

(11) **EP 3 075 847 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: **05.10.2016 Bulletin 2016/40**

(21) Application number: 14865656.4

(22) Date of filing: 31.10.2014

(51) Int Cl.:

C12N 9/10 (2006.01) C12P 17/12 (2006.01) C12R 1/66 (2006.01) C12N 15/54 (2006.01) C12P 13/00 (2006.01) C12R 1/01 (2006.01)

(86) International application number:

PCT/CN2014/090080

(87) International publication number: WO 2015/078267 (04.06.2015 Gazette 2015/22)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States: **BA ME**

(30) Priority: 26.11.2013 CN 201310611503

(71) Applicants:

- Asymchem Laboratories (Tianjin) Co., Ltd Tianjin 300457 (CN)
- Asymchem Life Science (Tianjin) Co., Ltd Tianjin 300457 (CN)
- Tianjin Asymchem Pharmaceutical Co., Ltd Tianjin 300000 (CN)
- Asymchem Laboratories (Fuxin) Co., Ltd Fuxin, Liaoning 123000 (CN)

 Jilin Asymchem Laboratories Co., Ltd Dunhua, Jilin 133700 (CN)

(72) Inventors:

- HONG, Hao Tianjin 300457 (CN)
- GAO, Feng Tianjin 300457 (CN)
- LI, Yanjun Tianjin 300457 (CN)
- ZHANG, Yan Tianjin 300457 (CN)
- LI, Shaohe Tianjin 300457 (CN)
- (74) Representative: Agasse, Stéphane et al Cabinet GERMAIN & MAUREAU B.P. 6153 69466 Lyon Cedex 06 (FR)

(54) TRANSAMINASE AND USE THEREOF

(57) Atransaminase and a use thereof are provided. The transaminase has the amino acid sequences as shown in SEQ ID NO: 2 or 4, or has at least 80% identity to the amino acid sequences as shown in SEQ ID NO: 2 or 4, or has amino acid sequences which are obtained by the substitution, deletion or addition of one or more amino acids and have an the activity of an ome-

ga-transaminase with high stereoselective R-configuration catalytic activity, wherein the high stereoselective refers to the content of one of the stereoisomers being at least about 1.1 times that of the other. The transaminase can synthesize a chiral amine of R-configuration with a relatively high chiral purity, and is therefore suitable for the industrial use of the synthesis of chiral amines.

Description

20

30

40

45

50

55

Technical field of the invention

[0001] The present invention relates to the field of synthesis of chiral compounds, and particularly to a transaminase and uses thereof.

Background of the invention

[0002] Chiral amines are ubiquitous in nature. They are common structural units in many important bioactive molecules, both synthetic and natural in origin. Chiral amines are a common structural motif in many drugs. Many chiral amines are also important chiral auxiliaries and chiral selectors. Therefore, the preparation of chiral amines is of significant economic importance.

[0003] At present, chiral amines are mainly prepared by means of chemical reduction, and amines with optical activity are prepared by using prochiral ketones. Catalyzed by Pd/C and quinine, a prochiral ketone reacts with formic acid and an ammonia or an organic primary amine to generate a chiral amine. Other researchers obtained a chiral amine through asymmetric amination and reduction of a prochiral ketone using a ruthenium complex as a catalyst (Renat Kadyrov et al. Highly Enantioselective Hydrogen-Transfer Reductive Amination: Catalytic Asymmetric Synthesis of Primary Amines. Angewandte Chemie International Edition. 2003, 42 (44), Page 5472 to Page 5474). The metal catalyst in such a reaction is a very critical factor and demands strict requirements on the metal catalyst. Also, it is necessary to carry out the reaction at high temperature and there are high requirements on operation devices. Additionally, the metal catalyst is expensive and an environmental pollutant (Ohkuma T et al. Trans-RuH (eta1-BH4) (binap) (1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions. Journal of the American Chemical Society.2002, 124(23), Page 6508 to Page 6509).

[0004] An aminotransferase, also known as a transaminase, may catalyze an exchange process between amino and carbonyl groups of alpha-amino acids. An omega-transaminase is a transaminase capable of catalysing a transamination reaction using substrates other than alpha-amino acid. Omega-transaminase may effectively produce a chiral amine through stereoselective transamination using a variety of ketones as raw materials. The omega-transaminase has attracted more and more attention by researchers because of its use of relatively cheap substrates and its ability to produce highly pure products. It is expected that the potential of omega-transaminase can be fully applied toward the industrial production of chiral amines. However, there is still a need for further research and invention of this class of enzyme.

[0005] There is a demand for an omega-transaminase with high catalytic activity and stereoselectivity toward the R-

I here is a demand for an omega-transaminase with high catalytic activity and stereoselectivity toward the Roonfiguration so that demand for chiral amine can be satisfied.

35 Summary of the invention

[0006] The present invention aims to provide a new transaminase and the uses thereof to satisfy demands of industrial production of chiral amines.

[0007] A transaminase or a modified compound, functional equivalent, functional fragment or variant thereof is provided according to an aspect of the present invention so as to achieve the purpose above. The amino sequence of the transaminase comprises a sequence selected from one of the following sequences: a) an amino acid sequence as shown in SEQ ID NO: 2 or 4; b) an amino acid sequence with at least 80% identity to the amino acid sequence as shown in SEQ ID NO: 2 or 4 and having the activity of an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the amino acid sequence is not the amino acid sequence encoded by a nucleotide sequence as shown in SEQ ID NO: 5 or 6; c) a protein which is derived from SEQ ID NO: 2 or 4 by subjecting the amino acid sequence as shown in SEQ ID NO: 2 or 4 to substitution, deletion or addition one or more amino acids, and having the activity of an omega-transaminase with high stereoselectiveR-configuration catalytic activity, wherein the amino acid sequence is not the amino acid sequence encoded by the nucleotide sequence as shown in SEQ ID NO: 5 or 6, wherein the high stereoselectivity refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.

[0008] Further, the amino acid sequence of the transaminase is an amino acid sequence acquired by substituting leucine at the 38th site of the amino acid sequence as shown in SEQ ID NO: 2 by isoleucine.

[0009] A nucleotide is provided according to another aspect of the present invention. The nucleotide encodes the transaminase or the modified compound, functional equivalent, functional fragment or variant thereof.

[0010] Further, the sequence of the nucleotide comprises a sequence selected from one of the following sequences:
a) a nucleotide sequence as shown in SEQ ID NO: 1 or 3; b) a nucleotide sequence with at least 80% identity to the nucleotide sequence as shown in SEQ ID NO: 1 or 3 and encoding an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6; c) a nucleotide sequence capable of hybridizing with the nucleotide sequence as shown in SEQ ID NO: 1

or 3 under highly stringent conditions and encoding an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6, wherein the high stereoselective refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.

[0011] A recombinant vector is provided according to another aspect of the present invention. The nucleotide is effectively connected in the recombinant vector.

[0012] Further, the recombinant vector is pET22b-CM32 or pET22b-CM33.

[0013] A host cell is provided according to another aspect of the present invention. The foregoing recombinant vector is transformed or transfected into the host cell.

[0014] A method for synthesizing a chiral amine is provided according to another aspect of the present invention. The method includes the following steps: making a ketone compound, the transaminase or the modified compound, functional equivalent, functional fragment or variant thereof, pyridoxal phosphate, and an amino donor to react in a reaction system so as to obtain the chiral amine of R configuration.

[0015] Further, the ketone compound is

wherein R_1 and R_2 are independently C_1 to C_8 alkyl, C_5 to C_{10} cycloalkyl, C_5 to C_{10} aryl or C_5 to C_{10} heteroaryl; or R_1 and R_2 form a C_5 to C_{10} heterocyclic radical, a C_5 to C_{10} carbocyclic radical or C_5 to C_{10} heteroaryl with a carbon on a carbonyl group; heteroatoms in the C_5 to C_{10} heterocyclic radical and C_5 to C_{10} heteroaryl are independently selected from at least one of nitrogen, oxygen and sulfur; the aryl in the C_5 to C_{10} aryl, the heteroaryl in the C_5 to C_{10} heteroaryl, the carbocyclic radical in the C_5 to C_{10} carbocyclic radical or the heterocyclic radical in the C_5 to C_{10} heterocyclic radical is independently unsubstituted or is substituted by at least one radical of halogen, alkoxy or alkyl; preferably, the ketone compound

is selected from

or

10

15

20

30

35

40

45

50

[0016] Further, the reaction system further includes a dissolution promoter, and the dissolution promoter is dimethyl sulfoxide or polyethylene glycol, and the polyethylene glycol is preferably PEG-400.

[0017] Further, the C1 to C8 alkyl is C1 to C8 linear alkyl, the C5 to C10 heteroaryl is a pyridine group, the alkoxy is C1 to C6 alkoxy, the heterocyclic radical in the C5 to C10 heterocyclic radical is piperidine, a substituent on the aryl in

the C5 to C10 aryl, the heteroaryl in the C5 to C10 heteroaryl, the carbocyclic radical in the C5 to C10 carbocyclic radical or the heterocyclic radical in the C5 to C10 heterocyclic radical is independently C1 to C6 linear alkyl or C1 to C6 alkoxy, and the amino donor is isopropylamine or D-alanine.

[0018] By means of the technical solutions of the present invention, an omega-transaminase of R-configuration having a high stereoselectivity, or a modified compound, functional equivalent, functional fragment or variant thereof may be used for highly efficient synthesis of a chiral amine of R-configuration with a relatively high chiral purity, and is therefore suitable for industrial production of chiral amines.

Brief description of the drawings

10

15

20

25

30

40

45

50

55

[0019] The accompanying drawings of the specification, which constitute a part of the application, are used for providing further understanding to the present invention. The exemplary embodiments of the present invention and illustration thereof are used for explaining the present invention, instead of constituting improper limitation to the present invention. In the accompanying drawings:

Fig. 1 shows a flowchart of a chemical reaction of a use of a transaminase derived from *Aspergillus terreus* and *Hyphomonas neptunium* in synthesis of a chiral amine according to an embodiment of the present invention;

Fig. 2 is an equation of a chemical reaction of a use of a transaminase derived from *Aspergillus terreus* and *Hyphomonas neptunium* in synthesis of a chiral amine according to an embodiment of the present invention;

Fig. 3 shows an identification result of enzyme digestion in the first embodiment of the present invention;

Fig. 4 shows a sequencing result of a mutant gene having been subjected to a Polymerase Chain Reaction (PCR) in the first embodiment of the present invention;

Fig. 5 shows an identification result of enzyme digestion in the fourth embodiment of the present invention; and

Fig. 6 shows a sequencing result of a mutant gene having been subjected to a PCR in the fourth embodiment of the present invention.

Detailed description of the embodiments

[0020] It needs to be noted that the embodiments in the application and the characteristics in the embodiments may be combined with each other if there is no conflict. The present invention will be expounded hereinafter with reference to the accompanying drawings and in conjunction with the embodiments.

Definition

[0021] The term "optional/random" or "optionally/randomly" means that an event or a situation in description thereinafter may happen or may not happen. The description includes that the event or the situation happens or does not happen. For example, "optionally substituted alkyl" refers to "unsubstituted alkyl" (alkyl that has not been substituted by a substituted) or "substituted alkyl" (alkyl that has been substituted by a substitutent), as defined hereinafter.

[0022] The C1 to Cn used herein includes C1 to C2, C1 to C3,C1 to Cn. For example, the "C1 to C4" radical means that the part has 1 to 4 carbon atoms, that is, the radical includes 1 carbon atom, 2 carbon atoms, 3 carbon atoms or 4 carbon atoms.

[0023] The term "alkyl" used separately or in combination herein refers to optionally substituted linear chain or optionally substituted branched chain aliphatic hydrocarbons. The "alkyl" herein may preferably have 1 to about 20 carbon atoms, e.g. 1 to about 10 carbon atoms, 1 to about 8 carbon atoms, 1 to about 6 carbon atoms, 1 to about 4 carbon atoms or 1 to about 3 carbon atoms. The term "alkoxy" used separately or in combination herein refers to an alkyl ether group (O-alkyl). Nonrestrictive embodiments of alkoxy include: methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and so on.

[0024] The term "halogenated" or "halogen substituted" used separately or in combination herein means that one or more hydrogen atoms in an optionally substituted radical (such as alkyl, alkenyl and alkynyl) are replaced by atoms of fluorine, chlorine, bromine, iodine, or a combination thereof.

[0025] The term "aromatic base/aryl" used separately or in combination herein refers to optionally substituted aromatic hydrocarbyl having 6 to about 20 cyclization carbon atoms, e.g. 6 to about 12 or 6 to about 10 cyclization carbon atoms, and may be a condensed aromatic ring or a non-condensed aromatic ring.

[0026] The term "heteroaryl" used separately or in combination herein refers to optionally substituted univalent heteroaryl including 5 to about 20, e.g. 5 to about 12, or 5 to about 10 framework cyclization atoms, wherein one or more (e.g. 1 to 4, 1 to 3, or 1 to 2) cyclization atoms are heteroatoms, and the heteroatoms are independently selected from heteroatoms in oxygen, nitrogen, sulfur, phosphorus, silicon, selenium and tin, but are not limited thereby. A ring of the radical does not include two adjacent O or S atoms. Heteroaryl includes monocyclic heteroaryl or polycyclic heteroaryl

(such as dicyclic heteroaryl, tricyclic heteroaryl and so on).

30

35

40

45

50

[0027] The term "heterocycle" or "heterocyclic radical" used separately or in combination herein refers to a non-aromatic heterocycle, including heterocycloalkyl, and heterocycloalkenyl, wherein one or more (1 to 4, 1 to 3 or 1 to 2) cyclization atoms are heteroatoms, such as oxygen atoms, nitrogen atoms, or sulfur atoms. A heterocyclic radical may include a monoheterocyclic radical (a heterocyclic radical having one ring), or a polyheterocyclic radical (e.g. a diheterocyclic radical having two rings), a triheterocyclic radical and so on).

[0028] The term "carbocyclic radical" used separately or in combination herein refers to a non-aromatic carbon ring, including cycloalkyl and cycloalkenyl. The cycloalkyl may be monocyclic cycloalkyl or polycyclic cycloalkyl (e.g. having 2, 3, or 4 rings, such as dicyclic cycloalkyl), and may be a spiral ring or a bridge ring. A carbocyclic radical may have 3 to 20 carbon atoms, such as 3 to about 15 cyclization carbon atoms, 3 to about 10 cyclization carbon atoms or 3 to 6 cyclization carbon atoms, and may have 0, 1, 2 or 3 double bonds and/or 0, 1 or 2 triple bonds, e.g. cycloalkyl having 3 to 8 or 3 to 6 cyclization carbon atoms.

[0029] "Halogen" refers to fluorine, chlorine, bromine, and iodine, preferably fluorine, chlorine and bromine. Cyano refers to "-CN", hydroxyl refers to "-OH", mercapto refers to "-SH" and amino refers to "-NH₂".

[0030] The term "substituted" means that one or more hydrogen groups on a specific atom are substituted by a designated radical. If the normal valence of the designated atom is in, but is not beyond an existing condition, the substitution results in a stable compound.

[0031] As mentioned in the background, an omega-transaminase in the prior art still fails to satisfy demands for preparation of a compound of a chiral amine, and the present invention provides an omega-transaminase of R-configuration or a modified compound, functional equivalent, functional fragment or variant thereof in order to improve the situation above. The amino sequence of the omega-transaminase of R-configuration include a sequence selected from the following sequences: a) an amino acid sequence as shown in SEQ ID NO: 2 or 4; b) an amino acid sequence with at least 80% identity to the amino acid sequences as shown in SEQ ID NO: 2 or 4 and having the activity of an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the amino acid sequence is not the amino acid sequences encoded by a nucleotide sequence as shown in SEQ ID NO: 2 or 4 to substitution, deletion or addition one or more amino acids, and having the activity of an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the amino acid sequence is not the amino acid sequence encoded by the nucleotide sequence as shown in SEQ ID NO: 2 or 4, wherein the high stereoselectivity refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.

[0032] The omega-transaminase of R-configuration of the present invention refers to an omega-transaminase having a high R-configuration stereoselectivity. In an embodiment, the transaminase of the present invention refers to the transaminase as shown in SEQ ID NO: 2 or 4. The transaminase is a new transaminase obtained by subjecting transaminase genes taAT and taHN derived from *Aspergillus terreus* and *Hyphomonas neptunium* to mutation and modification by means of a molecular biological technique.

[0033] The amino acid sequence with at least 80% identity to the amino acid sequence as shown in SEQ ID NO: 2 or 4 and having the activity of an omega-transaminase with high stereoselective R-configuration catalytic activity refers to a sequence, which has at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or 99.7% identity, for example, to the amino acid sequence as shown in SEQ ID NO: 2, but is not the amino acid sequence as shown in SEQ ID NO: 5. While keeping amino acids playing keyroles in the catalytic activity of the transaminase among the amino acid sequence as shown in SEQ ID NO: 2 or 4 unchanged, those skilled in the art may change remaining amino acid sequences of inactive sites, so that the amino acid sequence of an obtained transaminase has at least more than 80% identity to the amino acid sequence as shown in SEQ ID NO: 2, and the transaminase obtained in this way has the same transaminase activity as that of a transaminase having amino acid sequence as shown in SEQ ID NO: 2 or 4.

[0034] Similarly, one or more amino acids may be substituted, deleted or added to the amino acids in the amino acid sequence as shown in SEQ ID NO: 2 or 4 while keeping the amino acids playing key roles in the catalytic activity of the transaminase among the amino acid sequenceas shown in SEQ ID NO: 2 or 4 unchanged, thus a protein derived from SEQ ID NO: 2 or 4 can keep the high stereoselectivity of the transaminase as shown in SEQ ID NO: 2 or 4, wherein there may be one or more substituted, deleted or added bases, e.g. 1, 2, 3, 4, 5, 10, 20, 30 or 50 amino acids, e.g. substitution of conserved amino acids, wherein the amino acid sequence is not the amino acid sequence as shown in SEQ ID NO: 5. "Replacement of conserved amino acids" refers to combinations such as Gly, Ala; Val, lie, Leu; Asp, Glu; Asn, Gin; Ser, Thr; Lys, Arg; and Phe and Tyr.

[0035] The stereoselectivity means that when two stereisomers A and B are generated in a reaction, the yield of A is more than that of B, and the high stereoselectivity refers to the content of one of the stereoisomers being at least about 1.1 times that of the other, e.g. at least about 1.2 times, at least about 1.3 time, at least about 1.4 times, at least about 1.5 times, at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 10 times, at least about 70 times, at least about 70 times, at least about 90 times, at least about 100 times or higher.

[0036] In the present invention, the modified compound of the omega-transaminase of R-configuration may be a chemical modified compound, such as a product of acylation, alkylation, or Polyethylene Glycolation (PEGylation), as long as these modified compounds maintain the activity of the omega-transaminase with the high stereoselective R-configuration catalytic activity. The functional equivalent refers to other peptide fragments that can realize the activity of the omega-transaminase of R-configuration. The functional fragment refers to a protein fragment that keeps the activity of the omega-transaminase with the high stereoselective R-configuration catalytic activity. The variant refers to a polypeptide derived from a parental protein by changing one or more amino acids at one or more (several) sites, i.e. by substation, insertion and/or deletion.

[0037] In a preferred embodiment of the present invention, the amino acid sequence of the transaminase is an amino acid sequence acquired by substituting leucine at the 38th site of the amino acid sequence as shown in SEQ ID NO: 2 by isoleucine. Such replacement between amino acids having similar properties enables the transaminase having the amino acid sequence as shown in SEQ ID NO: 2 and high stereoselectivity.

10

20

30

35

40

45

50

55

[0038] The transaminase obtained by the present invention, which is an omega-transaminase with high stereoselective R-configuration catalytic activity, can be used for highly efficient synthesis of a chiral amine of R-configuration with a relatively high chiral purity, and is therefore suitable for industrial production of chiral amines. The present invention selects a splicing object and a splicing site in an optimized manner, so that a new transaminase variant obtained by transformation does not affect folding of proteins while maintaining the transaminase activity, having relatively high transaminase activity and high stereoselectivity.

[0039] A nucleotide is provided in another typical embodiment. The nucleotide encodes the omega-transaminase of R-configuration or the modified compound, functional equivalent, functional fragment or variant thereof, and an encoding rule of the nucleotide of the omega-transaminase of R-configuration or the modified compound, functional equivalent, functional fragment or variant thereof accords with a conventional codon usage table.

[0040] In a more preferred embodiment of the present invention, the sequences of the nucleotide include a sequence selected from one of the following sequences: a) a nucleotide sequence as shown in SEQ ID NO: 1 or 3; b) a nucleotide sequence which has at least 80% identity to the nucleotide sequence as shown in SEQ ID NO: 1 or 3 and encodes an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6; c) a nucleotide sequence with capable of hybridizing with the nucleotide sequence as shown in SEQ ID NO: 1 or 3 under highly stringent conditions and encoding an omega-transaminase having high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 4 or 6, wherein the high stereoselectivity refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.

[0041] The nucleotide sequence with at least 80% identity to the nucleotide sequence as shown in SEQ ID NO.:1 or 3 and encoding the omega-transaminase having the high stereoselective R-configuration catalytic activity, having at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, 99.8% or 99.9% identity, for example, is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6. While keeping nucleotides playing key roles in the catalytic activity of the transaminase unchanged based on the nucleotide sequence as shown in SEQ ID NO: 1 or 3, those skilled in the art may change remaining nucleotide sequence of inactive sites, so that the nucleotide sequence of an obtained transaminase has at least more than 80% identity to the nucleotide sequence as shown in SEQ ID NO: 1 or 3, and the transaminase obtained in this way has the same transaminase activity as that of a transaminase having nucleotide sequence as shown in SEQ ID NO: 1 or 3.

[0042] The nucleotide sequence capable of hybridizing with the nucleotide sequence as shown in SEQ ID NO: 1 or 3 under highly stringent conditions and encoding the omega-transaminase having the high stereoselective R-configuration catalytic activity is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6. Similarly, a nucleotide sequencethat can be hybridized with the nucleotide sequence as shown in SEQ ID NO:1 or 3 under highly stringent conditions and encodes the omega-transaminase having the high stereoselective R-configuration catalytic activity is screened based on the nucleotide sequence as shown in SEQ ID NO: 1 or 3, and a variant sequence of the nucleotide sequence as shown in SEQ ID NO: 1 or 3, which is obtained in this way, have the same transaminase activity as that of the transaminase having the nucleotide sequence as shown in SEQ ID NO: 1 or 3.

[0043] The stereoselectivity means that when two stereisomers A and B are generated in a reaction, the yield of A is more than that of B, and the high stereoselectivity refers to the content of one of the stereoisomers being at least about 1.1 times that of the other, e.g. at least about 1.2 times, at least about 1.3 time, at least about 1.4 times, at least about 1.5 times, at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 10 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times, at least about 50 times, at least about 70 times, at least about 90 times, at least about 100 times or higher.

[0044] An exemplary highly stringent condition may be that the hybridization is performed at 65°C by using 6X SSC and a 0.5%SDS solution, and membrane washing is performed by 2X SSC, 0.1%SDS and 1X SSC, and 0.1%SDS once respectively.

[0045] The term "identity" used in the present invention has a meaning generally known in the art. Those skilled in the art are also familiar with rules and standards for measuring the identity between different sequences. Sequences limited by the present invention with identities of different degrees also need to have the activity of the omega-transaminase with the high stereoselectivity R-configuration catalytic activity at the same time. Those skilled in the art generally know methods and means for screening the variant sequences by using the activity of the omega-transaminase with the high stereoselective R-configuration catalytic activity, and may be taught by the content disclosed by the application to acquire such variant sequences easily.

[0046] It is known by those skilled in the art that a qualifier used for limiting the amino acid sequences or polynucleotides is "include", but it does not mean that other sequences unrelated to functions of the amino acid sequences or polynucleotides may be added randomly to two ends of the amino acid sequences or polynucleotides. It is known by those skilled in the art that it is necessary to add proper restriction sites of restriction endonuclease, or additional initiator codons or stop codons and so on to both ends of the polynucleotides so as to meet requirements of a recombination operation. Therefore, these situations cannot be truly covered if the sequences are limited by closed expression.

[0047] It is generally known by those skilled in the art that one or more codons in the nucleotide sequences may be replaced equivalently without changing the encoded amino acids. For example, the leucine Leu encoded by CTT is replaced by CTA, CTC or CTG, and the number of replaced codons may be one or more, e.g. 1, 2, 3, 4, 5, 6, 8, 9, 10, 15, 20, 30, 40 or 50, and a codon usage table is generally known in the art.

[0048] A recombinant vector is provided according to another aspect of the present invention. Any foregoing nucleotide is effectively connected in the recombinant vector. The recombinant vector of the present invention includes, but is not limited to a recombinant expression vector, and may also include a recombinant cloning vector. The recombinant vector may be a prokaryotic expression vector or a eukaryotic expression vector. In an embodiment of the present invention, the recombinant vector is a recombinant prokaryotic expression vector that can induce expression, e.g. a pET series vector that induces gene expression by IPTG, such as a pET22b vector. In the present invention, recombinant vectors having the nucleotide sequence as shown in SEQ ID NO: 1 and SEQ ID NO: 3 are pET22b-CM32 and pET22b-CM33, wherein the "effectively connected" refers to such a connection method that a polynucleotide is placed at a proper location of the vector so that the polynucleotide is copied, transcribed and/or translated correctly and smoothly.

[0049] A host cell is provided according to another aspect of the present invention. Any foregoing recombinant vector is transformed or transfected into the host cell. The host cell of the present invention includes a prokaryotic host cell and a eukaryotic host cell. In an embodiment of the present invention, the host cell is a prokaryotic host cell, such as Escherichia Coli, preferably, DH5 α (DE3).

[0050] A method for synthesizing a chiral amine is provided according to another aspect of the present invention. The method includes the following steps: making a ketone compound, any omega-transaminase of R-configuration or the modified compound, functional equivalent, functional fragment or variant thereof, pyridoxal phosphate, and an amino donor to react in a reaction system so as to obtain the chiral amine. The method for synthesizing a chiral amine according to the present invention only needs to utilize the transaminase of the present invention and make appropriate adjustment to parameters including the components, proportions, use amounts, pH values, temperature and reaction time and so on of reaction raw materials of the reaction system based on a conventional method for preparing a chiral compound through a reaction catalyzed by a biological enzyme in the art.

[0051] In a preferred embodiment of the present invention, the ketone compound is

where R_1 and R_2 are independently C_1 to C_8 alkyl, C_5 to C_{10} cycloalkyl, C_5 to C_{10} aryl or C_5 to C_{10} heteroaryl; or R_1 and R_2 form a C_5 to C_{10} heterocyclic radical, a C_5 to C_{10} carbocyclic radical or C_5 to C_{10} heteroaryl with a carbon on a carbonyl group; heteroatoms in the C_5 to C_{10} heterocyclic radical and C_5 to C_{10} heteroaryl are independently selected from at least one of nitrogen, oxygen and sulfur; the aryl in the C_5 to C_{10} aryl, the heteroaryl in the C_5 to C_{10} heteroaryl, the carbocyclic radical in the C_5 to C_{10} carbocyclic radical or the heterocyclic radical in the C_5 to C_{10} heterocyclic radical is independently unsubstituted or is substituted by at least one radical of halogen, alkoxy or alkyl; preferably, the ketone compound

55

10

30

35

40

45

50

is selected from

5

10

15

20

25

30

35

40

45

50

55

The ketone compound is a commercial raw material or a raw material that can be prepared easily and is cheap, and can therefore satisfy demands of mass production.

[0052] In another preferred embodiment of the present invention, the reaction system further includes a dissolution promoter, and the dissolution promoter is dimethyl sulfoxide or polyethylene glycol, and the polyethylene glycol is preferably PEG-400. The dissolution promoter can better dissolve the raw materials above so that the reaction can be carried out, and PEG-400 has the best dissolution promoting effect.

[0053] In another preferred embodiment of the present invention, the C1 to C8 alkyl is C1 to C8 linear alkyl, the C5 to C10 heteroaryl is a pyridine group, the alkoxy is C1 to C6 alkoxy, the heterocyclic radical in the C5 to C10 heterocyclic radical is piperidine, a substituent on the aryl in the C5 to C10 aryl, the heteroaryl in the C5 to C10 heteroaryl, the carbocyclic radical in the C5 to C10 carbocyclic radical or the heterocyclic radical in the C5 to C10 heterocyclic radical is independently C1 to C6 linear alkyl or C1 to C6 alkoxy, and the amino donor is isopropylamine or D-alanine. The raw materials above are commercial raw materials or raw materials that can be prepared easily and are cheap, and can therefore satisfy demands of large-scaled production.

[0054] In a preferred embodiment of the present invention, the reaction system contains a buffer solution for maintaining the pH value of the reaction system in a range of 7.0 to 9.5, and/or wherein the ratio of the use amount of the ketone compound to that of the dissolution promoter is 1g/1mL to 15mL; and/or wherein the ratio of the use amount of the ketone compound to that of the buffer solution is 1 g/15mL to 50mL, and/or wherein the ratio of the use amount of the ketone compound to that of pyridoxal phosphate is 1g/0.01g to 0.1 g, and/or wherein the ratio of the use amount of the ketone compound to that of the amino donor is 1eq/1eq to 5eq, and/or wherein the ratio of the use amount of the ketone compound to that of the omega-transaminase of R-configuration is 1g/0.2g to 10g; and/or wherein the temperature of the reaction system is 20°C to 45°C and the reaction time is 12h to 48h, and/or wherein the buffer solution is a phosphate buffer solution or a triethanolamine having a pH value of pH=9.3 to 9.5.

[0055] In another preferred embodiment of the present invention, the method further includes a step that the reaction system is regulated to pH≥10 by an alkaline, and a product chiral amine in an aqueous phase is extracted by an organic solvent. Preferably, the alkaline is sodium hydroxide or potassium hydroxide, and the organic solvent is ethyl acetate, methyl tert-butyl ether or 2-methyltetrahydrofuran.

[0056] An R-configuration chiral amine is provided in another typical embodiment of the present invention. The R-configuration chiral amine is synthesized by using any method above. The R-configuration chiral amine prepared by the transaminase of the present invention has a high chiral purity which may be as high as more than 98%.

[0057] The beneficial effect of the present invention will be described below in combination with specific embodiments.

[0058] The methods are conventional methods unless otherwise specified in the following embodiments and the used experimental materials may be obtained easily from commercial corporations unless otherwise specified.

Embodiment 1: Preparation of transaminase AH-TACM33 derived from Aspergillus terreus and Hyphomonas neptunium

[0059] Specific steps of a preparation method of a transaminase AH-TACM33 of the present invention are as follows:

(1) Template construction

5

10

15

20

25

50

55

[0060] Sangon Biotech (Shanghai) Co., Ltd. is entrusted to carry out whole gene synthesis of transaminase genes taAT (Aspergillus terreus) (the nucleotide sequence is the gene sequenceas shown in SEQ ID NO: 5 in the sequencing list, and the amino acid sequence is as shown in SEQ ID NO: 23) and taHN (Hyphomonas neptunium) (the nucleotide sequence is the gene sequence as shown in SEQ ID NO: 6 in the sequencing list, and the amino acid sequenceis as shown in SEQ ID NO: 24) derived from Aspergillus terreus and Hyphomonas neptunium. The synthesized genes taAT and taHN are connected to a vector pUC57 respectively to obtain recombinant plasmids pUC57-taAT and pUC57-taHN, then the recombinant plasmids pUC57-taAT and pUC57-taHN are subjected to enzyme digestion simultaneously by using restriction endonuclease Nde I and Xho I, and purified recovered fragments taAT and taHN are obtained through gel recovery and used as templates of PCR in the next step.

(2) Primer design

[0061] Specific primers designed according to the transaminase gene derived from Aspergillus terreus are as follows:

```
taAT A: 5'-CCGCTCGAGGTTACGCTCGTTGTAGTCAATTTC-3' (SEQ ID NO: 7) taAT S: 5'-GGAATTCCATATGGCGTCTATGGACAAAG-3' (SEQ ID NO: 8)
```

[0062] Specific primers designed according to the transaminase gene derived from *Hyphomonas neptunium* are as follows:

```
taHN A: 5'-CCGCTCGAGCGGTGCATAGGTTACCGGTTC-3' (SEQ ID NO: 9) taHN S: 5'-GGAATTCCATATGCTGACCTTCCAAAAAGTACTGAC-3' (SEQ ID NO: 10)
```

30 [0063] In the meanwhile, 6 pairs of primers are designed according to different sites, which are respectively as follows:

```
CM31A: 5'-GAACTTCAGACCGCGGGTGACAATCAG-3' (SEQ ID NO: 11)
CM31S: 5'-CACCCGCGGTCTGAAGTTCCTGC-3' (SEQ ID NO: 12)
CM32A: 5'-CGGCGGAACACGACGAACGGTACG-3' (SEQ ID NO: 13)

CM32S: 5'-TTCGTCGTACTCCGCCGGGCGCAC-3' (SEQ ID NO: 14)
CM33A: 5'-TAGCCTGCGCCCTCGGTCAGGTGAG-3' (SEQ ID NO: 15)
CM33S: 5'-GACCGAGGGCGCAGGCTACAATATC-3' (SEQ ID NO: 16)
CM34A: 5'-CCCTTCAGACCACGCGTAACGATGATC-3' (SEQ ID NO: 17)
CM34S: 5'-TTACGCGTGGTCTGAAGGGTGTGCGTG-3' (SEQ ID NO: 18)

CM35A: 5'-CCAGGCGGAGTACGACGTACAGTACGAG-3' (SEQ ID NO: 19)
CM35S: 5'-TACGTCGTGTTCCGCCTGGCGCAATC-3' (SEQ ID NO: 20)
CM36A: 5'-GCCGCTGCCTTCCGTCGCGTTACC-3' (SEQ ID NO: 21)
CM36S: 5'-GACGGAAGGCAGCGGCTTCAACATC-3' (SEQ ID NO: 22)
```

45 (3) Acquisition of a new transaminase

[0064] The specific primer taAT S (a forward primer) designed on the transaminase gene derived from *Aspergillus terreus* is combined with any reverse primer in 3 reverse primers (CM31A, CM32A, CM33A) among the above 6 pairs of primers to amplify a fragment of the transaminase gene derived from *Aspergillus terreus*, or taHN A (a reverse primer) is combined with any one of 3 forward primers (CM36S, CM35S and CM34S) among the 6 pairs of primers to amplify a fragment of the transaminase gene derived from *Hyphomonas neptunium*. Subsequently, the two fragments of different origins, which are obtained from the amplification, are integrated so as to obtain a transformed transaminase gene. **[0065]** Similarly, the specific primer taAT A (a reverse primer) designed on the transaminase gene derived from *Aspergillus terreus* is combined with any forward primer in 3 forward primers (CM33S, CM32S, CM31S) among the 6 pairs of primers to amplify a fragment of the transaminase gene derived from *Aspergillus terreus*, or taHN S (a forward primer) is combined with any one of 3 reverse primers (CM34A, CM35A and CM36A) among the 6 pairs of primers to amplify a fragment of the transaminase gene derived from *Hyphomonas neptunium*. Subsequently, the two fragments of different origins, which are obtained from the amplification, are integrated so as to obtain a transformed transaminase

gene.

15

20

25

30

35

40

45

50

55

[0066] Specific transformation steps are expounded by taking a transaminase obtained by integrating the fragment acquired by amplifying the forward primer taAT S and the reverse primer CM33A and the fragment obtained by amplifying the reverse primer taHN A and the forward primer CM33S, and a transaminase obtained by integrating the fragment acquired by amplifying the forward promer taAT S and the reverse primer CM32A and the fragment acquired by amplifying the reverse primer taHN A and the forward primer CM32S as examples.

[0067] Steps for obtaining the transaminase AH-TACM33 are as follows:

Step 1: Acquisition of fragment A: the recovered fragment taAT is used as a PCR template, taAT S and CM33A are used as primers to perform PCR amplification and a product is recovered by gel extraction and purification to acquire a fragment A.

Step 2: Acquisition of fragment B: the recovered fragment taHN is used as a PCR template, taHN A and CM33S are used as primers to perform PCR amplification and a product is recovered by gel extraction and purification to acquire a fragment B.

Step 3: Acquisition of fragment CM33: the acquired fragment A and fragment B are used as templates and primers for each other, PCR amplification is performed for 5 cycles, then the primers taAT S and taHN A are added into the PCR system directly, overlapped PCR amplification is performed, and a product is recovered by gel extraction and purification to acquire a fragment CM33.

PCR system: fragment A 1μ L, fragment B 11μ L, PCR MIX 5μ L, ddH₂O 4.5p1.

PCR procedure: 95°C 3min; (95°C 30s, 57°C 30s, 72°C 90s, 5 cycles); 72°C 1 min.

 $0.2\mu L$ of the primer taAT S and $0.2\mu L$ of the primer taHN A are added into the system respectively.

PCR procedure: 95°C3 min; (95°C 30s, 57°C 30s, 72°C 90s, 30 cycles); 72°C 10min.

Step 4: Acquisition of recombinant plasmid pET22b-CM33: the fragments CM33 and pET-22b (+) are subjected to enzyme digestion simultaneously by using Nde I and Xho I, ligation is performed by using a T4 DNA ligase, and a ligation product is transformed into a competent cell of an DH5 α strain of *Escherichia coli*, resuscitated by a shaker, and then coated in an LB culture dish containing ampicillin having a final concentration of $50\mu g/ml$, and cultured overnight in an incubator at $37^{\circ}C$. A single colony on the culture dish is selected and inoculated in an LB liquid culture medium containing ampicillin having a final concentration of $50\mu g/ml$, and subjected to shake culture at 180r/min and $37^{\circ}C$ overnight. A plasmid is extracted, subjected to PCR and identified by enzyme digestion, and an identification result of the enzyme digestion is as shown in Fig. 3.

Fig. 3 shows an identification diagram of the plasmid pET22b-CM33 having subjected to double digestion of the enzyme Nde I and the enzyme Xho I, wherein 1 represents an empty vector pET22b; 2 represents markers of the sizes of DNA molecules (10000bp, 8000bp, 6000bp, 5000bp, 4000bp, 3500bp, 3000bp, 2500bp, 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp respectively from top to bottom) and 3 represents pET22b-CM33-DH5α. It may be seen from Fig. 3 that a relatively weak band having a fragment size of about 1000bp after the enzyme digestion is a target fragment (a plasmid band having the target fragment removed is relatively strong), thus it may be determined that the insertion direction and size of an insertion sequence of the recombinant plasmid pET22b-CM33 are correct. Step 5: Acquisition of BL21/pET22b-CM33: the obtained recombinant plasmid pET22b-CM33 is directly transformed into Escherichia coli BL21 (DE3), resuscitated by a shaker, and then coated in an LB culture dish containing ampicillin having a final concentration of 50µg/ml, and cultured at 37°C overnight; a single colony in the culture dish is selected and inoculated in 5ml of an LB liquid culture medium containing ampicillin having a final concentration of 50µg/ml, and cultured at 180r/min and 37°C overnight; bacterial liquid is sent to Sangon Biotech (Shanghai) Co., Ltd. to be sequenced, and after being verified correctly through gene sequencing, the plasmid is named BL21/pET22b-CM33. The sequencing result is shown in Fig. 4 and it may be seen from Fig. 4 that the gene sequence carried by the BL21/pET22b-CM33 plasmid in the sequencing result is completely as expected and there is no mutated base. After being identified correctly by the sequencing, the recombinant plasmid is a target plasmid sequence.

Step 6: Preparation of transaminase AH-TACM33: a bacterial liquid of the BL21/pET22b-CM33 is transplanted in an LB liquid culture medium containing ampicillin having a final concentration of $50\mu g/ml$, subjected to shake culture at 180r/min and 37°C, and when the OD600 value is 0.6 to 0.8, IPTG is added until the final concentration is 0.2mM, and the culture solution is transposed at 25°C to induce expression; after the induction is performed for 16h, the bacterial liquid is taken out and centrifuged at 12000r/min for 10min, and thalli are collected; after cells are disrupted, the thalli are centrifuged at 4°C and 12000r/min for 20min to obtain a supernatant which is a prepared transaminase AH-TACM33 having an amino acid sequence as shown in SEQ ID NO: 4 and a corresponding nucleotide sequence as shown in SEQ ID NO: 3.

Embodiment 2: Activity experiment 1 of transaminase AH-TACM33

[0068] 1g of a major raw material (N-Boc-3-piperidone, CAS: 79099-07-3) and 1 mL of dimethyl sulfoxide are added into a reaction flask. After the raw materials are dispersed, 50 mL of a triethanolamine buffer solution having a concentration of 0.2mol/L and a pH value regulated to 9.3 to 9.5 by concentrated hydrochloric acid in an ice bath, 0.765g of isopropylamine, 0.01g of pyridoxal phosphate, and 0.01 g of the transaminase AH-TACM33 are added, and stirred for 12h at a constant temperature of 30°C, wherein the pH value of the system is 9.5. The pH value of the system is regulated to above 10 by 2N NaOH, extraction is performed twice by ethyl acetate, and an organic phase is dried, filtered and concentrated to obtain a crude product (English name: (R)-1-N-Boc-3-aminopiperidine, CAS: 188111-79-7). It is detected by Gas Chromatography (GC) that the conversion rate is 90% and the e.e value is 100%.

[0069] Nuclear Magnetic Resonance (NMR) data of the obtained product is as follows: 1 H-NMR (300MHz, CDCl3) δ 4.00-3.78 (m, 2H), 3.80 (m, 2H), 3.60 (m, 1 H), 1.90 (m, 1 H). 1.70 (m, 1 H), 1.60-1.40 (m, 12H), 1.30 (m, 1 H) ppm.

Embodiment 3: Activity experiment 2 of transaminase AH-TACM33

[0070] 0.1g of a major raw material (2,4-dichloroacetophenone, CAS:2234-16-4) and 1.5 mL of polyethylene glycol PEG-400 are added into a reaction flask. After the raw materials are dispersed, 23.5 mL of a phosphate buffer solution (pH8.0), 0.031g of isopropylamine, 0.0075g of pyridoxal phosphate, and 0.02g of the transaminase AH-TACM33 are added, and stirred for 20h at a constant temperature of 45°C, wherein the pH value of the system is 8.0. The pH value of the system is regulated to above 10 by 2N NaOH, extraction is performed twice by ethyl acetate, and an organic phase is dried, filtered and concentrated to obtain a crude product ([(R)-(+)-1-(2,4-dichlorophenyl)ethyl]amine). It is detected by GC that the conversion rate is 82% and the e.e value is 100%.

NMR data of the obtained product is as follows: 1 H NMR (400MHz, DMSO D6):δ=7.67 (d 1H), 7.60 (d, 1H), 7.47 (dd, 1H), 7.34 (dd, 4H), 7.23-7.12 (m, 6H), 4.84 (s, 1 H), 4.47 (quartet, 1 H), 1.31 (d, 3H).

Embodiment 4: Preparation of transaminase AH-TACM32 derived from Aspergillus terreus and Hyphomonas neptunium

[0071] Specific steps of a preparation method of a transaminase AH-TACM32 of the present invention are as follows:

(1) Template construction

10

15

20

25

30

35

50

55

[0072] Recombinant plasmids pUC57-taAT and pUC57-taHN are obtained according to the method of Embodiment 1. The recombinant plasmids pUC57-taAT and pUC57-taHN are subjected to enzyme digestion simultaneously by using restriction endonuclease Nde I and Xho I, and purified recovered fragments taAT and taHN are obtained through gel recovery and used as templates of PCR in the next step.

- (2) Primer design
- 40 [0073] Primer design is the same as Embodiment 1.
 - (3) Acquisition of a new transaminase

[0074] Step 1: Acquisition of fragment E: the recovered fragment taAT is used as a PCR template, taAT S and CM32A are used as primers to perform PCR amplification and a product is recovered by gel extraction and purification to acquire a fragment E.

[0075] Step 2: Acquisition of fragment F: the recovered fragment taHN is used as a PCR template, taHN A and CM32S are used as primers to perform PCR amplification and a product is recovered by gel extraction and purification to acquire a fragment F.

[0076] Step 3: Acquisition of fragment CM32: the acquired fragment E and fragment F are used as templates and primers for each other, PCR amplification is performed for 5 cycles, then the primers taAT S and taHN A are added into the PCR system directly, overlapped PCR amplification is performed, and a product is recovered by gel extraction and purification to acquire a fragment CM32.

[0077] Step 4: Acquisition of recombinant plasmid pET22b-CM32: the fragments CM32 and pET-22b (+) are subjected to enzyme digestion simultaneously by using Nde I and Xho I, ligation is performed by using a T4 DNA ligase, and a ligation product is transformed into a competent cell of an DH5 α strain of *Escherichia coli*, resuscitated by a shaker, and then coated in an LB culture dish containing ampicillin having a final concentration of $50\mu g/ml$, and cultured overnight in an incubator at $37^{\circ}C$. A single colony on the culture dish is selected and inoculated in an LB liquid culture medium

containing ampicillin having a final concentration of $50\mu g/ml$, and subjected to shake culture at 180r/min and 37°C overnight. A plasmid is extracted, subjected to PCR and identified by enzyme digestion, and an identification result of the enzyme digestion is as shown in Fig. 5.

[0078] Fig. 5 shows an identification diagram of the plasmid pET22b-CM32 having subjected to double digestion of the enzyme Nde I and the enzyme Xho I, wherein 1 represents markers of the sizes of DNA molecules (10000bp, 8000bp, 6000bp, 5000bp, 4000bp, 3500bp, 3000bp, 2500bp, 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp from top to bottom), 2 represents pET22b-CM32-DH5 α and 3 represents an empty vector pET22b.

[0079] It may be seen from Fig. 5 that a relatively weak band having a fragment size of about 1000bp after the enzyme digestion is a target fragment (a plasmid band having the target fragment removed is relatively strong), thus it may be determined that the insertion direction and size of an insertion sequence of the recombinant plasmid pET22b-CM32 are correct, so as to obtain the recombinant plasmid pET22b-CM32.

[0080] Step 5: Acquisition of BL21/pET22b-CM32: the obtained recombinant plasmid pET22b-CM32 is directly transformed into *Escherichia coli* BL21 (DE3), resuscitated by a shaker, and then coated in an LB culture dish containing ampicillin having a final concentration of $50\mu g/ml$, and cultured at 37° Covernight; a single colony in the culture dish is selected and inoculated in 5ml of an LB liquid culture medium containing ampicillin having a final concentration of $50\mu g/ml$, and cultured at 180r/min and 37° C overnight; bacterial liquid is sent to Sangon Biotech (Shanghai) Co., Ltd. to be sequenced, and after being verified correctly through gene sequencing, the plasmid is named BL21/pET22b-CM32. [0081] The sequencing result is shown in Fig. 6 and it may be seen from Fig. 6 that the gene sequence carried by the BL21/pET22b-CM32 plasmid in the sequencing result is completely as expected and there is no mutated base. After being identified correctly by the sequencing, the recombinant plasmid is a target plasmid sequence.

[0082] Step 6: Preparation of transaminase AH-TACM32: a bacterial liquid of the BL21/pET22b-CM32 is transplanted in an LB liquid culture medium containing ampicillin having a final concentration of $50\mu g/ml$, subjected to shake culture at 180r/min and 37°C, and when the OD600 value is 0.6 to 0.8, IPTG is added until the final concentration is 0.2mM, and the culture solution is transposed at 25°C to induce expression; after the induction is performed for 16h, the bacterial liquid is taken out and centrifuged at 12000r/min for 10min, and thalli are collected; after cells are disrupted, the thalli are centrifuged at 4°C and 12000r/min for 20min to obtain a supernatant which is a prepared transaminase AH-TACM32 having an amino acid sequence as shown in SEQ ID NO: 2 and the corresponding nucleotide sequence as shown in SEQ ID NO: 1.

30 Embodiment 5: Activity experiment of transaminase AH-TACM32

[0083] 0.1 g of a major raw material (2-acetonaphthone, CAS: 93-08-3) and 1 mL of polyethylene glycol PEG-400 are added into a reaction flask. After the raw materials are dispersed, 24 mL of a phosphate buffer solution (pH7.0), 0.17g of isopropylamine, 0.01g of pyridoxal phosphate, and 0.004g of the transaminase AH-TACM32 are added, and stirred for 48h at a constant temperature of 20°C, wherein the pH value of the system is 7.0. The pH value of the system is regulated to above 10 by 2N NaOH, extraction is performed twice by ethyl acetate, and an organic phase is dried, filtered and concentrated to obtain a crude product. It is detected by GC that the conversion rate is 20% and the e.e value is 100%. [0084] NMR data of the obtained product is as follows: 1 H NMR (400MHz, CDCl3) δ 7.86-7.76 (m, 4H), 7.52-7.41 (m, 3H), 4.29 (q, J=6.4Hz, 1 H), 1.74 (br s, 2H), 1.48 (d, J=6.4Hz, 3H).

[0085] The present invention further verifies the transaminase activity of the transaminase AH-TACM33 by using the major raw material (2-acetonaphthone, CAS: 93-08-3) and verifies the transaminase activity of the transaminase AH-TACM32 by using a major raw material (N-Boc-3-piperidone, CAS: 79099-07-3) and a major raw material (2,4-dichloroacetophenone, CAS:2234-16-4), specific method steps are the same as the embodiments above.

45 Embodiment 6

10

15

20

35

40

55

[0086] Based on the transaminase having an amino acid sequence as shown in SEQ ID NO: 2, the leucine at the 38th site of the transaminase is subjected to site-directed mutagenesis to be replaced with isoleucine, so as to obtain a transaminase having an sequence as shown in SEQ ID NO: 25.

50 **[0087]** An enzyme activity experiment is carried out to detect the transaminase, and detection steps are as follows:

a bacterial liquid of mutants is transplanted to 100ml of an LB liquid culture medium containing ampicillin having a final concentration of $50\mu g/ml$, subjected to shake culture at 180r/min and $37^{\circ}C$, and when the OD600 value is 0.6 to 0.8, IPTG is added until the final concentration is 0.2mM, and the culture solution is transposed at $25^{\circ}C$ to induce expression. In the meanwhile, an IPTG inducer-free culture solution is set as a negative control. After the induction is performed for 16h, the bacterial liquid is taken out and centrifuged at 12000r/min for 5min, and thalli are collected. 0.5g of bacterial sludge is weighed andre-suspended in 2.5 mL of a phosphate buffer solution (pH8.0) and cells of the thalli are disrupted by an ultrasonic disruptor. Ultrasonic parameters include: probe diameter 6mm, power 200W,

working time 2s, and interval 6s, totally 10min. After the ultrasonic processing, centrifugation is performed at 12000r/min for 20min at 4°C to obtain an ultrasonic supernatant and precipitate, and the supernatant is inputted in a reaction to verify transaminase activity.

[0088] 0.1 g of a major raw material (acetophenone, CAS: 98-86-2) is added to a reaction flask, the raw material is dispersed in 13.5mL of a phosphate buffer solution having a concentration of 0.1M (pH8.0), 0.356g of D-alanine, 0.002g of β-NAD+, 0.0192g of lactic dehydrogenase, 0.006g of glucose dehydrogenase, 0.432g of glucose, 0.004g of pyridoxal phosphate, and 2.5mL of an omega-transaminase of R-configuration having a sequence encoded by SEQ ID NO: 25, the pH value of the system is 7.0, stirring is performed at a constant temperature of 30°C for 16h, the pH value of the system is regulated to above 10 by NaOH having a concentration of 2N, extraction is performed twice by ethyl acetate, and an organic phase is dried, filtered and concentrated to obtain a crude product (English name: (R)-1-phenethylamine, CAS: 3886-69-9). It is detected by GC that the conversion rate is 83% and the e.e value is 99.5%.

[0089] NMR data of the obtained product is as follows: 1 H NMR(CDCI3, 400MHz, 300K) δ (ppm): 7.36-7.29 (m, 4H), 7.26-7.19 (m, 1 H), 4.11 (q, J=6.6Hz, 1 H), 1.53 (bs, 2H), 1.38 (d, J=6.6Hz, 3H).

[0090] The result shows that the transaminase in the above embodiments of the present invention may achieve similar yields and enantiomer purity, thereby obtaining corresponding chiral amines of R-configuration.

[0091] It may be seen from the foregoing description that the embodiments of the present invention have achieved the following technical effect: a novel transaminase disclosed by the present invention catalyzes the transfer of an amino in an amino donor to prochiral ketones or aldehydes, thereby generating corresponding chiral amines of R-configuration. A target product having a high purity may be obtained by utilizing a synthesis method of the novel transaminase of the present invention, and the optical purity of the obtained product is stabilized at above 98%. The synthesis method, which is simple, applies easily available raw materials and has mild chemical reaction conditions, high yield and high enantiomer purity, and simple operations in the whole production process, is a feasible synthesis process with little pollution and provides a new approach and method for preparation of chiral amines.

[0092] The above are only preferred embodiments of the present invention, but are not used for limiting the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements and the like made within the spirit and principles of the present invention shall be included in the scope of protection of the present invention.

13

55

20

25

30

35

40

45

50

Sequencing List

5	<pre><110> ASYMCHEM LABORATORIES (TIANJIN) CO.,LTD ASYMCHEM LIFE SCIENCE (TIANJIN) CO.,LTD TIANJIN ASYMCHEM PHARMACEUTICAL CO.,LTD ASYMCHEM LABORATORIES (FUXIN) CO.,LTD JILIN ASYMCHEM LABORATORIES CO.,LTD</pre>	
	<120> Transaminase and uses thereof	
10	<130> PN46058KLY	
	<160> 25	
	<170> PatentIn version 3.2	
15	<210> SEQ ID NO.1 <211> 975 <212> DNA <213> Artificial design	
20	<220> <223> recombinant transaminase gene AH-TACM32 derived from Asperg terreus and Neptune silk Aeromonas	illus
25	<400> 1	
	<pre>~400> 1 atggcgtcta tggacaaagt ttttgcaggt tacgcggccc gtcaagcgat cctggaatct</pre>	60
	actgagacta ccaacccgtt cgcgaaaggt atcgcgtggg tagaaggtga actggttccg	120
30	ctggcggaag cacgcatccc gctgctggat cagggcttca tgcattccga cctgacgtat	180
	gacgtgccgt ctgtgtggga tggccgcttc ttccgtctgg atgatcacat cactcgtctg	240
35	gaagcateet geactaaaet gegtetgege etgeetetge egegtgatea ggtgaaaeag	300
	atcctggttg aaatggttgc gaaatccggc attcgcgacg cgtttgtcga actgattgtc	360
	accegeggte tgaagggtgt gegtggeace egteeggaag acattgtaaa caacetgtac	420
40	atgttegtge ageegtaegt etgggttatg gaaceggaea tgeagegtgt tggeggeage	480
	gcagttgtag cccgtaccgt tcgtcgtact ccgccgggcg cactggatcc gactattaaa	540
	aacctgcagt ggggcgatct ggttcgcggt ctgatggaag caggcgaccg tgattctttc	600
45	tttcctattc tgccggatgg cgacggtaac gcgacggaag gcgcaggcta caatatcgta	. 660
	ctggtgcgta acggcgagct gcataccccg cgtcgtggcg ttctggaagg tattacccgt	720
50	cgtacggtgc tggagattgc agctgctcgc ggcctgaaaa ctcacgtcac cgaaatccca	. 780
30	atccaggccc tgtatgaatg cgacgaactg tttatgtgca gcaccgcggg cggtatcatg	840
	ccactggtgc tgctggatgg caacattgta ggtgacggca ccgttggtcc ggtcacccgc	900
55	atgatttggg aagcgtactg ggacctgcac gacgacccgc agctgtctga accggtaacc	960
	tatgcaccgc tcgag	975

	<210> SEQ ID NO.2 <211> 325 <212> PRT <213> Artificial design																
5		3> re				ransa		ase <i>l</i>	АН-Т2	ACM32	2 de:	rive	d fro	om As	spero	gillus	terreus
10	<400	0> 2	2														
15	Met 1	Ala	Ser	Met	Asp 5	Lys	Val	Phe	Ala	Gly 10	Tyr	Ala	Ala	Arg	Gln 15	Ala	
15	Ile	Leu	Glu	Ser 20	Thr	Glu	Thr	Thr	Asn 25	Pro	Phe	Ala	Lys	Gly 30	Ile	Ala	
20	Trp	Val	Glu 35	Gly	Glu	Leu	Val	Pro 40	Leu	Ala	Glu	Ala	Arg 45	Ile	Pro	Leu	
25	Leu	Asp 50	Gln	Gly	Phe	Met	His 55	Ser	Asp	Leu	Thr	Tyr 60	Asp	Val	Pro	Ser	
	Val 65	Trp	Asp	Gly	Arg	Phe 70	Phe	Arg	Leu	Asp	Asp 75	His	Ile	Thr	Arg	Leu 80	
30	Glu	Ala	Ser	Cys	Thr 85	Lys	Leu	Arg	Leu	Arg 90	Leu	Pro	Leu	Pro	Arg 95	Asp	
35	Gln	Val	Lys	Gln 100	Ile	Leu	Val	Glu	Met 105	Val	Ala	Lys	Ser	Gly 110	Ile	Arg	
40	Asp	Ala	Phe 115	Val	Glu	Leu	Ile	Val 120	Thr	Arg	Gly	Leu	Lys 125	Gly	Val	Arg	
1 0	Gly	Thr 130	Arg	Pro	Glu	Asp	Ile 135	Val	Asn	Asn	Leu	Tyr 140	Met	Phe	Val	Gln	
45	Pro 145	Tyr	Val	Trp	Val	Met 150	Glu	Pro	Asp	Met	Gln 155	Arg	Val	Gly	Gly	Ser 160	
50	Ala	Val	Val	Ala	Arg 165	Thr	Val	Arg	Arg	Thr 170	Pro	Pro	Gly	Ala	Leu 175	Asp	
	Pro	Thr	Ile	Lys 180	Asn	Leu	Gln	Trp	Gly 185	Asp	Leu	Val	Arg	Gly 190	Leu	Met	
55	Glu	Ala	Gly 195	Asp	Arg	Asp	Ser	Phe 200	Phe	Pro	Ile	Leu	Pro 205	Asp	Gly	Asp	

	GLY	210	Ala	Thr	GLu	GLY	A1a 215	GТĀ	Tyr	Asn	IIe	Val 220	Leu	Val	Arg	Asn		
5	Gly 225	Glu	Leu	His	Thr	Pro 230	Arg	Arg	Gly	Val	Leu 235	Glu	Gly	Ile	Thr	Arg 240		
10	Arg	Thr	Val	Leu	Glu 245	Ile	Ala	Ala	Ala	Arg 250	Gly	Leu	Lys	Thr	His 255	Val		
	Thr	Glu	Ile	Pro 260	Ile	Gln	Ala	Leu	Tyr 265	Glu	Cys	Asp	Glu	Leu 270	Phe	Met		
15	Cys	Ser	Thr 275	Ala	Gly	Gly	Ile	Met 280	Pro	Leu	Val	Leu	Leu 285	Asp	Gly	Asn		
20	Ile	Val 290	Gly	Asp	Gly	Thr	Val 295	Gly	Pro	Val	Thr	Arg 300	Met	Ile	Trp	Glu		
25	Ala 305	Tyr	Trp	Asp	Leu	His 310	Asp	Asp	Pro	Gln	Leu 315	Ser	Glu	Pro	Val	Thr 320		
	Tyr	Ala	Pro	Leu	Glu 325													
30	<210 <211 <212 <213	L> 9 2> I	975 ONA	ID NO		esigr	ı											
35		3> re						ase c		AH-1	racm3	33 de	erive	ed fi	com 1	Asperg	rillus	5
40	<400 atg		3 cta 1	tggad	caaaq	gt tt	ttg	caggt	: tad	cgcgo	gaaa	gtca	agco	gat o	catgo	gaatct	<u>.</u>	60
	acto	gagad	cta d	ccaa	cccgt	t c	gcgaa	aaggt	ato	egegt	ggg	taga	aaggt	ga a	actg	gttaag	_r 1	L20
	ctg	gegga	aag (cacgo	catco	cc go	ctgct	tggat	caç	gggct	tca	tgca	attco	ega d	cctga	acgtat	. 1	L80
45	gac	gtgco	cgt (ctgt	gtgg	ga to	ggac	gatta	tto	ccgto	ctgg	atga	atcac	cat o	cacto	egtetg	r 2	240
	gaag	gcato	cct o	gcact	caaac	ct go	cgtct	tgcgc	cto	gaata	ctgc	cgc	gtgat	ca q	ggtga	aacag	r 3	300
	atco	ctggt	tg a	aaatq	ggtt	gc ga	aaato	ccggc	att	cgcg	gacg	cgtt	tgto	cga a	actga	attgto	: 3	360
50	acco	cgcg	gtc 1	tgaaq	gggt	gt go	cgtg	gcaco	c cgt	ccgg	gaag	acat	tgta	aa o	caaco	etgtac	: 4	120
	atgt	tcgt	cgc a	agcc	gtace	gt ct	gggt	ttato	g gaa	accg	gaca	tgca	agcgt	gt t	ggc	gcago	: 4	180
55	gcaç	gttgt	ag (cccgt	cacco	gt to	cgtc	gtgtt	: ccç	gaat	ggcg	caat	cgad	CCC a	aacto	gttaaa	. 5	540
	aato	ctgca	agt o	gggg	cgato	et go	gtace	gcggt	ato	gttt	gaag	ctg	ccgat	.cg t	ggt	ctact	. (600

	tato	ccgt	taa 1	tgac	ggato	gg to	gacgo	ctcac	c cto	gacco	gagg	gcg	caggo	cta d	caata	atcgta	660
	ctg	gtgc	gta a	acggo	cgago	ct go	cata	aaaa	g cgt	cgt	ggcg	ttct	gga	agg f	tatta	acccgt	720
5	cgta	acgg	tgc 1	tggaq	gatte	gc a	gctgo	ctcgc	gg g	cctga	aaaa	ctca	acgto	cac o	cgaaa	atccca	780
	atco	cagg	ccc 1	tgtat	tgaat	g c	gacga	aacto	g ttt	atgt	gca	gcad	ccgc	ggg (cggta	atcatg	840
	cca	ctggi	tgc 1	tgct	ggato	gg ca	aacat	ttgta	a ggt	gac	ggca	ccgt	tggt	caa (ggtca	acccgc	900
10	atga	attt	ggg (aagc	gtact	g g	gacct	tgcad	gad	cgaco	ccgc	agct	gtc	ga a	accg	gtaacc	960
	tate	gcac	cgc f	tcga	3												975
15	<210 <210 <210 <210	1> : 2> :	325 PRT	ID NO		esig	n										
20		3> r						ase <i>I</i>		ACM33	3 de:	cive	d fr	om A:	sper	gillus	3
	<40	0> 4	4														
25	Met 1	Ala	Ser	Met	Asp 5	Lys	Val	Phe	Ala	Gly 10	Tyr	Ala	Ala	Arg	Gln 15	Ala	
30	Ile	Leu	Glu	Ser 20	Thr	Glu	Thr	Thr	Asn 25	Pro	Phe	Ala	Lys	Gly 30	Ile	Ala	
	Trp	Val	Glu 35	Gly	Glu	Leu	Val	Pro 40	Leu	Ala	Glu	Ala	Arg 45	Ile	Pro	Leu	
35	Leu	Asp 50	Gln	Gly	Phe	Met	His 55	Ser	Asp	Leu	Thr	Tyr 60	Asp	Val	Pro	Ser	
40	Val 65	Trp	Asp	Gly	Arg	Phe 70	Phe	Arg	Leu	Asp	Asp 75	His	Ile	Thr	Arg	Leu 80	
	Glu	Ala	Ser	Cys	Thr 85	Lys	Leu	Arg	Leu	Arg 90	Leu	Pro	Leu	Pro	Arg 95	Asp	
45	Gln	Val	Lys	Gln 100	Ile	Leu	Val	Glu	Met 105	Val	Ala	Lys	Ser	Gly 110	Ile	Arg	
50	Asp	Ala	Phe 115	Val	Glu	Leu	Ile	Val 120	Thr	Arg	Gly	Leu	Lys 125	Gly	Val	Arg	
55	Gly	Thr 130	Arg	Pro	Glu	Asp	Ile 135	Val	Asn	Asn	Leu	Tyr 140	Met	Phe	Val	Gln	
	Dro	Ттт	3751	Trn	17 a 1	Mot	G1.,	Dro	Aen	Mot	Gl n	Ara	Wa l	G1 v	Glv	Sor	

	145					150					155					160	
5	Ala Va	al V	al	Ala	A rg 165	Thr	Val	Arg	Arg	Val 170	Pro	Pro	Gly	Ala	Ile 175	Asp	
10	Pro Tl	nr V	al	Lys 180	Asn	Leu	Gln	Trp	Gly 185	Asp	Leu	Val	Arg	Gly 190	Met	Phe	
70	Glu A		1a 95	Asp	Arg	Gly	Ala	Thr 200	Tyr	Pro	Phe	Leu	Thr 205	Asp	Gly	Asp	
15	Ala H: 2:	is L 10	eu	Thr	Glu	Gly	Ala 215	Gly	Tyr	Asn	Ile	Val 220	Leu	Val	Arg	Asn	
20	Gly G 225	lu L	eu	His	Thr	Pro 230	Arg	Arg	Gly	Val	Leu 235	Glu	Gly	Ile	Thr	Arg 240	
	Arg Th	nr V	al	Leu	Glu 245	Ile	Ala	Ala	Ala	Arg 250	Gly	Leu	Lys	Thr	His 255	Val	
25	Thr G	lu I	le	Pro 260	Ile	Gln	Ala	Leu	Tyr 265	Glu	Cys	Asp	Glu	Leu 270	Phe	Met	
30	Cys Se		hr 75	Ala	Gly	Gly	Ile	Met 280	Pro	Leu	Val	Leu	Leu 285	Asp	Gly	Asn	
35	Ile Va	al G 90	ly	Asp	Gly	Thr	Val 295	Gly	Pro	Val	Thr	A rg 300	Met	Ile	Trp	Glu	
	Ala Ty 305	yr T	rp	Asp	Leu	His 310	Asp	Asp	Pro	Gln	Leu 315	Ser	Glu	Pro	Val	Thr 320	
40	Tyr A	la P	ro	Leu	Glu 325												
45	<210> <211> <212> <213>	98 DN	ī A	D NO		erre	eus										
	<400> atggca	5 aagc	a t	ggat	aaaq	gt tt	ttg	caggt	tat	gcaç	gcac	gtca	aggca	aat 1	tatg	gaaagc	60
50	accgaa	aacc	a c	caat	ccgt	t to	gcaaa	aaggt	att	gcat	ggg	ttga	aaggt	ga a	actg	gttccg	120
	ctggca	agaa	gc	acgt	atto	cc go	ctgct	ggat	caç	ggtt	tta	tgca	atago	cga 1	tctga	acctat	180
55	gatgti	ccg	a g	cgtt	tggg	ga to	ggtc	gtttt	: ttt	cgto	ctgg	atga	atcat	tat 1	tacco	cgtctg	240
	gaagc	aagc	t g	rtaco	caaac	ct go	cgtct	gcgt	cto	gccgc	ctgc	ctc	gtgat	ca	ggtta	aaacaa	300

	attctggttg	aaatggttgc	caaaagcggt	attcgtgatg	catttgttga	actgattgtt	360
	acccgtggtc	tgaaaggtgt	tcgtggcacc	cgtccggaag	atattgttaa	taatctgtat	420
5	atgtttgtgc	agccgtatgt	ttgggttatg	gaaccggata	tgcagcgtgt	tggtggtagc	480
	gcagttgttg	cacgtaccgt	tcgtcgtgtt	ccgccgggtg	caattgatcc	gaccgttaaa	540
	aatctgcagt	ggggtgatct	ggttcgtggt	atgtttgaag	cagcagatcg	tggtgcaacc	600
10	tatccgtttc	tgaccgatgg	tgatgcacat	ctgaccgaag	gtagcggctt	taacattgtt	660
	ctggttaaag	atggcgtgct	gtatacaccg	gatcgtggtg	ttctgcaggg	tgttacccgt	720
	aaaagcgtta	ttaatgcagc	agaagccttt	ggtattgaag	ttcgtgttga	atttgttccg	780
15	gttgaactgg	catatcgctg	tgatgaaatc	tttatgtgta	ccaccgcagg	cggtattatg	840
	ccgattacca	ccctggatgg	tatgccggtt	aatggtggtc	agattggtcc	gattaccaaa	900
20	aaaatctggg	atggttattg	ggccatgcat	tatgatgcag	catatagctt	tgaaattgat	960
	tataatgaac	gcaatctcga	g				981
25	<211> 969 <212> DNA	ID NO.6	eromonas				
	<400> 6						
30		ttcagaaagt					60
		catttgcaga					120
		ttccgattct					180
35	ccggcagttt	ggaatggtcg	tatttttcgt	ctggatgatc	atctggatcg	tctggaagtt	240
	agctgtgcaa	aaatgcgtct	gccgctgccg	attgcacgtc	cggaactgcg	tcgtctggtt	300
	atggaactgg	ttagccgtag	cggtctgcgt	gatgcctatg	ttgaaattat	tgttacccgt	360
40	ggcctgaaat	ttctgcgtgg	tgcacaggca	gaagatatta	ttccgaatct	gtatctgatg	420
	gccgttccgt	atgtttggat	tctgccgctg	gaatatcaga	atcatggtgc	accggcagtt	480
45	gttacccgta	ccgttcgtcg	tacaccgccg	ggtgcactgg	atccgaccat	caaaaatctg	540
45	cagtggggtg	atctggttcg	tggtctgatg	gaagccggtg	atcgtgatag	cttttttccg	600
	attctgccgg	atggtgatgg	taatgcaacc	gaaggtgcag	gctataacat	tgttctggtt	660
50	cgtaatggcg	aactgcatac	accgcgtcgt	ggtgttctgg	aaggtattac	ccgtcgtacc	720
	gttctggaaa	ttgcagcagc	acgtggcctg	aaaacacatg	ttaccgaaat	tccgattcag	780
	gcactgtatg	aatgtgatga	actgtttatg	tgtagcaccg	caggcggtat	tatgccgctg	840
55	gttctgctgg	atggtaatat	tgttggtgat	ggcaccgttg	gtccggttac	ccgtatgatt	900
	tgggaagcat	attgggatct	gcatgatgat	ccgcagctga	gcgaaccggt	tacctatgca	960

	ccgctcgag 9	69
5	<210> SEQ ID NO.7 <211> 33 <212> DNA <213> Artificially synthesized	
10	<220>	
	ccgctcgagg ttacgctcgt tgtagtcaat ttc	33
15	<210> SEQ ID NO.8 <211> 29 <212> DNA <213> Artificially synthesized	
20	<220> <223> primer designed as the transaminase gene of Aspergillus terreus.	
	<400> 8 ggaattccat atggcgtcta tggacaaag	29
25	<210> SEQ ID NO.9 <211> 30 <212> DNA <213> Artificially synthesized	
30	<220> <223> primer designed as the transaminase gene of Neptune silk Aeromona	as.
	<400> 9 ccgctcgagc ggtgcatagg ttaccggttc	30
35		
	<210> SEQ ID NO.10 <211> 36 <212> DNA <213> Artificially synthesized	
40	<220> <223> primer designed as the transaminase gene of Neptune silk Aeromona	as.
45	<400> 10 ggaattccat atgctgacct tccaaaaagt actgac	36
50	<210> SEQ ID NO.11 <211> 27 <212> DNA <213> Artificially synthesized	
	<220> <223> antisense primer for amplification a fragment of transaminase genderive from Aspergillus terreus.	ne
55	<400> 11 qaacttcaga ccqcqqqtqa caatcaq	27

	<210>	SEQ ID NO.12	
	<211>	23	
	<212>	DNA	
		Artificially synthesized	
5		• •	
	<220>		
	<223>	sense primer for amplification a fragment of transaminase gene	
		from Aspergillus terreus.	
	<400>	12	
10	cacccq	cggt ctgaagttcc tgc	23
	<210>	SEQ ID NO.13	
	<211>	24	
15	<212>	DNA	
10		Artificially synthesized	
	<220>		
	<223>	antisense primer for amplification a fragment of transaminase ge	ne
20		from Aspergillus terreus.	
	<400>	13	
	cggcgg	aaca cgacgaacgg tacg	24
25	<210>	SEQ ID NO.14	
20	<211>		
	<212>	DNA	
		Artificially synthesized	
	<220>		
30	<223>	sense primer for amplification a fragment of transaminase gene	
		from Aspergillus terreus.	
	<400>	14	
	ttcatc	gtac tccgccgggc gcac	24
35		ggggg- g	
	∠210 >	SEQ ID NO.15	
	<211>	-	
	<211>		
40	<213>	Artificially synthesized	
40	4000s		
	<220>		
		antisense primer for amplification a fragment of transaminase $g \epsilon$ from Aspergillus terreus.	ne
	<400>	15	
45		gcgc cctcggtcag gtgag	25
	Lageet	gege eereggreag grgag	23
	∠21.0×	CEO ID NO 16	
	<210> <211>	SEQ ID NO.16	
50	<211>		
50			
	<213>	Artificially synthesized	
	<220>		
	<223>	sense primer for amplification a fragment of transaminase gene	
55		from Aspergillus terreus.	
	<400>	16	

	gaccgagggc gcaggctaca atatc 25
5	<210> SEQ ID NO.17 <211> 27 <212> DNA <213> Artificially synthesized
10	<220> <223> antisense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas.
	<400> 17 cccttcagac cacgcgtaac gatgatc 27
15	<210> SEQ ID NO.18 <211> 27 <212> DNA <213> Artificially synthesized
20	<220> <223> sense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas.
25	<400> 18 ttacgcgtgg tctgaagggt gtgcgtg 27
30	<210> SEQ ID NO.19 <211> 28 <212> DNA <213> Artificially synthesized
35	<220> <223> antisense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas. <400> 19
	ccaggcggag tacgacgtac agtacgag 28
40	<210> SEQ ID NO.20 <211> 26 <212> DNA <213> Artificially synthesized
45	<220> <223> sense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas.
50	<400> 20 tacgtcgtgt tccgcctggc gcaatc 26
55	<210> SEQ ID NO.21 <211> 24 <212> DNA <213> Artificially synthesized
	<220>

	<223> antisense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas.													
5	<400> 21 gccgctgcct tccgtcgcgt tacc 24													
10	<210> SEQ ID NO.22 <211> 25 <212> DNA <213> Artificially synthesized													
15	<220> <223> sense primer for amplification a fragment of transaminase gene derive from Neptune silk Aeromonas. <400> 22 gacggaaggc agcggcttca acatc 25													
20	<210> SEQ ID NO.23 <211> 327 <212> PRT <213> Aspergillus terreus													
25	<pre><400> 23 Met Ala Ser Met Asp Lys Val Phe Ala Gly Tyr Ala Ala Arg Gln Ala 1</pre>													
30	Ile Leu Glu Ser Thr Glu Thr Thr Asn Pro Phe Ala Lys Gly Ile Ala 20 25 30													
35	Trp Val Glu Gly Glu Leu Val Pro Leu Ala Glu Ala Arg Ile Pro Leu 35 40 45													
	Leu Asp Gln Gly Phe Met His Ser Asp Leu Thr Tyr Asp Val Pro Ser 50 55 60													
40	Val Trp Asp Gly Arg Phe Phe Arg Leu Asp Asp His Ile Thr Arg Leu 65 70 75 80													
45	Glu Ala Ser Cys Thr Lys Leu Arg Leu Arg Leu Pro Leu Pro Arg Asp 85 90 95													
50	Gln Val Lys Gln Ile Leu Val Glu Met Val Ala Lys Ser Gly Ile Arg 100 105 110													
	Asp Ala Phe Val Glu Leu Ile Val Thr Arg Gly Leu Lys Gly Val Arg 115 120 125													
55	Gly Thr Arg Pro Glu Asp Ile Val Asn Asn Leu Tyr Met Phe Val Gln 130 135 140													

	Pro 145	Tyr	Val	Trp	Val	Met 150	Glu	Pro	Asp	Met	Gln 155	Arg	Val	Gly	Gly	Ser 160
5	Ala	Val	Val	Ala	Arg 165	Thr	Val	Arg	Arg	Val 170	Pro	Pro	Gly	Ala	Ile 175	Asp
10	Pro	Thr	Val	Lys 180	Asn	Leu	Gln	Trp	Gly 185	Asp	Leu	Val	Arg	Gly 190	Met	Phe
	Glu	Ala	Ala 195	Asp	Arg	Gly	Ala	Thr 200	Tyr	Pro	Phe	Leu	Thr 205	Asp	Gly	Asp
15	Ala	His 210	Leu	Thr	Glu	Gly	Ser 215	Gly	Phe	Asn	Ile	Val 220	Leu	Val	Lys	Asp
20	Gly 225	Val	Leu	Tyr	Thr	Pro 230	Asp	Arg	Gly	Val	Leu 235	Gln	Gly	Val	Thr	Arg 240
25	Lys	Ser	Val	Ile	Asn 245	Ala	Ala	Glu	Ala	Phe 250	Gly	Ile	Glu	Val	Arg 255	Val
	Glu	Phe	Val	Pro 260	Val	Glu	Leu	Ala	Tyr 265	Arg	Cys	Asp	Glu	Ile 270	Phe	Met
30	Cys	Thr	Thr 275	Ala	Gly	Gly	Ile	Met 280	Pro	Ile	Thr	Thr	Leu 285	Asp	Gly	Met
35	Pro	Val 290	Asn	Gly	Gly	Gln	Ile 295	Gly	Pro	Ile	Thr	Lys 300	Lys	Ile	Trp	Asp
40	Gly 305	Tyr	Trp	Ala	Met	His 310	Tyr	Asp	Ala	Ala	Tyr 315	Ser	Phe	Glu	Ile	Asp 320
	Tyr	Asn	Glu	Arg	Asn 325	Leu	Glu									
45	<210 <211 <212 <213	.> 3 !> E	323 PRT	ID NO		Aero	omona	ns								
50	<400	> 2	24													
	Met 1	Leu	Thr	Phe	Gln 5	Lys	Val	Leu	Thr	Gly 10	Phe	Gln	Thr	Arg	Ala 15	Asp
55	Ala	Arg	Ala	Glu 20	Arg	Thr	Asp	Ala	Phe 25	Ala	Asp	Gly	Ile	Ala 30	Trp	Ile

	Glu	Asn	Glu 35	Phe	Val	Pro	Ile	Gly 40	Lys	Ala	Arg	Ile	Pro 45	Ile	Leu	Asp
5	Gln	Gly 50	Phe	Leu	His	Ser	Asp 55	Leu	Thr	Tyr	Asp	Val 60	Pro	Ala	Val	Trp
10	Asn 65	Gly	Arg	Ile	Phe	Arg 70	Leu	Asp	Asp	His	Leu 75	Asp	Arg	Leu	Glu	Val 80
	Ser	Cys	Ala	Lys	Met 85	Arg	Leu	Pro	Leu	Pro 90	Ile	Ala	Arg	Pro	Glu 95	Leu
15	Arg	Arg	Leu	Val 100	Met	Glu	Leu	Val	Ser 105	Arg	Ser	Gly	Leu	Arg 110	Asp	Ala
20	Tyr	Val	Glu 115	Ile	Ile	Val	Thr	Arg 120	Gly	Leu	Lys	Phe	Leu 125	Arg	Gly	Ala
25	Gln	Ala 130	Glu	Asp	Ile	Ile	Pro 135	Asn	Leu	Tyr	Leu	Met 140	Ala	Val	Pro	Tyr
	Val 145	Trp	Ile	Leu	Pro	Leu 150	Glu	Tyr	Gln	Asn	His 155	Gly	Ala	Pro	Ala	Val 160
30	Val	Thr	Arg	Thr	Val 165	Arg	Arg	Thr	Pro	Pro 170	Gly	Ala	Leu	Asp	Pro 175	Thr
35	Ile	Lys	Asn	Leu 180	Gln	Trp	Gly	Asp	Leu 185	Val	Arg	Gly	Leu	Met 190	Glu	Ala
	Gly	Asp	Arg 195	Asp	Ser	Phe	Phe	Pro 200	Ile	Leu	Pro	Asp	Gly 205	Asp	Gly	Asn
40	Ala	Thr 210	Glu	Gly	Ala	Gly	Tyr 215	Asn	Ile	Val	Leu	Val 220	Arg	Asn	Gly	Glu
45	Leu 225	His	Thr	Pro	Arg	Arg 230	Gly	Val	Leu	Glu	Gly 235	Ile	Thr	Arg	Arg	Thr 240
50	Val	Leu	Glu	Ile	Ala 245	Ala	Ala	Arg	Gly	Leu 250	Lys	Thr	His	Val	Thr 255	Glu
	Ile	Pro	Ile	Gln 260	Ala	Leu	Tyr	Glu	Cys 265	Asp	Glu	Leu	Phe	Met 270	Cys	Ser
55	Thr	Ala	Gly 275	Gly	Ile	Met	Pro	Leu 280	Val	Leu	Leu	Asp	Gly 285	Asn	Ile	Val

	Gly	Asp 290	Gly	Thr	Val	Gly	Pro 295	Val	Thr	Arg	Met	11e 300	Trp	Glu	Ala	Tyr	
5	Trp 305	Asp	Leu	His	Asp	Asp 310	Pro	Gln	Leu	Ser	Glu 315	Pro	Val	Thr	Tyr	Ala 320	
10	Pro	Leu	Glu														
15	<210 <211 <212 <213	L> : 2> I	SEQ 1 325 PRT Artii			esigr	ı										
		3> Le	eu to pergi											minas	se Al	I-TACM32 de	rived
20	<400)> 2	25														
	Met 1	Ala	Ser	Met	Asp 5	Lys	Val	Phe	Ala	Gly 10	Tyr	Ala	Ala	Arg	Gln 15	Ala	
25	Ile	Leu	Glu	Ser 20	Thr	Glu	Thr	Thr	Asn 25	Pro	Phe	Ala	Lys	Gly 30	Ile	Ala	
30	Trp	Val	Glu 35	Gly	Glu	Ile	Val	Pro 40	Leu	Ala	Glu	Ala	Arg 45	Ile	Pro	Leu	
35	Leu	Asp 50	Gln	Gly	Phe	Met	His 55	Ser	Asp	Leu	Thr	Tyr 60	Asp	Val	Pro	Ser	
	Val 65	Trp	Asp	Gly	Arg	Phe 70	Phe	Arg	Leu	Asp	Asp 75	His	Ile	Thr	Arg	Leu 80	
40	Glu	Ala	Ser	Cys	Thr 85	Lys	Leu	Arg	Leu	Arg 90	Leu	Pro	Leu	Pro	Arg 95	Asp	
45	Gln	Val	Lys	Gln 100	Ile	Leu	Val	Glu	Met 105	Val	Ala	Lys	Ser	Gly 110	Ile	Arg	
50	Asp	Ala	Phe 115	Val	Glu	Leu	Ile	Val 120	Thr	Arg	Gly	Leu	Lys 125	Gly	Val	Arg	
	Gly	Thr 130	Arg	Pro	Glu	Asp	Ile 135	Val	Asn	Asn	Leu	Tyr 140	Met	Phe	Val	Gln	
55	Pro 145	Tyr	Val	Trp	Val	Met 150	Glu	Pro	Asp	Met	Gln 155	Arg	Val	Gly	Gly	Ser 160	

	Ala	Val	Val	Ala	Arg 165	Thr	Val	Arg	Arg	Thr 170	Pro	Pro	Gly	Ala	Leu 175	Asp
5	Pro	Thr	Ile	Lys 180	Asn	Leu	Gln	Trp	Gly 185	Asp	Leu	Val	Arg	Gly 190	Leu	Met
10	Glu	Ala	Gly 195	Asp	Arg	Asp	Ser	Phe 200	Phe	Pro	Ile	Leu	Pro 205	Asp	Gly	Asp
15	Gly	Asn 210	Ala	Thr	Glu	Gly	Ala 215	Gly	Tyr	Asn	Ile	Val 220	Leu	Val	Arg	Asn
	Gly 225	Glu	Leu	His	Thr	Pro 230	Arg	Arg	Gly	Val	Leu 235	Glu	Gly	Ile	Thr	Arg 240
20	Arg	Thr	Val	Leu	Glu 245	Ile	Ala	Ala	Ala	A rg 250	Gly	Leu	Lys	Thr	His 255	Val
25	Thr	Glu	Ile	Pro 260	Ile	Gln	Ala	Leu	Tyr 265	Glu	Cys	Asp	Glu	Leu 270	Phe	Met
30	Cys	Ser	Thr 275	Ala	Gly	Gly	Ile	Met 280	Pro	Leu	Val	Leu	Leu 285	Asp	Gly	Asn
	Ile	Val 290	Gly	Asp	Gly	Thr	Val 295	Gly	Pro	Val	Thr	Arg 300	Met	Ile	Trp	Glu
35	Ala 305	Tyr	Trp	Asp	Leu	His 310	Asp	Asp	Pro	Gln	Leu 315	Ser	Glu	Pro	Val	Thr 320
40	Tyr	Ala	Pro	Leu	Glu 325											

Claims

50

55

- **1.** A transaminase or a modified compound, functional equivalent, functional fragment or variant thereof, wherein an amino sequence of the transaminase comprises a sequence selected from one of the following sequences:
 - a) an amino acid sequence as shown in SEQ ID NO: 2 or 4;
 - b) an amino acid sequence with at least 80% identity to the amino acid sequence as shown in SEQ ID NO: 2 or 4 and having the activity of an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the amino acid sequence is not an amino acid sequence encoded by a nucleotide sequence as shown in SEQ ID NO: 5 or 6;
 - c) a protein which is derived from SEQ ID NO: 2 or 4 by subjecting the amino acid sequence as shown in SEQ ID NO: 2 or 4 to substitution, deletion or addition one or more amino acids, and having the activity of an omegatransaminase with high stereoselective R-configuration catalytic activity, wherein the amino acid sequence is not the amino acid sequence encoded by the nucleotide sequence as shown in SEQ ID NO: 5 or 6, wherein the high stereoselective refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.

- 2. The transaminase according to claim 1, wherein the amino acid sequence of the transaminase is an amino acid sequence acquired by substituting leucine at the 38th site of the amino acid sequence as shown in SEQ ID NO: 2 by isoleucine.
- **3.** A nucleotide, wherein the nucleotide encodes the transaminase or the modified compound, functional equivalent, functional fragment or variant thereof according to claim 1 or 2.
 - **4.** The nucleotide according to claim 3, wherein a sequence of the nucleotide includes a sequence selected from one of the following sequences:
 - a) a nucleotide sequence as shown in SEQ ID NO: 1 or 3;

10

15

25

40

45

50

55

- b) a nucleotide sequence with at least 80% identity to the nucleotide sequence as shown in SEQ ID NO: 1 or 3 and encoding an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6;
- c) a nucleotide sequence capable of hybridizing with the nucleotide sequence as shown in SEQ ID NO: 1 or 3 under highly stringent conditions and encoding an omega-transaminase with high stereoselective R-configuration catalytic activity, wherein the nucleotide sequence is not the nucleotide sequence as shown in SEQ ID NO: 5 or 6.
- wherein the high stereoselective refers to the content of one of the stereoisomers being at least about 1.1 times that of the other.
 - **5.** A recombinant vector, wherein the nucleotide according to claim 3 or 4 is effectively connected in the recombinant vector.
 - **6.** The recombinant vector according to claim 5, wherein the recombinant vector is pET22b-CM32 or pET22b-CM33.
 - 7. A host cell, wherein the recombinant vector according to claim 5 or 6 is transformed or transfected into the host cell.
- **8.** A method for synthesizing a chiral amine, wherein the method comprises the following steps: making a ketone compound, the transaminase or the modified compound, functional equivalent, functional fragment or variant thereof according to claim 1, pyridoxal phosphate, and an amino donor to react in a reaction system so as to obtain the chiral amine of R configuration.
- 35 9. The method according to claim 8, wherein the ketone compound is

wherein R_1 and R_2 are independently C_1 to C_8 alkyl, C_5 to C_{10} naphthenic base, C_5 to C_{10} aryl or C_5 to C_{10} heteroaryl; or R_1 and R_2 form a C_5 to C_{10} heterocyclic radical, a C_5 to C_{10} carbocyclic radical or C_5 to C_{10} heteroaryl with a carbon on a carbonyl group; heteroatoms in the C_5 to C_{10} heterocyclic radical and C_5 to C_{10} heteroaryl are independently selected from at least one of nitrogen, oxygen and sulfur; the aryl in the C_5 to C_{10} aryl, the heteroaryl in the C_5 to C_{10} heteroaryl, the carbocyclic radical in the C_5 to C_{10} heterocyclic radical is independently unsubstituted or is substituted by at least one radical of halogen, alkoxy or alkyl; preferably, the ketone compound

is selected from

- **10.** The method according to claim 8 or 9, wherein the reaction system further includes a dissolution promoter, and the dissolution promoter is dimethyl sulfoxide or polyethylene glycol, and the polyethylene glycol is preferably PEG-400.
- 11. The method according to claim 9, wherein the C1 to C8 alkyl is C1 to C8 linear alkyl, the C5 to C10 heteroaryl is a pyridine group, the alkoxy is C1 to C6 alkoxy, the heterocyclic radical in the C5 to C10 heterocyclic radical is piperidine, a substituent on the aryl in the C5 to C10 aryl, the heteroaryl in the C5 to C10 heteroaryl, the carbocyclic radical in the C5 to C10 carbocyclic radical or the heterocyclic radical in the C5 to C10 heterocyclic radical is independently C1 to C6 linear alkyl or C1 to C6 alkoxy, and the amino donor is isopropylamine or D-alanine.

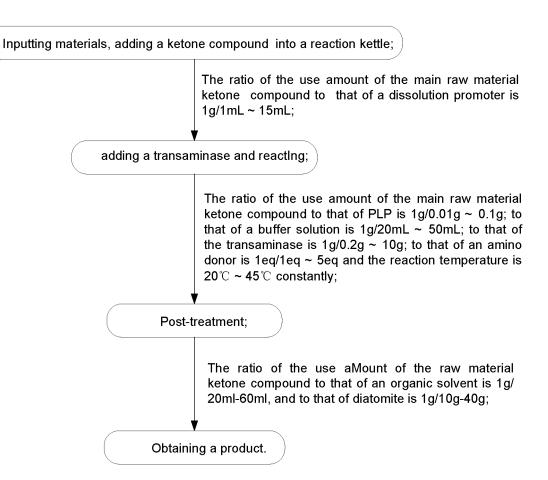


Fig. 1

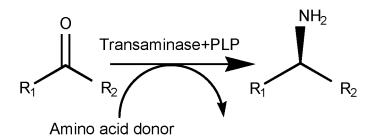


Fig. 2

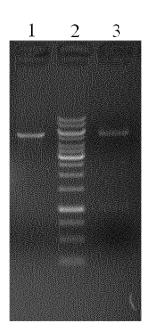


Fig. 3

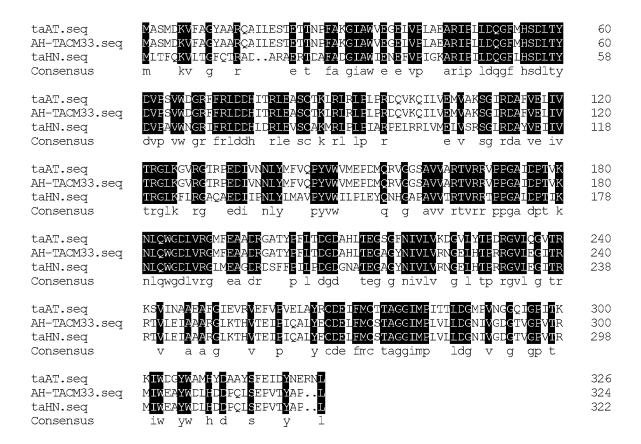


Fig. 4

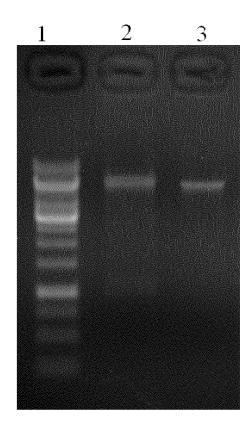


Fig. 5

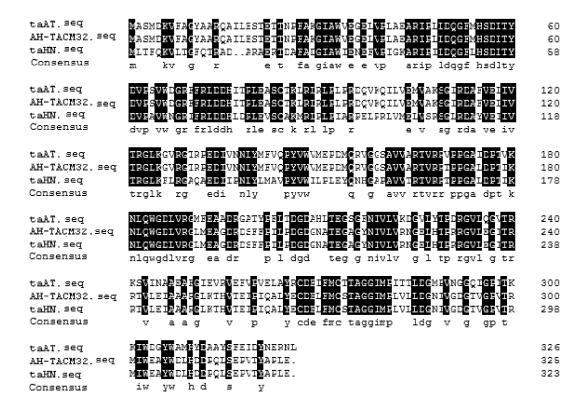


Fig. 6

International application No.

PCT/CN2014/090080 5 A. CLASSIFICATION OF SUBJECT MATTER C12N 9/10 (2006.01) i; C12N 15/54 (2006.01) i; C12P 17/12 (2006.01) i; C12P 13/00 (2006.01) i; C12R 1/66 (2006.01) i; C12R 1/67 (2006.01) i According to International Patent Classification (IPC) or to both national classification and IPC 10 FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N; C12P; C12R 15 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CPRSABS; CNABS; DWPI; SIPOABS; CNTXT; EPTXT; WOTXT; USTXT; CATXT; GBTXT; JPTXT; KRTXT; CNKI; ISI; CNCCORRECTED AND CONTROL OF CONT20 PUBMED; GOOGLE; ELSEVIER: Hyphomonas neptunium, Aspergillus terreus, terreus, neptunium, transaminase, omega-transaminase, co-transaminase, bacterium, bacteria, molecular modification, molecular designing, mutate, mutation, chiral amine, optical activity, synthesize, synthesis, asymmetric synthesis; GenBank; DDBJ; EMBL: sequences search on SEQ ID NOs: 1-6. C. DOCUMENTS CONSIDERED TO BE RELEVANT 25 Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X CN 102482650 A (LONZA AG) 30 May 2012 (30.05.2012) see the abstract, claims, see the 1, 3-11 embodiments 1-4, SEQ ID NOs: 3-4 2 Α Cassimjee KE et al. "Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4'-substituted acetophenones, and follows 30 Swain-Lupton parameterization" Organic & Biomolecular Chemistry, vol. 28, no. 10, 28 July 2012 (28.07.2012). pages 5466-5470. see the abstract WO 2009088949 A1 (VERENIUM CORP et al.) 16 July 2009 (16.07.2009) see the whole 1-11 Α CN 101512005 A (LONZA AG) 19 August 2009 (19.08.2009) see the whole document Α 1-11 35 Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date Special categories of cited documents: or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "X" document of particular relevance; the claimed invention "E" earlier application or patent but published on or after the 40 cannot be considered novel or cannot be considered to involve international filing date an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such documents, such combination being obvious to a person document referring to an oral disclosure, use, exhibition or 45 skilled in the art other means "&"document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 27 January 2015 10 February 2015 50 Name and mailing address of the ISA Authorized officer State Intellectual Property Office of the P. R. China LI, Xiaoqu No. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing 100088, China Telephone No. (86-10) 62089432 Facsimile No. (86-10) 62019451

55

Form PCT/ISA/210 (second sheet) (July 2009)

International application No. PCT/CN2014/090080

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
A	EP 1818411 A1 (LONZA AG) 15 August 2007 (15.08.2007)	1-11
	see the whole document	
A	JIA, Honghua et al. "Progress in ω-transaminase in chiral amine synthesis"	1-11
	Modern Chemical Industry, vol. 32, no. 3, 31 March 2012 (31.03.2012),	
	pages 16-22, see the whole document	
A	Jong-Shik Shin and Byung-Gee Kim. "Asymmetric Synthesis of Chiral Amines with ω-Transaminase"	8-11
	Biotechnology and Bioengineering, vol. 65, no. 2, 20 October 1999 (20.10.1999),	
	pages 206-211, see the whole document	
A	Jong-Shik Shin and Byung-Gee Kim. "Comparison of the ω-Transaminase from Different Microorganisms and Application to Production of Chiral Amines"	1-11
	Biosci. Biotechnol. Biochem., vol. 65, no. 8, 31 August 2001 (31.08.2001)	
	pages 1782-1788, see the whole document	

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

55

5

International application No. PCT/CN2014/090080

5		PCT/CN2014/090080
	Box No. II Observations where certain claims were found unsearchable (Continua	ntion of item 2 of first sheet)
	This international search report has not been established in respect of certain claims under 1. Claims Nos.:	Article 17(2)(a) for the following reasons:
10	because they relate to subject matter not required to be searched by this Authority Claims Nos.:	y, namely:
	because they relate to parts of the international application that do not comply wit extent that no meaningful international search can be carried out, specifically:	h the prescribed requirements to such an
15	Box No. III Observations where unity of invention is lacking (Continuation of item	3 of first sheet)
	This International Searching Authority found multiple inventions in this international appli	lication, as follows:
20	[1] Invention 1: claims 1, 3-7 (all partially) and 2, relate to a transaminase comprising a sefunctional equivalent, functional fragment or variant thereof, a nucleotide sequence encode comprising the nucleotide sequence and a host cell comprising the recombinat vector;	-
	[2] Invention 2: claims 1, 3-7 (all partially), relate to a to a transaminase comprising a seq functional equivalent, functional fragment or variant thereof, a nucleotide sequence encod comprising the nucleotide sequence and a host cell comprising the recombinat vector;	
25	[3] Invention 3: claims 9-11, relate to a method of synthesis of chiral amine.	
	[4] D1: CN102482650 A (LONZA AG), 30.May 2012 (30.05.2012), see the abstract, the o	claims, SEQ ID NO:3.
30	[5] The common or corresponding technical features between inventions 1 and 2 are the fr (R)-selective ω -transaminase showing highly specificity, and the common or corresponding 3 are transaminases, modifications, functional equivalents, functional fragment or variants (R)-selective ω -transaminase as shown in SEQ ID NO:3 which is 83% identify to SEQ ID abstract, claims, SEQ ID NO:3). Thus, D1 discloses the amino acid sequence as (R)-selecting a transaminase, a modifications, a functional equivalent, a functional fragment or variants.	ng technical features among inventions 1-2 and sthereof. D1 discloses a sequence of DNO: 4 of the present application(see the tive ω-transaminase showing highly specificity
35	inventions 1-2 and 3 lack common or corresponding special technical features, and inventigeneral inventive concept and therefore do not meet the requirements of unity of invention	
	1. 🛮 As all required additional search fees were timely paid by the applicant, this interclaims.	national search report covers all searchable
40	2. As all searchable claims could be searched without effort justifying additional feed of additional fees.	es, this Authority did not invite payment
	3. As only some of the required additional search fees were timely paid by the appli only those claims for which fees were paid, specifically claims Nos.:	cant, this international search report covers
45	4. No required additional search fees were timely paid by the applicant. Consequent to the invention first mentioned in the claims; it is covered by claims Nos.:	ly, this international search report is restricted
50	Remark on protest The additional search fees were accompanied by the apple payment of a protest fee.	licant's protest and, where applicable, the
	☐ The additional search fees were accompanied by the app was not paid within the time limit specified in the invitation	
	No protest accompanied the payment of additional search	n fees.
55	Form PCT/ISA /210 (continuation of first sheet (2)) (July 2009)	

Information on patent family members

International application No. PCT/CN2014/090080

					1 01/01/201 (10) 0000
10	Patent Documents referred in the Report	Publication Date	Patent Fam	ily	Publication Date
	WO 2009088949 A1	16 July 2009	EP 2238242	. A 4	11 January 2012
			JP 20115141	41 A	06 May 2011
			AU 20083472	34 A1	16 July 2009
15			CN 1019653	97 A	02 February2011
			EP 2238242	. A1	13 October 2010
			JP 5563990	B2	30 July 2014
20			JP 20142099	13 A	13 November 2014
			US 8709772	B2	29 April 2014
			EP 2238242	B1	26 November 2014
25			US 20110333	91 A1	10 February 2011
			US 20141652	21 A1	12 June 2014
			CA 2710683	S A1	16 July 2009
30	CN 101512005 A	19 August 2009	EA 016471	B1	30 May 2012
30			ES 2474691 T3		09 July 2014
			KR 20090050	054 A	19 May 2009
			JP 20105022	02 A	28 January 2010
35			CA 2659300) A1	13 March 2008
			EP 2064331	B1	02 April 2014
			EP 1897956	A1	12 March 2008
40			CA 265930	0 C	18 February 2014
			KR 10111950	01 B1	28 February 2012
			CN 1015120	05 B	02 January 2013
45			US 20093252	24 A1	31 December 2009
45			IL 196779	D0	01 August 2011
			EP 2064331	A1	03 June 2009
			EA 20097024	·7 A1	28 August 2009
50			AU 20072940	90 B2	05 July 2012
			BR PI071687	4 A2	15 October 2013

Form PCT/ISA/210 (patent family annex) (July 2009)

55

5

Information on patent family members

International application No. PCT/CN2014/090080

5	mormaci	in on patent running in	PCT/CN2014/090080			
	Patent Documents referred in the Report	Publication Date	ication Date Patent Family		Publication Date	
10			JP 5102297 MX 2009002		19 December 2012 20 March 2009	
			WO 20080286		13 March 2008	
			AU 20072940		13 March 2008	
15			US 8728750) B2	20 May 2014	
	CN 102482650 A	30 May 2012	US 20121567	06 A1	21 June 2012	
20			WO 20110265	56 A1	10 March 2011	
20			EP 2473601	. A1	11 July 2012	
			AU 2010291586 A1		01 March 2012	
			KR 20120096	465 A	30 August 2012	
25			EA 20127035	50 A1	30 July 2012	
			SG 178842	A1	27 April 2012	
			MX 2012002:	561 A	10 April 2012	
30			CA 2772426	5 A1	10 March 2011	
30			IL 218397	D0	30 April 2012	
			US 8577622	2 B2	05 November 2013	
			CN 1034720	93 A	25 December 2013	
35	EP 1818411 A1	15 August 2007	DK 1987152 EP 1987152		30 August 2010 26 May 2010	
			AU 20072147	17 B2	22 December 2011	
40			EA 017070	B1	28 September 2012	
			JP 20095265	31 A	23 July 2009	
			IL 219163	D0	28 June 2012	
			IL 219164	D0	28 June 2012	
45			JP 5430945	B2	05 March 2014	
			DE 602007006	765 D1	08 July 2010	
			IL 192637	D0	11 February 2009	
50			AU 20072147	17 A1	23 August 2007	

Form PCT/ISA/210 (patent family annex) (July 2009)

55

Information on patent family members

5

55

International application No. PCT/CN2014/090080

Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
		PT 1987152 E	18 August 2010
		CN 101384723 B	27 March 2013
		AT 469233 T	15 June 2010
		BRPI 0707454 A2	03 May 2011
		CA 2637821 A1	23 August 2007
		CN 101384723 A	11 March 2009
		EP 2202318 A1	30 June 2010
		EP 1987152 A1	05 November 2008
		JP 2013188217 A	26 September 2013
		EP 2202317 A1	30 June 2010
		KR 20080093437 A	21 October 2008
		WO 2007093372 A1	23 August 2007
		KR 101294499 B1	07 August 2013
		MX 2008010416 A	27 January 2009
		IL 192637 A	31 December 2014
		US 2009246837 A1	01 October 2009
		EA 200870262 A1	27 February 2009
		ES 2345734 T3	30 September 2010

Form PCT/ISA/210 (patent family annex) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- RENAT KADYROV et al. Highly Enantioselective Hydrogen-Transfer Reductive Amination: Catalytic Asymmetric Synthesis of Primary Amines. Angewandte Chemie International Edition, 2003, vol. 42 (44), 5472-5474 [0003]
- **OHKUMA T et al.** Trans-RuH (eta1-BH4) (binap) (1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions. *Journal of the American Chemical Society*, 2002, vol. 124 (23), 6508-6509 **[0003]**