
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

05
1

42
0

A
1

TEPZZ¥Z5_4 ZA_T
(11) EP 3 051 420 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
03.08.2016 Bulletin 2016/31

(21) Application number: 16159584.8

(22) Date of filing: 08.06.2012

(51) Int Cl.:
G06F 11/14 (2006.01) G06F 11/20 (2006.01)

H04L 12/24 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 30.06.2011 US 201113174271

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
12804233.0 / 2 727 287

(71) Applicant: Microsoft Technology Licensing, LLC
Redmond, WA 98052 (US)

(72) Inventors:
• George, Mathew

Redmond, WA Washington 98052 (US)
• Kruse, David M.

Redmond, WA Washington 98052 (US)
• Pinkerton, James T.

Redmond, WA Washington 98052 (US)

• Battepati, Roopesh C.
Redmond, WA Washington 98052 (US)

• Jolly, Tom
Redmond, WA Washington 98052 (US)

• Swan, Paul R.
Redmond, WA Washington 98052 (US)

• Shang, Mingdong
Redmond, WA Washington 98052 (US)

• Lovinger, Daniel Edward
Redmond, WA Washington 98052 (US)

(74) Representative: Grünecker Patent- und
Rechtsanwälte
PartG mbB
Leopoldstraße 4
80802 München (DE)

Remarks:
This application was filed on 10-03-2016 as a
divisional application to the application mentioned
under INID code 62.

(54) TRANSPARENT FAILOVER

(57) Described are embodiments directed at persist-
ent handles that are used to retain state across network
failures and server failovers. Persistent handles are re-
quested by a client after a session has been established
with a file server. The request for the persistent handle
includes a handle identifier generated by the client. The
server uses the handle identifier to associate with state
information. When there is a network failure or a server
failover, and a reconnection to the client, the handle iden-
tifier is used to identify replayed requests that if replayed
would create an inconsistent state on the server. The
replayed requests are then appropriately handled.

EP 3 051 420 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Background

[0001] Server clusters are commonly used to provide
failover and high availability of information to clients. The
use of a server cluster allows for transparent failover to
clients so that any server failure is transparent to appli-
cations requesting server operations on clients. Server
clusters can be useful in shared file systems to provide
access to file information to several clients in a network.
However, issues may arise when the shared file system
utilizes a stateful protocol, such as the Server Message
Block (SMB) protocol. When a server in a server cluster
fails, some stateful protocols do not provide a way to
transfer client state from the failed server to an alternative
server. Also, file access protocols that do provide for stor-
ing some state information do not provide for different
components to store different state information.
[0002] It is with respect to these and other considera-
tions that embodiments have been made. Also, although
relatively specific problems have been discussed, it
should be understood that the embodiments should not
be limited to solving the specific problems identified in
the background.

Summary

[0003] This summary is provided to introduce a selec-
tion of concepts in a simplified form that are further de-
scribed below in the Detailed Description section. This
summary is not intended to identify key features or es-
sential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope
of the claimed subject matter.
[0004] Described are embodiments that utilize persist-
ent handles in a shared file system. The persistent han-
dles are used to retain state across network failures and
server failovers. Persistent handles are requested by a
client after a session has been established with a file
server. The request for the persistent handle includes a
handle identifier generated by the client. The server uses
the handle identifier to associate with state information.
When there is a network failure or a server failover, and
a reconnection to the client, the handle identifier is used
to identify replayed requests that if replayed would create
an inconsistent state on the server. The replayed re-
quests are then appropriately handled.
[0005] Embodiments may be implemented as a com-
puter process, a computing system or as an article of
manufacture such as a computer program product or
computer readable media. The computer program prod-
uct may be a computer storage media readable by a com-
puter system and encoding a computer program of in-
structions for executing a computer process. The com-
puter program product may also be a propagated signal
on a carrier readable by a computing system and encod-
ing a computer program of instructions for executing a

computer process.

Brief Description of the Drawings

[0006] Non-limiting and non-exhaustive embodiments
are described with reference to the following figures.

FIG. 1 illustrates a system that may be used to im-
plement embodiments.
FIG. 2 illustrates a block diagram of a client and file
server cluster communicating using a file access pro-
tocol consistent with some embodiments.
FIG. 3 illustrates an operational flow for providing
replay defense on server failover consistent with
some embodiments.
FIG. 4 illustrates operational flows for maintaining
consistent availability of file information consistent
with some embodiments.
FIG. 5 illustrates a block diagram of a computing
environment suitable for implementing embodi-
ments.

Detailed Description

[0007] Various embodiments are described more fully
below with reference to the accompanying drawings,
which form a part hereof, and which show specific exem-
plary embodiments. However, embodiments may be im-
plemented in many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this dis-
closure will be thorough and complete, and will fully con-
vey the scope of the embodiments to those skilled in the
art. Embodiments may be practiced as methods, systems
or devices. Accordingly, embodiments may take the form
of a hardware implementation, an entirely software im-
plementation or an implementation combining software
and hardware aspects. The following detailed description
is, therefore, not to be taken in a limiting sense.
[0008] FIG. 1 illustrates a system 100 that may be used
to implement some embodiments. System 100 includes
clients 102 and 104 and a server cluster 106. Clients 102
and 104 communicate with server cluster 106 through
network 108. Server cluster 106 stores information that
is accessed by applications on clients 102 and 104. Cli-
ents 102 and 104 establish sessions with cluster 106 to
access the information on cluster 106. Although in FIG.
1 only clients 102 and 104 are shown as communicating
with cluster 106, in other embodiments there may be
more than two clients accessing information from server
cluster 106.
[0009] As shown in FIG. 1, server cluster 106 includes
servers 106A, 106B, and 106C, which provide both high
availability and redundancy for the information stored on
cluster 106. In embodiments, the cluster 106 has a file
system that is accessed by the clients 102 and 104. Al-
though three servers are shown in FIG. 1, in other em-
bodiments cluster 106 may include more than three serv-

1 2

EP 3 051 420 A1

3

5

10

15

20

25

30

35

40

45

50

55

ers, or fewer than three servers. In embodiments, appli-
cations on clients 102 and 104 request file information
from a file system, and, transparent to the application,
the file information is retrieved from a shared file system
on server cluster 106.
[0010] In accordance with one embodiment, servers
106A, 106B, and 106C are utilized to provide consistent
availability of the file system stored on cluster 106. This
is done by utilizing components on clients 102 and 104
and servers 106A, 106B, and 106C to store state infor-
mation that can be used to reestablish sessions between
clients 102 and 104 and cluster 106 should there be a
failure of network 108 or a failure of one of servers 106A,
106B, and 106C. As described in greater detail below,
the storing of state information allows clients 102 and
104 to have consistent file access and failover that is
transparent to applications running on clients 102 and
104.
[0011] The servers, e.g., 106A, 106B, and 106C, of
cluster 106, in embodiments, each provide access to file
information to clients and are configured to provide con-
sistent availability of the file information to the clients. To
illustrate one embodiment, client 102 may send a request
to establish a session with a server of cluster 106. For
example, client 102 may establish a session with server
106A to access a shared file system stored on server
cluster 106. As part of the process of establishing the
session, client 102 may utilize a file access protocol. In
embodiments, the file access protocol is a version of the
Network File System (NFS), or the Server Message Block
(SMB) protocol.
[0012] The establishment of a session may involve the
exchange of a number of negotiate requests and re-
sponses transmitted between client 102 and server
106A. In versions of the SMB protocol, there are specif-
ically defined negotiate packets that are used to negotiate
the exact version of the protocol that will be used during
the session, as well as advertise the capabilities of both
the client, e.g., 102, and server, e.g., 106A, to each other.
In one embodiment, the negotiate packets may include
an indication that the server 106A is part of a cluster, e.g.
cluster 106. This allows the client to know that the server
106A can provide consistent availability, in other words,
transparent failover capabilities.
[0013] Continuing with the example above, after the
session is established, client 102 can send a message
formatted according to the file access protocol to server
106A for a persistent handle to access a file in the file
system. Requesting a persistent handle, in embodi-
ments, indicates that the client would like to utilize the
transparent failover capabilities available as a result of
server 106A being part of cluster 106. In embodiments,
the request includes a handle identifier that is a globally
unique identifier.
[0014] The server 106A will receive the request for a
persistent handle and store the handle identifier with
state information for the session with client 102. The stor-
ing of state information may merely involve the file server

persisting the handle identifier to storage and storing
state information in association with the handle identifier.
As described in greater detail below, in some embodi-
ments, different types of state information may be stored
using separate components, such as a filter. In yet other
embodiments, information relating to persistent handles
is replicated between nodes and is not stored to persist-
ent storage on the file system. In still other embodiments,
information concerning persistent handles is both repli-
cated between nodes and is stored to persistent storage
on the file system.
[0015] The server 106A sends a response to client 102
granting the persistent handle and access to file informa-
tion. Client 102 can then proceed to send other requests
for performing various operations on the file. For exam-
ple, client 102 may send requests to read file information,
write to the file, enumerate attributes of the file, close the
file, and request various locks on the file. Each of the
operations requested by the client may result in updating
the state information to ensure that if the client is discon-
nected, the state of the client can be reinstated. This up-
dating may involve saving the additional state information
in association with the handle identifier.
[0016] At some point, the client 102 may be discon-
nected from the server. The disconnection may be be-
cause of network failure or disruptions, for example. Al-
ternatively, the disconnection may be because of failure
of server 106A. In those embodiments involving a net-
work failure, client 102 may detect that a disconnection
has occurred and wait for the network to become avail-
able to reconnect with the server 106A. In other embod-
iments, once client 102 detects a failure it sends a request
to reconnect to cluster 106, which will provide a failover
server to handle the reconnection request.
[0017] In either case, client 102 sends a request to
reconnect. The request will include the handle identifier.
The server 106A, or an alternative server (106B or 106C)
will retrieve the state information based on the handle
identifier, reestablish the previous state using the state
information, and send the client a response indicating
that the reconnection is successful. In some embodi-
ments, the reconnection may not be possible, if the pre-
vious state information has been lost or is otherwise un-
available. In these situations, the server may treat the
reconnection request as a request to establish a session
and respond accordingly.
[0018] After the session is reestablished, client 102
sends new file access requests. In some embodiments,
one of the new file access requests may be replays of
previous requests. The replayed request may be of a
type that if processed by the server, without recognizing
that it is a replay, would create an inconsistent state on
the server. The exact type of request depends upon how
requests are handled by the file access protocol being
used. For example, in versions of the SMB protocol, byte
range locks may be requested and granted on portions
of a file. Therefore, if the client sent a request to lock
portions of a file and the request is completed but the

3 4

EP 3 051 420 A1

4

5

10

15

20

25

30

35

40

45

50

55

client is not notified prior to the disconnection, the client
could replay the previous request. The server would need
to be able to identify that the request is a replay. There-
fore, in embodiments, the handle identifier sent with the
original request for the persistent handle is used to iden-
tify replayed requests. Once identified, the replayed re-
quests may be processed in order to avoid an inconsist-
ent state on the server.
[0019] In some embodiments, in order to provide trans-
parent failover to applications on the client 102, there
may be state information that is stored on the client 102.
That is, the server 106A (or a failover server) may not be
responsible for storing all of the information that is nec-
essary to restore state after a reconnection. In some em-
bodiments, the client may be responsible for reestablish-
ing some state. For example, if requests to read file in-
formation were sent before the disconnection, the server
may not be responsible for saving state information re-
garding the read requests. When the reconnection oc-
curs, the client may be responsible for resending the read
requests. Additional description of embodiments, in
which state information is restored by different compo-
nents, is described in greater detail below with respect
to FIG. 2.
[0020] The foregoing description is merely one exam-
ple of how the embodiment shown in FIG. 1 may operate.
As described in greater detail below, embodiments may
involve different steps or operations. These may be im-
plemented using any appropriate software or hardware
component or module.
[0021] Turning now to FIG. 2, it shows a block diagram
of a software environment 200 with client 202, client 204,
and a server cluster 206 with three servers (server 1,
server 2, and server 3). Also shown is file storage 210
where the file system stores file information and storage
212 where state information may be stored by one or
more of server 1, server 2, and server 3.
[0022] As is shown in FIG. 2, client 202 and client 204
each include an application which may request file infor-
mation. The application may be for example a word
processing application, a spreadsheet application, a
browser application or any other application which re-
quests access to files. In the embodiment shown in FIG.
2, the files are located in a shared file system stored
within file storage 210. Client 202 and client 204 each
further include a redirector which redirects request for
files from the applications to a file server, which provides
access to the shared file system. The redirectors com-
municate with file servers using a file access protocol. In
some embodiments, the file access protocol may be a
version of NFS or of the SMB protocol. For purposes of
illustration, FIG. 2 will be described assuming that the
redirectors in client 202 and client 204 communicate with
file servers using a version of the SMB protocol, such as
SMB 2.0. Embodiments are however not limited to the
use of an SMB protocol.
[0023] Server 1, server 2, and server 3 are shown in
FIG. 2 as each including a file server. As noted above,

the file servers may use a version of the SMB protocol
to communicate with the redirectors on client 202 and
client 204. Each of server 1, server 2, and server 3 also
include a resume filter that is used in some embodiments
to store state information for sessions established be-
tween a client redirector and a file server.
[0024] The use of the SMB protocol to establish a ses-
sion between a client and a server begins with a redirec-
tor, such as the redirector on client 202, sending a ne-
gotiate request to a file server such as server 1 in server
cluster 206. The redirector and file server exchange ne-
gotiate packets to negotiate the version of SMB that will
be used for the session. Additionally, during the negoti-
ation, capabilities may also be exchanged. In one em-
bodiment, a file server may include a capability flag in a
negotiate response packet sent from the file server to the
client to indicate to the client that the file server supports
the use of persistent handles. In some embodiments, this
is done in situations in which the file server is part of a
cluster that can provide consistent availability to a client
by failing over to another server in the cluster. In other
embodiments, stand-alone servers may also have this
capability in order to be able to reconnect to clients if
there is a network failure.
[0025] Once the negotiation is completed, the redirec-
tor on the client and the file server establish a session.
The client redirector can then send file access requests
to the file server. In one embodiment, the redirector re-
quests a persistent handle. Versions of the SMB protocol
provide for durable handles which can be used for recon-
necting to clients that are disconnected. However, they
do not necessarily provide for storing and reestablishing
state after a client reconnects. Thus, in embodiments,
the redirector can send a request for a durable handle
with some additional flag and/or indicator to note that the
client redirector is requesting a persistent handle. In ad-
dition, the client may include a handle identifier that can
be used to identify replayed requests after reconnection.
Below is one embodiment of a durable handle request
structure that may be used in a version of the SMB pro-
tocol for requesting the persistent handle:

 struct SMB2_DURABLE_HANDLE_REQUEST_V2 {
 ULONG Flags;
 GUID Handleld; // client supplied
unique ID for this handle.
 // (used to detect replays.)
 ULONG Timeout; // timeout in seconds.
 ULONG Reserved; // must be set to ZERO.}.

[0026] In response to the request, the file server on
server 1, in embodiments, responds by granting the per-
sistent handle and providing a file identifier to the client
redirector on client 202. The client redirector is then able
to access information from the file associated with the
persistent handle and the file identifier. In some embod-
iments, the client redirector may request a persistent han-
dle for a directory. That is, instead of the persistent handle

5 6

EP 3 051 420 A1

5

5

10

15

20

25

30

35

40

45

50

55

being associated with an individual file, the handle may
be associated with a directory.
[0027] In addition to the file server on server 1 granting
the persistent handle, the file server will also store state
information in storage 212. The state information may be
stored in association with the handle identifier generated
by the client redirector and may also be stored in asso-
ciation with the file identifier provided to the client redi-
rector on client 202. As described in greater detail below,
the file server may directly store state information as file
server state information 216. In other embodiments, the
file server may utilize a resume filter to store state infor-
mation. In yet other embodiments, the file server may
both directly store state information and also use the
resume filter for storing other state information.
[0028] After the negotiation is complete, the client re-
director sends file access requests using, for example,
a version of the SMB protocol. In some embodiments,
the file server will store state information for each of the
requests received from the client redirector. At some
point in time, there may be a disconnect between client
202 and server 1, as a result of a network failure or a
failure of server 1, for example. Client 202 can reestablish
a connection with server 1 if the failure was based on a
network failure, or with a failover server (one of server 2
or server 3). As part of the reconnection, client 202 can
send a reconnect request that includes the previously
provided handle identifier as well as the file identifier pro-
vided by the file server when negotiating the original ses-
sion. Because the state information is available in storage
212 which is accessible by all of the servers in server
cluster 206, a failover server can identify previous state
information based on the handle identifier and/or the file
identifier provided by the client in the reconnect request.
In those embodiments where the client is attempting to
reestablish a connection with server 1, the file server on
server 1 can also access the state information on storage
212 to reestablish the previous state of the session with
the client.
[0029] As noted above, in some embodiments, differ-
ent components in environment 200 are responsible for
storing different types of state information in order to pro-
vide reestablishment of state to clients that are discon-
nected. As shown in FIG. 2, each of the file servers in-
cludes a resume filter. The resume filter is used in em-
bodiments to store state information for reestablishing
state when a client is reconnected. The resume filter is
not dependent upon the particular file access protocol
used by the file server. In embodiments, the file server
will first register with the resume filter in order to store
particular state information. Once registered, the file
server can pass state information to the resume filter,
which stores the state information as resume filter state
information 214 in storage 212. In addition to resume
filter state information 214, the server can store separate
state information, shown as file server state information
216, in storage 212. In embodiments, the different state
information can be stored in a different storage location

than the resume filter state information 214. The file serv-
er state information 216 and the resume filter state infor-
mation 214 may be stored in any suitable way, such as
log files. As described in greater detail below, the types
of state information that are stored by the resume filter
is, in embodiments, general information, while the server
information is more specific state information.
[0030] In some embodiments, the client is also respon-
sible for storing some state information. As shown in FIG.
2, clients 202 and 204 store state information that is used
to reestablish state when a client is reconnected after a
disconnect. In these embodiments, there may be some
cost savings in having clients reestablish state instead
of requiring the file server to store all of the state infor-
mation to reestablish the state of a client when it is re-
connected after a disconnect. For example, if the file serv-
er is required to store all state information, then each time
there is some request received from a client redirector,
with some operation to perform on a file, the file server
will be required to store some information about the re-
quests or operations. Requiring that the client redirector
store some of the state information reduces the costs of
a file server having to store state information for every
request or operation received from the client.
[0031] As can be appreciated, the state information
that is stored on different components in environment
200 depends upon different design considerations. For
example, there may be some information that is important
enough that requires the file server to guarantee that the
state information is coherent and consistently available,
in which case the information should be stored by the file
server and/or the resume filter. For example, in order for
a server to enforce sharing modes and ensure that new
clients requesting access do not interfere with existing
client’s access, state information must be stored on the
server, according to embodiments. Other state informa-
tion may not be as critical, and some incoherency may
be tolerated in the information. As an example, a client
may have locally cached file properties. The cached file
properties may be requested anew after a client recon-
nects to a file server following a disconnect.
[0032] In one embodiment, where a version of the SMB
protocol is used for communication between the client
redirector and the file server, the SMB protocol may pro-
vide for specific states to be stored by the various com-
ponents shown in environment 200. In one embodiment,
the operations available using the SMB protocol are di-
vided into three groups. State information associated with
each group is stored by different components.
[0033] The first group may be referred to generally as
non-idempotent operations, meaning that if these oper-
ations are replayed, e.g., reapplied on a file after already
being applied once before a client disconnect, would cre-
ate an inconsistent state on the file server. In versions of
the SMB protocol, byte range locks are an example of
operations that require replay detection because these
locks are stacked and unstacked. Other examples in-
clude appending writes and opens/creates, which can

7 8

EP 3 051 420 A1

6

5

10

15

20

25

30

35

40

45

50

55

modify disk state, for example by creating new files or
overwriting existing files. In embodiments, state associ-
ated with these types of operations is stored by the file
server because the file server must recognize that these
operations are being replayed. In the embodiment shown
in FIG. 2, state associated with these operations would
be stored by the file servers that are on each of server
1, server 2, and server 3 in storage 212 as part of file
server state information 216. The handle identifier pro-
vided by the client during negotiation of a session, as
described above, is used in some embodiments to iden-
tify that the request is a replay of a previous request.
[0034] A second group of operations relates to data
open operations. These operations may be requests to
read, write, execute, or delete information in a file. In
order to be able to enforce sharing modes and prevent
other clients from affecting existing clients, state regard-
ing these open operations has to be stored on the server
side, according to embodiments. State regarding open
operations is also stored on the server side to block local
operations from interfering with persistent handles. For
example, programs running on cluster nodes are pre-
vented from modifying, or otherwise affecting, handles
being reserved for clients. In embodiments, state regard-
ing these types of operations is stored by the resume
filter. As noted above, the resume filter in embodiments
is not specific to the SMB protocol but can also be used
when a file server is using a different file access protocol
such as NFS. In the embodiment shown in FIG. 2, the
resume filter on each of server 1, server 2, and server 3
stores the state information for the open operations in
storage 212 as part of resume filter state information 214.
[0035] The third group of operations includes opera-
tions that if reapplied at the server would not change the
final state of the server. These may be referred to as
idempotent operations. Some operations in this group
include but are not limited to reads, non-appending
writes, deletes, renames, metadata-set operations, and
metadata-query operations. Lease state also can be
stored by the client and need not be persisted by the
server. In embodiments, a lease is a mechanism that is
designed to allow clients to dynamically alter their buff-
ering strategy in a consistent manner in order to increase
performance and reduce network use. The network per-
formance for remote file operations may be increased if
a client can locally buffer file data, which reduces or elim-
inates the need to send and receive network packets. A
client may not have to write information into a file on a
remote server if the client confirms that no other client is
accessing the data. Likewise, the client may buffer read-
ahead data from the remote file if the client confirms that
no other client is writing data to the remote file.
[0036] According to embodiments, lease state does
not need to be persisted on the server because the
resume filter blocks all creates to a given file while clients
are resuming their handles after a failover. This implicitly
provides a guarantee that handle leases will never be
lost during the failover process if clients recon-

nect/resume their handles during the grace period. In oth-
er words, clients will always get back their handle leases
during the resume phase. Furthermore, exclusive leases
such as read/write, read/write/handle leases are granted
to only a single client at any given time. This implies that
there are no other data opens to the file from any other
client. So during failover, since the resume filter will not
allow new creates to the file until the client holding the
exclusive lease has resumed all its handles, there is a
guarantee that the client will get back its exclusive lease.
Shared leases which do not require an acknowledge-
ment, such as read lease, can be lost at any time without
the knowledge of either server or the resume filter be-
cause the underlying file system allows the operation
which caused the break to proceed. For such leases, the
client, in embodiments, assumes that the lease is broken
across a failover and purges its cache to prevent stale
reads. State for the operations in the third group can
therefore be recreated by the client without any additional
support from the server. In the embodiment shown in
FIG. 2, the redirectors on clients 202 and 204 store the
state information for the third group of operations.
[0037] In operation, environment 200 allows applica-
tions on clients 202 and 204 to request access to files
that are stored in file storage 210 in a shared file system.
The applications can transparently request file informa-
tion. The redirectors on the clients will establish a session
with one of the servers in cluster 206, as described above,
requesting a persistent handle so that the redirector can
reconnect and reestablish the session should there be a
disconnect. The file server will store state information in
storage 212 either directly as file server state information
216 or as resume filter state information 214 using a
resume filter. In some embodiments, the client will also
store some state information. In the event of a disconnect,
the redirector can request to reconnect to the file server,
or to a failover server. The state information stored on
the server side, e.g., in storage 212, and the client side
can then be used to reestablish the previous state of the
client. This all occurs transparent to the applications on
clients 202 and 204.
[0038] As may be appreciated, the above description
of environment 200 is not intended to limit the embodi-
ments described herein. FIG. 2 and its description are
merely intended to illustrate implementation of some em-
bodiments. In other embodiments, different types of state
information may be stored on different components in
environment 200. Also, as indicated above, different file
access protocols may be used which may determine the
type of state information stored as well as what compo-
nent stores the state information. Thus, embodiments
are not limited to what is shown and described in FIG. 2.
[0039] The description of FIGS. 3 and 4 below is made
using the server message block (SMB) protocol as the
file access protocol. However, embodiments are not lim-
ited thereto. Any file access protocol including different
versions of SMB or the network file system (NFS) may
be used in embodiments as the file access protocol. SMB

9 10

EP 3 051 420 A1

7

5

10

15

20

25

30

35

40

45

50

55

is being used in the description merely for convenience
and ease of illustration.
[0040] FIGS. 3 and 4 illustrate operational flows 300
and 400 according to embodiments. Operational flows
300 and 400 may be performed in any suitable computing
environment. For example, the operational flows may be
executed by systems and environments such as illustrat-
ed in FIGS. 1 and 2. Therefore, the description of oper-
ational flows 300 and 400 may refer to at least one of the
components of FIGS. 1 and 2. However, any such refer-
ence to components of FIGS. 1 and 2 is for descriptive
purposes only, and it is to be understood that the imple-
mentations of FIGS. 1 and 2 are non-limiting environ-
ments for operational flows 300 and 400.
[0041] Furthermore, although operational flows 300
and 400 are illustrated and described sequentially in a
particular order, in other embodiments, the operations
may be performed in different orders, multiple times,
and/or in parallel. Further, one or more operations may
be omitted or combined in some embodiments.
[0042] Operational flow 300 illustrates steps for pro-
viding replay defense on server failover. In embodiments,
flow 300 illustrated in FIG. 3 may be performed by a file
server that is running on a server that is part of a server
cluster, e.g., server 1, server 2, and server 3 of cluster
206 (FIG. 2). Flow 300 begins at operation 302 where a
request to connect to a file server is received. The request
received at operation 302 is a request to establish a ses-
sion with the file server in order to access file information
stored on a shared file system accessible through the file
server. The request may be sent by a client, e.g., clients
202 and 204 (FIG. 2). After operation 302, flow 300 pass-
es to operation 304 where a response is sent indicating
that a session has been established. In some embodi-
ments, the request and response sent at operations 302
and 304 may be part of a number of messages that are
exchanged between a client and a server to negotiate a
session. The exchange of messages may include an ex-
change of capabilities including the capability of the file
server to provide persistent handles.
[0043] Operational flow passes from operation 304 to
operation 306 where a second request is received for a
persistent handle. The request is sent by the client and
includes a handle identifier that is generated by the client.
The handle identifier is used in embodiments by the serv-
er to store state information regarding the session estab-
lished between the client and the file server. As part of
storing the state information, flow 300 may include, in
embodiments, operation 308 in which the file server reg-
isters with a resume filter in order to store some state
information. In embodiments, the resume filter is located
between the protocol layer and the underlying storage
system and can be used in embodiments to store state
information regarding a session established between the
file server and the client.
[0044] At operation 310 the state information is stored
in association with the handle identifier. The state infor-
mation may be stored in any appropriate form, such as

in a table, database, or log file. The storage is persistent
and available to the file server for reestablishing state
when necessary. The state information may be stored
directly by the file server. In other embodiments, flow 300
includes operation 312, in which the resume filter is used
to store state information. As indicated above, the file
server may register with the resume filter in some em-
bodiments to store state information.
[0045] Flow 300 passes from operation 312 to opera-
tion 314 where a response is sent to the client granting
access to the file using the persistent handle. The re-
sponse includes a file identifier that is provided by the
file server in the response and is also stored in associa-
tion with the state information stored at operation 310,
and optionally at operation 312.
[0046] Flow 300 then passes to operation 316, where
optionally a number of file access requests are received.
The file access requests may include a number of file
operations to perform on the file associated with the per-
sistent handle. The operations may be, for example,
opens to read/write data, enumerate attributes, lease re-
quests to allow caching of data locally, or other file access
operations. The various states associated with receiving
the file access requests at operation 316 may be updated
at operation 318. That is, when these requests are grant-
ed to the client, the state information stored in the previ-
ous operations (310 and 312) is updated to reflect the
additional state information.
[0047] After operation 318, there are a number of ad-
ditional operations identified within box 319. These op-
erations may be performed as a result of the client being
disconnected from the file server. As can be appreciated,
in those situations where the file server that originally
performed operations 302-318 is unavailable because of
a failure, the additional operations within box 319 are
performed by a failover server. In other embodiments,
where the failure is a result of a network problem, the
operations within box 319 are performed by the same file
server.
[0048] At operation 320, a request to reconnect is re-
ceived. The request includes the file handle previously
provided by the file server, as well as the handle identifier
that the client used when requesting the persistent han-
dle. The file server that receives the request at operation
320 can use the handle identifier and the file identifier to
look up the state information. As indicated above, this
operation may involve using the resume filter in order to
retrieve the state information that was previously saved
using the resume filter.
[0049] Flow 300 passes from operation 320 to opera-
tion 322 where the state information is used to reestablish
the connection and previous state with the client. After
operation 322, flow passes to operation 324 where new
file access requests are received. Operation 324 there-
fore may include a number of operations that each in-
cludes receiving a file access request from the client.
[0050] Some of the requests received at operation 324
may be replays of previous requests that were sent prior

11 12

EP 3 051 420 A1

8

5

10

15

20

25

30

35

40

45

50

55

to the disconnect between the file server and the client.
As a result, some of these operations if reapplied at the
file server may create an inconsistent state. At operation
326, the new file access requests that are replays are
detected. In embodiments, this operation may involve
identifying the file access requests using the handle iden-
tifier previously provided by the client. Once the replay
is detected at operation 326, the requests are properly
processed at operation 328. That is, if the replayed op-
erations would create an inconsistent state on the file
server, they may be ignored if the previous operation was
successfully performed. Alternatively, if the previous op-
eration was not successfully performed, then the re-
played operation may be applied. Flow 300 then ends at
330.
[0051] Operational flow 400 illustrates steps for main-
taining consistent availability. In embodiments, flow 400
may be performed by redirectors on clients, such as cli-
ents 202 and 204 (FIG. 2), that are communicating with
a file server to access files in a shared file system. The
client communicates, in embodiments, with the file server
using a file access protocol such as a version of the SMB
protocol or a version of NFS.
[0052] Flow 400 begins at operation 402 where a re-
quest to connect to the file server is sent. The request
sent at operation 402 is a request to establish a session
with the file server in order to access file information
stored on a shared file system accessible through the file
server. The request may be sent to a file server on a
server, e.g., server 1, server 2, and server 3, that is part
of a server cluster (FIG. 2). The request is formatted ac-
cording to a file access protocol such as a version of SMB
or NFS.
[0053] After operation 402, flow 400 passes to opera-
tion 404 where a response is received indicating that a
session has been established. In some embodiments,
operations 402 and 404 may be part of a number of mes-
sages that are exchanged between a client and a server
to negotiate a session. The exchange of messages may
include an exchange of capabilities including the capa-
bility of the file server to provide persistent handles.
[0054] Operational flow passes from operation 404 to
operation 406 where a request is sent for a persistent
handle. As a result of the negotiating process (operations
402 and 404), the client may have been notified that the
file server is capable of providing persistent handles. In
order to ensure that applications on the client can have
their states reestablished after a disconnect and recon-
nection, the client may request a persistent handle at
operation 406. The request includes a handle identifier
that is generated by the client.
[0055] Flow 400 passes from operation 406 to opera-
tion 408 where a response is received granting access
to the file using the persistent handle. The response in-
cludes a file identifier that is provided by the file server
in the response.
[0056] At operation 410 state information may, in some
embodiments, be stored by the client. The state informa-

tion is stored in association with the handle identifier and
the file identifier provided in the response received grant-
ing the persistent handle. The state information may be
stored in any appropriate form, such as in a table, data-
base, or log file. The storage is persistent and available
to the client for reestablishing state when necessary. As
can be appreciated, the state information stored by the
client is, in embodiments, state information for operations
that can be safely replayed back to the file server without
creating an inconsistent state on the file server. The re-
played operations may be, for example, leases for locally
caching data, reads, writes, deletes, and meta-data enu-
merations.
[0057] Flow 400 passes from operation 410 to opera-
tion 412 where the client sends a number of file access
requests. Operation 412 may thus involve the sending
of several requests to perform file operations, according
to embodiments. Following operation 412 is operation
414, where state information on the client is updated. As
may be appreciated, operations 414 may occur numer-
ous times, namely each time that a file access request
is sent by the client at operation 412.
[0058] From operation 414, flow passes to operation
416 where a disconnect is detected. The detection may
occur by virtue of a timeout, an event notification or some
other means. Following operation 416, a request is sent
to reconnect and reestablish the session previously es-
tablished with the file server at operation 418. The re-
quest includes the file handle previously provided by the
file server, as well as the handle identifier that the client
used when requesting the persistent handle.
[0059] Flow 400 passes from operation 418 to opera-
tion 420 where a determination is made that the recon-
nect is successful. After operation 420, flow passes to
operation 422 where state information stored on the client
is used to reestablish the previous state. Operation 422
may involve sending a number of different requests, in-
cluding read, write, enumerate, requests for locks or oth-
er operations to reestablish the previous state. Flow
passes from operation 422 to operation 424, where the
client sends new file access requests. Flow ends at 426.
[0060] FIG. 5 illustrates a general computer system
500, which can be used to implement the embodiments
described herein. The computer system 500 is only one
example of a computing environment and is not intended
to suggest any limitation as to the scope of use or func-
tionality of the computer and network architectures. Nei-
ther should the computer system 500 be interpreted as
having any dependency or requirement relating to any
one or combination of components illustrated in the ex-
ample computer system 500. In embodiments, system
500 may be used as a client and/or server described
above with respect to FIG. 1.
[0061] In its most basic configuration, system 500 typ-
ically includes at least one processing unit 502 and mem-
ory 504. Depending on the exact configuration and type
of computing device, memory 504 may be volatile (such
as RAM), non-volatile (such as ROM, flash memory, etc.)

13 14

EP 3 051 420 A1

9

5

10

15

20

25

30

35

40

45

50

55

or some combination of the two. This most basic config-
uration is illustrated in FIG. 5 by dashed line 506. In em-
bodiments, system memory 504 stores applications such
as application 523, which requests access to file infor-
mation. System memory 504 also includes redirector 522
that intercepts the requests and communicates them to
a file server, according to embodiments.
[0062] The term computer readable media as used
herein may include computer storage media. Computer
storage media may include volatile and nonvolatile, re-
movable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data. System memory 504, removable
storage, and non-removable storage 508 are all compu-
ter storage media examples (i.e., memory storage). In
embodiments, data, such as state information 520, for
example, are stored. Computer storage media may in-
clude, but is not limited to, RAM, ROM, electrically eras-
able read-only memory (EEPROM), flash memory or oth-
er memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic stor-
age devices, or any other medium which can be used to
store information and which can be accessed by com-
puting device 500. Any such computer storage media
may be part of device 500. Computing device 500 may
also have input device(s) 514 such as a keyboard, a
mouse, a pen, a sound input device, a touch input device,
etc. Output device(s) 516 such as a display, speakers, a
printer, etc. may also be included. The aforementioned
devices are examples and others may be used.
[0063] The term computer readable media as used
herein may also include communication media. Commu-
nication media may be embodied by computer readable
instructions, data structures, program modules, or other
data in a modulated data signal, such as a carrier wave
or other transport mechanism, and includes any informa-
tion delivery media. The term "modulated data signal"
may describe a signal that has one or more characteris-
tics set or changed in such a manner as to encode infor-
mation in the signal. By way of example, and not limita-
tion, communication media may include wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, radio frequency (RF),
infrared, and other wireless media.
[0064] Reference has been made throughout this
specification to "one embodiment" or "an embodiment,"
meaning that a particular described feature, structure, or
characteristic is included in at least one embodiment.
Thus, usage of such phrases may refer to more than just
one embodiment. Furthermore, the described features,
structures, or characteristics may be combined in any
suitable manner in one or more embodiments.
[0065] One skilled in the relevant art may recognize,
however, that the embodiments may be practiced without
one or more of the specific details, or with other methods,
resources, materials, etc. In other instances, well known

structures, resources, or operations have not been
shown or described in detail merely to avoid obscuring
aspects of the embodiments.
[0066] While example embodiments and applications
have been illustrated and described, it is to be understood
that the embodiments are not limited to the precise con-
figuration and resources described above. Various mod-
ifications, changes, and variations apparent to those
skilled in the art may be made in the arrangement, oper-
ation, and details of the methods and systems disclosed
herein without departing from the scope of the claimed
embodiments.

Numbered Embodiments forming part of the descrip-
tion

[0067]

1. A computer implemented method of providing con-
sistent availability to clients accessing a shared file
system on a server cluster, the method comprising:

receiving at a file server a request to connect to
the file server to access file information in a
shared file system, the first request being for-
matted according to a file access protocol,
wherein the file server is one of a plurality of
servers in a server cluster;
sending a response from the file server, the re-
sponse establishing a session with a client for
allowing access to file information in the shared
file system, the response being formatted ac-
cording to the file access protocol;
receiving a request at the file server to open a
persistent handle on the file server for accessing
a file in the shared file system by the client, the
request including a handle identifier provided by
the client;
in response to receiving the request, the file
server:

storing first state information about the ses-
sion in association with the handle identifier;
and
sending a response to the client granting
access to the file;

after a client disconnect, receiving a request to
reestablish the session using the persistent han-
dle; and
reestablishing the session using the first state
information.

2. The method of embodiment 1, wherein the first
state information comprises state of an operation
that if resent by the client causes the file server to
end up in an inconsistent state.
3. The method of embodiment 1, further comprising:

15 16

EP 3 051 420 A1

10

5

10

15

20

25

30

35

40

45

50

55

after the reestablishing the session, receiving a
new request from the client, the request includ-
ing the handle identifier.

4. The method of embodiment 1, wherein the client
disconnect occurs because of a failure of the file
server and the reestablishing the connection is per-
formed by a second file server in the server cluster.
5. A computer readable storage medium comprising
computer executable instructions that when execut-
ed by a processor perform a method of maintaining
consistent state, the method comprising:

sending a request by a client to connect to a
server to access file information, the request be-
ing formatted according to a file access protocol;
receiving a response from the server, the re-
sponse establishing a session with the client for
allowing access to file information on the server,
the response being formatted according to the
file access protocol;
sending a request to open a persistent handle
on the server for accessing a file on the server
by the client, the request including a handle iden-
tifier provided by the client;
receiving a response at the client granting ac-
cess to the file;
detecting that the client has been disconnected
from the server;
sending a request to reestablish the session us-
ing the persistent handle, the request to rees-
tablish the session including the handle identifi-
er;
determining that the session has been reestab-
lished; and
sending a new request.

6. A system for providing consistent availability of
file information, the system comprising:

a first server comprising:

at least one processor configured to exe-
cute computer executable instructions;
at least one computer readable storage me-
dia storing the computer executable instruc-
tions that when executed by the at least one
processor provide:

a first file server configured to:

receive a request to open a persist-
ent handle for accessing a file on
the first file server by a client, the
request including a handle identifi-
er provided by the client;
store first state information in as-
sociation with the handle identifier;

register with a resume key filter to
store second state information in
association with a resume key; and
send a response to the client grant-
ing access to the file;

the resume key filter configured to:

receive a registration request from
the first file server;
store the second state information
with the resume key; and
send the second state information
to the first file server in response
to a request from the first file server
for the second state information.

7. The system of embodiment 6, wherein the system
further comprises:

at least one client, comprising:

at least one additional processor configured
to execute computer executable instruc-
tions;
at least one additional computer readable
storage media storing the computer execut-
able instructions that when executed by the
at least one additional processor provide:

a file access redirector configured to:

send the request to open the per-
sistent handle on the first server for
accessing the file on the first server
by the client, the request including
the handle identifier;
receive the response granting ac-
cess to the file;
detect that the client has been dis-
connected from the first file server;
send a request to reestablish a
session using the persistent han-
dle,

the request to reestablish the session
including the handle identifier;

determine that the session has
been reestablished; and
send a new request.

8. The system of embodiment 6, wherein the first file
server is one of a plurality of servers in a server clus-
ter, and wherein a second server of the plurality of
servers in the server cluster comprises:

at least one additional processor configured to

17 18

EP 3 051 420 A1

11

5

10

15

20

25

30

35

40

45

50

55

execute computer executable instructions;
at least one additional computer readable stor-
age media storing the computer executable in-
structions that when executed by the at least
one additional processor provide:

a second file server configured to:

receive a request to reestablish a ses-
sion using the persistent handle, the
session previously established by the
first file server.

9. The system of embodiment 8, wherein the second
server of the plurality of servers is further configured
to:

use the state information of the first file server
to reestablish a previous state of the session.

10. The system of embodiment 7, wherein the file
access redirector uses a version of a Server Mes-
sage Block (SMB) protocol to request file operations
from the first file server, and the first file server uses
the version of the SMB protocol to communicate with
the file access redirector.

Claims

1. A computer implemented method of providing con-
sistent availability to clients accessing a shared file
system on a server cluster, the method comprising:

receiving at a file server a request to connect to
the file server to access file information in a
shared file system, the first request being for-
matted according to a file access protocol,
wherein the file server is one of a plurality of
servers in a server cluster;
sending a response from the file server, the re-
sponse establishing a session with a client for
allowing access to file information in the shared
file system, the response being formatted ac-
cording to the file access protocol;
receiving a request at the file server to open a
persistent handle on the file server for accessing
a file in the shared file system by the client, the
request including a handle identifier provided by
the client;
in response to receiving the request, the file
server:

storing first state information about the ses-
sion in association with the handle identifier;
and
sending a response to the client granting
access to the file;

after a client disconnect, receiving a request to
reestablish the session using the persistent han-
dle; and
reestablishing the session using the first state
information.

2. The method of claim 1, wherein the first state infor-
mation comprises state of an operation that if resent
by the client causes the file server to end up in an
inconsistent state.

3. The method of claim 1 or claim 2, wherein byte range
locks are requested and granted on portions of a file.

4. The method of any of claims 1 to 3, further comprising
the file server registering with a resume filter in order
to store particular state information.

5. The method of any of claims 1 to 4, further comprising
after the reestablishing the session, receiving a new
request from the client, the request including the han-
dle identifier.

6. The method of any of claims 1 to 5, wherein the han-
dle identifier sent with the original request for the
persistent handle is used to identify replayed re-
quests.

7. A system for maintaining consistent availability com-
prising at least one computer readable storage me-
dia storing computer readable instructions that,
when executed, provide a method, the method com-
prising:

sending a request to connect to a file server to
access file information, the request being for-
matted according to a file access protocol;
receiving a response, the response indicating
that a session has been established;
sending a request for a persistent handle, the
request including a handle identifier generated
by the client;
receiving a response granting access to the file
using the persistent handle, the response in-
cluding a file identifier that is provided by the file
server in the response;
the client storing state information, the state in-
formation being stored in association with the
handle identifier and the file identifier provided
in the response received granting the persistent
handle, wherein the state information stored by
the client is state information for operations that
can be safely replayed back to the file server
without creating an inconsistent state on the file
server;
detecting a disconnect;
sending a request to reconnect and reestablish
the session previously established with the file

19 20

EP 3 051 420 A1

12

5

10

15

20

25

30

35

40

45

50

55

server, the request including the file handle pre-
viously provided by the file server, as well as the
handle identifier that the client used when re-
questing the persistent handle,
making a determination that the reconnect is
successful;
using state information stored on the client to
reestablish the previous state.

8. The system of claim 7, wherein the client disconnect
occurs because of a failure of the file server and the
reestablishing the connection is performed by a sec-
ond file server in the server cluster.

9. The system of claim 7 or claim 8, wherein the handle
identifier sent with the original request for the per-
sistent handle is used to identify replayed requests.

10. The system of any of claims 7 to 9, wherein byte
range locks are requested and granted on portions
of a file.

21 22

EP 3 051 420 A1

13

EP 3 051 420 A1

14

EP 3 051 420 A1

15

EP 3 051 420 A1

16

EP 3 051 420 A1

17

EP 3 051 420 A1

18

5

10

15

20

25

30

35

40

45

50

55

EP 3 051 420 A1

19

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

