonyl-indan-4-yl)oxy-5-fluoro-benzonitrile |
| [Ref. compound] | |
|
|
3-fluoro-5-(5-fluoro-1-hydroxy-7-methylsulfonyl-indan-4-yl)oxy-benzonitrile |
| [Ref. compound] | |
|
|
(3S)-7-(3-cyano-5-fluoro-phenoxy)-2,2-difluoro-3-hydroxy-N-(2-hydroxyethyl)indane-4-sulfonamide |
|
|
3-fluoro-5-(7-methylsulfonyl-1-oxo-indan-4-yl)oxy-benzonitrile |
|
|
3-fluoro-5-(((1R,3R)-3-fluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)benzonitrile |
|
|
N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl) (fluoromethyl) (oxo)-λ6-sulfanylidene)methanesulfonamide |
|
|
N-(((S)-7-(3-cyano-5-fluorophenoxy)-2,2-difluoro-3-hydroxy-2,3-dihydro-1H-inden-4-yl) (difluoromethyl)(oxo)-λ6-sulfanylidene)cyanamide |
|
|
tert-butyl N-[(1S,3R)-7-(3-bromo-5-fluoro-phenoxy)-3-hydroxy-4-(trifluoromethylsulfonyl)indan-1-yl]carbamate |
| [Ref. compound] |
Example 349: VEGF ELISA Assay
| Compound Number | Mean VEGF ELISA EC50 (µM) | SD |
| 1 | 0.25 | 0.16 |
| 2 | 0.062 | N/A |
| 8 | 0.033 | N/A |
| 9 | 0.006 | N/A |
| 11 | 0.015 | N/A |
| 15 | 0.013 | 0.004 |
| 17 | 0.16 | N/A |
| 25 | 0.037 | 0.024 |
| 34 (Ref.) | 0.46 | N/A |
| 41 (Ref.) | 0.57 | N/A |
| 55 | 0.035 | N/A |
| 60 | 0.04 | N/A |
| 63 | 0.02 | 0.005 |
| 64 | 0.001 | N/A |
| 67 | 0.22 | 0.09 |
| 74 (Ref.) | 0.32 | 0.19 |
| 78 | 0.75 | N/A |
| 80 (Ref.) | 0.63 | N/A |
| 98 (Ref.) | 1.58 | 1.54 |
| 99 (Ref.) | 0.55 | 0.065 |
| 102 (Ref.) | 0.64 | N/A |
| 124 (Ref.) | 0.40 | N/A |
| 132 (Ref.) | 0.68 | N/A |
| 133 (Ref.) | 1.87 | N/A |
| 155 | 0.14 | N/A |
| 158 | 0.006 | N/A |
| 159 | 0.007 | N/A |
| 161 | 0.011 | N/A |
| 163 | 0.042 | 0.002 |
| 165 | 0.56 | N/A |
| 166 | 0.07 | N/A |
| 167 | 0.038 | N/A |
| 179 (Ref.) | 1.6 | N/A |
| 185 | 0.004 | N/A |
| 186 | 0.013 | N/A |
| 188 | 0.088 | N/A |
| 191 | 0.13 | N/A |
| 196 | 0.047 | 0.001 |
| 203 (Ref.) | 0.7 | 0.41 |
| 225 | 0.069 | N/A |
| 228 | 0.028 | N/A |
| 230 | 0.029 | N/A |
| 231 | 0.067 | N/A |
| 233 | 0.015 | N/A |
| 234 | 0.05 | N/A |
| 235 | 0.028 | N/A |
| 236 | 0.016 | N/A |
| 240 | 0.081 | N/A |
| 245 | 0.16 | N/A |
| 251 | 0.048 | N/A |
| 252 | 0.13 | N/A |
| 254 | 0.18 | N/A |
| 256 | 0.065 | N/A |
| 267 | 0.83 | N/A |
| 274 | 1.44 | N/A |
| 289 | 0.018 | N/A |
| 292 | 0.0062 | N/A |
| 273 | 0.0062 | N/A |
| 304 | 0.062 | N/A |
| 305 | 0.0195 | N/A |
| 306 | 0.0192 | N/A |
| 303 | 0.064 | N/A |
| 309 | 0.026 | N/A |
| 310 | 0.14 | N/A |
| 325 | 0.15 | N/A |
| 316 | 0.017 | N/A |
| 317 | 0.014 | N/A |
| 342 | 0.052 | N/A |
| SD: standard deviation. SDs and Means were calculated using the python programming language version 2.7.5 with numpy library 1.7.1. When a compound was tested multiple times, any number less than 5 nM or more than 100 µM was excluded from the standard deviation or EC50 calculation. N/A: SD is not calculated for compounds with EC50 less than 5 nM or having a single data point. |
Example 350: Luciferase Assay
| Compound Number | Mean Luciferease EC50 (µM) | SD |
| 1 | 0.11 | 0.01 |
| 2 | 0.07 | N/A |
| 3 | 0.96 | N/A |
| 5 | 0.42 | N/A |
| 6 | 0.075 | N/A |
| 7a | 1.0 | 0.09 |
| 8 | 0.017 | N/A |
| 9 | 0.009 | N/A |
| 11 | 0.016 | N/A |
| 15 | 0.007 | 0.001 |
| 16 | 3.2 | N/A |
| 17 | 0.18 | 0.06 |
| 18 | 2.67 | N/A |
| 20 | 1.91 | N/A |
| 21 (Ref.) | 1.54 | 0.84 |
| 22 | 1.29 | 0.76 |
| 25 | 0.018 | 0.03 |
| 26 | 0.068 | N/A |
| 27 | 0.16 | N/A |
| 31 (Ref.) | 2.7 | N/A |
| 32 (Ref.) | 1.9 | N/A |
| 33 (Ref.) | 2.9 | N/A |
| 34 (Ref.) | 0.52 | N/A |
| 35 (Ref.) | >20 | N/A |
| 38 (Ref.) | 0.39 | N/A |
| 39 (Ref.) | 0.6 | N/A |
| 40 (Ref.) | 1.2 | N/A |
| 41 (Ref.) | 0.40 | 0.08 |
| 42 (Ref.) | 0.45 | 0.036 |
| 43 (Ref.) | 0.79 | N/A |
| 46 (Ref.) | 8.1 | N/A |
| 50 (Ref.) | 1.6 | N/A |
| 52 (Ref.) | 1.0 | N/A |
| 53 (Ref.) | 3.3 | N/A |
| 54 (Ref.) | 0.35 | N/A |
| 55 | 0.032 | N/A |
| 56 | 0.068 | N/A |
| 57 | 0.11 | N/A |
| 58 | 0.16 | N/A |
| 59 | 0.09 | 0.08 |
| 60 | 0.066 | N/A |
| 61 | 0.11 | N/A |
| 62 | 0.18 | N/A |
| 63 | 0.007 | 0.002 |
| 64 | 0.005 | N/A |
| 65 | 0.006 | N/A |
| 67 | 0.074 | N/A |
| 74 (Ref.) | 0.49 | N/A |
| 75 (Ref.) | 8.8 | N/A |
| 80 (Ref.) | 0.31 | 0.06 |
| 81 (Ref.) | 0.85 | N/A |
| 85 (Ref.) | 11.8 | N/A |
| 90 | 0.85 | 0.09 |
| 91 | 2.3 | N/A |
| 92 (Ref.) | 0.49 | N/A |
| 93 (Ref.) | 0.68 | N/A |
| 94 (Ref.) | 0.76 | N/A |
| 98 (Ref.) | 3.3 | 1.1 |
| 99 (Ref.) | 0.42 | N/A |
| 100 (Ref.) | 7.6 | 3.1 |
| 101 (Ref.) | 0.32 | N/A |
| 103 (Ref.) | 3.3 | 0.36 |
| 104 (Ref.) | 12.1 | N/A |
| 107 (Ref.) | 0.52 | N/A |
| 110 (Ref.) | 6.5 | N/A |
| 111 (Ref.) | 1.38 | 0.5 |
| 112 (Ref.) | 0.34 | N/A |
| 114 (Ref.) | 9.0 | N/A |
| 115 | 0.3 | N/A |
| 116 (Ref.) | 3.5 | N/A |
| 117 (Ref.) | 3.0 | N/A |
| 118 (Ref.) | 1.5 | N/A |
| 119 (Ref.) | 6.9 | N/A |
| 120 (Ref.) | 7.4 | N/A |
| 124 (Ref.) | 0.33 | N/A |
| 128 (Ref.) | 3.0 | N/A |
| 131 (Ref.) | 2.0 | N/A |
| 132 Lief. | 1.4 | N/A |
| 134 (Ref.) | 2.3 | N/A |
| 135 (Ref.) | 5.4 | N/A |
| 136 (Ref.) | 2.4 | N/A |
| 140 (Ref.) | 2.4 | N/A |
| 143 (Ref.) | 1.2 | N/A |
| 144 (Ref.) | 0.39 | N/A |
| 145 (Ref.) | 0.43 | N/A |
| 146 (Ref.) | 0.48 | 0.04 |
| 147 (Ref.) | 7.6 | 0.52 |
| 148 (Ref.) | 5.6 | N/A |
| 151 (Ref.) | 8.9 | N/A |
| 152 (Ref.) | 2.1 | N/A |
| 155 | 0.13 | N/A |
| 156 | 0.35 | N/A |
| 157 | 2.5 | N/A |
| 158 | 0.005 | N/A |
| 159 | 0.005 | 0.005 |
| 160 | 0.01 | N/A |
| 161 | 0.004 | N/A |
| 162 | 0.063 | N/A |
| 163 | 0.023 | 0.006 |
| 165 | 0.24 | N/A |
| 166 | 0.034 | N/A |
| 167 | 0.016 | N/A |
| 168 (Ref.) | 0.31 | N/A |
| 172 (Ref.) | 3.41 | N/A |
| 181 (Ref.) | 2.0 | N/A |
| 182 | 4.0 | N/A |
| 185 | 0.003 | N/A |
| 186 | 0.011 | N/A |
| 187 | 0.098 | N/A |
| 188 | 0.051 | N/A |
| 190 | 12.7 | N/A |
| 191 | 0.053 | N/A |
| 192 | 0.28 | N/A |
| 194 | 0.33 | N/A |
| 195 | 2.56 | N/A |
| 196 | 0.046 | N/A |
| 198 | 0.29 | N/A |
| 200 | 0.13 | N/A |
| 201 (Ref.) | 13.5 | N/A |
| 202 (Ref.) | 3.6 | N/A |
| 203 (Ref.) | 0.63 | 0.26 |
| 206 | 0.062 | N/A |
| 207 | 0.83 | N/A |
| 209 | 1.9 | N/A |
| 212 | 1.6 | N/A |
| 213 | 0.77 | N/A |
| 214 | 1.27 | N/A |
| 215 | 0.022 | N/A |
| 218 | 3.5 | N/A |
| 220 | 2.1 | N/A |
| 221 | 0.026 | N/A |
| 222 | 1.8 | N/A |
| 223 | 0.063 | N/A |
| 224 (Ref.) | 0.18 | N/A |
| 225 | 0.025 | N/A |
| 226 | 3.5 | 1.2 |
| 227 | 0.003 | N/A |
| 228 | 0.033 | N/A |
| 229 | 0.024 | N/A |
| 230 | 0.016 | N/A |
| 231 | 0.036 | 0.02 |
| 232 | 0.035 | N/A |
| 233 | 0.013 | N/A |
| 234 | 0.041 | N/A |
| 235 | 0.015 | N/A |
| 236 | 0.011 | N/A |
| 237 | 0.12 | N/A |
| 240 | 0.028 | N/A |
| 241 (Ref.) | 0.14 | N/A |
| 242 (Ref.) | 0.51 | N/A |
| 243 (Ref.) | 0.92 | N/A |
| 244 (Ref.) | 1.71 | N/A |
| 245 | 0.061 | N/A |
| 247 | 0.024 | N/A |
| 249 | 1.47 | N/A |
| 250 | 2.95 | N/A |
| 251 | 0.053 | N/A |
| 252 | 0.097 | N/A |
| 253 | 1.08 | N/A |
| 254 | 0.12 | N/A |
| 255 (Ref.) | 1.39 | N/A |
| 256 | 0.049 | N/A |
| 258 | 2.1 | N/A |
| 259 | 2.0 | N/A |
| 260 | 0.17 | N/A |
| 261 (Ref.) | 1.65 | 0.41 |
| 263 (Ref.) | 0.78 | N/A |
| 264 (Ref.) | 2.73 | N/A |
| 265 | 0.90 | N/A |
| 266 (Ref.) | 0.03 | N/A |
| 267 | 0.16 | N/A |
| 268 | 2.45 | N/A |
| 269 | 19.4 | N/A |
| 270 | 0.10 | N/A |
| 271 | 0.47 | N/A |
| 272 | 2.28 | N/A |
| 273 | 0.0046 | N/A |
| 274 | 0.19 | N/A |
| 275 | 0.26 | N/A |
| 276 | 0.15 | N/A |
| 277 | 0.074 | N/A |
| 279 (Ref.) | 5.9 | N/A |
| 285 | 0.1 | N/A |
| 286 | 0.14 | N/A |
| 287 | 0.65 | N/A |
| 289 | 0.0042 | N/A |
| 290 | 0.17 | 0.41 |
| 291 (Ref.) | 3.1 | N/A |
| 292 | 0.0031 | N/A |
| 293 | 0.78 | N/A |
| 294 | 1.0 | N/A |
| 295 | 0.39 | N/A |
| 296 | 1.3 | N/A |
| 300 | 2.8 | N/A |
| 301 | 2.1 | N/A |
| 302 | 0.11 | N/A |
| 303 | 0.035 | N/A |
| 304 | 0.022 | 0.41 |
| 305 | 0.013 | N/A |
| 306 | 0.03 | N/A |
| 307 | 1.7 | N/A |
| 308 | 0.69 | N/A |
| 309 | 0.009 | N/A |
| 310 | 0.11 | N/A |
| 312 | 0.63 | N/A |
| 313 | 1.1 | N/A |
| 314 | 0.15 | N/A |
| 315 | 0.11 | N/A |
| 316 | 0.012 | N/A |
| 317 | 0.012 | N/A |
| 324 | 0.48 | N/A |
| 325 | 0.49 | N/A |
| 334 | 0.22 | N/A |
| 336 | 0.067 | N/A |
| 338 | 0.0061 | N/A |
| 339 | 0.25 | N/A |
| 342 | 0.091 | N/A |
| SD: standard deviation. SDs and Means were calculated using the python programming lanugage version 2.7.5 with numpy library 1.7.1. When a compound was tested multiple times, any number less than 5 nM or more than 100 µM was excluded from the standard deviation or EC50 calculation. N/A: SD is not calculated for compounds with EC50 less than 5 nM or having a single data point. |
Example 351: In Vivo PK/PD Study
Example 352: In Vivo Efficacy Study
| Treatment groups | Vehicle | Compound 15 | Sutent | |||
| 3 mg/kg BID | 10 mg/kg BID | 30 mg/kg BID | 100 mg/kg BID | 40 mg/kg QD | ||
| Tumor size (mm3) Mean ± SEM | 475.72 ± 31.85 | 136.29 ±15.77 | 45.36 ±2.22 | 35.63 ±2.26 | 37.11 ±.6 | 211.59 ±10.36 |
| Treatment groups | Vehicle | Compound 163 (10 mg/kg BID) |
| Tumor size (mm3) Mean ± SEM | 855.7 ± 78.43 | 74.66 ±7.08 |
n is 1, 2, 3 or 4;
R1 is phenyl or pyridyl, wherein said phenyl or pyridyl is substituted with at least one substituent selected from the group consisting of halo, C1-C4 alkyl, C1-C4-alkoxy, and cyano;
R4 is cyano, fluoroalkyl, sulfonamide, sulfinyl, sulfonyl or sulfoximinyl;
R5 is hydrogen, halo or unsubstituted alkyl;
R8 is hydrogen, hydroxy, unsubstituted alkylamino, unsubstituted alkoxy or amino;
R9 is hydrogen, unsubstituted alkyl, unsubstituted alkenyl or unsubstituted alkynyl; or R8 and R9 in combination form oxo or oxime; and
each of R10 is independently selected from the group consisting of hydrogen, fluoro, chloro, hydroxy, and unsubstituted-alkyl; or two R10 and the carbon atom(s) they are attached to form a 3- to 8-membered unsubstituted cycloalkyl or unsubstituted heterocycloalkyl.
R4 is cyano, fluoroalkyl, sulfonamide, sulfinyl, sulfonyl or sulfoximinyl; and
R8 is hydroxy, unsubstituted alkylamino, unsubstituted alkoxy or amino.
n = 1, 2, 3 oder 4 ist;
R1 Phenyl oder Pyridyl ist, wobei das Phenyl oder Pyridyl mit zumindest einem Substituenten substituiert ist, der aus der aus Halogen, C1-C4-Alkyl, C1-C4-Alkoxy und Cyano bestehenden Gruppe ausgewählt ist;
R4 Cyano, Fluoralkyl, Sulfonamid, Sulfinyl, Sulfonyl oder Sulfoximinyl ist;
R5 Wasserstoff, Halogen oder unsubstituiertes Alkyl ist;
R8 Wasserstoff, Hydroxy, unsubstituiertes Alkylamino, unsubstituiertes Alkoxy oder Amino ist;
R9 Wasserstoff, unsubstituiertes Alkyl, unsubstituiertes Alkenyl oder unsubstituiertes Alkinyl ist; oder
R8 und R9 zusammen Oxo oder Oxim bilden; und
die R10 jeweils unabhängig aus der aus Wasserstoff, Fluor, Chlor, Hydroxy und unsubstituiertem Alkyl bestehenden Gruppe ausgewählt sind; oder zwei R10 und das/die Kohlenstoffatom/e, an das/die sie gebunden sind, ein 3- bis 8-gliedriges unsubstituiertes Cycloalkyl oder unsubstituiertes Heterocycloalkyl bilden.
R4 Cyano, Fluoralkyl, Sulfonamid, Sulfinyl, Sulfonyl oder Sulfoximinyl ist; und
R8 Hydroxy, unsubstituiertes Alkylamino, unsubstituiertes Alkoxy oder Amino ist.
n est 1, 2, 3 ou 4 ;
R1 est un groupe phényle ou pyridyle, dans lequel ledit groupe phényle ou pyridyle est substitué par au moins un substituant choisi dans le groupe comprenant un groupe halogéno, alkyle en C1-C4, alcoxy en en C1-C4 et cyano ;
R4 est un groupe cyano, fluoroalkyle, sulfonamide, sulfinyle, sulfonyle ou sulfoximinyle ;
R5 est un atome d'hydrogène, un groupe halogéno ou alkyle non substitué ;
R8 est un atome d'hydrogène, un groupe hydroxy, alkylamino non substitué, alcoxy non substitué ou amino ;
R9 est un atome d'hydrogène, un groupe alkyle non substitué, alcényle non substitué ou alcynyle non substitué ; ou R8 et R9 en combinaison forment un groupe oxo ou oxime ; et
chaque R10 est indépendamment sélectionné dans le groupe comprenant un atome d'hydrogène, un groupe fluoro, chloro, hydroxy et alkyle non substitué ; ou deux R10 et le ou les atomes de carbone auxquels ils sont liés forment un groupe cycloalkyle non substitué ayant de 3 à 8 chaînons ou un groupe hétérocycloalkyle non substitué.
R4 est un groupe cyano, fluoroalkyle, sulfonamide, sulfinyle, sulfonyle ou sulfoximinyle ; et
R8 est un groupe hydroxy, alkylamino non substitué, alcoxy non substitué ou amino.
REFERENCES CITED IN THE DESCRIPTION
Patent documents cited in the description
Non-patent literature cited in the description