BACKGROUND
Field
[0001] Embodiments of the present invention relate to a laser welding head.
Related Art
[0002] When repair work is performed in a nuclear reactor, there is a place such as a narrow
place which is difficult to access in the nuclear reactor. In order to increase the
accessibility, a laser welding apparatus, which has small heat input and which can
be made small in size, has been developed. As for a laser welding head for laser welding
work to repair a nuclear reactor, various configurations have been proposed to reduce
damage of the laser welding head, the damage being caused by the reflected light from
a base material and the radiant heat from the molten pool.
[0003] As configurations adopted to reduce thermal damage of the laser welding head, there
are proposed an underwater welding apparatus, an overlay welding apparatus, an overlay
welding method for a reactor internal structure in a nuclear reactor, and the like.
The proposed underwater welding apparatus includes the laser welding head configured
by an aluminum alloy or a copper alloy having high thermal conductivity and therefore
improves mechanical and thermal durability.
[0004] Further, in the proposed overlay welding apparatus, when the flow rate of the shielding
gas is set to 6 to 14 m/ s at the outlet of the shield gas injection nozzle, the proposed
overlay welding apparatus recesses the surface of the molten pool and can thereby
irradiate at a position closer to the base material. As a result, since welding penetration
depth is increased, the proposed overlay welding apparatus can suppress occurrence
of a fusion defect and a weld crack without increasing the amount of heat input.
[0005] In the overlay welding method described above, if the distance between the outlet
of the shield gas injection nozzle and the molten pool is increased, the flow rate
of the shielding gas is reduced, and the effect of increasing the welding penetration
depth is therefore reduced. Accordingly, in the overlay welding method described above,
it is required that the laser welding work is performed in a state where the shield
gas injection nozzle is arranged close to the molten pool. In the state where the
shield gas injection nozzle is arranged close to the molten pool, it is necessarily
required that a welding wire supply nozzle which supplies a welding wire to the target
is arranged close to the molten pool.
[0006] The laser light which is irradiated from the shield gas injection nozzle onto a target
such as the base material is reflected by the target, and then returned to a portion
of the shield gas injection nozzle and/or the welding wire supply nozzle. If the shield
gas injection nozzle is arranged close to the molten pool, the influence of the reflected
light on the shield gas injection nozzle and welding wire supply nozzle become large.
Accordingly, there arises an event that the welding head (including the shield gas
injection nozzle and the welding wire supply nozzle) is damaged by melting, deformation,
deficiency or the like, and the damage should be therefore prevented.
[0007] The embodiments according to the present invention was made in consideration of the
circumstances mentioned above and an object thereof is an object to provide a laser
welding head capable of reducing the influence of the reflected light.
[0008] In consideration of the circumstances described above, a laser welding head in accordance
with the embodiments according to the present invention includes: a shield gas injection
nozzle that irradiates laser light onto a target and supplies a shielding gas to the
target; and a welding wire supply nozzle that supplies a welding wire to the target,
wherein the shield gas injection nozzle and the welding wire supply nozzle include
a main body section and a surface layer section that covers the main body section,
and at least part of the surface layer section is formed by at least one of ultra-hard
alloy, cermet, ceramics and MCrAlY alloy.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] In the accompanying drawings:
Fig. 1 is a sectional view illustrating configuration of first laser welding head;
Fig. 2 is a sectional view illustrating configuration of second laser welding head;
Fig 3 is a sectional view illustrating configuration of third laser welding head;
and
Fig 4 is a sectional view illustrating configuration of fourth laser welding head.
DETAILED DESCRIPTION
[0010] Hereunder, the present embodiment will be described with reference to the accompanying
drawings. The embodiment of the present invention provides a laser welding head capable
of reducing an influence of the reflected light. It is noted that terms "upper", "lower",
"right", "left" and the likes indicating direction illustrated in the accompanying
drawings or in a case of actual usage. Further, in each Fig. 1 to 4, common configuration
will be designated by the same reference numerals and their duplicated explanation
will be omitted.
[0011] Fig. 1 is a sectional view illustrating configuration of a laser welding head 10A
(which will be referred to as "first laser welding head") which is first example of
a laser welding head in accordance with the embodiment.
[0012] The first laser welding head 10A includes a shield gas injection nozzle 15 which
irradiates laser light 5 onto a working surface which is a target of the laser welding
1 and which irradiates shielding gas 3 supplied from a shielding gas supply portion
14 that is provided at a base unit 12 of the head to supply the shielding gas 3, and
a welding wire supply nozzle 16 which supplies a welding wire 7 to the working surface
1.
[0013] Here, the working surface 1 is also a surface to be welded before the laser welding,
and is also a welded surface after the laser welding. An upper end surface 12a is
a surface of the end portion of the base unit 12, which portion is away from the working
surface 1. An outer end surface 12b is a surface of the end portion of the base unit
12, which portion is away from the optical path side of the laser light 5.
[0014] Further, the first laser welding head 10A further includes a shielding gas cover
18 which forms an air space 8 by locally surrounding the working surface 1, thereby
preventing external materials (for instance, gas such as air, and liquid such as water)
from entering into the air space 8. The first laser welding head 10A provided with
the shielding gas cover 18 can form the air space 8 locally surrounding the working
surface 1, and hence can be applied not only to welding in air, but also to welding
in water.
[0015] In the first laser welding head 10A, each of the shield gas injection nozzle 15 and
the welding wire supply nozzle 16 is formed from material (which will be hereinafter
referred to as "heat and wear resistant material") having heat resistance and wear
resistance. Here, the heat and wear resistant material includes, for instance, at
least one of ultra-hard alloy, cermet, ceramics and MCrAlY (here, M means nickel (Ni),
cobalt (Co), iron (Fe) or alloy containing at least two of Ni, Co and Fe) alloy.
[0016] As for the heat and wear resistant material, ultra-hard alloy is composed of metal
carbide selected from transition metals of the IV, V, VI group of a periodic table,
such as titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb),
molybdenum (Mo), hafnium (Hf), tantalum (Ta) and tungsten (W), or composed of the
metal carbide such as tungsten carbide (WC) or tantalum carbide (TaC) and binder which
is powder of an iron group element. Incidentally, the iron group element includes
one or two kinds of iron (Fe), cobalt (Co) or nickel (Ni). Examples of ultra-hard
alloy include tungsten carbide or tungsten carbide-cobalt-based alloy (WC-Co).
[0017] Further, cermet is a composite material composed of metallic material such as the
iron group element or MCrAlY alloy and ceramics such as metal nitride, metal oxide
or metal boride. Examples of cermet include MCrAlY cermet, titanium nitride (TiN),
vanadium nitride (VN), zirconium nitride (ZrN), which contain the iron group element
as binder.
[0018] MCrAlY cermet is, for instance, composed of a top layer composed of ceramics such
as yttria-partially stabilized zirconia, and a bond layer composed of metallic material
such as MCrAlY alloy. Here, the top layer is the most surface side layer formed in
the shield gas injection nozzle 15 and the welding wire supply nozzle 16, and the
bond layer is formed between the top layer and base material constituting main body
section of the shield gas injection nozzle 15 and the welding wire supply nozzle 16.
Further, each layer of MCrAlY cermet can be formed by using forming method such as
sintering method, thermal spraying and so on.
[0019] Furthermore, ceramics is an inorganic, nonmetallic solid material containing metal,
nonmetal or metalloid atoms primarily held in ionic and covalent bonds. Examples of
ceramics include metal oxide such as aluminum oxide (alumina: Al
2O
3), metal nitride such as aluminum nitride (AlN), sialon (SiAlON), silicon carbide
(SiC), rare earth partially-stabilized zirconia such as yttria-partially stabilized
zirconia, rare earth stabilized zirconia such as yttria-stabilized zirconia (YSZ).
[0020] In the first laser welding head 10A, the shield gas injection nozzle 15 and the welding
wire supply nozzle 16 are configured by using at least one heat and wear resistant
material such as ultra-hard alloy or ceramics. The first laser welding head 10A enables
the shield gas injection nozzle 15 and the welding wire supply nozzle 16 to improve
mechanical and thermal durability, and therefore prevents the shield gas injection
nozzle 15 and the welding wire supply nozzle 16 from being damaged by melting, deformation
or deficiency, even if the laser light irradiated onto the working surface 1 is reflected
by the working surface 1.
[0021] As a result of preventing the shield gas injection nozzle 15 and the welding wire
supply nozzle 16 from being damaged during the welding work, the first laser welding
head 10A can suppress to deteriorate welding quality due to such influence that the
shield gas injection nozzle 15 and the welding wire supply nozzle 16 are damaged by
melting, deformation or deficiency, and can therefore maintain high welding quality.
Further, since the shield gas injection nozzle 15 and the welding wire supply nozzle
16 has high mechanical and thermal durability, the first laser welding head 10A can
reduce work time required for replacement and set-up change, as to the shield gas
injection nozzle 15 and the welding wire supply nozzle 16.
[0022] Since the heat and wear resistant material is used not only in the shield gas injection
nozzle 15 but also in the welding wire supply nozzle 16, the first laser welding head
10A can stably supply with the welding wire and can thereby prevent from deteriorating
welding quality due to damage of the welding wire supply nozzle 16.
[0023] In the first laser welding head 10A described above, even though the shield gas injection
nozzle 15 and the welding wire supply nozzle 16 are entirely formed of the heat and
wear resistant material, the shield gas injection nozzle 15 and the welding wire supply
nozzle 16 need not be necessarily entirely formed of the heat and wear resistant material.
It is only necessary that at least the side (the side of the air space 8) of the surface
irradiated with the reflected light of the laser light 5 (which will be hereinafter
referred to as "surface layer section") is formed of the heat and wear resistant material.
[0024] Fig. 2 is a sectional view illustrating configuration of a laser welding head 10B
(which will be referred to as "second laser welding head") which is second example
of a laser welding head in accordance with the embodiment. In description of the second
laser welding head 10B, the same reference numerals or characters in the second laser
welding head 10B are assigned to the same or similar components and parts as those
in the first laser welding head 10A, and the duplicated description thereof is omitted.
[0025] The second laser welding head 10B is different from the first laser welding head
10A in that the shield gas injection nozzle 15 and the welding wire supply nozzle
16 are respectively configured by surface layer sections 151 and 161 formed of the
heat and wear resistant material and by main body sections 152 and 162 that are portions
other than the surface layer sections 151 and 161. The surface layer section 151 is
formed to cover an outer peripheral surface (outer periphery) of the main body section
152, and the surface layer section 161 is formed to cover an outer peripheral surface
(outer periphery) the main body section 162.
[0026] In other words, if the main body sections 152 and 162 are formed of the same material
(ultra-hard alloy, cermet, ceramics or MCrALY alloy) of that of the surface layer
sections 151 and 161, the second laser welding head 10B has the same component as
that of the first laser welding head 10A.
[0027] It is noted that the surface layer sections 151 and 161 may be, for instance, a film
as a coating section, made of a single-layer or multi-layers formed using thermal
spraying, or the like. When the surface layer sections 151 and 161 are made of multi-layers,
the most surface side layer (top layer) is a layer formed of the heat and wear resistant
material.
[0028] In the second laser welding head 10B, while any material, which is widely selected
from commonly used materials, can be adopted for use in the main body sections 152
and 162, the main body section 152 is preferably formed of a material having higher
thermal conductivity than that of the material of the surface layer section 151, and
the main body section 162 is preferably formed of a material having higher thermal
conductivity than that of the material of the surface layer section 161. For instance,
if the main body section 152 is formed of the higher thermal conductivity material
than that of the surface layer section 151, the main body section 152 performs as
a heat dissipation section which dissipates heat received (absorbed) by the surface
layer section.
[0029] In the second laser welding head 10B illustrated in Fig. 2, although both the shield
gas injection nozzle 15 and the welding wire supply nozzle 16 respectively include
the surface layer sections 151 and 161 formed of the heat and wear resistant material
and the main body sections 152 and 162, either the shield gas injection nozzle 15
or the welding wire supply nozzle 16 may include the surface layer section 151 or
161 formed of the heat and wear resistant material and the main body section 152 or
162. For details, the main body section 152 may be integrally formed with the surface
layer sections 151, or the main body section 162 may be integrally formed with the
surface layer sections 161.
[0030] Fig. 3 is a sectional view illustrating configuration of a laser welding head 10C
(which will be referred to as "third laser welding head") which is third example of
a laser welding head in accordance with the embodiment. In description of the second
laser welding head 10C, the same reference numerals or characters in the first and
second laser welding heads 10A and 10B are assigned to the same or similar components
and parts as those in the first and second laser welding heads 10A and 10B, and the
duplicated description thereof is omitted.
[0031] The third laser welding head 10C is different from the first laser welding head 10A
in that a heat dissipation section 21 further provided to the shield gas injection
nozzle 15 and the welding wire supply nozzle 16, the heat dissipation section 21 (which
corresponds to first metal member 21a, second metal member 21b and third metal member
21c) dissipating heat absorbed by the shield gas injection nozzle 15 and the welding
wire supply nozzle 16 from the shield gas injection nozzle 15 and the welding wire
supply nozzle 16.
[0032] In the third laser welding head 10C, for instance, each of the first and second metal
members 21a and 21 b has a cylindrical shape being similar shape as a shape of the
shield gas injection nozzle 15 and the welding wire supply nozzle 16. The first and
second metal members 21a is attached on the inner peripheral surface (inner periphery)
of the shield gas injection nozzle 15, and the second metal member 21b is attached
on the inner peripheral surface of the welding wire supply nozzle 16.
[0033] For the purpose of increasing heat dissipation, it is preferred that the heat dissipation
section 21 have higher thermal conductivity than that of component contacting with
the heat dissipation section 21. That is, the first metal member 21 a has higher thermal
conductivity than a thermal conductivity of the shield gas injection nozzle 15, and
the second metal member 21 b has higher thermal conductivity than a thermal conductivity
of the welding wire supply nozzle 16.
[0034] Furthermore, the third metal member 21c connected to the end portion sides of the
first and second metal members 21a and 21b is attached on the upper end surface 12a
of the base unit 12. In the third laser welding head 10C illustrated in Fig. 3, the
first, second and third metal members 21a, 21b and 21c forms the dissipation section
21 and have a desired thickness to improve the thermal conductivity of the shield
gas injection nozzle 15 and the welding wire supply nozzle 16.
[0035] Incidentally, although the third metal member 21 c is not required to have a width
(the length in the left-right direction in Fig. 3) enough to reach the outer end portion
of the base unit 12, the third metal member 21c preferably has a width enough to reach
the outer end portion of the base unit 12. If the third metal member 21c has a width
enough to reach the outer end portion of the base unit 12, the third laser welding
head 10C can use the outer end portion 12b as well as the upper end surface 12a as
heat dissipation surfaces, and can therefore enhance heat dissipation effect.
[0036] Further, it is preferred that each of the both width-direction end portions of the
third metal member 21c reach the outer end portion, and further the thickness of the
outer end portion of the third metal member 21c (the vertical length at each of the
both left-right-direction end portions of the base unit 12 in Fig. 3) is larger than
the thickness at the center portion of the third metal member 21c. If the thickness
of the outer end portion of the third metal member 21 c is larger than the thickness
at the center portion of the third metal member 21c, the third laser welding head
10C can further enlarge the heat dissipation surface, and can thereby enhance heat
dissipation effect.
[0037] Incidentally, although the third laser welding head 10C illustrated in Fig. 3 is
an example of the third laser welding head 10C configured by further providing the
heat dissipation section 21 to the nozzles 15 and 16 in the first laser welding head
10A, the heat dissipation section 21 may be provided to the nozzles 15 and 16 in the
first laser welding head 10B instead of the first laser welding head 10A.
[0038] Fig. 4 is a sectional view illustrating configuration of a laser welding head 10D
(which will be referred to as "fourth laser welding head") which is fourth example
of a laser welding head in accordance with the embodiment.
[0039] As illustrated in Fig. 4, heat dissipation fins 23 can be attached on the surface
of the third metal member 21 c.
[0040] The first, second and third metal members 21a, 21b and 21c may also be formed of
heatsink material such as a copper alloy, an aluminum alloy, a base metal or alloy
of gold or silver. The heatsink material can be selected in consideration of the thermal
conductivity of the shield gas injection nozzle 15 and the welding wire supply nozzle
16, required dissipation efficiency of the shield gas injection nozzle 15 and the
welding wire supply nozzle 16 or the like.
[0041] The first and second metal members 21a and 21 b may be configured to be mechanically
coupled with the heat and wear resistant material such as ultra-hard alloy, constituting
(forming) the shield gas injection nozzle 15 and the welding wire supply nozzle 16,
or may be configured to adhere to the shield gas injection nozzle 15 and the welding
wire supply nozzle 16 by vapor deposition or thermal spraying so as to have a desired
thickness. On the contrary, the heat and wear resistant material forming the shield
gas injection nozzle 15 and the welding wire supply nozzle 16 may also be made to
adhere to the first, second and third metal members 21a, 21b and 21 c by thermal spraying.
[0042] In the case where the first and second metal members 21a and 21 b are attached on
the inner peripheral surface of the material forming the shield gas injection nozzle
15 and the welding wire supply nozzle 16, even if the shield gas injection nozzle
15 and the welding wire supply nozzle 16 are affected by the heat of the laser reflected
light, the third laser welding head 10C can dissipate to outside via the first and
second metal members 21a and 21b. Since the end portions of the first metal members
21a and 21b are further connected to the third metal member 21c contact with outside,
the third laser welding head 10C can enhance heat dissipation effect.
[0043] Further, since each of the first, second and third metal members 21a, 21b and 21c
is formed of a metal plate and thereby has adequate thickness, the heat conduction
can be significantly improved as compared with the case where each of the first, second
and third metal members 21a, 21b and 21c is formed of a thin metal material such as
metal sheet. Here, said adequate thickness is a thickness which can be considered
as "plate", the thickness being thicker than approximately 6 mm.
[0044] There is first case where the width of the third metal member 21c is set so that
the third metal member 21c can reach the outer end portion of the base unit 12. In
the first case, since the surface in contact with the outside, i.e., the heat dissipation
surface can be increased, the heat dissipation effect can be enhanced. There is second
case where the width of the third metal member 21c is set to set so that the third
metal member 21c can reach the outer end portion of the base unit 12, and the thickness
of each of the outer end portions of the third metal member 21 c is made larger than
the thickness of the center portion of the third metal member 21c. In the second case,
since the heat dissipation surface can be further increased, the heat dissipation
effect can be further enhanced.
[0045] If the heat dissipation fins 23 are provided on the third metal member 21c, the heat
dissipation effect can be still further enhanced.
[0046] As described above, the influence of heat generated in the shield gas injection nozzle
15 and the welding wire supply nozzle 16 can be dissipated to the outside of the shield
gas injection nozzle 15 and the welding wire supply nozzle 16 via the first and second
metal members 21a and 21b, and also can be dissipated to the outside of the third
laser welding head 10C or the fourth laser welding head 10D via the third metal member
21c. Accordingly, the third laser welding head 10C and the fourth laser welding head
10D can prevent that the temperature of the shield gas injection nozzle 15 and the
welding wire supply nozzle 16 is increased, and can thereby protect the shield gas
injection nozzle 15 and the welding wire supply nozzle 16 from any damages such as
melting, deformation or deficiency.
[0047] Since the embodiments described above are presented as examples, there is no intention
to limit the scope of the invention. These novel embodiments can be practiced in other
various aspects, and thus various omissions, replacements, modifications, and combinations
may be made within a range without departing from the essence of the invention in
consideration of common general technical knowledge of a person skilled in the art.
These embodiments and their variations are included in the scope and essence of the
invention as well as in a range equal to that of the invention described in Claims.
1. A laser welding head including a base unit thereof comprising:
a shield gas injection nozzle that is provided to the base unit, irradiates laser
light onto a target, and supplies a shielding gas to the target; and
a welding wire supply nozzle that is provided to the base unit and supplies a welding
wire to the target,
wherein each of the shield gas injection nozzle and the welding wire supply nozzle
includes a main body section and a surface layer section that covers the main body
section, and the surface layer section is formed by at least one material selected
from ultra-hard alloy, cermet, ceramics and MCrAlY alloy.
2. The laser welding head comprising according to claim 1, wherein the surface layer
section has a coating section composed of a first layer that is formed by the at least
one material.
3. The laser welding head comprising according to claim 1, wherein the surface layer
section has a coating section composed of multiple layers including a top layer located
in a direction away from the main body section, the top layer being formed by the
at least one material.
4. The laser welding head comprising according to any one of claims 1 to 3, wherein the
main body section is integrally formed with the surface layer section, and
wherein each of the shield gas injection nozzle and the welding wire supply nozzle,
of which the main body section is integrally formed with the surface layer section,
is formed by the same material as that of the surface layer section.
5. The laser welding head comprising according to any one of claims 1 to 4, further comprising
a heat dissipation section including a first metal member attached on an inner peripheral
surface of the shield gas injection nozzle, a second metal member attached on an inner
peripheral surface of the welding wire supply nozzle, and a third metal member arranged
on a side away from the shield gas injection nozzle, the third metal member being
connected with the first and second metal members.
6. The laser welding head comprising according to claim 5, wherein the third metal member
has a width which reaches to a side end of the base unit.
7. The laser welding head comprising according to claim 5 or 6, wherein the first metal
member attached on the inner peripheral surface of the shield gas injection nozzle
has a thermal conductivity being higher than a thermal conductivity of the shield
gas injection nozzle, and wherein the second metal member attached on an inner peripheral
surface of the welding wire supply nozzle has a thermal conductivity being higher
than a thermal conductivity of the welding wire supply nozzle.
8. The laser welding head comprising according to any one of claims 5 to 7, further comprising
fins attached on the third metal member.
9. The laser welding head comprising according to any one of claims 1 to 8, wherein the
ultra-hard alloy is composed of at least one metal carbide selected from transition
metals of the IV, V, VI group of a periodic table.
10. The laser welding head comprising according to any one of claims 1 to 8, wherein the
ultra-hard alloy is composed of at least one metal carbide selected from transition
metals of the IV, V, VI group of a periodic table, and any one or two of iron, cobalt
and nickel.
11. The laser welding head comprising according to any one of claims 1 to 9, wherein the
cermet is a composite material composed of metallic material containing any one or
two of iron, cobalt and nickel, and ceramics.
12. The laser welding head comprising according to any one of claims 1 to 11, wherein
the cermet is composed of:
a top layer that is located in a direction away from the main body section and is
formed by ceramics; and
a bond layer that is formed between the top layer and the main body section and is
formed by metallic material.
13. The laser welding head comprising according to any one of claims 1 to 12, wherein
the ceramics includes any one of aluminum oxide, aluminum nitride, sialon, silicon
carbide, rare earth partially-stabilized zirconia and rare earth stabilized zirconia.
14. The laser welding head comprising according to any one of claims 1 to 13, further
comprising a shielding gas cover which forms an air space by locally surrounding the
target.