

(11) EP 3 075 463 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: **09.09.2020 Bulletin 2020/37**

(21) Application number: 14865183.9

(22) Date of filing: 06.11.2014

(51) Int Cl.: **B21D 22/14** (2006.01) **B21D 43/00** (2006.01)

(86) International application number: **PCT/JP2014/005586**

(87) International publication number: WO 2015/079628 (04.06.2015 Gazette 2015/22)

(54) SPINNING AND SHAPING DEVICE AND SPINNING AND SHAPING METHOD

SPINN- UND FORMUNGSVORRICHTUNG SOWIE SPINN- UND FORMUNGSVERFAHREN DISPOSITIF ET PROCÉDÉ DE REPOUSSAGE ET DE FORMAGE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

- (30) Priority: 29.11.2013 JP 2013247194
- (43) Date of publication of application: **05.10.2016 Bulletin 2016/40**
- (73) Proprietor: Kawasaki Jukogyo Kabushiki Kaisha Kobe-shi, Hyogo 650-8670 (JP)
- (72) Inventors:
 - IMAMURA, Yoshihide Akashi-shi, Hyogo 673-8666 (JP)
 - SAKANE, Yuto Akashi-shi, Hyogo 673-8666 (JP)

- MIKAMI, Kohei Akashi-shi, Hyogo 673-8666 (JP)
- IWASAKI, Hayato Akashi-shi, Hyogo 673-8666 (JP)
- KITANO, Hiroshi Akashi-shi, Hyogo 673-8666 (JP)
- (74) Representative: Dehns St. Bride's House 10 Salisbury Square London EC4Y 8JD (GB)
- (56) References cited:

WO-A1-2014/024384 DE-U1-202004 002 115 JP-A- S 542 262 JP-A- S4 995 859 JP-A- 2011 218 427 US-A- 2 069 198

P 3 075 463 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

15

25

Description

Technical Field

[0001] The present invention relates to a spinning forming device and method for forming a plate in a desired shape while rotating the plate.

1

Background Art

[0002] Conventionally known is a spinning forming device designed to transform a plate by pressing a processing tool against the plate while rotating the plate. The spinning forming device normally includes a mandrel (shaping die) attached to a rotating shaft and performs forming in such a manner that the plate is pressed against the mandrel by the processing tool.

[0003] In recent years, proposed is a spinning forming device designed to perform spinning forming while locally heating the plate. For example, as a spinning forming device for a titanium alloy, PTL 1 discloses a spinning forming device configured such that a portion of the plate which is pressed against the mandrel by a spatula (processing tool) is heated by high frequency induction heating.

[0004] PTL 2, forming the basis for the preamble of claim 1, discloses an arrangement whereby a circular blank is alternately heated and then worked, while spinning.

[0005] PTL 3 discloses a cold spin-forming arrangement comprising a pair of molding rollers and an auxiliary roller mechanism for supporting a peripheral portion of a plate.

Citation List

Patent Literature

[0006]

PTL 1: Japanese Laid-Open Patent Application Publication No. 2011 219427

lication No. 2011-218427 PTL 2: JP S48-41965 A PTL 3: JP S49-95859 A

Summary of Invention

Technical Problem

[0007] The inventors of the present invention have found that by locally heating the plate by induction heating, the plate can be transformed into a final shape in the atmosphere without using the mandrel. From this point of view, in an application (Japanese Patent Application No. 2012-178269) preceding the present application, the applicant of the present application has proposed execution of spinning forming using, instead of the mandrel, a receiving jig supporting a central portion of the plate.

According to this spinning forming, at a position away from the receiving jig, a transform target portion of the plate is heated by a heater and is pressed by the processing tool.

[0008] When using the mandrel, the transform target portion of the plate is pressed against the mandrel by the processing tool. Therefore, a peripheral portion of the plate hardly deforms. On the other hand, when using the receiving jig against which the plate is not pressed by the processing tool, in other words, when using the receiving jig not including a shaping surface, the plate is processed with the transform target portion floating in the air. Therefore, the peripheral portion of the plate deforms in some cases. Such deformation (for example, warp) of the peripheral portion of the plate may cause contact between the peripheral portion of the plate and a peripheral device such as a heater and bring about a deterioration of accuracy (formation accuracy) of the final shape.

[0009] An object of the present invention is to suppress the deformation of the peripheral portion of the plate in the spinning forming using the receiving jig supporting the central portion of the plate.

Solution to Problem

[0010] To achieve the above object, a spinning forming device of the present invention includes: a receiving jig supporting a central portion of a plate to be formed; a rotating shaft to which the receiving jig is attached; a heater configured to locally heat a transform target portion of the plate by induction heating; and a processing tool configured to press the transform target portion to transform the plate; characterised in that the spinning forming device further comprises a pair of holding rollers configured to sandwich an outside portion of the plate, the outside portion being located outside the transform target portion. [0011] According to the above configuration, the plate is processed in a state where the holding rollers sandwich the outside portion, located outside the transform target portion, of the plate. Therefore, the deformation of the peripheral portion of the plate can be suppressed.

[0012] The spinning forming device may be configured such that: the pair of holding rollers sandwich a peripheral portion of the plate; and when the processing tool presses the transform target portion, the pair of holding rollers are moved in an axial direction of the rotating shaft together with the processing tool. According to this configuration, a uniaxial movement mechanism can be used as means for moving the holding rollers. Therefore, the configuration can be simplified.

[0013] The spinning forming device may be configured such that: one of the pair of holding rollers has a cylindrical shape that makes line contact with one of surfaces of the plate; and the other holding roller has a tapered shape that makes point contact with the other surface of the plate and decreases in diameter toward a direction away from the rotating shaft. According to this configuration, one of the holding rollers makes line contact with

the plate, and the other makes point contact with the plate. Therefore, while stably holding the outside portion of the plate, a load necessary for the rotation of the plate can be reduced.

[0014] The heater may be disposed on an opposite side of the processing tool across the plate. According to this configuration, regardless of the shape of the plate during processing, the heater can be located immediately close to the transform target portion of the plate. With this, the transform target portion can be appropriately heated.

[0015] A spinning forming method of the present invention includes pressing a processing tool against a transform target portion of a plate to be formed to transform the plate while locally heating the transform target portion by induction heating in a state where an outside portion of the plate is sandwiched between a pair of holding rollers, the outside portion being located outside the transform target portion. According to this configuration, the plate is processed in a state where the outside portion, located outside the transform target portion, of the plate is sandwiched between the holding rollers. Therefore, the deformation of the peripheral portion of the plate can be suppressed.

Advantageous Effects of Invention

[0016] According to the present invention, the deformation of the peripheral portion of the plate can be suppressed in the spinning forming using the receiving jig supporting the central portion of the plate.

Brief Description of Drawings

[0017]

Fig. 1 is a schematic configuration diagram of a spinning forming device according to one embodiment of the present invention.

Fig. 2A is a plan view of a heater. Fig. 2B is a cross-sectional view taken along line II-II of Fig. 2A.

Fig. 3 is an enlarged view of major portions of the spinning forming device shown in Fig. 1.

Description of Embodiments

[0018] Fig. 1 shows a spinning forming device 1 according to one embodiment of the present invention. The spinning forming device 1 includes a rotating shaft 2, a receiving jig 3 attached to the rotating shaft 2, and a fixing jig 4. The receiving jig 3 supports a central portion 91 of a plate 9 to be formed, and the fixing jig 4 sandwiches the plate 9 together with the receiving jig 3. The spinning forming device 1 further includes: a heater 6 configured to locally heat a transform target portion 92 of the plate 9 by induction heating, the transform target portion 92 being located away from a center axis 20 of the rotating shaft 2 by a predetermined distance R; and a processing

tool 7 configured to press the transform target portion 92 to transform the plate 9.

[0019] An axial direction of the rotating shaft 2 (i.e., a direction in which the center axis 20 extends) is a vertical direction in the present embodiment. However, the axial direction of the rotating shaft 2 may be a horizontal direction or an oblique direction. A lower portion of the rotating shaft 2 is supported by a base 11. A motor (not shown) configured to rotate the rotating shaft 2 is disposed in the base 11. An upper surface of the rotating shaft 2 is flat, and the receiving jig 3 is fixed to the upper surface of the rotating shaft 2.

[0020] The plate 9 is, for example, a flat circular plate. However, the shape of the plate 9 may be a polygonal shape or an oval shape. The plate 9 is not necessarily flat over the entirety. For example, the central portion 91 of the plate 9 may be thicker than a peripheral edge portion 93 of the plate 9, or the entire plate 9 or a part of the plate 9 may be processed in advance to have a tapered shape. The material of the plate 9 is not especially limited and is, for example, a titanium alloy.

[0021] The receiving jig 3 has a size within a circle defined by a forming start position of the plate 9. For example, in a case where the receiving jig 3 has a disc shape, a diameter of the receiving jig 3 is equal to or smaller than a diameter of the circle defined by the forming start position of the plate 9. Unlike conventional mandrels, the plate 9 is not transformed by being pressed against a radially outer side surface of the receiving jig 3.

[0022] The fixing jig 4 is attached to a pressurizing rod 51. The pressurizing rod 51 is driven by a driving portion 52 in an upward/downward direction to press the plate 9 against the receiving jig 3 via the fixing jig 4. For example, the pressurizing rod 51 and the driving portion 52 constitute a hydraulic cylinder. The driving portion 52 is fixed to a portal frame 12 standing on the base 11, and a bearing rotatably supporting the pressurizing rod 51 is incorporated in the driving portion 52.

[0023] It should be noted that the pressurizing rod 51 and the driving portion 52 are not necessarily required. For example, the fixing jig 4 may be fixed to the receiving jig 3 together with the plate 9 by fastening members, such as bolts or clamps. Or, the fixing jig 4 may be omitted, and the plate 9 may be directly fixed to the receiving jig 3 by, for example, bolts.

[0024] In the present embodiment, the processing tool 7 that presses the transform target portion 92 of the plate 9 is disposed above the plate 9, and the plate 9 is processed by the processing tool 7 in a downwardly opening shape that accommodates the receiving jig 3. To be specific, an upper surface of the plate 9 is a front surface, and a lower surface of the plate 9 is a rear surface. However, the processing tool 7 may be disposed under the plate 9, and the plate 9 may be processed by the processing tool 7 in an upwardly opening shape that accommodates the fixing jig 4. Or, to form a projection(s) and a depression(s) on the plate 9, the position of the processing tool 7 may be changed from the upper side of the

25

30

40

50

plate 9 to the lower side of the plate 9 or vice versa in the middle of the processing of the plate 9.

[0025] In the present embodiment, the heater 6 that heats the transform target portion 92 of the plate 9 is disposed under the plate 9. In other words, the heater 6 is located on the opposite side of the processing tool 7 across the plate 9. However, the heater 6 may be disposed above the plate 9 so as to be located at the same side as the processing tool 7.

[0026] For convenience of explanation, Fig. 1 shows a layout in which the heater 6 is located immediately under the processing tool 7. However, the relative positions of the heater 6 and the processing tool 7 are not especially limited as long as they are located on substantially the same circumference around the center axis 20 of the rotating shaft 2. For example, the heater 6 and the processing tool 7 may be located at respective positions opposed to each other across the rotating shaft 2.

[0027] The heater 6 is moved by a first movement mechanism 13 in the axial direction and radial direction of the rotating shaft 2. The processing tool 7 is moved by a second movement mechanism 14 in the axial direction and radial direction of the rotating shaft 2. As the processing of the plate 9 proceeds, the transform target portion 92 travels in the axial direction and radial direction of the rotating shaft 2. Therefore, during the processing of the plate 9, the heater 6 and the processing tool 7 are moved in conjunction with each other.

[0028] In the present embodiment, used as the processing tool 7 is a roller configured to follow the rotation of the plate 9 to rotate. However, the processing tool 7 is not limited to the roller and may be, for example, a spatula.

[0029] As shown in Figs. 2A and 2B, the heater 6 includes: a conducting wire 61 including a coil portion 62 extending in a circumferential direction of the rotating shaft 2 and having a doubled circular-arc shape; and cores 65 for collecting magnetic flux generated around the coil portion 62. More specifically, the coil portion 62 includes a pair of circular-arc portions that are parallel to each other along the plate 9, in other words, spaced apart from each other in the radial direction of the rotating shaft 2. The cores 65 are supported by a supporting plate not shown.

[0030] The frequency of an alternating current flowing through the conducting wire 61 is not especially limited and is desirably a high frequency of 5 to 400 kHz. To be specific, it is desirable that the induction heating by the heater 6 be high frequency induction heating. According to the induction heating, the temperature of a lower surface of the transform target portion 92 which faces the coil portion 62 becomes the highest by a skin effect. For example, in a case where the material of the plate 9 is the titanium alloy, the temperature of the lower surface of the transform target portion 92 is about 500 to 1,000°C. [0031] The spinning forming device 1 of the present embodiment includes a pair of holding rollers 81 and 82 configured to sandwich an outside portion of the plate 9

from both sides of the plate 9 in a thickness direction of the plate 9, the outside portion being located outside the transform target portion 92. The holding rollers 81 and 82 may be disposed at any positions as long as the holding rollers 81 and 82 do not interfere with the heater 6 or the processing tool 7.

[0032] In the present embodiment, the pair of holding rollers 81 and 82 sandwiches the peripheral portion of the plate 9. To be specific, the pair of holding rollers 81 and 82 sandwiches the peripheral portion of the plate 9 so as to press the peripheral portion of the plate 9 in the thickness direction of the plate 9. The holding rollers 81 and 82 are moved by a third movement mechanism 15 together with the processing tool 7 in the axial direction of the rotating shaft 2 when the processing tool 7 presses the transform target portion 92 of the plate 9. It should be noted that the number of movement mechanisms for the holding rollers 81 and 82 is not limited to one, and one movement mechanism may be provided for each of the holding rollers 81 and 82.

[0033] In the present embodiment, the holding roller 81 disposed under the plate 9 has a cylindrical shape, and the holding roller 82 disposed above the plate 9 has a tapered shape (i.e., a shape having a trapezoidal cross section) that decreases in diameter toward a direction away from the rotating shaft 2. As shown in Fig. 3, a center axis 83 of the holding roller 81 at the lower side is parallel to the peripheral portion 93 of the plate 9. Therefore, the holding roller 81 makes line contact with a lower surface of the plate 9. On the other hand, a center axis 84 of the holding roller 82 at the upper side extends in a direction represented by a formula " α < 90° - θ ", where α denotes an angle between the center axis 84 and the peripheral portion 93 of the plate 9, and θ denotes an angle between a large-diameter tip end surface and peripheral side surface of the holding roller 82. In other words, the center axis 84 of the holding roller 82 is inclined so as to become close to a horizontal state from a state where the peripheral side surface of the holding roller 82 makes line contact with the upper surface of the plate 9. Therefore, the holding roller 82 makes point contact with the upper surface of the plate 9 by a tip end peripheral portion between the large-diameter tip end surface and the peripheral side surface. However, the center axis 84 of the holding roller 82 may extend in the horizontal direction or may be inclined in a direction opposite to the direction of Fig. 3 such that an angle between the largediameter tip end surface of the holding roller 82 and the peripheral portion 93 of the plate 9 becomes an acute angle.

[0034] It should be noted that the shapes of the holding rollers 81 and 82 are not limited to these. For example, contrary to the present embodiment, the holding roller 81 at the lower side may have a tapered shape, and the holding roller 81 at the upper side may have a cylindrical shape. Or, the holding rollers 81 and 82 may have the same shape such as a cylindrical shape or a tapered shape. Further, one or both of the holding rollers 81 and

82 may have a spherical shape that makes point contact with the plate 9.

[0035] Thus, the spinning forming device 1 explained above can execute a spinning forming method of pressing the processing tool 7 against the transform target portion 92 of the plate 9 to transform the plate 9 while locally heating the transform target portion 92 by the induction heating in a state where the outside portion of the plate 9 is sandwiched between the holding rollers 81 and 82, the outside portion being located outside the transform target portion 92. As above, according to the present embodiment, since the plate 9 is processed in a state where the outside portion, located outside the transform target portion 92, of the plate 9 is sandwiched between the holding rollers 81 and 82, the deformation of the peripheral portion 93 of the plate 9 can be suppressed.

[0036] Further, in the present embodiment, one of the holding rollers 81 and 82 makes line contact with the plate 9, and the other makes point contact with the plate 9. Therefore, while stably holding the outside portion of the plate 9 (in the present embodiment, the peripheral portion 93), a load necessary for the rotation of the plate 9 can be reduced.

[0037] Furthermore, in the present embodiment, the heater 6 is disposed on the opposite side of the processing tool 7 across the plate 9. Therefore, regardless of the shape of the plate 9 during processing, the heater 6 can be located immediately close to the transform target portion 92 of the plate 9. With this, the transform target portion 92 can be appropriately heated.

Other Embodiments

[0038] The present invention is not limited to the above embodiment, and various modifications may be made within the scope of the present invention, as defined by the claims.

[0039] For example, at least one of the holding rollers 81 and 82 may be moved also in the radial direction of the rotating shaft 2 so as to always contact an outside portion, located immediately outside the transform target portion 92, of the plate 9. Even in this case, the holding rollers 81 and 82 sandwich the outside portion, located outside the transform target portion 92, of the plate 9. In a case where the holding rollers 81 and 82 sandwiches the peripheral portion 93 of the plate 9 as in the above embodiment, a uniaxial movement mechanism can be used as means for moving the holding rollers 81 and 82. Therefore, the configuration can be simplified.

Industrial Applicability

[0040] The present invention is useful when performing spinning forming of plates made of various materials.

Reference Signs List

[0041]

- 5 1 spinning forming device
 - 2 rotating shaft
 - 3 receiving jig
 - 6 heater
 - 7 processing tool
- 9 81, 82 holding roller
 - 9 plate
 - 91 central portion
 - 92 transform target portion
 - 93 peripheral portion

Claims

15

20

40

45

50

55

1. A spinning forming device (1) comprising:

a receiving jig (3) supporting a central portion (91) of a plate (9) to be formed;

a rotating shaft (2) to which the receiving jig is attached;

a heater (6) configured to locally heat a transform target portion (92) of the plate by induction heating; and

a processing tool (7) configured to press the transform target portion to transform the plate; **characterised in that** the spinning forming device further comprises a pair of holding rollers (81, 82) configured to sandwich an outside portion of the plate, the outside portion being located outside the transform target portion.

2. The spinning forming device according to claim 1, wherein:

the pair of holding rollers sandwich a peripheral portion (93) of the plate; and when the processing tool presses the transform target portion, the pair of holding rollers are moved in an axial direction of the rotating shaft

The spinning forming device according to claim 1 or 2, wherein:

together with the processing tool.

one of the pair of holding rollers (81) has a cylindrical shape that makes line contact with one of surfaces of the plate; and

the other holding roller (82) has a tapered shape that makes point contact with the other surface of the plate and decreases in diameter toward a direction away from the rotating shaft.

4. The spinning forming device according to any one of claims 1 to 3, wherein the heater is disposed on

5

15

25

35

40

45

50

55

an opposite side of the processing tool across the plate.

5. A spinning forming method comprising pressing a processing tool (7) against a transform target portion (92) of a plate (9) to be formed to transform the plate while locally heating the transform target portion by induction heating in a state where an outside portion of the plate is sandwiched between a pair of holding rollers (81, 82), the outside portion being located outside the transform target portion.

Patentansprüche

1. Spinnformvorrichtung (1), umfassend:

eine Aufnahmeeinrichtung (3), die einen zentralen Abschnitt (91) einer zu formenden Platte (9) stützt:

eine Drehwelle (2), an der die Aufnahmeeinrichtung befestigt ist;

ein Heizgerät (6), das konfiguriert ist, einen Transformationszielabschnitt (92) der Platte durch Induktionserwärmung lokal zu erwärmen; und

ein Verarbeitungswerkzeug (7), das konfiguriert ist, um den Transformationszielabschnitt zu pressen, um die Platte zu transformieren;

dadurch gekennzeichnet, dass die Spinnformvorrichtung weiterhin ein Paar Haltewalzen (81, 82) umfasst, die konfiguriert sind, einen Außenabschnitt der Platte sandwichartig anzuordnen, wobei sich der Außenabschnitt außerhalb des Transformationszielabschnitts befindet.

2. Spinnformvorrichtung nach Anspruch 1, wobei:

das Paar von Haltewalzen einen Umfangsabschnitt (93) der Platte sandwichartig anordnet; und

wenn das Verarbeitungswerkzeug den Transformationszielabschnitt presst, das Paar von Haltewalzen zusammen mit dem Verarbeitungswerkzeug in einer axialen Richtung der Drehwelle bewegt wird.

Spinnformvorrichtung nach Anspruch 1 oder 2, wobei:

eine des Paars von Haltewalzen (81) eine zylindrische Form aufweist, die einen Linienkontakt mit einer der Oberflächen der Platte herstellt; und

die andere Haltewalze (82) eine sich verjüngende Form aufweist, die einen Punktkontakt mit der anderen Oberfläche der Platte herstellt und deren Durchmesser in Richtung einer Richtung weg von der Drehwelle abnimmt.

- 4. Spinnformvorrichtung nach einem der Ansprüche 1 bis 3, wobei das Heizgerät auf einer gegenüberliegenden Seite des Verarbeitungswerkzeugs über der Platte angeordnet ist.
- 5. Spinnformverfahren, umfassend das Pressen eines Verarbeitungswerkzeugs (7) gegen einen Transformationszielabschnitt (92) einer zu formenden Platte (9), um die Platte zu transformieren, während der Transformationszielabschnitt durch Induktionserwärmung in einem Zustand lokal erwärmt wird, in dem ein Außenabschnitt der Platte sandwichartig zwischen einem Paar Haltewalzen (81, 82) angeordnet wird, wobei sich der Außenabschnitt außerhalb des Transformationszielabschnitts befindet.

20 Revendications

 Dispositif de repoussage et de formage (1) comprenant :

un gabarit de réception (3) supportant une partie centrale (91) d'une plaque (9) à former ;

un arbre rotatif (2) auquel le gabarit de réception est attaché ;

un dispositif de chauffage (6) configuré pour chauffer localement une partie cible de transformation (92) de la plaque par chauffage par induction ; et

un outil de traitement (7) configuré pour presser la partie cible de transformation pour transformer la plaque ;

caractérisé en ce que le dispositif de repoussage et de formage comprend en outre une paire de rouleaux de maintien (81, 82) configurés pour prendre en sandwich une partie extérieure de la plaque, la partie extérieure étant située à l'extérieur de la partie cible de transformation.

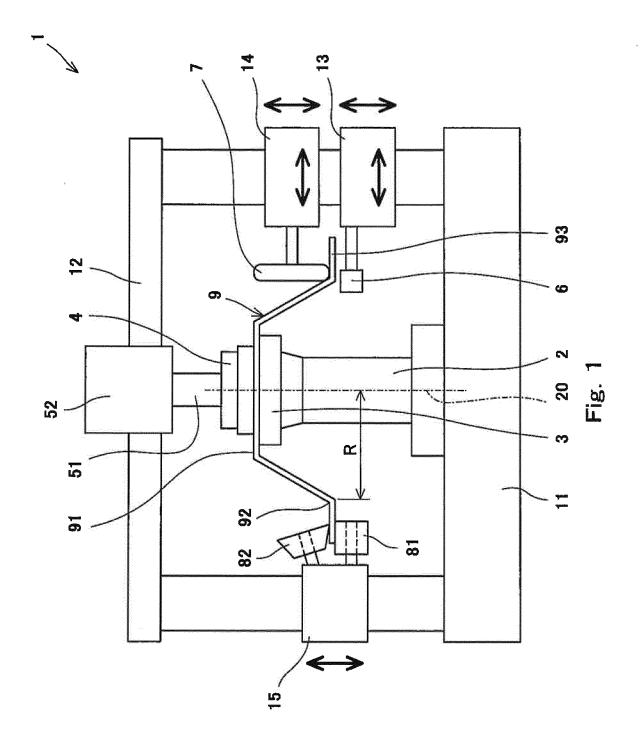
2. Dispositif de repoussage et de formage selon la revendication 1, dans lequel :

la paire de rouleaux de maintien prend en sandwich une partie périphérique (93) de la plaque ; et

lorsque l'outil de traitement presse la partie cible de transformation, la paire de rouleaux de maintien est déplacée dans une direction axiale de l'arbre rotatif avec l'outil de traitement.

3. Dispositif de repoussage et de formage selon la revendication 1 ou 2, dans lequel :

un de la paire de rouleaux de maintien (81) présente une forme cylindrique qui entre en contact


6

linéaire avec une des surfaces de la plaque ; et l'autre rouleau de maintien (82) présente une forme conique qui entre en contact ponctuel avec l'autre surface de la plaque et diminue en diamètre vers une direction s'éloignant de l'arbre rotatif.

dispositif de chauffage est disposé sur un côté opposé de l'outil de traitement à travers la plaque.

Dispositif de repoussage et de formage selon l'une quelconque des revendications 1 à 3, dans lequel le

5. Procédé de repoussage et de formage comprenant l'étape consistant à presser un outil de traitement (7) contre une partie cible de transformation (92) d'une plaque (9) à former pour transformer la plaque tout en chauffant localement la partie cible de transformation par chauffage par induction dans un état où une partie extérieure de la plaque est prise en sandwich entre une paire de rouleaux de maintien (81, 82), la partie extérieure étant située à l'extérieur de la partie cible de transformation.

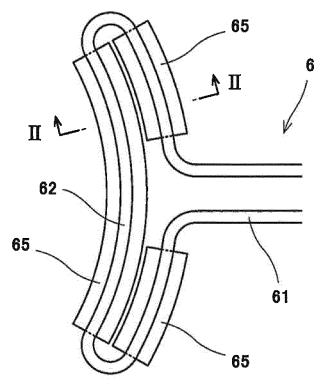
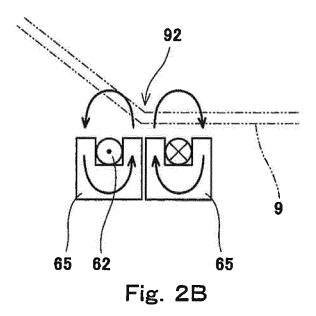
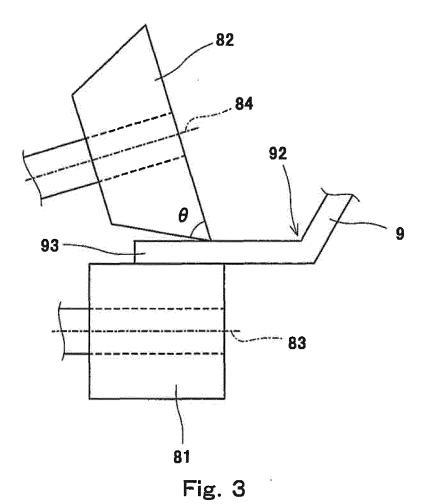




Fig. 2A

EP 3 075 463 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2011218427 A **[0006]**
- JP S4841965 A **[0006]**

- JP S4995859 A [0006]
- JP 2012178269 A [0007]