Technical Field
[0001] The present invention relates to a high tensile strength steel wire, to a process
for manufacturing a high tensile strength steel wire and to the uses or applications
of such a high tensile strength steel wire as spring wire or an element for producing
a rope.
Background Art
[0002] Springs are usually made from alloys of steel. The most common spring steels are
music wire, oil tempered wire, chrome silicon, chrome vanadium, and 302 and 17-7 stainless.
Spring wires made of chrome silicon or chrome vanadium are higher quality, higher
strength versions of oil tempered wire.
[0003] Spring steel used in applications such as automotive valve springs is in general
required to have a very high tensile and yield strength. Tensile strength is a material's
ability to resist forces that attempt to pull apart or stretch it. Tensile strength
is an important property for wires for spring applications. For instance, extension
springs operating above their tensile strength will break.
[0004] In general, when producing small sized, high strength springs, drawn steel wire for
high strength spring use is quenched and tempered to impart higher material strength
in the drawn steel wire, and then is cold coiled to obtain a coil spring shape. For
this reason, first drawn then heat treated steel wire for high strength spring use
is required to have not only high strength, but also to have a high enough workability
that it will not break at the cold coiling.
[0005] The springs, in particular which are used for automobile engines, clutches, etc.
are being required to offer more advanced performance in order to deal with the trend
toward lighter weights and higher performances of automobiles. For this reason, steel
wires with higher strength and higher durability are desired for springs. A major
trend for improving properties is to adjust the composition of steels for spring wires.
WO2013041541 discloses a high tensile strength steel wire with a metallurgical structure of a
volume percentage of retained austenite of 4-20% and remainder martensite and a method
of producing it.
US 2012/0291927 A1 discloses contents of C, Si, Mn and Cr in the steel wire are proposed to be strictly
controlled and in the meantime both Cr and Si in the steel wire are set at a suitable
amount. It has been found, nevertheless, that increasing mechanical strength beyond
certain limits causes such steels to have inadequate ductility, taking into account
the pre-shaping and bending operations that have to be carried out with the spring
wire. A lot of effort has been done on the improvement of steel wires to have higher
tensile strength and simultaneously have acceptable ductility.
Disclosure of Invention
[0006] It is an object of the present invention to provide a high tensile strength steel
wire with an acceptable ductility.
[0007] It is another object of the present invention to provide a high tensile strength
steel wire suitable to be used as spring wires.
[0008] It is still another object of the present invention to provide suitable process to
manufacture a high tensile strength steel wire with an acceptable ductility.
[0009] The present invention describes a steel wire having very high strength and ductility
thanks to the oriented martensitic microstructure, and a method to produce such a
steel wire in a continuous process.
[0010] According to a first aspect of the present invention, there is provided a high tensile
strength steel wire steel composition consisting of:
a carbon content ranging from 0.20 weight percent to 1.00 weight percent, e.g. from
0.3 weight percent to 0.85 weight percent, e.g. from 0.4 weight percent to 0.7 weight
percent, e.g. from 0.5 weight percent to 0.6 weight percent,
a silicon content ranging from 0.05 weight percent to 2.0 weight percent, e.g. from
0.2 weight percent to 1.8 weight percent, e.g. from 1.2 weight percent to 1.6 weight
percent,
a manganese content ranging from 0.40 weight percent to 1.0 weight percent, e.g. from
0.5 weight percent to 0.9 weight percent,
a chromium content ranging from 0.0 weight percent to 1.0 weight percent, e.g. from
0.5 weight percent to 0.8 weight percent,
a sulfur and phosphor content being individually limited to 0.05 weight percent, e.g.
limited to 0.025 weight percent,
contents of nickel, vanadium, aluminum, copper or other micro-alloying elements all
being individually limited to 0.5 weight percent, e.g. limited to 0.2 weight percent,
e.g. limited to 0.08 weight percent, the remainder being iron,
said steel wire having martensitic structure,
wherein at least 10 volume percent of martensite are oriented.
[0011] Preferably, at least 20 volume percent of martensite are oriented. More preferably,
at least 30 volume percent of martensite are oriented. Most preferably, at least 40
volume percent of martensite are oriented.
[0012] It is known that martensitic steel is a polycrystalline material. When the grains
of polycrystalline material are randomly oriented, the polycrystalline material is
not oriented or non-textured. Under specific conditions, the grains of polycrystalline
material can be preferably oriented, and in this case the polycrystalline material
is called to be "oriented" or "textured". Two types of orientations are often confronted,
i.e. "crystallographic orientation" and "microstructural orientation". Crystallographic
orientation means grains are crystallographically oriented, such as with preferred
alignment or orientation of certain crystallographic planes or crystallographic directions.
Preferred crystallographic orientation is usually determined from an analysis of the
orientation dependence of the diffraction peak intensities (such as by X-Ray Diffraction
(XRD) analysis or Electron Backscatter Diffraction (EBSD)) that have been measured
in different spatial directions within the coordinate system of the sample. On the
other hand, if the grains of polycrystalline material have morphologically anisotropic
shape, the grains can also have "microstructural orientation" by such as uniaxial
compression during formation of the polycrystalline. "Microstructural orientation"
implies that the anisotropic shaped grains are morphologically oriented in preferred
directions or planes. This can be detected by image analysis such as scanning electron
microscope (SEM). Moreover, crystallographic orientation is often linked with microstructural
orientation since the shape anisotropy of grains is often related to their crystallography.
[0013] Martensite occurs as lath- or plate-shaped crystal grains. When viewed in cross section,
the lenticular (lens-shaped) crystal grains are sometimes described as Acicular (needle-shaped).
According to the present application, in the produced martensitic steel wire, at least
10 volume percent of martensite are oriented. The term "oriented" means that the lenticular
grains are either crystallographically oriented or microstructurally oriented, or
oriented both crystallographically and microstructurally.
[0014] The volume percentage of the crystallographical alignment or orientation can be obtained
by means of X-Ray Diffraction (XRD) analysis or Electron Backscatter Diffraction (EBSD).
The volume percentage of the microstructural alignment or orientation can be evaluated
by image analysis.
[0015] Herein, the term "oriented" does not only mean that the crystallographic axis or
the axis of lenticular grains are exactly oriented at the same direction as illustrated
by a
1 and a
2 in Fig. 1, but also refer to the orientation within a tolerance. When the directions
of certain axes of grains (or certain crystallographic directions) are deviated, as
presented by angle α in Fig. 1, within 20°, preferably within 10°, more preferably
within 5°, these grains are also considered as oriented.
[0016] The alignment or orientation at least refers to one dimensional preferred orientation,
e.g. in the direction perpendicular to the plane of lenticular grains (direction as
shown by a
1, a
2, e.g. [001], in Fig.1). For one dimensional orientation, the lenticular grains are
randomly distributed in the directions on the lenticular plane (directions as shown
by a
4, a
5, in Fig. 1).
[0017] Preferably, the steel wire according to the present application has a yield strength
Rp0.2 which is at least 80 percent of the tensile strength Rm. Rp0.2 is the yield
strength at 0.2% permanent elongation. More preferably, the yield to tensile ratio,
i.e. Rp0.2/Rm, is between 80 percent to 95 percent. Therefore, the steel wire after
elastic deformation can be still deformed to certain extent before breaking.
[0018] A steel wire according to the present application preferably has a corrosion resistance
coating. More preferably, the steel wire has a corrosion resistance coating selected
from any one of zinc, nickel, silver and copper, or their alloys. In such a case,
the wires have a prolonged life time even in a harsh corrosive environment.
[0019] The steel wire according to the present application may be in a cold-drawn state
and have a round cross-section. The steel wire may have a tensile strength Rm of at
least 2000 MPa for wire diameter above 5.0 mm, at least 2100 MPa for wire diameter
above 3.0 mm and at least 2200 MPa for wire diameters above 0.5 mm. Preferably, the
steel wire has a reduction in area after fracture of at least 45% and more preferably
of at least 50%.
[0020] Herein, the ductility of steel wires is obtained by a tensile test. The ductility
of the steel wire is indicated by the reduction in area after fracture. The "reduction
in area" is the difference between original cross sectional area of a specimen and
the area of its smallest cross section after testing. It is usually expressed as %
decrease in original cross section. The smallest cross section is measured after fracture
for steel wires.
[0021] Wire drawing is a metal working process used to reduce the cross-section of a wire
by pulling the wire through a single, or series of, drawing die(s). It is known that
wire drawing increases the tensile strength Rm of the steel wire and meanwhile decreases
the ductility. However, in comparison with traditional cold-drawn steel wires, the
invention steel wire with specific composition has a comparative ductility and an
extremely high tensile strength.
[0022] According to a second aspect of the present invention, the steel wire may be used
as spring wire or an element for producing a rope.
[0023] According to a third aspect the present invention, there is provided a process of
manufacturing a high tensile strength steel wire, said steel wire having as steel
composition:
a carbon content ranging from 0.20 weight percent to 1.00 weight percent, e.g. from
0.3 weight percent to 0.85 weight percent, e.g. from 0.4 weight percent to 0.7 weight
percent, e.g. from 0.5 weight percent to 0.6 weight percent,
a silicon content ranging from 0.05 weight percent to 2.0 weight percent, e.g. from
0.2 weight percent to 1.8 weight percent, e.g. from 1.2 weight percent to 1.6 weight
percent,
a manganese content ranging from 0.40 weight percent to 1.0 weight percent, e.g. from
0.5 weight percent to 0.9 weight percent,
a chromium content ranging from 0.0 weight percent to 1.0 weight percent, e.g. from
0.5 weight percent to 0.8 weight percent,
a sulfur and phosphor content being individually limited to 0.05 weight percent, e.g.
limited to 0.025 weight percent,
contents of nickel, vanadium, aluminum, copper or other micro-alloying elements all
being individually limited to 0.5 weight percent, e.g. limited to 0.2 weight percent,
e.g. limited to 0.08 weight percent,
the remainder being iron,
said steel wire having martensitic structure,
wherein at least 10 volume percent of martensite are oriented.
said process comprising the following steps in order:
- a) austenitizing a steel wire rod or steel wire above Ac3 temperature during a period
less than 120 seconds,
- b) quenching said austenitized steel wire rod or steel wire below 100°C during a period
less than 60 seconds,
- c) tempering said quenched steel wire rod or steel wire between 320°C and 500°C during
a period ranging from 10 seconds to 600 seconds,
- d) work hardening said quenched and tempered steel wire rod or steel wire.
[0024] In the prior art, such as in the disclosure of
US patent 5922149 A, the steel wire/wire rod was first deformed or work hardened to final dimension and
thereafter quenched and tempered, as schematically shown in Fig. 2. In contradiction,
in the present invention, the steel wire is first quenched to form martensitic microstructure.
Tempering is followed thereafter. The tempered martensitic steel wire is then deformed
or work hardened, e.g. by drawing, into final dimension, as schematically shown in
Fig. 3.
[0025] Present invention receives unexpected technical results and advantages. Usually in
wire processing quenching and tempering is the final step, and martensite has always
been claimed as detrimental for drawing. The tensile strength of the martensitic wire
according to the present invention is very high and the combination of the level of
tensile strength with the high level of ductility is uncommon. The surprising result
obtained by drawing the tempered martensite may be due to the special alloying of
the steel (microalloyed with Cr and Si) versus conventional eutectoid steels. The
synergy effect of the composition and the process of the present application results
in a martensitic steel wire having a preferred martensite orientation. The orientation
of martensite in the cold-drawn steel wire is the result of applied compression force
via drawing on the quenched and tempered martensitic steel wires.
[0026] The process may further comprise a step of e) aging said work hardened steel wire
at a temperature between 100°C and 250°C.
[0027] Preferably, in the process said work hardening occurs at a temperature below 400°C.
More preferably, said work hardening is cold drawing. Cold drawing has an added effect
of work hardening and strengthening the material, and thus further improves the material's
mechanical properties. It also improves the surface finish and holds tighter tolerances
allowing desirable qualities that cannot be obtained by hot deformation. Alternatively,
said work hardening is a warm drawing occurring between 200°C and 700°C, e.g. 200°C
to 400°C. For a similar reduction, the application of warm drawing significantly reduces
the passes and simplifies the process.
Brief Description of Figures in the Drawings
[0028] The invention will be better understood with reference to the detailed description
when considered in conjunction with the non-limiting examples and the accompanying
drawings, in which:
Figure 1 schematically shows grain alignment or orientation in poly-crystallographical
materials.
Figure 2 illustrates a thermo-mechanical process for steel wires according to the
prior art.
Figure 3 illustrates the thermo-mechanical process for steel wires according to the
present invention.
Figure 4 illustrates a temperature versus time curve for a thermal process according
to the present invention.
Figure 5 compares the strain hardening curves of prior art patented steel wire with
the invention steel wire according to the first embodiment of the present invention.
Figure 6 compares the tensile strength as a function of section reduction of three
passes drawing process with six passes drawing process.
Figure 7 (a) shows the scanning electron microstructure (SEM) of longitudinal cross-section
of the steel wire according to the present invention while figure 7 (b) shows the
scanning electron microstructure of longitudinal cross-section of a reference steel
wire at a same magnification.
Figure 8 (a) shows the scanning electron microstructure (SEM) of longitudinal cross-section
of the steel wire according to the present invention at a lower magnification while
figure 8 (b) shows the scanning electron microstructure (SEM) of longitudinal cross-section
of a reference steel wire at a same magnification.
Mode(s) for Carrying Out the Invention
Embodiment 1
[0029] Figure 4 illustrates a suitable temperature versus time curve applied to a steel
wire or wire rod with a diameter of 5.29 mm and the steel composition consisting of:
- % wt C = 0.55
- % wt Si = 1.4
- % wt Cr = 0.6
- % wt Mn = 0.7
the balance being iron and unavoidable impurities .
[0030] The starting temperature of martensite transformation M
s of this steel is about 280°C and the temperature M
f, at which martensite formation ends is about 100°C.
[0031] The various steps of the process are as follows:
- a first austenitizing step (10) during which the steel wire stays in a furnace at
about 950 °C during 120 seconds,
- a second quenching step (12) for martensite transformation in oil at a temperature
below 100 °C during at least 20 seconds;
- a third tempering step (14) for increase the toughness at a temperature above 320
°C during less than 60 seconds; and
- a fourth cooling step (16) at room temperature during 20 or more seconds.
Curve 18 is the temperature curve in the various equipment parts (furnace, bath...)
and curve 19 is the temperature of the steel wire.
[0032] The steel wire or wire rod after above thermal treatment mainly has martensitic microstructure.
Since martensite is sensible to H-embrittlement, thermo-treated steel wire is cold
drawn directly without pickling and oil can act as lubricant for the later drawing
process.
[0033] The formed martensitic steel wire or wire rod is continued with a series of wire
drawing process, e.g. of six passes.
[0034] The diameter, diameter reduction, section reduction, cumulative section reduction,
tensile strength, tensile strength variation and reduction in area after each pass
of the steel wire for this six passes process are summarized in table 1. Herein, the
"diameter reduction" and "section reduction" are referred to the reduction after each
pass of drawing. The "diameter reduction" implies the difference of the diameter of
the steel wire before and after each pass and is expressed as % diameter decrease
to its original diameter before passing the wire drawing dies. Similarly, the "section
reduction" implies the difference of the cross-section areas of the steel wire before
and after each pass and is expressed as % section decrease to its original section
before passing the wire drawing dies.
[0035] As shown in table 1, the diameter reduction is about 5% for each pass. The tensile
strength of the steel wire further increases by passing more passes. After being drawn
in six passes, the steel wire has a diameter of 3.86 mm and a tensile strength of
2151 N/mm
2. Over six passes, the yield strength Rp0.2 of the steel wire is at least 80 percent
of the tensile strength Rm. In addition, the steel wire overall has sufficient ductility
illustrated by the reduction in area being above 46.5% and the total elongation at
fracture of the drawn wire being more than 2%.
[0036] A strain hardening curve of the cold drawn wire (Q&T CrSi) according to the invention
in comparison with a reference wire (R-SW) is shown in Fig. 5. The reference wire
contains 0.8 wt% Carbon and is patented in lead. The reference wire has an initial
diameter of 6.5 mm and a tensile strength of 1360 N/mm
2. By replacing the patenting operation of the reference wire by quenching and tempering,
fine tempered martensite can be obtained with tensile strength being at least 400
N/mm
2 higher than for a patented wire. The strain hardening curve of the cold drawn tempered
martensitic wire (Q&T CrSi) has a similar slope to that of a patented wire (R-SW).
This means that both steel wires showed a comparable strength increase for a same
or similar section reduction. For a same amount of section reduction, the invention
wire will be at least 400 N/mm
2 stronger than a wire drawn after patenting.
[0037] This extremely high tensile strength of the invention wire may be attributed to the
martensitic microstructure formation and in particular to the oriented percentage
of martensitic grains, which are observed in image analysis, in the steel wires after
deformation or work hardening.
Table 1: Properties of a steel wire with an initial diameter of 5.29 mm drawn in six
passes to a diameter of 3.86 mm.
Pass |
Diameter (mm) |
Diameter reduction (%) |
Section reduction (%) |
Cumulative section reduction (%) |
Tensile Strength (N/mm2) |
Tensile Strength Variation (N/mm2) |
Reduction in area (%) |
0 |
5.29 |
0 |
0 |
0.0 |
1863 |
0 |
55.3 |
1 |
5.02 |
5.2 |
10.1 |
10.1 |
1935 |
72 |
50.1 |
2 |
4.72 |
5.8 |
11.3 |
20.3 |
1975 |
112 |
49.8 |
3 |
4.49 |
5.0 |
9.8 |
28.1 |
2024 |
161 |
50.7 |
4 |
4.27 |
4.7 |
9.3 |
34.8 |
2049 |
186 |
52.7 |
5 |
4.06 |
5.1 |
9.9 |
41.2 |
2115 |
252 |
46.5 |
6 |
3.86 |
4.7 |
9.2 |
46.6 |
2151 |
288 |
47.1 |
Embodiment 2
[0038] In this embodiment, a similar thermal treatment of embodiment 1 was applied to a
steel wire with a diameter of 3.75 mm and with the following steel composition:
- % wt C = 0.55
- % wt Si = 1.4
- % wt Cr = 0.6
- % wt Mn = 0.7
the balance being iron and unavoidable impurities.
[0039] The steel wire after thermal treatment mainly has martensitic microstructure. The
steel wire further undergoes six passes drawing steps with a diameter reduction to
2.8 mm. The properties of the steel wire after each pass are shown in table 2. Although
an extreme high tensile strength is obtained after six passes, the steel wire still
has sufficient ductility as indicated by a reduction in area of 52.8%. Moreover, the
ductility of the steel wire is ensured during the whole drawing process, which can
be verified by the reductions in area of the steel wires after one to six passes all
being above 52.8% as shown in table 2.
Table 2: Properties of a steel wire with an initial diameter of 3.75 mm drawn in six
passes to a diameter of 2.8 mm.
Pass |
Diameter (mm) |
Diameter reduction (%) |
Section reduction (%) |
Cumulative section reduction (%) |
Tensile Strength (N/mm2) |
Tensile Strength Variation (N/mm2) |
Reduction in area (%) |
0 |
3.75 |
0 |
0 |
0 |
1930 |
0 |
58.0 |
1 |
3.59 |
4.3 |
8.4 |
8.4 |
2010 |
80 |
57.2 |
2 |
3.35 |
6.7 |
12.9 |
20.2 |
2060 |
130 |
56.8 |
3 |
3.17 |
5.4 |
10.5 |
28.5 |
2065 |
135 |
57.2 |
4 |
3.02 |
4.7 |
9.2 |
35.1 |
2110 |
180 |
54.3 |
5 |
2.9 |
4.0 |
7.8 |
40.2 |
2180 |
250 |
53.1 |
6 |
2.8 |
3.4 |
6.8 |
44.2 |
2220 |
290 |
52.8 |
Embodiment 3
[0040] Different from the samples of embodiment 2, in this example, after a similar thermal
treatment, the martensitic steel wire with 3.75mm diameter is drawn by three passes.
[0041] The diameter, diameter reduction, section reduction, cumulative section reduction,
tensile strength, tensile strength variation and reduction in area after each pass
of the steel wire drawn by this three passes process are summarized in table 3.
[0042] The average diameter reduction of each pass is about 9.5% for three passes process
which is almost a double of that of six passes process as shown in embodiment 1 and
2. The tensile strength (Rm) of three passes drawn wire (SW3) as a function of section
reduction (Δs) is plot in Fig. 6 in comparison with the tensile strength of six passes
drawn wires of embodiment 1 (SW1) and embodiment 2 (SW2). As shown in Fig. 6, the
increase of tensile strength is almost proportional to the increase of section reduction
for both the three and the six passes drawn steel wires. Compared with the wire undergone
six passes process (SW1 and SW2), as shown in Fig. 6 the slope of tensile strength
trend curve of wire undergone three passes process (SW3) is slightly bigger, i.e.
the tensile strength increases even higher for a similar section reduction. The wire
undergone three passes shows an average strength increase of 8 N/mm
2 for 1% section reduction while the wire undergone six passes shows an average strength
increase of 6 N/mm
2 for 1% section reduction. In addition, the steel wires drawn by three passes have
even better ductility. The reductions in area of the steel wires after one to three
passes are all above 53.6%. The drawn steel wire after three pass has excellent properties:
tensile strength is 2300 N/mm
2 and reduction in area is 53.6%, which are exceeded the standard requirement for quenched
and tempered spring wires.
Table 3: Properties of a steel wire with an initial diameter of 3.75 mm drawn in three
passes to a diameter of 2.8 mm.
Pass |
Diameter (mm) |
Diameter reduction (%) |
Section reduction (%) |
Cumulative section reduction (%) |
Tensile Strength (N/mm2) |
Tensile Strength Variation (N/mm2) |
Reduction in area (%) |
0 |
3.75 |
0 |
0 |
0 |
1930 |
0 |
58.0 |
1 |
3.38 |
9.9 |
18.8 |
18.8 |
2080 |
150 |
57.2 |
2 |
3.07 |
9.2 |
17.5 |
33.0 |
2175 |
245 |
54.2 |
3 |
2.8 |
8.8 |
16.8 |
44.2 |
2300 |
370 |
53.6 |
[0043] This very high tensile strength can be a consequence of oriented martensitic grains
of the steel wires after drawing. The microstructure of the drawn steel wire according
to the invention is investigated. Taken as a reference, is a steel wire treated by
a traditional process, i.e. first drawn and then quenched and tempered as shown in
Fig. 2. The composition, section reduction and the thermal treatment of the invention
steel wire and reference steel wire are quite similar.
[0044] The microstructure of the longitudinal cross-section of the steel wire undergone
three passes according to the present invention is shown in Fig. 7 (a) while the microstructure
of the longitudinal cross-section of the reference wire is shown in Fig. 7(b). The
longitudinal cross-section is a section in the longitudinal or lengthwise direction
of the steel wire. As shown in Fig. 7(b), the reference wire appears a homogeneous
martensitic microstructure. The martensitic grains are randomly oriented over the
whole area. In contrast, for the invention steel wire, it presents a martensitic microstructure
and the martensitic grains are oriented as shown in Fig. 7(a). In this longitudinal
cross-section view, the martensitic grains appear acicular (needle-shaped) and the
long axis of acicular is aligned parallel to the drawing direction (a direction parallel
to the scale bar in Fig. 7). This indicates that the normal of the lenticular (lens-shaped)
crystal grains is preferably oriented perpendicular to the drawing direction.
[0045] Figure 8 (a) and (b) are respectively a microstructure of the longitudinal cross-section
of an invention steel wire and a reference wire at lower magnification. It confirms
an oriented martensitic microstructure (Fig. 8 (a)) of the steel wire according to
the present invention vs. a randomly distributed martensitic microstructure of the
reference wire (Fig. 8(b)).
[0046] By image analysis, the steel wire according to the present invention undergone one
passes shows at least 10 volume percent of oriented martensite and the steel wire
undergone three passes shows at least 20 volume percent of oriented martensite.
1. A high tensile strength steel wire being in a work-hardened state, the steel composition
consisting of:
a carbon content ranging from 0.20 weight percent to 1.00 weight percent,
a silicon content ranging from 0.05 weight percent to 2.0 weight percent,
a manganese content ranging from 0.40 weight percent to 1.0 weight percent,
a chromium content ranging from 0.0 weight percent to 1.0 weight percent,
a sulfur and phosphor content being individually limited to 0.05 weight percent,
contents of nickel, vanadium, aluminum, copper or other micro-alloying elements all
being individually limited to 0.5 weight percent,
the remainder being iron,
said steel wire having martensitic structure,
wherein at least 10 volume percent of martensite are oriented.
2. A high tensile strength steel wire according to claim 1, wherein at least 20 volume
percent of martensite are oriented.
3. A high tensile strength steel wire according to claim 1, wherein at least 40 volume
percent of martensite are oriented.
4. A high tensile strength steel wire according to any one of the preceding claims, wherein
said steel wire has a yield strength Rp0.2 which is at least 80 percent of the tensile
strength Rm.
5. A high tensile strength steel wire according to any one of the preceding claims, wherein
said steel wire has a corrosion resistance coating.
6. A high tensile strength steel wire according to claim 5, wherein said corrosion resistance
coating is selected from any one of zinc, nickel, silver and copper, or their alloys.
7. A high tensile strength steel wire according to any one of the preceding claims, said
steel wire being in a cold-drawn state and having a round cross-section.
8. A high tensile strength steel wire according to any one of the preceding claims, wherein
said steel wire has a tensile strength Rm of at least 2000 MPa for wire diameter above 5.0 mm, at least 2100 MPa for wire diameter
above 3.0 mm and at least 2200 MPa for wire diameters above 0.5 mm.
9. A high tensile strength steel wire according to any one of the preceding claims, wherein
said steel wire has a reduction in area after fracture of at least 45%.
10. A high tensile strength steel wire according to any one of the preceding claims, wherein
said steel wire has a reduction in area after fracture of at least 50%.
11. Use of a high tensile strength steel wire according to any one of the preceding claims
as a spring wire or an element for producing a rope.
12. A process of manufacturing a high tensile strength steel wire,
said steel wire being in a work-hardened state, then steel composition consisting
of:
a carbon content ranging from 0.20 weight percent to 1.00 weight percent,
a silicon content ranging from 0.05 weight percent to 2.0 weight percent,
a manganese content ranging from 0.40 weight percent to 1.0 weight percent,
a chromium content ranging from 0.0 weight percent to 1.0 weight percent,
a sulfur and phosphor content being individually limited to 0.05 weight percent,
contents of nickel, vanadium, aluminum, copper or other micro-alloying elements all
being individually limited to 0.5 weight percent,
the remainder being iron,
said steel having martensitic structure,
wherein at least 10 volume percent of martensite are oriented.
said process comprising the following steps in order:
a) austenitizing a steel wire rod or steel wire above Ac3 temperature during a period
less than 120 seconds,
b) quenching said austenitized steel wire rod or steel wire below 100°C (Mf) during
a period less than 60 seconds,
c) tempering said quenched steel wire rod or steel wire between 320°C and 500°C during
a period ranging from 10 seconds to 600 seconds,
d) work hardening said quenched and tempered steel wire rod or steel wire.
13. A process of manufacturing a high tensile strength steel wire according to claim 12,
wherein said process is further followed by a step of:
e) aging said work hardened steel wire at a temperature between 100°C and 250°C.
14. A process of manufacturing a high tensile strength steel wire according to claim 12
or 13, wherein said work hardening occurs at a temperature below 700°C.
15. A process of manufacturing a high tensile strength steel wire according to any one
of claims 12 to 14, wherein said work hardening is cold drawing.
1. Stahldraht mit hoher Zugfestigkeit, der in einem kaltverfestigten Zustand ist, wobei
die Stahlzusammensetzung aus Folgendem besteht:
einem Kohlenstoffgehalt im Bereich von 0,20 Gewichtsprozent bis 1,00 Gewichtsprozent,
einem Siliciumgehalt im Bereich von 0,05 Gewichtsprozent bis 2,0 Gewichtsprozent,
einem Mangangehalt im Bereich von 0,40 Gewichtsprozent bis 1,0 Gewichtsprozent,
einem Chromgehalt im Bereich von 0,0 Gewichtsprozent bis 1,0 Gewichtsprozent,
einem Schwefel- und Phosphorgehalt, der jeweils auf 0,05 Gewichtsprozent begrenzt
ist,
Gehalten von Nickel, Vanadium, Aluminium, Kupfer oder anderen Mikrolegierungselementen,
die alle jeweils auf 0,5 Gewichtsprozent begrenzt sind,
wobei der Rest Eisen ist,
wobei der Stahldraht eine martensitische Struktur aufweist,
wobei mindestens 10 Volumenprozent des Martensit ausgerichtet sind.
2. Stahldraht mit hoher Zugfestigkeit nach Anspruch 1, wobei mindestens 20 Volumenprozent
des Martensit ausgerichtet sind.
3. Stahldraht mit hoher Zugfestigkeit nach Anspruch 1, wobei mindestens 40 Volumenprozent
des Martensit ausgerichtet sind.
4. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht eine Streckgrenze Rp0,2 aufweist, die mindestens 80 Prozent der Zugfestigkeit
Rm beträgt.
5. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht eine Korrosionsbeständigkeitsbeschichtung aufweist.
6. Stahldraht mit hoher Zugfestigkeit nach Anspruch 5, wobei die Korrosionsbeständigkeitsbeschichtung
beliebig ausgewählt ist aus Zink, Nickel, Silber und Kupfer oder deren Legierungen.
7. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht in einem kaltgezogenen Zustand ist und einen runden Querschnitt aufweist.
8. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht eine Zugfestigkeit Rm von mindestens 2000 MPa für einen Drahtdurchmesser
über 5,0 mm, mindestens 2100 MPa für einen Drahtdurchmesser von über 3,0 mm und mindestens
2200 MPa für Drahtdurchmesser über 0,5 mm aufweist.
9. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht eine Verringerung der Fläche nach einem Bruch von mindestens 45 % aufweist.
10. Stahldraht mit hoher Zugfestigkeit nach einem der vorherigen Ansprüche, wobei der
Stahldraht eine Verringerung der Fläche nach einem Bruch von mindestens 50 % aufweist.
11. Verwendung eines Stahldrahtes mit hoher Zufestigkeit nach einem der vorherigen Ansprüche
als Federdraht oder ein Element zur Herstellung eines Seils.
12. Verfahren zur Herstellung eines Stahldrahtes mit hoher Zugfestigkeit,
wobei der Stahldraht in einem kaltverfestigten Zustand ist, wobei die Stahlzusammensetzung
aus Folgendem besteht:
einem Kohlenstoffgehalt im Bereich von 0,20 Gewichtsprozent bis 1,00 Gewichtsprozent,
einem Siliciumgehalt im Bereich von 0,05 Gewichtsprozent bis 2,0 Gewichtsprozent,
einem Mangangehalt im Bereich von 0,40 Gewichtsprozent bis 1,0 Gewichtsprozent,
einem Chromgehalt im Bereich von 0,0 Gewichtsprozent bis 1,0 Gewichtsprozent,
einem Schwefel- und Phosphorgehalt, der jeweils auf 0,05 Gewichtsprozent begrenzt
ist,
Gehalten von Nickel, Vanadium, Aluminium, Kupfer oder anderen Mikrolegierungselementen,
die alle jeweils auf 0,5 Gewichtsprozent begrenzt sind,
wobei der Rest Eisen ist,
wobei der Stahl eine martensitische Struktur aufweist,
wobei mindestens 10 Volumenprozent des Martensit ausgerichtet sind,
wobei das Verfahren die folgenden Schritte nacheinander umfasst:
a) Austenitisierung eines Stahldrahtstabes oder Stahldrahtes über Ac3-Temperatur während
eines Zeitraums von weniger als 120 Sekunden,
b) Abschrecken des austenitisierten Stahldrahtstabes oder Stahldrahtes unter 100 °C
(Mf) während eines Zeitraums von weniger als 60 Sekunden,
c) Härten des abgeschreckten Stahldrahtstabes oder Stahldrahtes zwischen 320 °C und
500 °C während eines Zeitraums im Bereich von 10 Sekunden bis 600 Sekunden,
d) Kaltverfestigen des abgeschreckten und gehärteten Stahldrahtstabes oder Stahldrahtes.
13. Verfahren zur Herstellung eines Stahldrahtes mit hoher Zugfestigkeit nach Anspruch
12, wobei dem Verfahren ferner der folgende Schritt folgt:
e) Alterung des kaltverfestigten Stahldrahtes bei einer Temperatur zwischen 100 °C
und 250 °C.
14. Verfahren zur Herstellung eines Stahldrahtes mit hoher Zugfestigkeit nach Anspruch
12 oder 13, wobei die Kaltverfestigung bei einer Temperatur unterhalb von 700 °C erfolgt.
15. Verfahren zur Herstellung eines Stahldrahtes mit hoher Zugfestigkeit nach einem der
Ansprüche 12 bis 14, wobei die Kaltverfestigung ein Kaltziehen ist.
1. Fil d'acier à haute résistance à la traction qui est dans un état écroui, la composition
de l'acier étant constituée de :
une teneur en carbone allant de 0,20 pour cent en poids à 1,00 pour cent en poids,
une teneur en silicium allant de 0,05 pour cent en poids à 2,0 pour cent en poids,
une teneur en manganèse allant de 0,40 pour cent en poids à 1,0 pour cent en poids,
une teneur en chrome allant de 0,0 pour cent en poids à 1,0 pour cent en poids,
une teneur en soufre et en phosphore qui est individuellement limitée à 0,05 pour
cent en poids,
des teneurs en nickel, vanadium, aluminium, cuivre ou autres éléments de microalliage
qui sont toutes individuellement limitées à 0,5 pour cent en poids,
le reste étant du fer,
ledit fil d'acier ayant une structure martensitique,
dans lequel au moins 10 pour cent en volume de la martensite est orientée.
2. Fil d'acier à haute résistance à la traction selon la revendication 1, dans lequel
au moins 20 pour cent en volume de la martensite est orientée.
3. Fil d'acier à haute résistance à la traction selon la revendication 1, dans lequel
au moins 40 pour cent en volume de la martensite est orientée.
4. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier ayant une limite conventionnelle d'élasticité Rp0,2
qui est d'au moins 80 pour cent de la résistance à la traction Rm.
5. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier ayant un revêtement résistant à la corrosion.
6. Fil d'acier à haute résistance à la traction selon la revendication 5, dans lequel
ledit revêtement résistant à la corrosion est choisi parmi l'un quelconque du zinc,
du nickel, de l'argent et du cuivre ou leurs alliages.
7. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier étant dans un état étiré à froid et ayant une section
transversale circulaire.
8. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier ayant une résistance à la traction Rm d'au moins 2000 MPa pour un diamètre de fil au-dessus de 5,0 mm, d'au moins 2100
MPa pour un diamètre de fil au-dessus de 3,0 mm et d'au moins 2200 MPa pour des diamètres
de fil au-dessus de 0,5 mm.
9. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier ayant une réduction de la surface après la rupture
d'au moins 45 %.
10. Fil d'acier à haute résistance à la traction selon l'une quelconque des revendications
précédentes, ledit fil d'acier ayant une réduction de la surface après la rupture
d'au moins 50 %.
11. Utilisation d'un fil d'acier à haute résistance à la traction selon l'une quelconque
des revendications précédentes en tant que fil pour ressort ou élément pour la production
d'un câble.
12. Procédé de fabrication d'un fil d'acier à haute résistance à la traction, ledit fil
d'acier étant dans un état écroui, la composition de l'acier étant constituée de :
une teneur en carbone allant de 0,20 pour cent en poids à 1,00 pour cent en poids,
une teneur en silicium allant de 0,05 pour cent en poids à 2,0 pour cent en poids,
une teneur en manganèse allant de 0,40 pour cent en poids à 1,0 pour cent en poids,
une teneur en chrome allant de 0,0 pour cent en poids à 1,0 pour cent en poids,
une teneur en soufre et en phosphore qui est individuellement limitée à 0,05 pour
cent en poids,
des teneurs en nickel, vanadium, aluminium, cuivre ou autres éléments de microalliage
qui sont toutes individuellement limitées à 0,5 pour cent en poids,
le reste étant du fer,
ledit acier ayant une structure martensitique,
dans lequel au moins 10 pour cent en volume de la martensite est orientée,
ledit procédé comprenant les étapes suivantes dans tordre :
a) l'austénitisation d'un fil machine en acier ou d'un fil d'acier au-dessus de la
température Ac3 pendant une durée inférieure à 120 secondes,
b) la trempe dudit fil machine en acier ou fil d'acier austénitisé au-dessous de 100
°C (Mf) pendant une durée inférieure à 60 secondes,
c) le revenu dudit fil machine en acier ou fil d'acier trempé entre 320 °C et 500
°C pendant une durée allant de 10 secondes à 600 secondes,
d) l'écrouissage dudit fil machine en acier ou fil d'acier trempé et revenu.
13. Procédé de fabrication d'un fil d'acier à haute résistance à la traction selon la
revendication 12, ledit procédé étant en outre suivi d'une étape de :
e) vieillissement dudit fil d'acier écroui à une température entre 100 °C et 250 °C.
14. Procédé de fabrication d'un fil d'acier à haute résistance à la traction selon la
revendication 12 ou 13, dans lequel ledit écrouissage a lieu à une température au-dessous
de 700 °C.
15. Procédé de fabrication d'un fil d'acier à haute résistance à la traction selon l'une
quelconque des revendications 12 à 14, dans lequel ledit écrouissage est un étirage
à froid.