BACKGROUND OF THE INVENTION
[0001] The subject matter disclosed herein generally relates to corrosion resistant stainless
steels. More particularly, it relates to corrosion pitting resistant, martensitic,
stainless steels, including those suitable for turbine rotating components.
[0002] The metal alloys used for rotating components of a gas turbine, particularly the
front stage compressor airfoils, including rotating and stationary blades, must have
a combination of high strength, toughness, fatigue resistance and other physical and
mechanical properties in order to provide the required operational properties of these
machines. In addition, the alloys used must also have sufficient resistance to various
forms of corrosion and corrosion mechanisms, particularly pitting corrosion, due to
the extreme environments in which turbines are operated, including exposure to various
ionic reactant species, such as various species that include chlorides, sulfates,
nitrides and other corrosive species. Corrosion can also diminish the other necessary
physical and mechanical properties, such as the high cycle fatigue strength, by initiation
of surface cracks that propagate under the cyclic thermal and stresses associated
with operation of the turbine.
[0003] At present, there are no high-strength steels available that sufficiently resist
corrosion pitting to survive harsh marine/industrial environments, such as coastal
industrial power plants, for more than 2-3 years. Even alloys that are known to have
many advantageous corrosion resistance properties, including resistance to intergranular
attack, such as 450 and 450+ stainless steel, are still susceptible to corrosion pitting
mechanisms. While these martensitic stainless steels have provided a combination of
corrosion resistance, mechanical strength and fracture toughness properties sufficient
to make them suitable for use in rotating steam and gas turbine components, these
alloys are still known to be susceptible to corrosion pitting phenomena. For example,
stainless steel airfoils, such as those used in the front stage compressors of industrial
gas turbines, have shown susceptibility to corrosion pitting on the surfaces, particularly
the leading edge surface, of the airfoil. Without being limited by theory, corrosion
pitting is believed to be associated with various electrochemical reaction processes
enabled by airborne deposits, especially corrosive species present in the deposits,
and moisture from intake air on the airfoil surfaces. Electrochemically-induced corrosion
pitting phenomena occurring at the airfoil surfaces can in turn result in cracking
of the airfoils due to the cyclic thermal and operating stresses experienced by these
components. High levels of moisture can result from various sources, including use
in high moisture environments, such as facilities located near oceans or other bodies
of water, as well as on-line water washing, fogging, evaporative cooling, or various
combinations thereof, to enhance compressor efficiency. Corrosive contaminants usually
result from the environments in which the turbines are operating because they are
frequently placed in highly corrosive environments, such as those near chemical or
petrochemical plants, where various chemical species may be found in the intake air,
or those at or near ocean coastlines or other saltwater environments where various
sea salts may be present in the intake air, or combinations of the above, or in other
applications where the inlet air contains corrosive chemical species.
[0004] In view of the above, stainless steel alloys suitable for use as turbine airfoils,
particularly industrial gas turbine airfoils, in the operating environments described
and having improved resistance to corrosion pitting are very desirable.
BRIEF DESCRIPTION OF THE INVENTION
[0005] According to one aspect of the invention, a forged, corrosion pitting resistant,
martensitic, stainless steel alloy is disclosed. The alloy comprises, by weight: about
12.0 to about 16.0 percent chromium; greater than 16.0 to about 20.0 percent cobalt,
about 6.0 to about 8.0 percent molybdenum, about 1.0 to about 3.0 percent nickel,
about 0.020 to about 0.040 percent carbon; and the balance iron and incidental impurities.
[0006] According to another aspect of the invention, a method of making a forged, martensitic,
pitting corrosion resistant, stainless steel alloy is disclosed. The method includes
providing a forged preform of martensitic, pitting corrosion resistant stainless steel
alloy comprising, by weight: about 12.0 to about 16.0 percent chromium; greater than
16.0 to about 20.0 percent cobalt, about 6.0 to about 8.0 percent molybdenum, about
1.0 to about 3.0 percent nickel, about 0.020 to about 0.040 percent carbon; and the
balance iron and incidental impurities. The method also includes heating the forged
preform to a solutionizing temperature for a time sufficient to form a solutionized
microstructure. The method further includes cooling the forged preform and solutionized
microstructure to room temperature to form a martensitic microstructure. Yet further,
the method includes heating the forged preform to a tempering temperature of about
600°F for a tempering time sufficient to form a tempered forged preform comprising
a tempered martensitic microstructure. Still further, the method includes cooling
the tempered forged preform to room temperature.
[0007] These and other advantages and features will become more apparent from the following
description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWING
[0008] The subject matter, which is regarded as the invention, is particularly pointed out
and distinctly claimed in the claims at the conclusion of the specification. The foregoing
and other features, and advantages of the invention are apparent from the following
detailed description taken in conjunction with the accompanying drawings in which:
The Figure is a flow chart of an embodiment of a method of making the martensitic
stainless alloys disclosed herein.
[0009] The detailed description explains embodiments of the invention, together with advantages
and features, by way of example with reference to the drawings.
DETAILED DESCRIPTION OF THE INVENTION
[0010] Corrosion pitting as described above is presently observed in service on front stage
compressor airfoils. The corrosion pitting resistant, martensitic, stainless steel
alloys described herein provide an iron-based, pitting corrosion resistant material
that is a significant enhancement for many heavy marine and industrial applications
that are susceptible to corrosion pitting phenomena as described above, including
front stage turbine compressor airfoils, in regards to service reliability, reduction
of maintenance concerns and costs, and avoidance of unplanned downtime due to airfoil
failures. The stainless steel alloys described herein specifically have greater resistance
to corrosion pitting than GTD-450 and GTD-450+ stainless steels. Due to the significant
operational costs associated with downtime of an industrial gas turbine, including
the cost of purchased power to replace the output of the turbine, as well as the maintenance
cost of dismantling the turbine to effect repair or replacement of the airfoils and
the repair or replacement costs of the airfoils themselves, the enhancements in pitting
corrosion resistance of the alloys and methods of making them have significant commercial
value. An additional benefit of the corrosion pitting resistant iron-base alloys and
methods of making them is that they do not require the addition of separate coatings
for pitting corrosion protection. The stainless steel alloys described herein are
particularly configured and well suited for forging, particularly the forging of turbine
airfoil articles
[0011] In an exemplary embodiment, a forged, martensitic, stainless steel alloy includes,
by weight: about 12.0 to about 16.0 percent chromium; greater than 16.0 to about 20.0
percent cobalt, about 6.0 to about 8.0 percent molybdenum, about 1.0 to about 3.0
percent nickel, about 0.020 to about 0.040 percent carbon; and the balance iron and
incidental impurities. More particularly, the forged, martensitic, stainless steel
alloy includes, by weight: about 13.5 to about 14.5 percent chromium; greater than
16.0 to about 20.0 percent cobalt, about 6.0 to about 6.5 percent molybdenum, about
1.0 to about 3.0 percent nickel, about 0.020 to about 0.30 percent carbon; and the
balance iron and incidental impurities. Even more particularly, the forged, martensitic,
stainless steel alloy includes, by weight: about 14 percent chromium; greater than
16.0 to about 20.0 percent cobalt, about 6.0 molybdenum, about 1.0 to about 3.0 percent
nickel, about 0.025 carbon; and the balance iron and incidental impurities. The stainless
steel alloy composition is selected and configured to provide a martensitic microstructure
by heat treatment as described herein. The stainless steel alloy composition is selected
and configured to provide a martensitic stainless steel alloy with a minimum tensile
strength of about 150 ksi, a molybdenum content of greater than 6%, and a pitting
resistance equivalent number, or PREN, of greater than about 31.8. The stainless steel
alloys disclosed herein achieve these corrosion and strength properties by a combination
of compositional chemistry and heat treatment. For example, the stainless steel alloys
disclosed herein exhibit exceptional resistance to corrosion pitting and may be heat
treated to provide high strength and fracture toughness suitable for application as
early stage turbine compressor airfoils (e.g. stages 1 through stage 5), including
both blades and vanes, for industrial gas turbines. In another aspect, the stainless
steel alloys described herein obtain strength primarily from the development of a
martensitic microstructure and solid solution strengthening in conjunction with the
martensitic reaction, while also developing a predetermined amount of retained austenite
and substantially no delta ferrite, which in an embodiment also includes no delta
ferrite.
[0012] The pitting resistance equivalent number provides a guideline for comparing the pitting
corrosion resistance of stainless steel alloys based on alloy chemistry. The higher
the PREN the more resistance to pitting corrosion, but there are practical limits
to how much the value can be increased before the ability to successfully heat treat
the alloy is compromised. The PREN may be calculated using equation 1 below.

[0013] The martensitic stainless steel alloys described herein have a PREN greater than
about 31.8, and more particularly greater than about 33.3. In one embodiment, the
PREN ranged from greater than about 31.8 to about 42.4, and more particularly about
33.3 to about 36.0.
[0014] The stainless steel alloys disclosed herein may be described as iron-based alloys
comprising five alloy constituents, including Cr, Mo, Co, Ni, and C. All other elements
are impurities incidental to the manufacture of stainless steel, and may include,
in weight percent, Mn (0.25 max.), Al (0.03 max.), V (0.10 max.), Si (0.25 max.),
S (0.005 max.), or P (0.02 max.), for example, and are kept below the maximum prescribed
levels described herein to ensure the consistency of properties and microstructure
from lot to lot. When balanced within the stated ranges the disclosed stainless steel
alloys provide a martensitic microstructure with the desired strength and fracture
toughness levels along with corrosion pitting resistance.
[0015] As noted, Cr is a required constituent and will be present in an amount sufficient
to form a passive film of chromium oxide on the alloy surface. In one embodiment,
Cr is present in an amount of at least about 11.5 weight percent. In another embodiment,
Cr is present in an amount of about 12 to about 16 weight percent, and more particularly
about 13.5 to about 14.5 weight percent, and even more particularly about 14 weight
percent.
[0016] As indicated by equation 1, Mo has a larger effect than Cr on the corrosion pitting
resistance of stainless steel. In one embodiment, Mo is present in an amount of about
6.0 to about 8.0 weight percent, and more particularly about 6.0 to about 6.5 weight
percent, and even more particularly about 6 weight percent. At least about 6 weight
percent is required to ensure sufficient resistance to pitting in marine, chloride
environments. Studies have shown that Mo enhances the repassivation capability of
stainless steel. Conventional high Mo content stainless steels are typically either
ferritic grades or austenitic grades with high Ni levels. Martensitic high Mo content
stainless steels grades that have been investigated have generally focused on exploiting
the ultra-high strength capabilities present in high-temperature tempered materials
and have been designed and heat treated at high tempering temperatures, such as 1,100°F,
for use at elevated operating temperatures. However, in these materials corrosion
resistance and toughness is sacrificed at the high tempering temperatures due to the
precipitation and formation of Mo-rich and Cr-rich intermetallic phases, which deplete
the matrix of the corrosion resisting elements Mo and Cr. At high tempering temperatures
a secondary hardening effect also occurs due to formation of these intermetallic compounds.
The intermetallic phases include the laves phase (Fe
2Mo), Fe
7Mo
6, FeMo, the sigma phase (Fe-Cr-Mo), and a complex BCC chi phase (Fe-Cr-Mo). Cobalt
does not participate in the phases associated with these precipitation reactions.
These intermetallic phases also drastically decrease the toughness of the alloy. Thus,
martensitic stainless alloys of this invention are tempered at low tempering temperatures
as described herein to avoid the precipitation of these intermetallic phases. The
tempered alloys are suitable for use in relatively lower temperature applications
where corrosion resistance with moderate strength and good toughness are important.
The martensitic stainless alloys of this invention balance high Mo additions with
the low-tempering temperature region of the hardness vs tempering temperature curve
to avoid the formation of intermetallic phases and keep Mo and Cr in solution to maintain
a high level as toughness. In one embodiment, the microstructure of the martensitic
stainless steel alloys of this invention contains substantially no laves phase, which
in an embodiment also includes no laves phase. In another embodiment, the microstructure
of the martensitic stainless steel alloys of this invention contains substantially
no chi phase, which in an embodiment also includes no chi phase. In yet another embodiment,
the microstructure of the martensitic stainless steel alloys of this invention contains
substantially no delta ferrite phase, which in an embodiment also includes no delta
ferrite phase. In still another embodiment, the microstructure of the martensitic
stainless steel alloys of this invention contains substantially no laves phase, chi
phase and delta ferrite phase, which in an embodiment also includes no laves phase,
chi phase and delta ferrite phase.
[0017] As will also be understood from equation 1, N has a large effect on the PREN, and
may optionally be included in the claimed stainless steel materials. However, N is
difficult to add in significant amounts in vacuum melted materials. In addition, N
can also combine with Cr in the alloy microstructure to form chromium nitrides, which
can embrittle and sensitize the stainless steel materials by local depletion of chromium
within the alloy microstructure, particularly at the alloy surface, where contact
with corrosive species is possible, as described herein. Thus, where present, N will
generally be present in amount of 0.02 weight percent or less, and more particularly
about 0.001 to about 0.02 weight percent.
[0018] The development of a martensitic microstructure from the martensite transformation
requires a high temperature austenitic microstructure. Thus, the composition of the
claimed stainless steel alloys will have a high temperature microstructure that includes
austenite. Since both Cr and Mo are ferrite stabilizers, consequently, an austenite
former is required to balance the phase diagram and develop a high temperature austenite
phase to facilitate a martensitic heat treatment and provide the martensitic microstructure,
while also developing a predetermined amount of retained austenite and substantially
no delta ferrite, which in an embodiment also includes no delta ferrite. Co was selected
to stabilize austenite. In one embodiment, Co is present in an amount of about 16.0
to about 20.0 weight percent, and more particularly about 16.5 to about 20.0 weight
percent, and even more particularly about 16.5 to about 18.0 weight percent. As an
austenite stabilizer, cobalt provides a sufficiently large austenite phase field for
temperature and/or time latitude in the heat treatment process. In addition, the effect
of Co on the martensite start, M
s, temperature is not as pronounced as that of Ni, providing for the use of standard
quench and temper heat treatment protocols.
[0019] Ni is a required constituent and will be present in an amount sufficient to stabilize
austenite. Ni is an austenite stabilizer and increases the amount of retained austenite
in these alloys. Thus, the amount of Ni should be controlled to provide a predetermined
amount of a retained austenite phase in the alloy microstructure. In one embodiment
the predetermined amount of the retained austenite phase comprises at least about
15 percent by volume of the alloy microstructure. In another embodiment, the predetermined
amount of retained austenite phase comprises about 15 percent to about 25 percent
by volume of the alloy microstructure. In one embodiment, the amount of Ni comprises
about 1.0 to about 3.0 weight percent, and more particularly, about 1.0 to about 2.0,
and yet more particularly about 1.0 to about 1.5 weight percent. The predetermined
amount of retained austenite improves the fracture toughness of the claimed alloys.
Ni significantly depresses the M
s temperature and the quantities disclosed herein provide a M
s temperature that is compatible with the heat treatment temperatures and times disclosed
herein to provide the desired martensitic structure while also promoting an increased
amount of retained austenite. Ni in the amounts described herein also increases the
Charpy V-notch toughness of the martensitic stainless steel alloys described herein.
[0020] As noted, C is a required constituent and will be present in an amount sufficient
to provide a predetermine hardness and/or a predetermined tensile strength. The amount
of C is also selected to avoid the formation of coarse M
23C
6 carbides. These carbides preferentially nucleate at grain boundaries and cause reduced
toughness. Chromium carbides also deplete the matrix surrounding the carbide of chromium,
leading to a reduction of corrosion resistance. In one embodiment, C is present in
an amount less than about 0.05 weight percent. In another embodiment, C is present
in an amount of about 0.020 to about 0.40 weight percent, and more particularly about
0.20 to about 0.30 weight percent, and even more particularly about 0.025 weight percent.
In one embodiment, the predetermined hardness is about 30 to about 42 HRC, and the
predetermined ultimate tensile strength (UTS) is about 150 to about 200 ksi. The amount
of C may be used together with a low temperature tempering heat treatment, as described
herein, to provide a predetermined strength and a predetermined fracture toughness
that are sufficient for use as turbine airfoil components, including turbine compressor
vanes and blades, and more particularly turbine compressor vanes and blades suitable
for use in the first through fifth stages of an industrial gas turbine compressor.
[0021] Referring to the Figure, according to another aspect, a method 100 of making a forged,
martensitic, pitting corrosion resistant, stainless steel alloy is disclosed. The
method 100 includes providing 110 a forged preform of a martensitic, pitting corrosion
resistant stainless steel alloy comprising, by weight: about 12.0 to about 16.0 percent
chromium; greater than 16.0 to about 20.0 percent cobalt, about 6.0 to about 8.0 percent
molybdenum, about 1.0 to about 3.0 percent nickel, about 0.020 to about 0.040 percent
carbon; and the balance iron and incidental impurities. The stainless steel alloys
can be provided in any suitable manner, including being processed by substantially
conventional methods. For example, the alloy may be produced by electric furnace melting
with argon oxygen decarburization (AOD) ladle refinement, followed by electro-slag
remelting (ESR) of the ingots. Other similar melting practices may also be used. A
suitable forming operation, such as various forging methods, may then be employed
to produce bar stocks and forging preforms that have a precursor shape of the desired
article, including the various articles described herein, such as, for example, turbine
compressor airfoils.
[0022] The method 100 also includes heating 120 the forged preform to a solutionizing temperature
for a time sufficient to form a solutionized microstructure. In one embodiment, the
solutionizing temperature comprises about 2,000 to about 2,100°F and the solutionizing
time comprises about 1 to about 3 hours.
[0023] The method further includes cooling 130 the forged preform and solutionized microstructure
to room temperature to form a martensitic microstructure. Any suitable method of cooling
may be employed that provides a cooling rate sufficient to promote a martensitic transformation
of the alloy microstructure. In one embodiment, cooling comprises water, polymer,
oil, gas, or air quenching.
[0024] The method also includes heating 140 the forged preform to a tempering temperature
of about 600°F or less for a predetermined tempering time sufficient to form a tempered
forged preform comprising a tempered martensitic microstructure. Any suitable heating
method and tempering time may be employed. In one embodiment, the predetermined tempering
time is about 3 to about 6 hours. In one embodiment, the wherein the tempered forged
preform comprises a turbine compressor airfoil preform. Still further, the method
includes cooling 150 the tempered forged preform to room temperature. Low tempering
temperatures, 600°F or less, are utilized to avoid the formation of the precipitates
described herein, particularly the embrittling chi and laves phases. It has been shown
that when more than 3.5% Mo is present in a 12% Cr steel there is a high-temperature
aging reaction based on the precipitation of the laves phase. High Mo contents can
also result in the high temperature formation of the intermetallic chi phase which
gives rise to brittleness and low tensile ductility. The formation of these compounds
result in a dramatic loss in impact resistance. Consequently, the focus will be on
solid solution strengthening (from both substitutional elements and interstitial carbon)
and low-temperature tempering at a temperature of 600°F or lower. The low temperature
tempering also establishes a predetermined maximum operating temperature of these
alloys that is less than the tempering temperature, preferably at least about 50 to
about 100°F lower than the tempering temperature to avoid subsequent tempering of
the martensite and changes to the alloy microstructure. It is desirable to keep as
much Cr and Mo as possible in solution to provide corrosion resistance and not have
the elements bound in intermetallic compounds or carbides.
[0025] In addition to resistance to pitting corrosion, the martensitic stainless steels
alloys disclosed herein have a combination of strength, ductility, and fracture toughness
that makes them suitable for use to form various turbine airfoil and other components.
In one embodiment, the martensitic stainless steel alloys exhibited better pitting
corrosion resistance than GTD-450 and GTD-450+ after salt fog exposure for 500 hours
in accordance with ASTM G85, and in another embodiment exhibited substantially no
pitting corrosion after 500 hours of exposure in accordance with ASTM G85, which may
also be described in an embodiment as no pitting corrosion in conjunction with this
salt fog exposure. In another embodiment, the martensitic stainless steels alloys
disclosed herein exhibited substantially no pitting corrosion after 1,000 hours of
salt fog exposure in accordance with ASTM B117, which may also be described in an
embodiment as no pitting corrosion in conjunction with this salt fog exposure. In
one embodiment, the martensitic stainless steels alloys have an ultimate tensile strength
of about 150 ksi or more, and more particularly about 150 to about 200 ksi. In another
embodiment, the martensitic stainless steels alloys have an elongation of at least
about 14 percent, and more particularly an elongation of about 14 to about 24 percent.
In yet another embodiment, the martensitic stainless steels alloys have a tensile
reduction in area of at least about 41 percent, and more particularly about 41 to
about 49 percent. In yet another embodiment, the martensitic stainless steels alloys
have a Charpy V-notch toughness of about 85 to about 95 J.
[0026] The alloys disclosed herein may be used to form turbine airfoil components, including
those used for compressor airfoil components of industrial gas turbines. A typical
compressor airfoil in the form of a turbine compressor blade is well known. A compressor
blade has a leading edge, a trailing edge, a tip edge and a blade root, such as a
dovetailed root that is adapted for detachable attachment to a compressor disk. The
span of a blade extends from the tip edge to the blade root. The surface of the blade
comprehended within the span constitutes the airfoil surface of the turbine airfoil.
The airfoil surface is that portion of the turbine compressor airfoil that is exposed
to the flow path of air from the turbine inlet through the compressor section of the
turbine into the combustion chamber and other portions of the turbine. While the alloys
disclosed herein are particularly useful for use in turbine compressor airfoils in
the form of turbine compressor blades and vanes, they are broadly applicable to all
manner of turbine compressor airfoils used in a wide variety of components. These
include turbine airfoils associated with turbine compressor vanes and nozzles, shrouds,
liners and other turbine compressor airfoils, i.e., turbine components having airfoil
surfaces such as diaphragm components, seal components, valve stems, nozzle boxes,
nozzle plates, or the like. Also, while these alloys are useful for gas turbine compressor
blades and vanes, they can potentially also be used for the turbine components of
industrial steam turbines, including compressor blades and vanes, steam turbine buckets
and other steam turbine airfoil components, oil and gas machinery components, as well
as other applications requiring high tensile strength, fracture toughness and resistance
to pitting corrosion so long as the operating temperature range of the components
is compatible with the predetermined maximum operating temperature of the alloys as
described herein.
[0027] The terms "a" and "an" herein do not denote a limitation of quantity, but rather
denote the presence of at least one of the referenced items. The modifier "about"
used in connection with a quantity is inclusive of the stated value and has the meaning
dictated by the context (e.g., includes the degree of error associated with measurement
of the particular quantity). Furthermore, unless otherwise limited all ranges disclosed
herein are inclusive and combinable (e.g., ranges of "up to about 25 weight percent
(wt. %), more particularly about 5 wt. % to about 20 wt. % and even more particularly
about 10 wt. % to about 15 wt. %" are inclusive of the endpoints and all intermediate
values of the ranges, e.g., "about 5 wt. % to about 25 wt. %, about 5 wt. % to about
15 wt. %", etc.). The use of "about" in conjunction with a listing of constituents
of an alloy composition is applied to all of the listed constituents, and in conjunction
with a range to both endpoints of the range. Finally, unless defined otherwise, technical
and scientific terms used herein have the same meaning as is commonly understood by
one of skill in the art to which this invention belongs. The suffix "(s)" as used
herein is intended to include both the singular and the plural of the term that it
modifies, thereby including one or more of that term (e.g., the metal(s) includes
one or more metals). Reference throughout the specification to "one embodiment", "another
embodiment", "an embodiment", and so forth, means that a particular element (e.g.,
feature, structure, and/or characteristic) described in connection with the embodiment
is included in at least one embodiment described herein, and may or may not be present
in other embodiments.
[0028] It is to be understood that the use of "comprising" in conjunction with the alloy
compositions described herein specifically discloses and includes the embodiments
wherein the alloy compositions "consist essentially of" the named components (i.e.,
contain the named components and no other components that significantly adversely
affect the basic and novel features disclosed), and embodiments wherein the alloy
compositions "consist of" the named components (i.e., contain only the named components
except for contaminants which are naturally and inevitably present in each of the
named components).
[0029] While the invention has been described in detail in connection with only a limited
number of embodiments, it should be readily understood that the invention is not limited
to such disclosed embodiments. Rather, the invention can be modified to incorporate
any number of variations, alterations, substitutions or equivalent arrangements not
heretofore described, but which are commensurate with the spirit and scope of the
invention. Additionally, while various embodiments of the invention have been described,
it is to be understood that aspects of the invention may include only some of the
described embodiments. Accordingly, the invention is not to be seen as limited by
the foregoing description, but is only limited by the scope of the appended claims.
[0030] Various aspects and embodiments of the present invention are defined by the following
numbered clauses:
- 1. A forged, martensitic, stainless steel alloy comprising, by weight: about 12.0
to about 16.0 percent chromium; greater than 16.0 to about 20.0 percent cobalt, about
6.0 to about 8.0 percent molybdenum, about 1.0 to about 3.0 percent nickel, about
0.020 to about 0.040 percent carbon; and the balance iron and incidental impurities.
- 2. The alloy of clause 1, wherein the alloy comprises about 16.5 to about 20.0 percent
cobalt.
- 3. The alloy of any preceding clause, wherein the alloy has a microstructure that
contains substantially no laves phase.
- 4. The alloy of any preceding clause, wherein the alloy has a microstructure that
comprises substantially no chi phase.
- 5. The alloy of any preceding clause, wherein the alloy has a microstructure that
comprises substantially no delta ferrite phase.
- 6. The alloy of any preceding clause, wherein the alloy has a microstructure that
comprises substantially no laves phase, chi phase and delta ferrite phase.
- 7. The alloy of any preceding clause, wherein the alloy has a microstructure that
comprises a retained austenite phase.
- 8. The alloy of any preceding clause, wherein the retained austenite phase comprises
at least about 15 percent by volume of the microstructure.
- 9. The alloy of any preceding clause, wherein the retained austenite phase comprises
about 15 percent to about 25 percent by volume of the microstructure.
- 10. The alloy of any preceding clause, wherein the alloy is configured to provide
a tensile elongation of at least about 14 percent.
- 11. The alloy of any preceding clause, wherein the elongation is about 14 to about
24 percent.
- 12. The alloy of any preceding clause, wherein the alloy is configured to provide
a tensile reduction in area of at least about 41 percent.
- 13. The alloy of any preceding clause, wherein the reduction in area is about 41 to
about 49 percent.
- 14. The alloy of any preceding clause, wherein the alloy has a pitting resistance
equivalence number of about 31.8 or more.
- 15. The alloy of any preceding clause, wherein the alloy has an ultimate tensile strength
of about 150 ksi or more.
- 16. The alloy of any preceding clause, wherein the alloy comprises a turbine compressor
airfoil.
- 17. A method of making a forged, martensitic, stainless steel alloy, comprising:
providing a forged preform of martensitic, pitting corrosion resistant stainless steel
alloy comprising, by weight: about 12.0 to about 16.0 percent chromium; greater than
16.0 to about 20.0 percent cobalt, about 6.0 to about 8.0 percent molybdenum, about
1.0 to about 3.0 percent nickel, about 0.020 to about 0.040 percent carbon; and the
balance iron and incidental impurities;
heating the forged preform to a solutionizing temperature for a time sufficient to
form a solutionized microstructure;
cooling the forged preform and solutionized microstructure to room temperature to
form a martensitic microstructure;
heating the forged preform to a tempering temperature of about 600°F for a tempering
time sufficient to form a tempered forged preform comprising a tempered martensitic
microstructure; and
cooling the tempered forged preform to room temperature.
- 18. The method of any preceding clause, wherein the solutionizing temperature comprises
about 2,000 to about 2,100°F and the time comprises about 1 to about 3 hours.
- 19. The method of any preceding clause, wherein the tempering time is about 3 to about
6 hours.
- 20. The method of any preceding clause, wherein the tempered forged preform comprises
a turbine airfoil preform.
1. A forged, martensitic, stainless steel alloy comprising, by weight: about 12.0 to
about 16.0 percent chromium; greater than 16.0 to about 20.0 percent cobalt, about
6.0 to about 8.0 percent molybdenum, about 1.0 to about 3.0 percent nickel, about
0.020 to about 0.040 percent carbon; and the balance iron and incidental impurities.
2. The alloy of claim 1, wherein the alloy has a microstructure that contains substantially
no laves phase.
3. The alloy of claim 1 or 2, wherein the alloy has a microstructure that comprises substantially
no chi phase.
4. The alloy of claim 1, 2 or 3, wherein the alloy has a microstructure that comprises
substantially no delta ferrite phase.
5. The alloy of claim 1, wherein the alloy has a microstructure that comprises substantially
no laves phase, chi phase and delta ferrite phase.
6. The alloy of any preceding claim, wherein the alloy has a microstructure that comprises
a retained austenite phase.
7. The alloy of any preceding claim, wherein the alloy has a pitting resistance equivalence
number of about 31.8 or more.
8. The alloy of any preceding claim, wherein the alloy comprises a turbine compressor
airfoil.
9. A method (100) of making a forged, martensitic, stainless steel alloy, comprising:
providing(110) a forged preform of martensitic, pitting corrosion resistant stainless
steel alloy comprising, by weight: about 12.0 to about 16.0 percent chromium; greater
than 16.0 to about 20.0 percent cobalt, about 6.0 to about 8.0 percent molybdenum,
about 1.0 to about 3.0 percent nickel, about 0.020 to about 0.040 percent carbon;
and the balance iron and incidental impurities;
heating (120) the forged preform to a solutionizing temperature for a time sufficient
to form a solutionized microstructure;
cooling (130) the forged preform and solutionized microstructure to room temperature
to form a martensitic microstructure;
heating (140) the forged preform to a tempering temperature of about 600°F for a tempering
time sufficient to form a tempered forged preform comprising a tempered martensitic
microstructure; and
cooling (150) the tempered forged preform to room temperature.
10. The method of claim 9, wherein the tempering time is about 3 to about 6 hours.