

(11) **EP 3 051 741 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

03.08.2016 Bulletin 2016/31

(51) Int Cl.:

H04L 5/00 (2006.01)

H04B 7/06 (2006.01)

(21) Application number: 16152860.9

(22) Date of filing: 27.01.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 30.01.2015 US 201562109990 P

(71) Applicant: Nokia Technologies Oy

02610 Espoo (FI)

(72) Inventors:

- SCHOBER, Karol 00150 Helsinki (FI)
- KOKKONEN, Mikko 00570 Helsinki (FI)
- ENESCU, Mihai 02120 Espoo (FI)

(74) Representative: Nokia Corporation Intellectual Property Department Karakaari 7

02610 Espoo (FI)

(54) ENHANCED LINK ADAPTATION

(57) Systems, methods, apparatuses, and computer program products for enhanced link adaptation are provided. One method includes receiving, by a network node, channel state information (CSI) feedback from at

least one user equipment (UE), scheduling the same UEs in one rank or more than one rank in the same subframe, and scheduling multiple UEs on at least one same time-frequency resource.

EP 3 051 741 A1

Description

CROSS-REFERENCE TO RELATED APPLICATIONS:

⁵ **[0001]** This application claims priority from United States Application No. 62/109,990, filed on January 30, 2015. The entire contents of this earlier filed application are hereby incorporated by reference in their entirety.

BACKGROUND:

10 Field:

15

20

25

30

35

[0002] Embodiments of the invention generally relate to wireless communications networks, such as, but not limited to, the Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN), Long Term Evolution (LTE) Evolved UTRAN (E-UTRAN), LTE-Advanced (LTE-A), future 5G radio access technology, and/or High Speed Packet Access (HSPA).

Description of the Related Art:

[0003] Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN) refers to a communications network including base stations, or Node Bs, and for example radio network controllers (RNC). UTRAN allows for connectivity between the user equipment (UE) and the core network. The RNC provides control functionalities for one or more Node Bs. The RNC and its corresponding Node Bs are called the Radio Network Subsystem (RNS). In case of E-UTRAN (enhanced UTRAN), no RNC exists and most of the RNC functionalities are contained in the enhanced Node B (eNodeB or eNB).

[0004] Long Term Evolution (LTE) or E-UTRAN refers to improvements of the UMTS through improved efficiency and services, lower costs, and use of new spectrum opportunities. In particular, LTE is a 3GPP standard that provides for uplink peak rates of at least, for example, 75 megabits per second (Mbps) and downlink peak rates of at least, for example, 300 Mbps. LTE supports scalable carrier bandwidths from 20 MHz down to 1.4 MHz and supports both Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD).

[0005] As mentioned above, LTE may also improve spectral efficiency in networks, allowing carriers to provide more data and voice services over a given bandwidth. Therefore, LTE is designed to fulfill the needs for high-speed data and media transport in addition to high-capacity voice support. Advantages of LTE include, for example, high throughput, low latency, FDD and TDD support in the same platform, an improved end-user experience, and a simple architecture resulting in low operating costs.

[0006] Certain releases of 3GPP LTE (e.g., LTE Rel-11, LTE Rel-12, LTE Rel-13) are targeted towards international mobile telecommunications advanced (IMT-A) systems, referred to herein for convenience simply as LTE-Advanced (LTE-A).

[0007] LTE-A is directed toward extending and optimizing the 3GPP LTE radio access technologies. A goal of LTE-A is to provide significantly enhanced services by means of higher data rates and lower latency with reduced cost. LTE-A is a more optimized radio system fulfilling the international telecommunication union-radio (ITU-R) requirements for IMT-Advanced while keeping the backward compatibility. One the key features of LTE-A is carrier aggregation, which allows for increasing the data rates through aggregation of two or more LTE carriers.

SUMMARY:

45

50

55

40

[0008] One embodiment is directed to a method that may include receiving, by a network node, CSI feedback from at least one UE. The method may also include scheduling the at least one UE in one or more than one ranks (e.g., in both rank 1 and higher rank) in a subframe, and scheduling multiple UEs on at least one time-frequency resource. The method may further include semi-statically or dynamically signaling to the at least one UE information relating the blind detection needed for serving and co-scheduled interference PDSCH detection. In one embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to a total number of layers (serving and/or interference). According to another embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to utilized DMRS configuration for serving transmission. In this embodiment, the signaling may include signaling the exact or a subset of DMRS configuration used for co-scheduled transmission.

[0009] Another embodiment is directed to an apparatus, which may include at least one processor and at least one memory including computer program code. The at least one memory and computer program code may be configured, with the at least one processor, to cause the apparatus at least to receive CSI feedback from at least one UE, schedule the at least one UE in one or more than one ranks (e.g., in both rank 1 and higher rank) in a subframe, and schedule

multiple UEs on at least one time-frequency resource. According to an embodiment, the at least one memory and computer program code are also configured, with the at least one processor, to cause the apparatus at least to semi-statically or dynamically signal to the at least one UE information relating the blind detection needed for serving and co-scheduled interference PDSCH detection.

[0010] In one embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to a total number of layers (serving and/or interference). According to another embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to utilized DMRS configuration for serving transmission. In this embodiment, the signaling may include signaling the exact or a subset of DMRS configuration used for co-scheduled transmission.

[0011] Another embodiment is directed to an apparatus that may include receiving means for receiving CSI feedback from at least one UE. The apparatus may also include scheduling means for scheduling the at least one UE in one or more than one ranks (e.g., in both rank 1 and higher rank)in a subframe, and for scheduling multiple UEs on at least one time-frequency resource. The apparatus may further include signaling means for semi-statically or dynamically signaling to the at least one UE information relating the blind detection needed for serving and co-scheduled interference PDSCH detection.

10

20

30

35

40

45

50

55

[0012] In one embodiment, the signaling means may include means for dynamically or semi-statically signaling to the at least one UE information relating to a total number of layers (serving and/or interference). According to another embodiment, the signaling means may include means for dynamically or semi-statically signaling to the at least one UE information relating to utilized DMRS configuration for serving transmission. In this embodiment, the signaling means may include means for signaling the exact or a subset of DMRS configuration used for co-scheduled transmission.

[0013] Another embodiment is directed to a computer program embodied on a non-transitory computer readable medium. The computer program may be configured to control a processor to perform a process that may include receiving CSI feedback from at least one UE. The process may also include scheduling the at least one UE in one or more than one ranks (e.g., in both rank 1 and higher rank)in a subframe, and scheduling multiple UEs on at least one time-frequency resources. The process may further include semi-statically or dynamically signaling to the at least one UE information relating the blind detection needed for serving and co-scheduled interference PDSCH detection.

[0014] In one embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to a total number of layers (serving and/or interference). According to another embodiment, the signaling may include dynamically or semi-statically signaling to the at least one UE information relating to utilized DMRS configuration for serving transmission. In this embodiment, the signaling may include signaling the exact or a subset of DMRS configuration used for co-scheduled transmission.

[0015] Another embodiment may be directed to a method that may include reporting to a network node, by a UE, CSI feedback. For example, the CSI feedback may include a CSI that maximizes throughput at the UE. The method may further include receiving at least one of scheduling of the user equipment in one or more than one rank in a subframe or scheduling of the user equipment at least one same time-frequency resource as scheduled to another user equipment.

[0016] The method may also include receiving network assistance with respect to interference properties due to coscheduled UEs. The method may also include receiving dynamic signaling indicating at least one of serving and interference properties.

[0017] In one embodiment, when the interferer is in CRS mode, the network assistance may include: codebook subset restriction indicating an active UE in the cell is utilizing PMI from signaled subset of PMIs, PA subset (of used PAs within subframe layer), transmission scheme/mode or subset. According to an embodiment, when the interferer is in DMRS mode, the network assistance may include a subset of DMRS configurations used by the network node (e.g., eNB), virtual cell ID, quasi-collocation information, transmission scheme/mode.

[0018] According to one embodiment, when the interferer is in CRS mode, the dynamic signaling may include the exact wideband PMI of serving transmission with an indication which column of PMI corresponds to layer to be blindly detected. In an embodiment, when interferer is in DMRS mode, the dynamic signaling may include allocated DMRS configuration(s) including indication on which DMRS configurations) the UE will detect presence of layers targeted for blind detection.

[0019] Another embodiment is directed to an apparatus, which may include at least one processor and at least one memory including computer program code. The at least one memory and computer program code may be configured, with the at least one processor, to cause the apparatus at least to report to a network node CSI feedback. For example, the CSI feedback may include CSI that maximizes throughput at the apparatus. The at least one memory and computer program code may also be configured, with the at least one processor, to cause the apparatus at least to receive at least one of scheduling of the user equipment in one or more than one rank in a subframe or scheduling of the user equipment at least one same time-frequency resource as scheduled to another user equipment.

[0020] The at least one memory and computer program code may be further configured, with the at least one processor, to cause the apparatus at least to receive network assistance with respect to interference properties due to co-scheduled UEs, and receive dynamic signaling indicating at least one of serving and interfering properties.

[0021] Another embodiment is directed to an apparatus that may include reporting means for reporting, to a network node, CSI feedback, and receiving means for receiving scheduling of the user equipment in one or more than one rank in a same subframe and for receiving scheduling of the user equipment at least one same time-frequency resource as scheduled to another user equipment.

[0022] Another embodiment is directed to a computer program embodied on a non-transitory computer readable medium. The computer program may be configured to control a processor to perform a process that may include reporting to a network node, by a UE, CSI feedback, and receiving at least one of scheduling of the user equipment in one or more than one rank in a subframe or scheduling of the user equipment at least one same time-frequency resource as scheduled to another user equipment.

BRIEF DESCRIPTION OF THE DRAWINGS:

[0023] For proper understanding of the invention, reference should be made to the accompanying drawings, wherein:

- Fig. 1 illustrates an example of enhanced link adaptation based on the utilization of the advanced receiver, according to an embodiment;
 - Fig. 2 illustrates an example of DMRS operation, according to an embodiment;
- Fig. 3 illustrates an example of DMRS ports and scrambling IDs utilization for SU MIMO and MU MIMO, according to an embodiment;
 - Fig. 4 illustrates a scheduling example, according to an embodiment;
- 25 Fig. 5 illustrates an example of the power split per layer of the example in Fig. 4, according to an embodiment;
 - Fig. 6a illustrates a block diagram of an apparatus, according to one embodiment;
 - Fig. 6b illustrates a block diagram of an apparatus, according to another embodiment;
 - Fig. 7a illustrates a flow diagram of a method, according to one embodiment;
 - Fig. 7b illustrates a flow diagram of a method, according to another embodiment;
 - Fig. 8a illustrates a block diagram of an apparatus, according to one embodiment; and
 - Fig. 8b illustrates a block diagram of an apparatus, according to another embodiment.

DETAILED DESCRIPTION:

[0024] It will be readily understood that the components of the invention, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of embodiments of systems, methods, apparatuses, and computer program products for enhanced link adaptation, as represented in the attached figures, is not intended to limit the scope of the invention, but is merely representative of some selected embodiments of the invention.

[0025] The features, structures, or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of the phrases "certain embodiments," "some embodiments," or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention. Thus, appearances of the phrases "in certain embodiments," "in some embodiments," "in other embodiments," or other similar language, throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

[0026] Additionally, if desired, the different functions discussed below may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the described functions may be optional or may be combined. As such, the following description should be considered as merely illustrative of the principles, teachings and embodiments of this invention, and not in limitation thereof.

[0027] In 3GPP Release 13, improvement of multi-user multiple input multiple output (MU-MIMO) in context of non-

4

10

15

20

30

35

45

40

50

55

linear receivers will be discussed. Non-linear receivers such as Symbol Level interference cancellation (SLIC) or Reduced complexity maximum likelihood (RML) have been discussed extensively during 3GPP Release 12 network assisted interference cancellation and suppression (NAICS). Indeed, in 3GPP Release 12, the advanced receivers have been used in two important interference cancellation (IC) situations: inter-stream IC (single user (SU) MIMO) and inter-cell physical downlink shared channel (PDSCH) IC (so called NAICS). The utilization of non-linear receivers in 3GPP Release 13 and beyond introduces the opportunity for enhancing the link adaptation of the LTE system.

[0028] The current LTE system performs rank adaptation in a conservative way in the sense that one UE is scheduled with the same rank during a particular subframe. Such an approach has been motivated by several factors. First, the UE implementation based on linear receivers handling only one or two codewords per subframe was seen as a simpler implementation. Secondly, the control signaling is simpler. The DL frequency resource allocation signaling requires only per transmission allocation bitmap instead of per layer or codeword. In addition, the UE is indicated if it is scheduled in SU-MIMO (with a specific rank) or in MU-MIMO (with a specific rank).

[0029] Thus, the current state of technology involves the 3GPP Release 12 NAICS advanced non-linear receivers which are capable of performing inter-cell IC and blind detection of interfering eNB parameters, as well as of release 12 advanced non-linear receivers which are capable of performing inter-stream IC. Currently, rank adaptation is performed wideband per subframe.

[0030] However, a first hint that the above system operation can be further enhanced lies in the fact that dynamic switching of SU and MU MIMO has been shown beneficial to LTE. With the aid of non-linear receivers (with blind detection capabilities), such SU/MU MIMO operation can be performed in the same subframe, exploiting the latest UE state-of-the-art implementation as defined in 3GPP Release 12 and with minimal additional complexity.

[0031] Embodiments of the invention provide operation of both rank 1 and rank 2, for the same UE, in the same subframe. Such operation is facilitated by the utilization of non-linear advanced receivers. In addition, the UEs can be paired in MU MIMO as well.

25

30

35

40

45

50

55

[0032] The elements of enhanced link adaptation (frequency selective rank adaptation) based on non-linear receivers are: (1) CSI computation at the UE, which includes rank, precoding matrix indicator (PMI), channel quality indicator (CQI); (2) channel state information (CSI) feedback reporting -- alternatively, CSI feedback derivation at eNB for TDD, hence based on uplink (UL) sounding; (3) eNB scheduling with enhanced link adaptation for non-linear receiver which includes: cell-specific reference signal (CRS) and demodulation reference signal (DMRS) operation (potential enhancement of DMRS operation), existing transmission modes (TMs), scheduling of the UE in the same subframe with SU with different ranks and/or SU & MU; and (4) eNB control signaling (dynamic and semi-static) of the configured transmission. [0033] An embodiment of the invention exploits the ability of the advanced UE to handle IC of aggressor interfering layers. 3GPP Release 12 specifies the operation of advanced receiver over 3 layers and 1 dominant interferer cancellation, which means that the following combinations of <serving layers, interfering layers> are possible: <1,1>, <2,1>, <1,2>. Such operation may be extended to cover the case of 4 or more layers operation and multiple dominant interferer cancellation, which extends the above possibilities to the following examples: <1,1,1>,<1,1,1,1>,<2,2>, <2>, etc.

[0034] Fig. 1 illustrates an example of enhanced link adaptation based on the utilization of the advanced receiver, according to an embodiment. In one embodiment, the operation of the advanced link adaptation is based, in part, on the principle that an advanced UE is able to cancel both inter-stream and inter-user interference from an interfering layer perspective, there are similarities between an interfering layer addressed to the same UE and the interfering layer coming from a spatially multiplexed UE.

[0035] According to certain embodiments, at least the following operations are provided: (1) An advanced UE utilizing non-linear receiver is possible to be scheduled in both rank 1 and rank 2 in the same sub-frame; (2) An advanced receiver is performing inter-user IC, canceling interference coming from a different user scheduled on the same time-frequency resource; and (3) An advanced receiver is performing inter-stream IC.

[0036] In order to perform the above operations, according to an embodiment, the advanced UE may receive dynamic and semi-static signaling. This is used in addition to the blind detection operation capability of the advanced UE, which may be needed in the process of estimating the interfering PDSCH characteristics.

[0037] As introduced above, Fig. 1 illustrates an example operation of the per cell advanced link adaptation, according to an embodiment. In this example, the UEs may be operating according to the following. As illustrated in the example of Fig. 1, UE1 is an advanced UE capable of canceling both inter-stream and inter-user interference. In this example, UE1 may be scheduled in the primary layer in SU MIMO rank 2 and also, on selected sub-bands, in rank 1. When applying a secondary spatial layer scheduling, UE1 may be scheduled in MU mode with UE4 on a particular sub-band and with UE3 on a different sub-band. UE1 may perform inter-user IC on sub-bands #1 and 2 and inter-stream IC on sub-bands #5 and #6, thereby making use of the 3GPP Release 12 advanced receiver capability. In the example of Fig. 1, UE2 is simply scheduled in SU MIMO rank 2 on a particular sub-band (in this case sub-band #3). UE2 may or may not have advanced receiver capability. In the example of Fig. 1, UE3 may be scheduled in the primary layer on sub-band #4 while in a secondary layer on sub-bands #2. UE3 is capable of inter-user IC on sub-bands #2 where it is paired in MU domain. UE4 may be scheduled in the secondary layer in SU MIMO rank 2 mode while sharing also the same

time-frequency resources with UE1. UE4 is capable of inter-stream IC and also of inter-user IC.

10

50

[0038] Certain embodiments may include several important signaling components. This includes, for example, dynamic control signaling (for example through DCI) indicating the UE's PDSCH characteristics. The dynamic signaling may be based on the framework of existing dual codeword signaling, such as DCI 2C for example. A dual codeword DCI contains the signaling fields as shown in Table 1 below.

[0039] In an embodiment, per codeword (CW) indications are preserved and, in certain embodiments, it is assumed that the UE is scheduled with the same MCS class in a spatial layer. In Table 1, the RB allocation indicates the UE allocations with at least one layer, however it does not indicate the number of spatial layers; hence, the UE needs to detect itself, per subband, the type of interference which can have one of the following forms: 1. Inter-user, 2. Inter-stream, 3. Inter-cell. The Aps field is utilized in indicating the UE reference signal port and scrambling identity. In one embodiment, the network can signal in the DCI the total SU+MU rank scheduled to the UE. The number of layers targeted to the UE in SU MIMO mode may be available from the number of configured CWs in the DCI. Thus, the total number of signaled layers gives the UE the opportunity to know the expected maximum number of layers to be canceled (MU-MIMO mode), remaining that the UE identifies, per subband, the actual number of layers which may be less than the total number of indicated layers. Alternatively, the UE may be signaled dynamically a set of DM-RS codes used for its own signal and for interfering signal, from which it can estimate max MIMO rank.

Field	Bits	Comment		
CIF	0	Carrier indicator field		
Resource allocation header	1	Indicates allocation type 0 or 1 (type 2 uses payload A, same as UL)		
RB allocation	25			
TPC	2	Power control of PUCCH		
DAI	0	Downlink Assignment Index, applies in TDD only - 2bits		
Hybrid ARQ process number	3	3 for FDD, 4 for TDD		
		Used for initializing the sequence generation for UE specific reference		
Aps, scrambling identity and layers	3	signals		
SRS	0	0 or 1 bits. Only for TDD		
MCS, transport block 1	5			
New data indicator (1st TB)	1	Toggled for each new transport block		
Redundancy version (1st TB)	2			
MCS, transport block 2	5			
New data indicator (2nd TB)	1	Toggled for each new transport block		
Redundancy version (2nd TB)	2			
Total information bits	50			
Payload size disambiguous	0			
Total Payload size	50			
RNTI / CRC	16	16 bit RNTI implicitly encoded in CRC		
Total	66			

[0040] According to an embodiment, dynamic or semi-static network assistance may be needed for the blind detection process, especially for inter-user IC stage. In the following, an example of the particular operation of UE1, UE3 and UE4 (depicted in Fig. 1), which perform inter-user IC, is described.

[0041] Under CRS mode, in one example, UE1 receives signalling information on the allocated resources; hence, it knows the exact sub-bands where it has to operate both inter-stream and inter-user IC. The UE1 performs channel estimation on CRS over the full band. As it is indicated to be scheduled in rank2, the UE1 knows that there are two CWs scheduled for itself but also knows, for example from max-rank signalling, that there is potential inter-user interference to cancel on allocated sub-bands.

[0042] According to an embodiment, for sub-band #1, the UE1 may identify the inter-user interference based on the blind detection (BD) mechanism specified in 3GPP Release 12. For example, on sub-band #1, the NAICS capable UE1

may perform multi-user interference presence blind detection which will indicate the presence of UE4. Further, UE1 may perform PMI, rank, modulation, and PDSCH layer power blind detection for UE4. As network assistance, the UE1 may receive from the eNB information on codebook subset restriction (CBSR), hence the blind PMI search will be performed from a reduced set of PMI choices to limit the UE blind detection complexity. This CBSR signalling can be sent over radio resource control (RRC) from the serving eNB to UE1. The UE1 may be signalled the P_A utilized for the serving transmission and performs BD for P_A characterizing the interferer. Alternatively, to allow more flexibility to power allocation, P_A can be layer specific or if different P_A is used on different sub-bands, a subset of P_A corresponding to all used values is signalled. Afterwards, the UE1 may perform blind detection of modulation for the spatial layers of UE4. Once the effective channel and modulation of UE4 are available, UE1 may perform symbol-level interference cancellation (SLIC) or reduced complexity maximum likelihood (RML) on sub-band #1

[0043] For sub-band #2, UE1 may perform similar operation as on subband #1. The differences, however, may include that, because of a ramk1 co-scheduled UE3, the power split between the layers is different and the UE1 may need to blindly detect this information.

[0044] For sub-band #5 & #6 (as well as all allocated subbands), UE1 may receive signalling of the "precoding information" field as in DCI 2. Alternatively, UE1 may receive semi-statically signalled CBSR of PMIs exclusively scheduled to it or a 1 bit-confirmation that reported feedback has been employed for precoding at the transmitter. If this information is available, the UE1 can utilize this in the BD process and identify that the two layers are assigned to itself. In this situation, the UE1 may proceed with decoding the two layers as typically done in SU MIMO advanced receiver operation, according to 3GPP Release 12, for example.

[0045] In certain embodiments, the other UEs may operate in a similar manner to UE1 as described above.

10

20

30

35

40

45

50

[0046] In some embodiments, the following signalling may be needed for UE operation on CRS: (1) Total number of layers signaling (SU+MU); (2) Power offsets for the desired UE and interfering UE; (3) Precoding information for the desired layers; (4) CBSR for the paired layers, possibly in the form of semi-static signaling.

[0047] With respect to DMRS modes, one particularity of these modes is the simpler BD of the interfering layer. As in the case of CRS operation, for DMRS, the UE1 may receive signalling information on the allocated resources; hence, it knows the exact sub-bands where it has to operate. Fig. 2 illustrates an example of DMRS operation, according to an embodiment. In DMRS transmission modes, the following elements, as depicted in Fig. 2, may be used for creating orthogonal and quasi-orthogonal reference symbols: (1) Orthogonal ports 7 and 8 separated through CDM, and (2) Scrambling ID nSCID which create two quasi orthogonal choices in addition to the ports 7 and 8. With these two parameters, up to 4 quasi orthogonal DMRS ports can be used. These may be further scrambled with the virtual cell ID (VCID).

[0048] Fig. 3 illustrates an example of DMRS ports and scrambling IDs utilization for SU MIMO and MU MIMO, according to an embodiment. Configurations 300, 305, 310 are possible configurations where the DMRS orthogonality is lost.

[0049] Fig. 4 illustrates a scheduling example according to an embodiment. A priori, the UE1 would receive the indication of the <DMRS port, scrambling ID> utilized for its transmission. Such signalling is related to the SU MIMO operation, however a paired UE in MU mode may utilize on a particular sub-band a similar port and scrambling ID, for example UE1 gets signalled the pairs <port7, nSCID0> and <port8, nSCID0>. For instance, on sub-band #1 & #2, the combinations <port7, nSCID1> and <port8, nSCID1> is not utilized by UE1 and other UEs may use <port7, nSCID1> and/or <port8, nSCID1>, such as the case of UE4 and UE3.

[0050] In an embodiment, UE1 may perform the following operations on the respective sub-bands. For sub-band #1, in principle the UE1 BD mechanism would be able to detect the existence of use <port7, nSCID1> and <port8, nSCID1> corresponding to the UE4, hence its effective channel. Further, the UE1 may perform BD of modulation for UE4 and apply SLIC/RML or other IC receiver type. According to this embodiment, for sub-band #2, UE1 may perform similar operation as on subband #1. The only difference is that now UE3 is allocated at port <port7, nSCID1>. The performed IC is agnostic to which UE is scheduled on interfering layer. For sub-bands #5 & #6, UE1 knows that there is one layer dedicated to it on <port7, nSCID0>. It also knows that there might be a second layer dedicated to it on <port8, nSCID0>, and it performs, on each subband, presence detection of <port8, nSCID0>. The layer 2 targeted for blind detection may be scheduled with the stronger PMI. This will improve the success-rate of the BD.

[0051] Fig. 5 illustrates an example of the power split per layer of the example in Fig. 4, i.e., the power allocations for single layer at each sub-band. In this example, the power is split between layers equally; however, embodiments of the invention are not limited to equal power sharing.

[0052] Fig. 6a illustrates an example of an apparatus 10 according to an embodiment. In an embodiment, apparatus 10 may be a node, host, or server in a communications network or serving such a network. For example, apparatus 10 may be a network node or access node for a radio access network, such as a base station, node B or eNB, or an access node of 5G radio access technology. It should be noted that one of ordinary skill in the art would understand that apparatus 10 may include components or features not shown in Fig. 6a.

[0053] As illustrated in Fig. 6a, apparatus 10 includes a processor 22 for processing information and executing in-

structions or operations. Processor 22 may be any type of general or specific purpose processor. While a single processor 22 is shown in Fig. 6a, multiple processors may be utilized according to other embodiments. In fact, processor 22 may include one or more of general-purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), and processors based on a multi-core processor architecture, as examples.

[0054] Apparatus 10 may further include or be coupled to a memory 14 (internal or external), which may be coupled to processor 22, for storing information and instructions that may be executed by processor 22. Memory 14 may be one or more memories and of any type suitable to the local application environment, and may be implemented using any suitable volatile or nonvolatile data storage technology such as a semiconductor-based memory device, a magnetic memory device and system, an optical memory device and system, fixed memory, and removable memory. For example, memory 14 can be comprised of any combination of random access memory (RAM), read only memory (ROM), static storage such as a magnetic or optical disk, or any other type of non-transitory machine or computer readable media. The instructions stored in memory 14 may include program instructions or computer program code that, when executed by processor 22, enable the apparatus 10 to perform tasks as described herein.

10

15

20

25

30

35

40

45

50

55

[0055] In some embodiments, apparatus 10 may also include or be coupled to one or more antennas 25 for transmitting and receiving signals and/or data to and from apparatus 10. Apparatus 10 may further include or be coupled to a transceiver 28 configured to transmit and receive information. For instance, transceiver 28 may be configured to modulate information on to a carrier waveform for transmission by the antenna(s) 25 and demodulate information received via the antenna(s) 25 for further processing by other elements of apparatus 10. In other embodiments, transceiver 28 may be capable of transmitting and receiving signals or data directly.

[0056] Processor 22 may perform functions associated with the operation of apparatus 10 which may include, for example, precoding of antenna gain/phase parameters, encoding and decoding of individual bits forming a communication message, formatting of information, and overall control of the apparatus 10, including processes related to management of communication resources.

[0057] In an embodiment, memory 14 may store software modules that provide functionality when executed by processor 22. The modules may include, for example, an operating system that provides operating system functionality for apparatus 10. The memory may also store one or more functional modules, such as an application or program, to provide additional functionality for apparatus 10. The components of apparatus 10 may be implemented in hardware, or as any suitable combination of hardware and software.

[0058] In one embodiment, apparatus 10 may be a network node or access node, such as a base station, node B, or eNB, or an access node of 5G, for example. According to one embodiment, apparatus 10 may be controlled by memory 14 and processor 22 to receive CSI feedback from a UE, to schedule the same UEs in both rank 1 and higher rank in the same subframe, and to schedule multiple UEs on the same time-frequency resources.

[0059] In an embodiment, apparatus 10 may be further controlled by memory 14 and processor 22 to semi-statically signal, to the UE, information related to the blind detection needed for the serving and the co-scheduled interference PDSCH detection. According to one embodiment, apparatus 10 may be controlled by memory 14 and processor 22 to dynamically signal, to the UE, information related to the blind detection of the serving and the co-scheduled interfering PDSCH. For example, in one embodiment, apparatus 10 may be controlled by memory 14 and processor 22 to dynamically or semi-statically signal, to the UE, information related to the total number of layers (i.e., serving + interference). In another embodiment, apparatus 10 may be controlled by memory 14 and processor 22 to dynamically or semi-statically signal, to the UE, information related to the utilized DMRS configuration for the serving transmission. In certain embodiments, the exact or a subset of DMRS configuration used for co-scheduled transmission may be signaled to the UE.

[0060] Fig. 6b illustrates an example of an apparatus 20 according to another embodiment. In an embodiment, apparatus 20 may be a node or element in a communications network or associated with such a network, such as a UE, mobile device, mobile unit, or other device. For instance, in some embodiments, apparatus 20 may be UE in LTE, LTE-A, or 5G. In certain embodiments, apparatus 20 may be a NAICS UE. It should be noted that one of ordinary skill in the art would understand that apparatus 20 may include components or features not shown in Fig. 6b.

[0061] As illustrated in Fig. 6b, apparatus 20 includes a processor 32 for processing information and executing instructions or operations. Processor 32 may be any type of general or specific purpose processor. While a single processor 32 is shown in Fig. 6b, multiple processors may be utilized according to other embodiments. In fact, processor 32 may include one or more of general-purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), and processors based on a multi-core processor architecture, as examples.

[0062] Apparatus 20 may further include or be coupled to a memory 34 (internal or external), which may be coupled to processor 32, for storing information and instructions that may be executed by processor 32. Memory 34 may be one or more memories and of any type suitable to the local application environment, and may be implemented using any suitable volatile or nonvolatile data storage technology such as a semiconductor-based memory device, a magnetic memory device and system, an optical memory device and system, fixed memory, and removable memory. For example,

memory 34 can be comprised of any combination of random access memory (RAM), read only memory (ROM), static storage such as a magnetic or optical disk, or any other type of non-transitory machine or computer readable media. The instructions stored in memory 34 may include program instructions or computer program code that, when executed by processor 32, enable the apparatus 20 to perform tasks as described herein.

[0063] In some embodiments, apparatus 20 may also include or be coupled to one or more antennas 35 for transmitting and receiving signals and/or data to and from apparatus 20. Apparatus 20 may further include a transceiver 38 configured to transmit and receive information. For instance, transceiver 38 may be configured to modulate information on to a carrier waveform for transmission by the antenna(s) 35 and demodulate information received via the antenna(s) 35 for further processing by other elements of apparatus 20. In other embodiments, transceiver 38 may be capable of transmitting and receiving signals or data directly.

[0064] Processor 32 may perform functions associated with the operation of apparatus 20 including, without limitation, precoding of antenna gain/phase parameters, encoding and decoding of individual bits forming a communication message, formatting of information, and overall control of the apparatus 20, including processes related to management of communication resources.

[0065] In an embodiment, memory 34 stores software modules that provide functionality when executed by processor 32. The modules may include, for example, an operating system that provides operating system functionality for apparatus 20. The memory may also store one or more functional modules, such as an application or program, to provide additional functionality for apparatus 20. The components of apparatus 20 may be implemented in hardware, or as any suitable combination of hardware and software.

20

30

35

45

50

55

[0066] As mentioned above, according to one embodiment, apparatus 20 may be a mobile device, such as a UE, and in some embodiments may be a NAICS UE. In this embodiment, apparatus 20 may be controlled by memory 34 and processor 32 to report CSI feedback which is maximizing the throughput as seen at apparatus 20. In an embodiment, apparatus 20 may be further controlled by memory 34 and processor 32 to receive semi-static network assistance with respect to the interference characteristics (e.g., due to co-scheduled UEs in MU MIMO). If the interferer is in CRS mode, the network assistance may include: (1) codebook subset restriction indicating the paired UE is utilizing the PMI from the signaled subset of PMIs; (2) PA subset, PA subset of used PAs within the subframe-layer, transmission scheme/mode or subset. If the interferer is in DMRS mode, the network assistance may include the subset of DMRS configurations used by the eNB, virtual cell ID, quasi-collocation information, transmission scheme/mode.

[0067] According to an embodiment, apparatus 20 may be controlled by memory 34 and processor 32 to receive dynamic signaling describing the serving and interfering characteristics. If the interferer is in CRS mode, the dynamic signaling may include the exact wideband PMI of serving transmission, with indication which column of PMI corresponds to layer to be blindly detected. If the interferer is in DMRS mode, the dynamic signaling may include the allocated DMRS configuration(s), including indication, on which DMRS-configuration(s) UE shall detect presence of the layer(s) targeted for blind detection. As an example, these can be in the form of <DMRS port, scrambling ID> indication.

[0068] Fig. 7a illustrates an example flow diagram of a method according to one embodiment. In an embodiment, the method of Fig. 7a may be executed by a network node or access node, such as a base station or eNB. As illustrated in Fig. 7a, the method may include, at 700, receiving CSI feedback from at least one UE. At 710, the method may include scheduling the same UEs in both rank 1 and higher rank in the same subframe and, at 720, scheduling multiple UEs on the same time-frequency resources. The method may also include, at 730, semi-statically or dynamically signaling, to the at least one UE, information related to the blind detection needed for the serving and the co-scheduled interference PDSCH detection. For example, in one embodiment, the signaling may include dynamically or semi-statically signaling, to the UE, information related to the total number of layers (i.e., serving + interference). In another embodiment, the signaling may include dynamically or semi-statically signaling, to the UE, information related to the utilized DMRS configuration for the serving transmission. In certain embodiments, the exact or a subset of DMRS configuration used for co-scheduled transmission may be signaled to the UE.

[0069] Fig. 7b illustrates an example flow diagram of a method according to another embodiment. In an embodiment, the method of Fig. 7b may be executed by a mobile device, such as a UE or NAICS UE. As illustrated in Fig. 7b, the method may include, at 750, reporting, to a network node, CSI feedback that maximizes the throughput as seen at the UE. In an embodiment, the method may further include, at 760, receiving semi-static network assistance with respect to the interference characteristics (e.g., due to co-scheduled UEs in MU MIMO). If the interferer is in CRS mode, the network assistance may include: (1) codebook subset restriction indicating the paired UE is utilizing the PMI from the signaled subset of PMIs; (2) PA subset, PA subset of used PAs within the subframe-layer), transmission scheme/mode or subset. If the interferer is in DMRS mode, the network assistance may include the subset of DMRS configurations used by the eNB, virtual cell ID, quasi-collocation information, transmission scheme/mode.

[0070] According to an embodiment, the method may further include, at 770, receiving dynamic signaling describing the serving and interfering characteristics. If the interferer is in CRS mode, the dynamic signaling may include the exact wideband PMI of serving transmission, with indication which column of PMI corresponds to layer to be blindly detected. If the interferer is in DMRS mode, the dynamic signaling may include the allocated DMRS configuration(s), including

indication, on which DMRS-configuration(s) UE shall detect presence of the layer(s) targeted for blind detection. As an example, these can be in the form of <DMRS port, scrambling ID> indication.

[0071] Fig. 8a illustrates a block diagram of an apparatus 800 according to an embodiment of the invention. In this embodiment, apparatus 800 may be a network node, such as a base or access station, node B, or eNB. As illustrated in Fig. 8a, apparatus 800 may include a receiving unit or means 810, a scheduling unit or means 820, and a sending unit or means 830. In an embodiment, receiving unit or means 810 may receive CSI feedback from a UE. According to one embodiment, scheduling unit or means 820 may schedule the same UEs in both rank 1 and higher rank in the same subframe, and schedule multiple UEs on the same time-frequency resources.

[0072] In certain embodiments, sending unit or means 830 may semi-statically signal, to the UE, information related to the blind detection needed for the serving and the co-scheduled interference PDSCH detection. According to one embodiment, sending unit or means 830 may dynamically signal, to the UE, information related to the blind detection of the serving and the co-scheduled interfering PDSCH. For example, in one embodiment, sending unit or means 830 may dynamically or semi-statically signal, to the UE, information related to the total number of layers (i.e., serving + interference). In another embodiment, sending unit or means 830 may dynamically or semi-statically signal, to the UE, information related to the utilized DMRS configuration for the serving transmission. In certain embodiments, the exact or a subset of DMRS configuration used for co-scheduled transmission may be signaled to the UE.

10

20

30

35

40

45

50

55

[0073] Fig. 8b illustrates a block diagram of an apparatus 801 according to an embodiment of the invention. In this embodiment, apparatus 801 may be a mobile device, such as a UE (e.g., NAICS UE). As illustrated in Fig. 8b, apparatus 801 may include a sending unit or means 850 and a receiving unit or means 860. According to an embodiment, sending unit or means 850 may report CSI feedback that maximizes the throughput at apparatus 801. In an embodiment, receiving unit or means 860 may receive semi-static network assistance with respect to the interference characteristics (e.g., due to co-scheduled UEs in MU MIMO). If the interferer is in CRS mode, the network assistance may include: (1) codebook subset restriction indicating the paired UE is utilizing the PMI from the signaled subset of PMIs; (2) PA subset, PA subset of used PAs within the subframe-layer, transmission scheme/mode or subset. If the interferer is in DMRS mode, the network assistance may include the subset of DMRS configurations used by the eNB, virtual cell ID, quasi-collocation information, transmission scheme/mode.

[0074] According to an embodiment, receiving unit or means 860 may receive dynamic signaling describing the serving and interfering characteristics. If the interferer is in CRS mode, the dynamic signaling may include the exact wideband PMI of serving transmission, with indication which column of PMI corresponds to layer to be blindly detected. If the interferer is in DMRS mode, the dynamic signaling may include the allocated DMRS configuration(s), including indication, on which DMRS-configuration(s) UE shall detect presence of the layer(s) targeted for blind detection. As an example, these can be in the form of <DMRS port, scrambling ID> indication.

[0075] In some embodiments, the functionality of any of the methods described herein, such as those illustrated in Figs. 7a and 7b discussed above, may be implemented by software and/or computer program code or portions of it stored in memory or other computer readable or tangible media, and executed by a processor. In some embodiments, the apparatus may be, included or be associated with at least one software application, module, unit or entity configured as arithmetic operation(s), or as a program or portions of it (including an added or updated software routine), executed by at least one operation processor. Programs, also called program products or computer programs, including software routines, applets and macros, may be stored in any apparatus-readable data storage medium and they include program instructions to perform particular tasks. A computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments. The one or more computer-executable components may be at least one software code or portions of it. Modifications and configurations required for implementing functionality of an embodiment may be performed as routine(s), which may be implemented as added or updated software routine(s). Software routine(s) may be downloaded into the apparatus.

[0076] Software or a computer program code or portions of it may be in a source code form, object code form, or in some intermediate form, and it may be stored in some sort of carrier, distribution medium, or computer readable medium, which may be any entity or device capable of carrying the program. Such carriers include a record medium, computer memory, read-only memory, photoelectrical and/or electrical carrier signal, telecommunications signal, and software distribution package, for example. Depending on the processing power needed, the computer program may be executed in a single electronic digital computer or it may be distributed amongst a number of computers. The computer readable medium or computer readable storage medium may be a non-transitory medium.

[0077] In other embodiments, the functionality may be performed by hardware, for example through the use of an application specific integrated circuit (ASIC), a programmable gate array (PGA), a field programmable gate array (FPGA), or any other combination of hardware and software. In yet another embodiment, the functionality may be implemented as a signal, a non-tangible means that can be carried by an electromagnetic signal downloaded from the Internet or other network.

[0078] According to an embodiment, an apparatus, such as a node, device, or a corresponding component, may be configured as a computer or a microprocessor, such as single-chip computer element, or as a chipset, including at least

a memory for providing storage capacity used for arithmetic operation and an operation processor for executing the arithmetic operation.

[0079] One having ordinary skill in the art will readily understand that the invention as discussed above may be practiced with steps in a different order, and/or with hardware elements in configurations which are different than those which are disclosed. Therefore, although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the invention. In order to determine the metes and bounds of the invention, therefore, reference should be made to the appended claims.

10

Claims

1. A method, comprising:

receiving, by a network node, channel state information (CSI) feedback from at least one user equipment (UE); scheduling the at least one UE in one or more than one ranks in a subframe; and scheduling multiple UEs on at least one time-frequency resource.

- 2. The method according to claim 1, further comprising semi-statically or dynamically signaling, to the at least one UE, information relating to blind detection needed for serving and co-scheduled interference physical downlink shared channel (PDSCH) detection.
 - 3. The method according to claim 2, wherein the signaling further comprises dynamically or semi-statically signaling, to the at least one UE, information relating to a total number of layers.

25

35

- 4. The method according to claim 2 or claim 3, wherein the signaling further comprises dynamically or semi-statically signaling, to the at least one UE, information relating to utilized demodulation reference signal (DMRS) configuration for serving transmission.
- 5. The method according to claim 4, wherein the signaling further comprises signaling an exact or a subset of DMRS configuration used for co-scheduled transmission.
 - **6.** A method, comprising:

reporting to a network node, by a user equipment, channel state information (CSI) feedback; and receiving at least one of scheduling of the user equipment in one or more than one rank in a subframe or scheduling of the user equipment at least one same time-frequency resource as scheduled to another user equipment.

7. The method according to claim 6, further comprising:

receiving information relating to blind detection needed for co-scheduled interference physical downlink shared channel (PDSCH) detection.

45 8. The method according to claim 6 or claim 7, further comprising:

receiving network assistance with respect to interference properties due to co-scheduled user equipment; and receiving dynamic signaling indicating at least one of serving and interference properties.

- 9. The method according to claim 8, wherein, when an interferer is in cell-specific reference signal (CRS) mode, the network assistance comprises at least one of: codebook subset restriction indicating an active UE in the cell is utilizing precoding matrix indicator (PMI) from signaled subset of precoding matrix indicators (PMIs), power allocation subset of used power allocations within subframe layer, or transmission scheme/mode.
- 10. The method according to claim 8, wherein, when an interferer is in cell-specific reference signal (CRS) mode, the dynamic signaling comprises an exact wideband precoding matrix indicator (PMI) of a serving transmission with an indication which column of the precoding matrix indicator (PMI) corresponds to a layer to be blindly detected.

- **11.** The method according to claim 8, wherein, when an interferer is in demodulation reference signal (DMRS) mode, the network assistance comprises at least one of: a subset of demodulation reference signal (DMRS) configurations, virtual cell ID, quasi-collocation information, or transmission scheme/mode.
- 12. The method according to claim 8, wherein, when an interferer is in demodulation reference signal (DMRS) mode, the dynamic signaling comprises allocated demodulation reference signal (DMRS) configuration(s) including an indication on which demodulation reference signal (DMRS) configuration(s) the user equipment will detect presence of layers targeted for blind detection.
- **13.** An apparatus comprising means for performing a method according to any one of claims 1 through 5, or according to any one of claims 6 through 12.
 - **14.** A computer-readable non-transitory medium encoded with instructions that, when executed in hardware, perform a method according to any one of claims 1 through 5, or according to any one of claims 6 through 12.

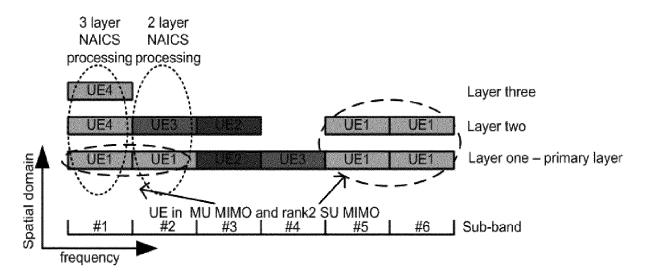
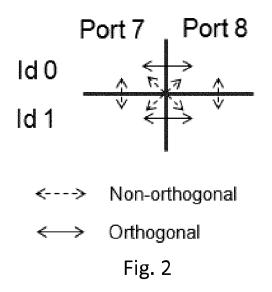
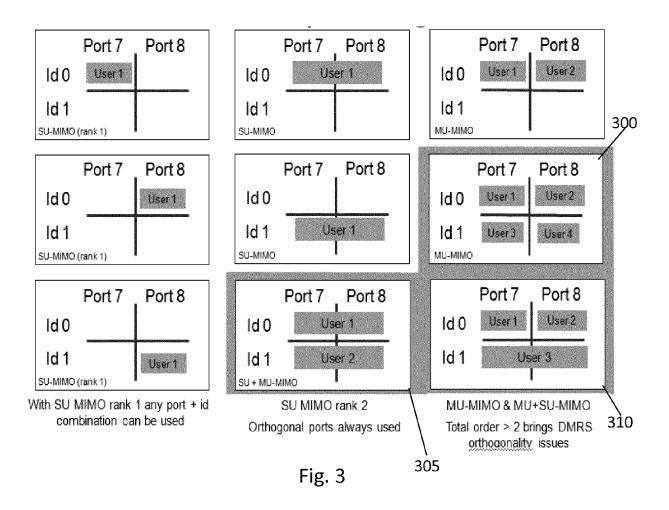
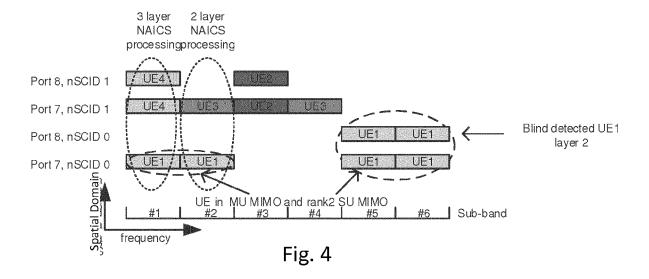





Fig. 1

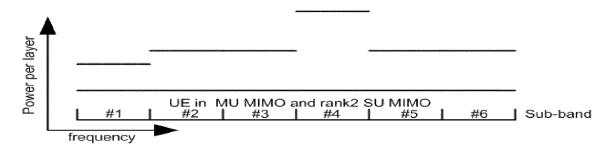


Fig. 5

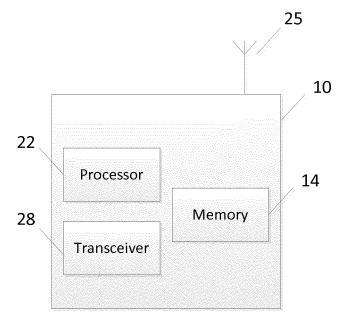
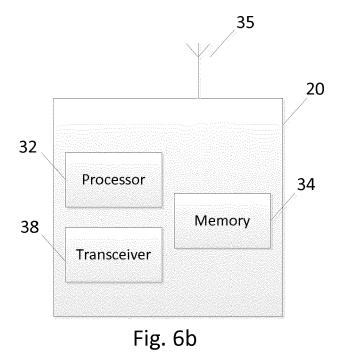
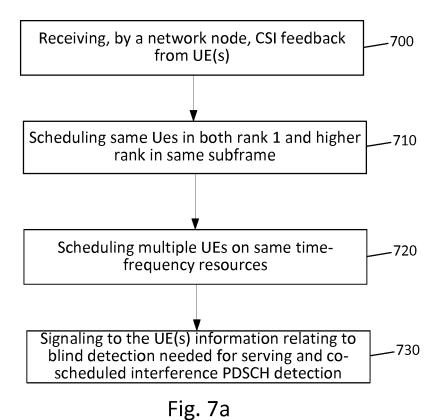
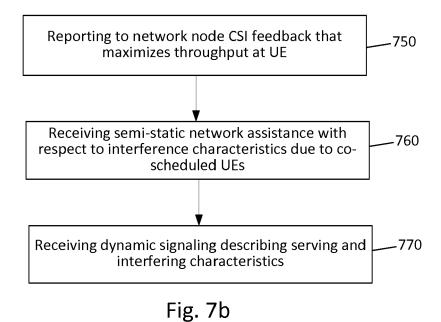





Fig. 6a

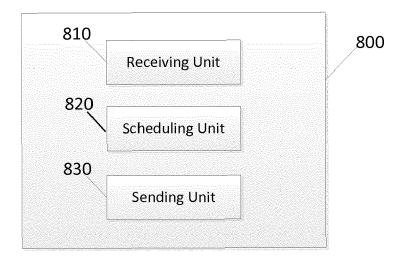


Fig. 8a

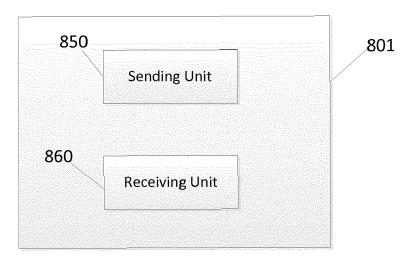


Fig. 8b

EUROPEAN SEARCH REPORT

Application Number EP 16 15 2860

	Citation of document with inc	RED TO BE RELEVANT	Relevant	CLASSIFICATION OF THE	
Category	of relevant passaç		to claim	APPLICATION (IPC)	
Х	EP 2 439 999 A2 (NEC 11 April 2012 (2012- * paragraph [0039] - figures 4,9,10 *		1-14	INV. H04L5/00 H04B7/06	
Х	[CA]; XU HUA [CA]; J	ESEARCH IN MOTION LTD	1-8, 11-14		
Α	ZHIJU) 23 December 2 * paragraph [0040] - figures 7-10 *		9,10		
Х	WO 2015/005609 A1 (L [KR]) 15 January 201		1-9, 11-14		
Α	* paragraph [0106] - figure 6 *		10		
Х	US 2014/233407 A1 (F ET AL) 21 August 201	 OURAHMADI VAHID [CA] 4 (2014-08-21)	1-9,13, 14		
Α	* parágraph [0061] -		10-12		
				TECHNICAL FIELDS SEARCHED (IPC)	
				H04L	
				H04B	
	The present search report has be	en drawn up for all claims			
	Place of search	Date of completion of the search	' 	Examiner	
	The Hague	25 May 2016	de	Paz Alberola, R	
C	ATEGORY OF CITED DOCUMENTS	$\underline{\underline{T}}$: theory or principle			
	icularly relevant if taken alone	after the filing date			
Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure		L : document cited fo	D : document cited in the application L : document cited for other reasons		
		& : member of the sa	& : member of the same patent family, corresponding		
P : inte	mediate document	document			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 15 2860

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-05-2016

	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
	EP 2439999	A2	11-04-2012	EP EP EP KR KR KR US US US WO WO	2380287 A2 2380288 A2 2439999 A2 2440000 A2 20110098833 A 20110108359 A 20130051513 A 20140028117 A 20140028117 A 2012057557 A1 2012057558 A1 2012281662 A1 2013242926 A1 2010080631 A2 2010080632 A2	26-10-2011 26-10-2011 11-04-2012 11-04-2012 01-09-2011 05-10-2011 20-05-2013 07-03-2014 24-06-2010 08-03-2012 08-03-2012 08-11-2012 19-09-2013 15-07-2010
	WO 2010147882	A2	23-12-2010	CA CN EP ES HK HK JP KR US WO	2764717 A1 102598522 A 2443763 A2 2879321 A1 2536840 T3 1169756 A1 1211143 A1 5501453 B2 2012531101 A 20120044982 A 2012213167 A1 2016081067 A1 2010147882 A2	23-12-2010 18-07-2012 25-04-2012 03-06-2015 29-05-2015 14-08-2015 13-05-2016 21-05-2014 06-12-2012 08-05-2012 23-08-2012 17-03-2016 23-12-2010
	WO 2015005609	A1	15-01-2015	CN EP KR US WO	105359569 A 3020224 A1 20160030087 A 2016135194 A1 2015005609 A1	24-02-2016 18-05-2016 16-03-2016 12-05-2016 15-01-2015
	US 2014233407	A1	21-08-2014	CN EP US WO	105122713 A 2959626 A1 2014233407 A1 2014130115 A1	02-12-2015 30-12-2015 21-08-2014 28-08-2014
FORM P0459						

© Lorentz Control Cont

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 62109990 B [0001]