(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

05.10.2016 Bulletin 2016/40

(51) Int Cl.:

F23R 3/08^(2006.01)

F23R 3/00 (2006.01)

(21) Application number: 16162430.9

(22) Date of filing: 24.03.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 30.03.2015 US 201514673629

(71) Applicant: United Technologies Corporation Farmington, CT 06032 (US)

(72) Inventors:

- KWOKA, David South Glastonbury, CT Connecticut 06073 (US)
- REZVANI, Reza
 Bolton, Connecticut 06043 (US)

 EASTWOOD, Jonathan Jeffery
- Vernon, CT Connecticut 06066 (US)

 (74) Representative: Hall, Matthew Benjamin

Dehns St Bride's House 10 Salisbury Square London EC4Y 8JD (GB)

(54) COMBUSTOR CONFIGURATIONS FOR A GAS TURBINE ENGINE

(57) The present disclosure relates to combustor configurations and components for a gas turbine engine (100). In one embodiment, a combustor (105) for a gas turbine engine includes a support structure and a plurality of panels (115) mounted to the structure. The plurality of panels define a combustion cavity (120) of the combustor. The plurality of panels include a first panel (126; 205;

305) having a leading (315) and trailing edge (135; 215), and a second panel (127; 210; 310) having a leading edge (140; 220; 320) and trailing edge (325), wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

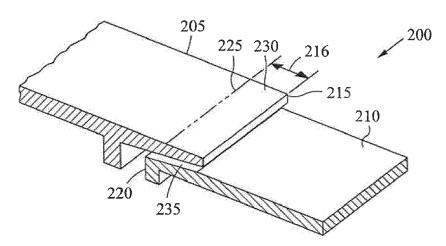


FIG. 2A

EP 3 076 078 A1

25

40

45

FIELD

[0001] The present disclosure relates to combustors for gas turbine engines and, in particular, to combustor configurations and components for gas turbine engines.

1

BACKGROUND

[0002] Gas turbine engines are required to operate efficiently during operation and flight. Theses engines create a tremendous amount of force and generate high levels of heat. As such, components of these engines are subjected to high levels of stress, temperature and pressure. It is necessary to provide components that can withstand the demands of a gas turbine engine. It is also desirable to provide components with increased operating longevity.

[0003] Conventional gas turbine engine combustors can include a combustor shell. The conventional combustor shell and its typical arrangement provide air flow to a combustor cavity. However, the conventional arrangements may result in regions experiencing distress due to the hot gas environment of the engine. Accordingly, there is a desire to improve combustion cooling and provide a configuration that allows for improved cooling characteristics. There is also a desire to improve the configuration of gas turbine engines and combustors.

BRIEF SUMMARY OF THE EMBODIMENTS

[0004] Disclosed and claimed herein are combustor configurations and components for gas turbine engines. One embodiment is directed to a combustor for a gas turbine engine, the combustor including a support structure and a plurality of panels mounted to the structure, the plurality of panels defining a combustion cavity of the combustor. The plurality of panels include a first panel having a leading and trailing edge and a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

[0005] In one embodiment, the support structure is an annular structure including an inner diameter structure and outer diameter structure, and wherein the plurality of panels are mounted to at least one of the inner diameter structure and outer diameter structure.

[0006] In one embodiment, the plurality of panels are heat shield panels.

[0007] In one embodiment, an air gap between the trailing edge of the first panel and the leading edge of the second panel forms at least a portion of a circumferential air gap for the combustor.

[0008] In one embodiment, the trailing edge of the first panel extends beyond the leading edge of the second panel to provide an air flow gap between the first and

second panels and wherein portion of the first panel associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow gap.

[0009] In one embodiment, the first panel extends over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.

[0010] In one embodiment, the second panel includes effusion holes positioned along the leading edge of the second panel.

[0011] In one embodiment, the leading edge of the second panel is chamfered.

[0012] In one embodiment, the leading edge of the second panel includes one or more features to provide airflow when the trailing edge of the first panel contacts the leading edge of the second panel.

[0013] In one embodiment, the one or more features include groves in the leading edge of the second panel to provide said airflow.

[0014] Another embodiment is directed to a gas turbine engine including a combustor having a support structure and a plurality of panels mounted to the support structure. The plurality of panels define a combustion cavity of the combustor. The plurality of panels include a first panel having a leading and trailing edge, and a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

0 [0015] In one embodiment, the support structure is an annular structure including an inner diameter structure and outer diameter structure, and wherein the plurality of panels are mounted to at least one of the inner diameter structure and outer diameter structure.

[0016] In one embodiment, the plurality of panels are heat shield panels.

[0017] In one embodiment, an air gap between the trailing edge of the first panel and the leading edge of the second panel forms at least a portion of a circumferential air gap for the combustor.

[0018] In one embodiment, the trailing edge of the first panel extends beyond the leading edge of the second panel to provide an air flow gap between the first and second panels and wherein portion of the first panel associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow

[0019] In one embodiment, the first panel extends over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.

[0020] In one embodiment, the second panel includes effusion holes positioned along the leading edge of the second panel.

[0021] In one embodiment, leading edge of the second panel is chamfered.

[0022] In one embodiment, leading edge of the second panel includes one or more features to provide airflow when the trailing edge of the first panel contacts the lead-

20

25

30

40

45

ing edge of the second panel.

[0023] In one embodiment, the one or more features include groves in the leading edge of the second panel to provide said airflow.

[0024] The present disclosure provides a combustor for a gas turbine engine, the combustor comprising: a support structure; and a plurality of panels mounted to the structure, the plurality of panels defining a combustion cavity of the combustor, wherein the plurality of panels include a first panel having a leading and trailing edge, and a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

[0025] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the support structure may be an annular structure including an inner diameter structure and outer diameter structure, and the plurality of panels may be mounted to at least one of the inner diameter structure and outer diameter structure.

[0026] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the plurality of panels may be heat shield panels.

[0027] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, an air gap between the trailing edge of the first panel and the leading edge of the second panel may form at least a portion of a circumferential air gap for the combustor.

[0028] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the trailing edge of the first panel may extend beyond the leading edge of the second panel to provide an air flow gap between the first and second panels and wherein a portion of the first panel associated with the leading edge may be configured to prevent a gas path flow within the combustor to enter the air flow gap.

[0029] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first panel may extend over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.

[0030] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the second panel may include effusion holes positioned along the leading edge of the second panel.

[0031] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the leading edge of the second panel may be chamfered.

[0032] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the leading edge of the second panel may

include one or more features to provide airflow when the trailing edge of the first panel contacts the leading edge of the second panel.

[0033] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the one or more features may include groves in the leading edge of the second panel to provide said airflow.

[0034] The present disclosure also provides a gas turbine engine comprising: a combustor having a support structure; and a plurality of panels mounted to the support structure, the plurality of panels defining a combustion cavity of the combustor, wherein the plurality of panels include a first panel having a leading and trailing edge, and a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

[0035] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the support structure may be an annular structure including an inner diameter structure and outer diameter structure, and the plurality of panels may be mounted to at least one of the inner diameter structure and outer diameter structure.

[0036] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the plurality of panels may be heat shield panels.

[0037] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, an air gap between the trailing edge of the first panel and the leading edge of the second panel forms at least a portion of a circumferential air gap for the combustor.

[0038] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the trailing edge of the first panel may extend beyond the leading edge of the second panel to provide an air flow gap between the first and second panels and wherein a portion of the first panel associated with the leading edge may be configured to prevent a gas path flow within the combustor to enter the air flow gap.

[0039] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first panel may extend over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.

[0040] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the second panel may include effusion holes positioned along the leading edge of the second panel.

[0041] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the leading edge of the second panel may

15

25

be chamfered.

[0042] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the leading edge of the second panel may include one or more features to provide airflow when the trailing edge of the first panel contacts the leading edge of the second panel.

[0043] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the one or more features may include groves in the leading edge of the second panel to provide said airflow.

[0044] Other aspects, features, and techniques will be apparent to one skilled in the relevant art in view of the following detailed description of the embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0045] The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

FIG. 1 depicts a graphical representation of a gas turbine engine and combustor configuration according to one or more embodiments;

FIGs. 2A-2B depict graphical representations of a panel configuration according to one or more embodiments; and

FIGs. 3A-3C depict graphical representations of combustor panels according to one or more embodiments.

DETAINED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

Overview and Terminology

[0046] One aspect of this disclosure relates to configurations for combustors according to one or more embodiments. In one embodiment, a configuration is provided for a combustor to prevent hot air/gas path egress to one or more air gaps of the combustor. According to one embodiment, panels may be configured with an extended portion to allow for the trailing edge of panels to extend over the leading edge of adjacent and downstream panels. In addition, one or more features may be provided to account for thermal growth of the panel interface.

[0047] As used herein, the terms "a" or "an" shall mean one or more than one. The term "plurality" shall mean two or more than two. The term "another" is defined as a second or more. The terms "including" and/or "having" are open ended (e.g., comprising). The term "or" as used herein is to be interpreted as inclusive or meaning any

one or any combination. Therefore, "A, B or C" means "any of the following: A; B; C; A and B; A and C; B and C; A, B and C". An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive. [0048] Reference throughout this document to "one embodiment," "certain embodiments," "an embodiment," or similar term means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of such phrases in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner on one or more embodiments without limitation.

Exemplary Embodiments

[0049] FIG. 1 depicts a graphical representation of a gas turbine engine and combustor configuration according to one or more embodiments. FIG. 1 depicts a crosssectional representation of a gas turbine engine 100 including a combustor 105 according to one or more embodiments. Combustor 105 includes a combustor structure 110 and a plurality of panel elements shown as 115. According to one embodiment, combustor 105 employs combustor structure 110 to support the plurality of panel elements 115. The plurality of panel elements 115 may be heat shield panels to form the combustion cavity 120 of combustor 105. Combustor 105 may be an annular structure including outer diameter structure 112 and inner diameter structure 113 of combustor 105. The plurality of panels 115 are mounted to at least one of the inner diameter structure 113 and outer diameter structure 112. Combustion cavity 120 of combustor 105 may be positioned between outer diameter structure 112 and inner diameter structure 113. Combustor 105 may interface with fuel injector 111.

[0050] According to one embodiment, combustor 105 may include one or more air gaps between panels 115. Air gaps between panels 115 may be associated with outer diameter structure 112 and/or inner diameter structure 113 of combustor 105. Exemplary regions for including air gaps are shown as 124 and 125 associated with outer diameter structure 112 and inner diameter structure 113, respectively. According to one embodiment, panels 115 associated with an air gap may include one or more features and configurations. FIG. 1 depicts an exploded view of region 125 associated with inner diameter structure 113.

[0051] According to one embodiment, panels 115 may include a first panel 126 and a second panel 127 mounted to structure 110. First and second panels 126 and 127 have leading and trailing edges. Second panel 127 is mounted to the support structure aft of the first panel 126. [0052] According to one embodiment, first panel 126 includes a trailing edge portion 135 which extends over

45

20

40

45

50

leading edge 140 of second panel 127. The configuration of first panel 126 and a second panel 127 provides an air gap between the panels and allows for airflow 130 in the gap. Airflow 130 serves to both cool the extended lip of a trailing edge portion 135 of the first panel 126 (e.g., the upstream panel) and also lay a cooling film down on second panel 127 (e.g., the downstream panel). According to one embodiment, leading edge 140 of second panel 127 is chamfered.

[0053] According to one embodiment, first panel 126 is upstream (e.g., forward) from second panel 127. Similarly, second panel 127 is downstream (e.g., aft) of first panel 126. Although region 125 is shown and described as associated with inner diameter structure 113 it is equally appreciated that outer diameter 124 may include a similar configuration of a forward panel including a portion that overlaps an adjacent panel. It should also be appreciated that all panels along the circumferential gas path opening may include an overlapping configuration. As will be discussed in more detail below and according to another embodiment, an overlapping configuration may be employed to lateral portions (e.g., rails) of panel elements 115.

[0054] FIGs. 2A-2B depict graphical representations of panel configurations for a combustor according to one or more embodiments. FIG. 2A depicts a graphical representation of a first panel 205 (e.g., first panel 126) and a second panel 210 (e.g., a second panel 127). First panel 205 includes trailing edge 215 which extends over a leading edge 220 of second panel 210 by a distance shown as 216. The first panel 205 extends over the second panel 210 along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.

[0055] The position of leading edge 220 is identified as 225 such that the portion 230 that extends over the first panel 205 is identified as 230. According to one embodiment, second panel 210 includes chamfered region 235, which is angled down to allow for portion 230 to extend over chamfered region 235. An air gap between the trailing edge of the first panel 205 and the leading edge of the second panel 210 forms at least a portion of a circumferential air gap for the combustor. The trailing edge 215 of the first panel 205 extends beyond the leading edge 220 of the second panel 210 to provide an air flow gap between the first and second panels and wherein portion 230 of the first panel 205 associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow gap.

[0056] FIG. 2B depicts an exploded view of first panel 205 (e.g., upstream panel) and a second panel 210 (e.g., downstream panel). According to one embodiment, second panel 210 includes one or more features 240 in chamfered region 235. Features 240 may provide air flow paths when the trailing edge of the first panel 205 contacts the leading edge of the second panel 210. According to one embodiment, features 240 are grooves or indentations which may be perpendicular or substantially perpendicular to the leading edge 220 of second panel

210. In certain embodiments, features 240 may be ridges or raised portions which may be perpendicular or substantially perpendicular to the leading edge 220 of second panel 210. Features 240 may include effusion holes positioned along the leading edge of the second panel 210.

[0057] FIGs. 3A-3C depict graphical representations of combustor panels according to one or more embodiments. FIG. 3A depicts combustor configuration 300 including panels 305 and 310. The hot side (e.g., side facing combustor cavity 120) of first panel 305 and 310 are shown. In FIG. 3A, combustor configuration 300 include a first panel 305 and a second panel 310 mounted to structure 110. First and second panels 305 and 310 have leading and trailing edges, such that leading edge 315 of panel 305 extends over panel 310. Leading edge of panel 310 is represented by segment 320. Trailing edge of second panel 310 is shown as 325. According to one embodiment, lateral or rail portions of panels 305 and 310 may include one or more features to provide lateral sealing between panels. Lateral portions 330 and 335 of first panel 305 may relate to overhanging or chamfered regions to interface with lateral portions of another panel, such as panel 350. Panel 350 includes lateral regions 355 and 360. According to one embodiment, lateral portion 335 of panel 305 may interface with lateral portion 355 of panel 350. By way of example, FIG. 3B depicts an exemplary configuration 365 of panels 305 and 350. Lateral portion 335 may overhang panel 310 and lateral portion 355 may be chamfered. Panel 305 includes base structure 366 to mount to support structure. Similarly, panel 350 includes base structure 367 to mount to support structure.

[0058] FIG. 3C depicts a representation of an inner diameter 371 of an annular structure 370, such as a combustor inner diameter structure including panels 305 and 350.

[0059] While this disclosure has been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the claimed embodiments. The following clauses set out features of the present disclosure which may or may not presently be claimed but which may form basis for future amendments and/or a divisional application.

- 1. A combustor for a gas turbine engine, the combustor comprising:
 - a support structure; and a plurality of panels mounted to the structure, the plurality of panels defining a combustion cavity of the combustor, wherein the plurality of panels include
 - a first panel having a leading and trailing edge, and

20

25

30

35

40

45

50

a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.

- 2. The combustor of clause 1, wherein the support structure is an annular structure including an inner diameter structure and outer diameter structure, and wherein the plurality of panels are mounted to at least one of the inner diameter structure and outer diameter structure.
- 3. The combustor of clause 1, wherein the plurality of panels are heat shield panels.
- 4. The combustor of clause 1, wherein an air gap between the trailing edge of the first panel and the leading edge of the second panel forms at least a portion of a circumferential air gap for the combustor.
- 5. The combustor of clause 1, wherein the trailing edge of the first panel extends beyond the leading edge of the second panel to provide an air flow gap between the first and second panels and wherein portion of the first panel associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow gap.
- 6. The combustor of clause 1, wherein the first panel extends over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.
- 7. The combustor of clause 1, wherein the second panel includes effusion holes positioned along the leading edge of the second panel.
- 8. The combustor of clause 1, wherein leading edge of the second panel is chamfered.
- 9. The combustor of clause 1, wherein leading edge of the second panel includes one or more features to provide airflow when the trailing edge of the first panel contacts the leading edge of the second panel.
- 10. The combustor of clause 9, wherein the one or more features include groves in the leading edge of the second panel to provide said airflow.
- 11. A gas turbine engine comprising:

a combustor having a support structure; and a plurality of panels mounted to the support structure, the plurality of panels defining a combustion cavity of the combustor, wherein the plurality of panels include

- a first panel having a leading and trailing edge, and
- a second panel having a leading edge and trailing edge, wherein a trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.
- 12. The gas turbine engine of clause 10, wherein the support structure is an annular structure including an inner diameter structure and outer diameter structure, and wherein the plurality of panels are mounted to at least one of the inner diameter structure and outer diameter structure.
- 13. The gas turbine engine of clause 10, wherein the plurality of panels are heat shield panels.
- 14. The gas turbine engine of clause 10, wherein an air gap between the trailing edge of the first panel and the leading edge of the second panel forms at least a portion of a circumferential air gap for the combustor.
- 15. The gas turbine engine of clause 10, wherein the trailing edge of the first panel extends beyond the leading edge of the second panel to provide an air flow gap between the first and second panels and wherein portion of the first panel associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow gap.
- 16. The gas turbine engine of clause 10, wherein the first panel extends over the second panel along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.
- 17. The gas turbine engine of clause 10, wherein the second panel includes effusion holes positioned along the leading edge of the second panel.
- 18. The gas turbine engine of clause 10, wherein leading edge of the second panel is chamfered.
- 19. The gas turbine engine of clause 10, wherein leading edge of the second panel includes one or more features to provide airflow when the trailing edge of the first panel contacts the leading edge of the second panel.
- 20. The gas turbine engine of clause 19, wherein the one or more features include groves in the leading edge of the second panel to provide said airflow.

15

20

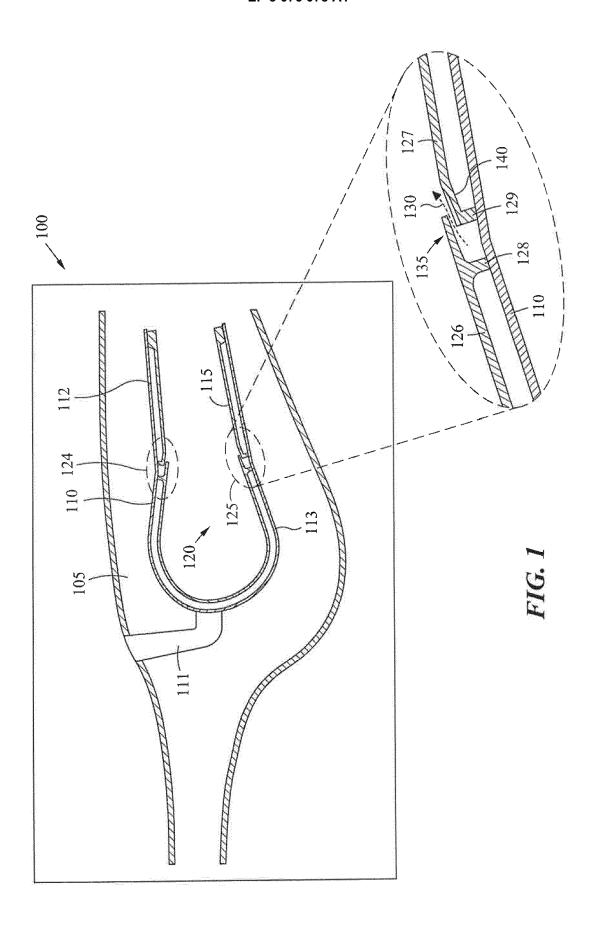
25

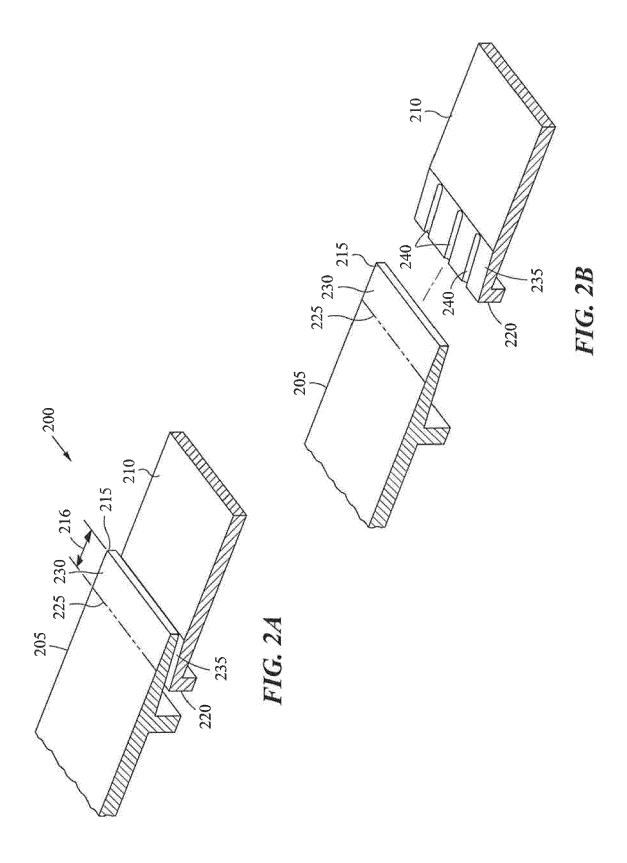
30

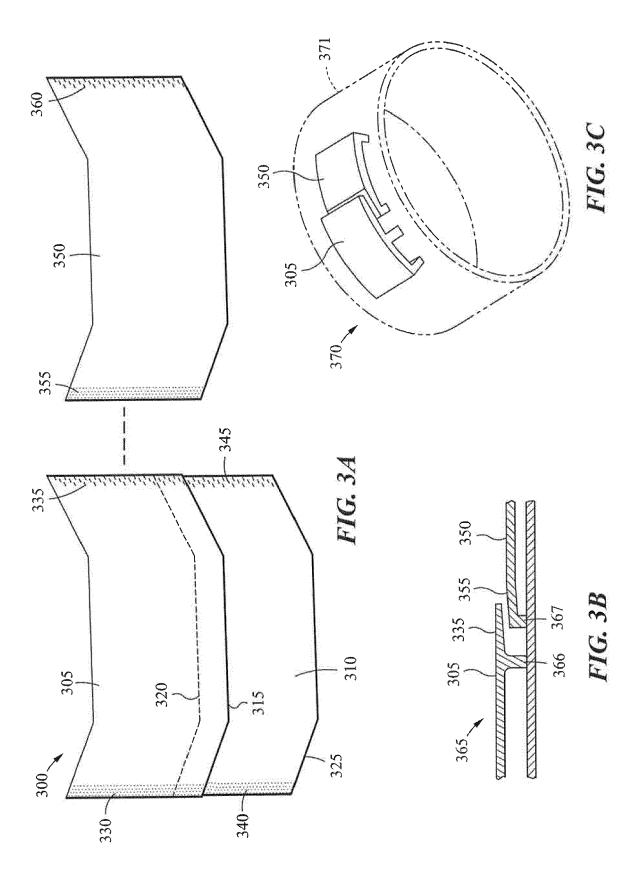
40

Claims

1. A combustor (105) for a gas turbine engine (100), the combustor comprising:


a support structure; and a plurality of panels (115) mounted to the structure, the plurality of panels defining a combustion cavity (120) of the combustor, wherein the plurality of panels include


a first panel (126; 205; 305) having a leading (315) and trailing edge (135; 215), and a second panel (127; 210; 310) having a leading edge (140; 220; 320) and trailing edge (325), wherein the trailing edge of the first panel extends beyond the leading edge of the second panel and wherein the second panel is mounted to the support structure aft of the first panel.


- 2. The combustor (105) of claim 1, wherein the support structure is an annular structure (370) including an inner diameter structure (113) and outer diameter structure (112), and wherein the plurality of panels (115) are mounted to at least one of the inner diameter structure and outer diameter structure.
- **3.** The combustor (105) of claim 1 or 2, wherein the plurality of panels (115) are heat shield panels.
- 4. The combustor (105) of claim 1, 2 or 3, wherein an air gap between the trailing edge (135; 215) of the first panel (126; 205; 305) and the leading edge (140; 220; 320) of the second panel (127; 210; 310) forms at least a portion of a circumferential air gap for the combustor.
- 5. The combustor (105) of any preceding claim, wherein the trailing edge (215) of the first panel (205) extends beyond the leading edge (220) of the second panel (210) to provide an air flow gap between the first and second panels and wherein a portion of the first panel associated with the leading edge is configured to prevent a gas path flow within the combustor to enter the air flow gap.
- 6. The combustor (105) of any preceding claim, wherein the first panel (205) extends over the second panel (210) along the entire length of the first panel by an amount within the range of 0.5 cm to 2 cm.
- 7. The combustor (105) of any preceding claim, wherein the second panel (210) includes effusion holes positioned along the leading edge (220) of the second panel (210).
- 8. The combustor (105) of any preceding claim, where-

in the leading edge (140; 220; 320) of the second panel (127; 210; 310) is chamfered.

- 9. The combustor (105) of any preceding claim, wherein the leading edge (140; 220; 320) of the second panel (127; 210; 310) includes one or more features (240) to provide airflow when the trailing edge (135; 215) of the first panel (126; 205; 305) contacts the leading edge of the second panel.
- **10.** The combustor (105) of claim 9, wherein the one or more features (240) include grooves in the leading edge (140; 220; 320) of the second panel (127; 210; 310) to provide said airflow.
- 11. A gas turbine engine (100) comprising:
 - a combustor (105) according to any preceding

EUROPEAN SEARCH REPORT

Application Number EP 16 16 2430

5

5							
	DOCUMENTS CONSIDERED TO BE RELEVANT						
	Category	Citation of document with ir of relevant pass:		priate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
10	X A	US 4 628 694 A (KEL 16 December 1986 (1 * column 2, line 39 figures 1-5 *	.986-12-16)		1-5,7,9, 11 10	INV. F23R3/08 F23R3/00	
15	X A	US 5 799 491 A (BEL 1 September 1998 (1 * column 3, line 11 figures 1,3-5 *	.998-09-01)		1-3,7,8, 11 10		
20	X A	US 4 555 901 A (WAK AL) 3 December 1985 * column 2, line 52 figures 1-5 *	(1985-12-03)		1-5,7,11 10		
25	X A	US 4 567 730 A (SCC 4 February 1986 (19 * column 3, line 15 figures 1-3 *	86-02-04)		1-5,9,11 10		
30						TECHNICAL FIELDS SEARCHED (IPC) F23R	
35							
40							
45							
50		The present search report has Place of search Munich	Date of comp	elaims letion of the search	The	Examiner	
50 (10070d) 28 80 803 FM MBO3 Oct	X: par Y: par doc A: teol O: nol P: inte	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot ument of the same category hnological background n-written disclosure ermediate document	her	T: theory or principle E: earlier patent docu after the filing date D: document cited in L: document cited for	underlying the ir ument, but publis the application rother reasons	vention hed on, or	

EP 3 076 078 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 16 2430

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-07-2016

			Τ	1
10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	US 4628694 A	16-12-1986	DE 3531227 A1 FR 2588044 A1 GB 2179276 A US 4628694 A	05-03-1987 03-04-1987 04-03-1987 16-12-1986
	US 5799491 A	01-09-1998	GB 2298267 A US 5799491 A	28-08-1996 01-09-1998
20	US 4555901 A	03-12-1985	NONE	
25	US 4567730 A	04-02-1986	CA 1217945 A DE 3435611 A1 FR 2552860 A1 GB 2147406 A IT 1176775 B JP S60111819 A US 4567730 A	17-02-1987 18-04-1985 05-04-1985 09-05-1985 18-08-1987 18-06-1985 04-02-1986
30				
35				
40				
45				
50				
55	FORM P0459			

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82