[0001] The present invention relates to a heat exchanger apparatus and more particularly,
but not exclusively, to an apparatus of the type used as part of an industrial or
domestic central heating arrangement.
[0002] In a domestic or industrial central heating arrangement or installation, the components
of the system i.e. the heat source, pumps, heat exchangers and the like, are fluidly
connected together by means of pipes or conduits. The pipes are generally arranged
to communicate hot or cold water between the components of the system such as from
a heat source, via pumps, to one or a series of radiators.
[0003] In conventional arrangements these components are connected by a series of pipes
which have been pre-formed, or bent, into the required geometry. The pipes are generally
formed using specialist equipment so as to fluidly connect the various components
together and to provide the required flow path(s) between components.
[0004] In these conventional arrangements the space required between the components of the
heating system can be considerable as a result of the limit of radius of curvature
which can be achieved for a given pipe diameter. In many applications it is in fact
essential that the amount of space used is minimal and that the components (e.g. pumps,
valves and the like) are situated as close together as possible. This is particularly
the case in applications where an installation is required to be contained within
a defined space or in a casing such as a combined heat and power unit (CHP).
[0005] Typical CHP systems generally comprise a motor/generator set, a heat storage unit,
a boiler and a heat pump which are required to consume as small a space as possible.
The heat (and electrical) source, together with the heat exchangers, pumps, valves
and associated interconnections are often all contained within a single casing and
it is desirable to minimise the size of the casing and thereby the overall space which
the unit consumes.
[0006] One means to minimise the space consumed by the connections between components within
such an installation is to use a manifold or distributor arrangement. A manifold can
be used as a common conduit to which a number of components can be connected, thereby
allowing fluid to flow between inlet and outlet ports along the manifold and between
respective components. This does not however provide for specific flow paths between
components.
[0007] An example of a distributor for providing a space saving arrangement can be seen
in
WO2007/066135. This distributor allows for a space saving in the components used to create the
required flow paths from various inputs and outputs in the installation. However,
this distributor is arranged to receive fluid after heat exchange has occurred and
it does not provide any improvement in the arrangement of the heat exchanger and related
parts, such as pumps and the associated pipework. The heat exchanger apparatus will
include a heat exchanger with primary and secondary circuits, a pump for each of the
primary and secondary circuits, and associated valves for control of the flow. It
is important in many situations to use a heat exchanger since it is necessary to separate
systems with different pressures. For example, where the heat is obtained by cooling
an engine in a combined heat and power device then the coolant circuit may have a
maximum pressure that is not much higher than 1 bar. In contrast, a heating system
for a building can have a design pressure of 3 bar or even up to 6 bar in tall buildings.
There is hence a need for an efficient installation design that can include a heat
exchanger.
[0008] An example of a heat exchanger system used in the context of CHP devices is found
in
WO 2005/036060. Figure 1 of that document, which is identical to Figure 1 herein, shows a known
heat exchanger arrangement, which is commonplace. A heat exchanger 11 has a primary
side and secondary side. The primary side has an input 20 and an output 19. The secondary
side has an input 18 and an output 21. Fluid such as water flows from a heat source
13, for example a boiler or engine, through the heat exchanger primary side and back
to the heat source 13 again. This forms a primary circuit 23. On the secondary side,
fluid such as water flows from a heat load 14, for example a space heating system
such as a radiator system, through the secondary side of the heat exchanger and back
to the load 14. This forms the secondary circuit 22. Heat is thereby transferred to
the secondary circuit 22 from the primary circuit 23. Movement of fluid through the
heat exchanger circuits is controlled by a primary side pump 10 and secondary side
pump 7. The actual temperature of the water in the secondary circuit 22 is a function
of the temperature differential between the two circuits, the thermal efficiency of
the design of the heat exchanger 11, and the mass flow rate of the circuits and of
the degradation of the heat exchanger.
[0009] In
WO 2005/036060 refinements are proposed to improve the control of heat exchange by the use of valves
controlled based on temperature measurements. However, there is no discussion of refinements
based on the physical layout of the system and no suggestion that improvements in
this area might be beneficial. Instead the system uses conventional pipework connections,
for example as fitted by a plumber. These are known to be reliable and effective.
The circular shape of pipes is well suited to containing and directing fluid flowing
under pressure.
[0010] DE 202008003349 U1 discloses a domestic water heater comprising a plate heat exchanger, oriented at
an angle to the vertical to avoid cold water flowing to a hot water tap.
EP 2 413 046 A1 discloses a domestic water heater comprising a heat exchanger showing all features
of the preamble of independent claim 1.
[0011] Viewed from a first aspect, the invention provides a heat exchanger apparatus comprising:
a heat exchanger, the heat exchanger having a primary side and a secondary side, the
secondary side having connections for a secondary side inlet and a secondary side
outlet, and the primary side having a connection for a primary side inlet, wherein
a first end of the heat exchanger has the connection for the primary side and one
connection for the secondary side, and wherein a second end of the heat exchanger
has the other connection for the secondary side; a primary circuit pump for propelling
fluid through a primary circuit from the primary side inlet to a primary side outlet;
a secondary circuit pump for propelling fluid through the secondary side of the heat
exchanger and a through a secondary circuit connected thereto from the secondary side
inlet to the secondary side outlet; and a secondary side manifold arrangement for
connecting the secondary pump to the heat exchanger and to the secondary circuit;
wherein both the primary pump and the secondary pump are arranged in parallel with
the line between the first end and the second end of the heat exchanger and each of
the pumps have a pump inlet and pump outlet with inlet and outlet flow directions
generally parallel to the line between the first end and the second end of the heat
exchanger; characterised in that the primary side of the heat exchanger has a connection
for a the primary side outlet, and the second end of the heat exchanger has the other
connection for the primary side; in that the heat exchanger apparatus further comprises
a primary side manifold arrangement for connecting the primary pump to the heat exchanger
and to the primary circuit; in that the primary circuit pump is for propelling fluid
through the primary side of the heat exchanger to which the primary circuit is connected;
and in that the primary and secondary manifold arrangements each connect one connector
of one side of the heat exchanger to an inlet or outlet of the respective primary
or secondary pump, connect the second connector of said one side of the heat exchanger
to the respective primary or secondary circuit, and connect the respective primary
or secondary circuit to the other of the inlet or outlet of the respective primary
or secondary pump.
[0012] In this arrangement the pumps are placed parallel with the heat exchanger and with
a line between the two ends of the heat exchanger. This provides a compact arrangement
since the 'length' of the pump can be fitted alongside and within the 'length' of
the heat exchanger. Typically the heat exchanger will be longer in one dimension than
another, and this longest dimension will be between the two ends, which means that
the proposed arrangement allows maximum space for the pumps whilst keeping the space
required by the whole apparatus to a minimum. This layout can be understood from Figures
2 to 9, which show example arrangements. It is to be contrasted with known layouts,
as shown in Figure 1 and
WO 2005/036060, where the pump is perpendicular to the heat exchanger rather than in parallel with
it. The reason for this prior art arrangement is that the pumps are placed with the
inlet and/or outlet aligned with the direction of flow for connections to the heat
exchanger, which have a flow direction perpendicular to the heat exchanger.
[0013] It will be appreciated that numerous arrangements for the orientations of the pumps
and heat exchanger are possible within this general arrangement. Provided that the
pumps are in parallel with the heat exchanger orientation then the invention is not
particularly restricted to any given arrangement, although as noted above it can be
advantageous to connect the pump(s) to the cold end of the heat exchanger. In one
example arrangement connect the pump(s) to the cold end of the heat exchanger. In
one example arrangement the layout is as follows: the primary side outlet of the heat
exchanger is at the top of the heat exchanger, which is in use vertically oriented,
and this is connected by a first part of the primary side manifold arrangement to
the primary circuit pump; the outlet of the primary circuit pump connects via the
second part of the primary side manifold to the return for the primary circuit; the
second part of the primary side manifold also connects the primary circuit flow to
the heat exchanger primary side inlet; the secondary side inlet of the heat exchanger
is at the top of the heat exchanger and this is connected by the first part of the
secondary side manifold arrangement to the outlet of the secondary circuit pump; the
second part of the secondary side manifold arrangement includes a feedback conduit
connecting the secondary side outlet of the heat exchanger to the inlet of the secondary
circuit pump; and the second part of the secondary side manifold arrangement also
connects the secondary side outlet of the heat exchanger to the return for the secondary
circuit, and connects the secondary circuit flow to the inlet of the secondary circuit
pump; wherein a three-way valve controls the flow through the feedback conduit.
[0014] The manifold arrangement for one circuit (for one side of the heat exchanger) may
be split into two parts, one part forming a coupling between the pump and the heat
exchanger, and a second part forming couplings between the pump and the circuit and
between the circuit and the heat exchanger. Preferably this second part of the manifold
comprises connectors for coupling to the circuit, with the connectors being aligned
and facing in the same direction. In preferred embodiments the connectors face away
from the pump and are parallel with the line between the two ends of the heat exchanger.
In the common situation where the line between the two ends of the heat exchanger
is vertical then the connectors will be aligned with the vertical, and may for example
be facing downwards.
[0015] Typically the heat exchanger connections will exit the heat exchanger in a direction
perpendicular to the direction between the two ends of the heat exchanger. In this
instance the manifold arrangement preferably acts to redirect the flow direction so
that it is parallel with the direction between the two ends of the heat exchanger
and aligned with the flow direction for the relevant on-going connection point at
the pump or at the circuit. For example, the flow direction from an outlet of the
primary side for the heat exchanger may be turned by the manifold so that it is aligned
with the inlet of the primary side pump.
[0016] Preferably the manifold arrangement is a cast and/or machined manifold. Thus, the
manifold is preferably not formed by conventional plumbing. Instead it may be a custom
part specifically designed to form the required connections between the heat exchanger,
the pump and the circuit. This allows for the design of the parts to be set prior
to final assembly, which makes installation and final assembly of the heat exchanger
apparatus far simpler. Since final assembly often occurs on site, where connections
are made with existing heat sources and heat loads, then this can be a big advantage
in terms of reduced time and reduced complexity, and hence reduced costs for the end
user. In the cast and/or machined manifold the flow paths may have a circular geometry.
This allows for the advantages of the circular shape of the flow paths to be maintained
despite the fact that conventional plumbing is not used.
[0017] The heat exchanger may be an opposed (counter) flow heat exchanger, wherein the primary
side and secondary side have flow directions that are in parallel but in opposite
directions. That is to say, the first end of the heat exchanger will have an inlet
for one side of the heat exchanger and an outlet for the other side, whereas the second
end of the heat exchanger will have an outlet for the one side and an inlet for the
other side. This means that the direction between the two ends of the heat exchanger
is also the direction of fluid flow within the heat exchanger, with fluid flowing
on one side from the first end to the second end and on the other side in from the
second end to the first end. In this arrangement one end of the heat exchanger will
be a hot end, with maximum temperature on both sides, and the other end of the heat
exchanger will be a cold end, with the minimum temperature on both sides. Typically
the primary side is designated as the side connected to the heat source, and hence
the heat exchanger in this arrangement may have a primary side inlet connected to
the heat source at the hot end, a primary side outlet returning cooled flow to the
primary circuit at the cold end, a secondary side inlet receiving flow from the secondary
circuit at the cold and, and a secondary side outlet returning heated flow to the
heat load on the secondary circuit at the cold end.
[0018] In an alternative arrangement, the heat exchanger may be a cross flow heat exchanger.
Some heat exchangers, such as brazed plate heat exchangers, do not provide a perfect
counter flow but instead have a cross flow, although they can have a similar effectiveness
to counter flow heat exchangers. The heat exchanger of the first aspect hence may
be a brazed plate heat exchanger. This type of heat exchanger also has first and second
ends with connections grouped in pairs at each end.
[0019] The heat exchanger may be oriented, in use, so that the direction between the first
and second end is generally vertical and the hot end is at the top of the heat exchanger.
This arrangement is often used in prior art systems since the flow through the heat
exchanger is not disturbed by natural convection. However, in contrast to this typical
prior art arrangement, in some preferred embodiments the heat exchanger apparatus
is arranged, in use, so that the cold end is at the top of the heat exchanger. This
allows for the pump to be at the cold part of the circuit that it drives. This is
a particular advantage for higher temperature systems, as well as for high flow systems.
It has been found that in such systems the effects of natural convection can be ignored.
[0020] It may be preferred for the pump to be at the cold part of the circuit, and hence
in some embodiments the heat exchanger apparatus may be arranged so that the pump
is at the cold part of the circuit. With this arrangement, when there are similar
pump and manifold arrangements on both sides, then since the cold water from primary
and secondary sides will generally be connected to the same end of the heat exchanger
(for counter flow) then the pumps will also be connected to the same (cold) end. Then,
when the pumps are mounted parallel to the heat exchanger, the other end of the pumps
will get close to the other connections of the heat exchanger. Thus all four connections
are now close together and can be oriented in the same direction. This provides an
effective and compact arrangement.
[0021] The apparatus may include a feedback conduit connecting the inlet and outlet of the
heat exchanger and a three-way valve for controlling the flow through and within the
manifold arrangement. With the use of this valve the first aspect preferably references
a pump and manifold on the secondary side, with the three-way valve being coupled
to the manifold arrangement on the secondary side to control the flow through a feedback
conduit on the secondary circuit. The feedback conduit may be formed as a part of
the manifold arrangement. The feedback conduit may allow for the inlet and outlet
of the pump to recycle all or a part of the secondary flow through the heat exchanger
without the flow passing through the secondary circuit. It is particularly preferred
for this three-way valve to be controlled based on indications of the temperature
on the primary side of the heat exchanger, for example in accordance with the control
arrangement described in
WO 2005/036060. In this way the feedback conduit on the secondary circuit can advantageously be
used to control the temperature of the primary circuit. The three-way valve may advantageously
be mounted in line with the secondary circuit pump, i.e. with an inlet or an outlet
of the valve connecting to the inlet or outlet of the pump as well as to the circuit
and the feedback conduit. This location for the valve allows for the most compact
arrangement for the heat exchanger apparatus.
[0022] In some preferred implementations the heat exchanger apparatus is used with a combined
heat and power device, with the heat exchanger transferring heat from a primary circuit
which is the cooling circuit of the combined heat and power device to a secondary
circuit connected to a heat load. For example the heat load may be a hot water storage
system and/or a space heating system.
[0023] Certain preferred embodiments of the invention will now be described by way of example
only and with reference to the accompanying drawings, in which:
Figure 1 shows a prior art heat exchanger layout;
Figure 2 is a diagram of a preferred embodiment of a heat exchanger apparatus;
Figures 3 to 6 show various alternative layouts for the orientation of flow paths
in the heat exchanger and for location of a three-way valve that, in preferred embodiments,
controls the flow through the heat exchanger;
Figure 7 shows a heat exchanger apparatus in a system with an expansion vessel, a
combined heat and power device as the heat source; and a hot water storage device
as the heat load; and
Figures 8 and 9 are non-schematic views of a heat exchanger apparatus and expansion
tank, where the relative sizes of the pumps, heat exchanger and manifolds can be seen.
[0024] The prior art arrangement of Figure 1 is explained above. Figure 2 shows an embodiment
incorporating the proposed new heat exchanger apparatus. It will be understood that
there is a significant difference in the orientation and location of the pumps for
the two circuits 22, 23 for the arrangement of Figure 2 compared to that of Figure
1. There are also significant changes in the manifold arrangement that forms the connections
for the primary and secondary circuits. In the arrangement of Figure 2 the primary
circuit pump 10 and the secondary circuit pump 7 are in parallel with the heat exchanger
11. The flow direction between the inlet and outlet for the pumps 7, 10 is in parallel
with the flow direction between the inlets 18, 20 and outlets 19, 21 of the heat exchanger.
In the orientation shown in the Figure the flow direction is vertical in each case.
[0025] The system of Figure 2 communicates heat between a primary circuit 23 and a secondary
circuit 22 through the heat exchanger 11. It consists of two pumps 7, 10, one heat
exchanger 11, two lower manifold arrangements 6, 12 with internal and external connections
1, 2, 3, 4, joining the pumps 7, 10, heat exchanger 11 and return/flow for the two
circuits 22, 23, and also two upper manifold arrangements, 8, 9 with internal connections
between the pumps 7, 10 and the heat exchanger.
[0026] The heat exchanger 11 is of a type where the connections 18, 19, 20, 21 are grouped
in pairs, and where each group of connections has one connection of the primary circuit
and one of the secondary circuit. In this case the primary side outlet 19 and secondary
side inlet 18 are at one end of the heat exchanger 11 and at the other end we find
the primary side inlet 20 and secondary side outlet 21. This type of configuration
is common for plate heat exchangers, and thus the heat exchangers described herein
may be plate heat exchangers.
[0027] The lower primary side manifold 12 is mounted to primary side inlet 20 of the heat
exchanger 11 and provides a connector 2 to join to the primary circuit flow and a
connector 1 to join to the primary circuit return. The primary circuit return is joined
to the outlet of the pump 10 and the inlet of the pump 10 is connected by the upper
primary side manifold part 9 to the primary side outlet 19 from the heat exchanger
11. The manifold 12 is elongate and mounted basically perpendicular to the heat exchanger
11. In the preferred arrangement the heat exchanger 11 is positioned vertically and
the manifold 12 horizontally on the lower set of connections from the heat exchanger.
A similar arrangement is used for the secondary side lower manifold 6, which has a
connector 3 to join to the secondary circuit return and a connector 4 to join to the
secondary circuit flow. The secondary circuit flow is joined via the connector 4 to
the inlet of the secondary circuit pump 7 and the secondary circuit return is joined
via the connector 3 to the secondary side outlet 21 of the heat exchanger 11. The
upper secondary side manifold part 8 couples the secondary circuit pump 7 to the inlet
18 for the secondary side of the heat exchanger 11. The lower manifolds 6, 12 together
hold all of the external connections 1-4 to the heat source 13 (primary circuit 23)
and heat load 14 (secondary circuit 22).
[0028] One pump 10 is mounted on the manifold to the left of the heat exchanger 11; the
other pump 7 is mounted to the right. Both pumps 7, 10 are mounted in parallel with
the heat exchanger 11. This results in a compact arrangement for the heat exchanger
apparatus. With a vertical arrangement for the heat exchanger 11, one pump will pump
upwards, the other downwards. This provides the counter flow in the heat exchanger
11.
[0029] The connections 1, 2, 3, 4 on the manifolds 6, 12 are close together and aligned
facing in the same direction. They are hence easily accessible for coupling the heat
exchanger apparatus to the heat source and heat load circuits. The installer can provide
suitable pipework in advance for the required connections, and final assembly/installation
of the heat exchanger apparatus is made simple since it is just necessary to join
the connectors 1, 2, 3, 4 to the respective circuits, and possibly also to join the
manifolds to the pumps and heat exchanger. Later maintenance is also made more straightforward,
since the manifold arrangement allows for easy disconnection and removal of the heat
exchanger apparatus, to permit replacement of one of the pumps 7, 10 or the heat exchanger
11.
[0030] Note that although in this example the primary circuit is shown on the left and the
secondary circuit on the right, with the cold end of the heat exchanger at the top,
the invention is not limited to this and in fact the primary loop and the secondary
loop could be switched. Conventionally the heat exchanger 11 might be hot at the top
and cold at the bottom. The heat exchanger 11 is normally used such that the hot water
from the heat source 13 enters at the top of the heat exchanger 11 and leaves as cooled
water at a lower connection of the heat exchanger 11. Then the cold return water of
the heat load 14 enters at a lower connection and after being heated it leaves at
the top of the heat exchanger 11. Especially for heat exchangers 11 used where the
flow is sometimes slow, this is important since the flow through the heat exchanger
11 is then not disturbed by natural convection.
[0031] In some preferred embodiments a feedback conduit is provided in the lower secondary
side manifold part 6 and a three-way valve 5 is used on the secondary circuit 22 to
control feedback of fluid from the secondary circuit pump outlet through the secondary
side inlet 18 of the secondary side of the heat exchanger 11. This can be used to
control the temperature on the primary circuit 23. Figures 3 to 6 illustrate four
different possible ways to build the three-way valve 5 into the manifold 6.
[0032] In Figure 3, the three-way valve 5 is a mixing valve that mixes the heated water
from the heat exchanger 11 with the cold return water from the heat load 14. The outlet
from the three--way valve 5 is into the pump 7. Thus, the valve 5 can divert flow
from the heat exchanger outlet 21 back into the pump 7 in order to recirculate water
on the secondary side of the heat exchanger 11 and control primary side temperature.
[0033] In Figure 4, the three-way valve 5 is a diverter valve fed with heated water from
the pump 7. The water can be diverted between the hot flow to the heat load 14 and
the hot water to be mixed with the cold return before entering the heat exchanger
11. The valve 5 can hence couple the outlet from the pump 7 to the inlet 18 for the
secondary side of the heat exchanger. Again this allows for recirculation on the secondary
side.
[0034] The arrangement of Figure 5 again uses a diverter valve as the three-way valve 5.
In this case it is fed by heated water from the heat exchanger 11. The water can be
diverted between the hot flow to the heat load 14 and the hot water to be mixed with
the cold return before entering the pump 7. When flow is diverted via the feedback
conduit in the manifold 6 then it can recirculate on the secondary side to control
the primary side temperature.
[0035] The final alternative shown in Figure 6 has a three-way valve 5 as a mixing valve
that mixes the heated water from the pump 7 with the cold return water from the heat
load 14. The outlet from the valve 5 is into the heat exchanger 11.
[0036] Of these four alternatives the layout of Figure 3 and Figure 4 are preferred on the
basis that the valve 5 is positioned far from the heat exchanger 11. This allows more
space for the valve 5, and maintains the advantage of a compact arrangement- especially
when a valve actuator is placed on top of the manifold as in the preferred arrangement
of Figures 8 and 9, which is discussed below. In the less preferred arrangements of
Figures 5 and 6 the valve actuator may take up the same horizontal space as the heat
exchanger 11, and hence the manifold arrangement has to be extended compared to that
of Figures 3 and 4.
[0037] In high temperature systems it is furthermore preferable to place pumps at as cold
a location as possible. This will help maintain the best operating conditions for
the pump as well as ensuring that the distance from the boiling point of the water
and the pressure that the pump provides is appropriate for the pump. Therefore the
pump on the primary circuit, that is the hottest, should be placed after the cooling
through the heat exchanger. For this reason the layout of Figure 3 is most preferred,
although it will be appreciated that this might not apply for all systems.
[0038] It will be seen that the layout of Figure 3 does not follow the conventional rule
that heat exchangers should be oriented with the highest temperatures at the top.
However, it has been found that the effects of convection flow can be ignored when
the heat exchanger has high flow rates and high temperatures, which is the case when
the heat exchanger apparatus is used for heat exchanger with a combined heat and power
device as shown in Figure 7, which is one possible use for this apparatus.
[0039] In Figure 7, as well as a combined heat and power unit 13 as an example of a heat
source, and a hot water storage device 14 as an example of a heat load, the heat exchanger
apparatus is also connected to an expansion vessel 15. For the primary circuit 23
there is often a need for an expansion vessel 15, since the circuit is operated under
pressure. The expansion vessel 15 may be of the type that also is the point where
water is added to the system (in the same way as the water container in the car).
By placing this just above the suction side of the pump 10 on the primary circuit
23, the water supply to the pump 10 is ensured when there is water in the vessel 15.
[0040] In order to illustrate the heat exchanger apparatus with reference to the true sizes
of the various parts, rather than a schematic illustration, Figures 8 and 9 show a
non-schematic drawing of a heat exchanger apparatus as described herein. The various
parts have the same reference numbers and are in the same arrangement as shown in
Figure 3, with the addition of an expansion vessel as shown in Figure 7. It will be
seen that the pumps 7, 10 and the heat exchanger 11 occupy the same vertical space,
which allows for a compact arrangement. Also, the three-way valve 5 is aligned with
the pump 7 in the secondary circuit, which means that there is no need to lengthen
the manifold 6 on that side. The pumps 7, 10 have inlets and outlets with a vertical
flow direction, and this is in parallel with the flow direction from inlet to outlet
on the heat exchanger 11.
1. A heat exchanger apparatus comprising:
a heat exchanger (11), the heat exchanger having a primary side and a secondary side,
the secondary side having connections for a secondary side inlet (18) and a secondary
side outlet (21), and the primary side having a connection for a primary side inlet
(20; 19), wherein a first end of the heat exchanger has the connection for the primary
side (20; 19) and one connection for the secondary side (18; 21), and wherein a second
end of the heat exchanger has the other connection for the secondary side (21; 18);
a primary circuit pump (10) for propelling fluid through a primary circuit (23) from
the primary side inlet to a primary side outlet (19);
a secondary circuit pump (7) for propelling fluid through the secondary side of the
heat exchanger and through a secondary circuit (22) connected thereto from the secondary
side inlet to the secondary side outlet; and
a secondary side manifold arrangement (8, 6) for connecting the secondary pump to
the heat exchanger and to the secondary circuit;
wherein both the primary pump and the secondary pump are arranged in parallel with
the line between the first end and the second end of the heat exchanger and each of
the pumps have a pump inlet and pump outlet with inlet and outlet flow directions
generally parallel to the line between the first end and the second end of the heat
exchanger;
characterised in that the primary side of the heat exchanger has a connection for the primary side outlet
(19; 20), and the second end of the heat exchanger has the other connection (19; 20)
for the primary side;
in that the heat exchanger apparatus further comprises a primary side manifold arrangement
(9, 12) for connecting the primary pump to the heat exchanger and to the primary circuit;
in that the primary circuit pump is for propelling fluid through the primary side of the
heat exchanger to which the primary circuit is connected; and
in that the primary and secondary manifold arrangements each connect (9; 8) one connector
(19; 20; 18; 21) of one side of the heat exchanger to an inlet or outlet of the respective
primary or secondary pump, connect (12; 6) the second connector (20; 19; 21; 18) of
said one side of the heat exchanger to the respective primary or secondary circuit
(23; 22), and connect the respective primary or secondary circuit to the other of
the inlet or outlet of the respective primary or secondary pump.
2. A heat exchanger apparatus as claimed in claim 1, wherein at least one of the manifold
arrangements is split into two parts, a first part (9; 8) forming a coupling between
the respective pump (10; 7) and the heat exchanger, and a second part (12; 6) forming
couplings between the respective pump and the respective circuit (23; 22) and between
the respective circuit and the heat exchanger.
3. A heat exchanger apparatus as claimed in claim 2, wherein the second part (12; 6)
of the at least one of the manifolds comprises connectors (1, 2; 3, 4) for coupling
to the respective circuit (23; 22), the connectors being aligned and facing in the
same direction.
4. A heat exchanger apparatus as claimed in claim 3, wherein the connectors (1, 2; 3,
4) face away from the respective pump (10; 7) and are parallel with the line between
the two ends of the heat exchanger.
5. A heat exchanger apparatus as claimed in any preceding claim, wherein each manifold
arrangement is cast and/or machined.
6. A heat exchanger apparatus as claimed in any preceding claim, wherein the heat exchanger
is an opposed flow heat exchanger, with the first end of the heat exchanger having
an inlet (20; 18) for one side of the heat exchanger and an outlet (21; 19) for the
other side, and the second end of the heat exchanger having an outlet (19; 21) for
the one side and an inlet (18; 20) for the other side, such that one end of the heat
exchanger will be a hot end, with maximum temperature on both sides, and the other
end of the heat exchanger will be a cold end, with minimum temperature on both sides.
7. A heat exchanger apparatus as claimed in claim 6, wherein the heat exchanger apparatus
is arranged, in use, so that the cold end is at the top of the heat exchanger.
8. A heat exchanger apparatus as claimed in claim 6 or 7, wherein the heat exchanger
apparatus is arranged so that at least one of the pumps is connected to the cold end
of the heat exchanger.
9. A heat exchanger apparatus as claimed in any preceding claim, wherein the apparatus
includes a feedback conduit connecting the inlet (18) and outlet (21) of the secondary
side of the heat exchanger and a three-way valve (5) for controlling the flow through
and within at least one of the manifold arrangements (6).
10. A heat exchanger apparatus as claimed in claim 9, wherein the feedback conduit is
formed as a part of the manifold arrangement.
11. A heat exchanger apparatus as claimed in any preceding claim, wherein:
the primary side outlet (19) of the heat exchanger is at the top of the heat exchanger,
which is in use vertically oriented, and this is connected by a first part (9) of
the primary side manifold arrangement to the primary circuit pump;
the outlet of the primary circuit pump connects via the second part (12) of the primary
side manifold to the return for the primary circuit;
the second part of the primary side manifold also connects the primary circuit flow
to the heat exchanger primary side inlet;
the secondary side inlet (18) of the heat exchanger is at the top of the heat exchanger
and this is connected by the first part (8) of the secondary side manifold arrangement
to the outlet of the secondary circuit pump;
the second part (6) of the secondary side manifold arrangement includes a feedback
conduit connecting the secondary side outlet (21) of the heat exchanger to the inlet
of the secondary circuit pump; and
the second part of the secondary side manifold arrangement also connects the secondary
side outlet of the heat exchanger to the return for the secondary circuit, and connects
the secondary circuit flow to the inlet of the secondary circuit pump;
wherein a three-way valve (5) controls the flow through the feedback conduit.
12. A heating system including a heat exchanger as claimed in any preceding claim, a combined
heat and power device (13), and a heat load (14), wherein the heat exchanger is arranged
to transfer heat from the primary circuit, which is the cooling circuit of the combined
heat and power device, to the secondary circuit connected to the heat load.
1. Wärmetauschereinrichtung, die Folgendes umfasst:
einen Wärmetauscher (11), wobei der Wärmetauscher eine Primärseite und eine Sekundärseite
aufweist, wobei die Sekundärseite Verbindungen für einen Sekundärseiteneinlass (18)
und einen Sekundärseitenauslass (21) aufweist, und die Primärseite eine Verbindung
für einen Primärseiteneinlass (20; 19) aufweist, wobei ein erstes Ende des Wärmetauschers
die Verbindung für die Primärseite (20; 19) und eine Verbindung für die Sekundärseite
(18; 21) aufweist, und wobei ein zweites Ende des Wärmetauschers die andere Verbindung
für die Sekundärseite (21; 18) aufweist;
eine Primärkreislaufpumpe (10) für das Antreiben von Fluid durch einen Primärkreislauf
(23) von dem Primärseiteneinlass zu einem Primärseitenauslass (19);
eine Sekundärkreislaufpumpe (7) für das Antreiben von Fluid durch die Sekundärseite
des Wärmetauschers und durch einen Sekundärkreislauf (22), der damit verbunden ist,
von dem Sekundärseiteneinlass zu dem Sekundärseitenauslass; und
eine Sekundärseitenverteileranordnung (8, 6) für das Verbinden der Sekundärpumpe mit
dem Wärmetauscher und mit dem Sekundärkreislauf;
wobei sowohl die Primärpumpe als auch die Sekundärpumpe parallel zu der Linie zwischen
dem ersten Ende und dem zweiten Ende des Wärmetauschers eingerichtet sind, und jede
der Pumpen einen Pumpeneinlass und Pumpenauslass aufweist, wobei Einlass- und Auslassstromrichtungen
im Allgemeinen zu der Linie zwischen dem ersten Ende und dem zweiten Ende des Wärmetauschers
parallel sind;
dadurch gekennzeichnet, dass die Primärseite des Wärmetauschers eine Verbindung für den Primärseitenauslass (19;
20) aufweist, und das zweite Ende des Wärmetauschers die andere Verbindung (19; 20)
für die Primärseite aufweist;
dass die Wärmetauschereinrichtung weiter eine Primärseitenverteileranordnung (9, 12)
für das Verbinden der Primärpumpe mit dem Wärmetauscher und mit dem Primärkreislauf
umfasst;
dass die Primärkreislaufpumpe für das Antreiben von Fluid durch die Primärseite des
Wärmetauschers ist, mit dem der Primärkreislauf verbunden ist; und
dass die Primär- und Sekundärverteileranordnung jeweils einen Steckverbinder (19;
20; 18; 21) einer Seite des Wärmetauschers mit einem Einlass oder einem Auslass der
jeweiligen Primär- oder Sekundärpumpe verbindet (9; 8), den zweiten Steckverbinder
(20; 19; 21; 18) der einen Seite des Wärmetauschers mit dem jeweiligen Primär- oder
Sekundärkreislauf (23; 22) verbindet (12; 6) und den jeweiligen Primär-oder Sekundärkreislauf
mit dem anderen des Einlasses oder Auslasses der jeweiligen Primär- oder Sekundärpumpe
verbindet.
2. Wärmetauschereinrichtung nach Anspruch 1, wobei mindestens eine der Verteileranordnungen
in zwei Teile geteilt ist, einen ersten Teil (9; 8), der eine Kopplung zwischen der
jeweiligen Pumpe (10; 7) und dem Wärmetauscher bildet, und einen zweiten Teil (12;
6), der Kopplungen zwischen der jeweiligen Pumpe und dem jeweiligen Kreislauf (23;
22) sowie zwischen dem jeweiligen Kreislauf und dem Wärmetauscher bildet.
3. Wärmetauschereinrichtung nach Anspruch 2, wobei der zweite Teil (12; 6) des mindestens
einen der Verteiler Steckverbinder (1, 2; 3, 4) für das Koppeln mit dem jeweiligen
Kreislauf (23; 22) umfasst, wobei die Steckverbinder ausgerichtet sind und derselben
Richtung zugewandt sind.
4. Wärmetauschereinrichtung nach Anspruch 3, wobei die Steckverbinder (1, 2; 3, 4) von
der jeweiligen Pumpe (10; 7) abgewandt und zu der Linie zwischen den zwei Enden des
Wärmetauschers parallel sind.
5. Wärmetauschereinrichtung nach einem der vorstehenden Ansprüche, wobei jede Verteileranordnung
gegossen und/oder bearbeitet ist.
6. Wärmetauschereinrichtung nach einem der vorstehenden Ansprüche, wobei der Wärmetauscher
ein Gegenstromwärmetauscher ist, mit dem ersten Ende des Wärmetauschers, das einen
Einlass (20; 18) für eine Seite des Wärmetauschers und einen Auslass (21; 19) für
die andere Seite aufweist, und dem zweiten Ende des Wärmetauschers, das einen Auslass
(19; 21) für die eine Seite und einen Einlass (18; 20) für die andere Seite aufweist,
so dass ein Ende des Wärmetauschers ein heißes Ende mit maximaler Temperatur auf beiden
Seiten ist, und das andere Ende des Wärmetauschers ein kaltes Ende mit minimaler Temperatur
auf beiden Seiten ist.
7. Wärmetauschereinrichtung nach Anspruch 6, wobei die Wärmetauschereinrichtung bei der
Verwendung derart eingerichtet ist, dass das kalte Ende an der Oberseite des Wärmetauschers
liegt.
8. Wärmetauschereinrichtung nach Anspruch 6 oder 7, wobei die Wärmetauschereinrichtung
derart eingerichtet ist, dass mindestens eine der Pumpen mit dem kalten Ende des Wärmetauschers
verbunden ist.
9. Wärmetauschereinrichtung nach einem der vorstehenden Ansprüche, wobei die Einrichtung
eine Feedbackleitung, die den Einlass (18) und den Auslass (21) der Sekundärseite
des Wärmetauschers verbindet, und ein Dreiwegeventil (5) beinhaltet, um den Strom
durch und innerhalb mindestens einer der Verteileranordnungen (6) zu steuern.
10. Wärmetauschereinrichtung nach Anspruch 9, wobei die Feedbackleitung als ein Teil der
Verteileranordnung gebildet ist.
11. Wärmetauschereinrichtung nach einem der vorstehenden Ansprüche, wobei:
der Primärseitenauslass (19) des Wärmetauschers an der Oberseite des Wärmetauschers
liegt, der bei Verwendung vertikal ausgerichtet ist, und dieser durch einen ersten
Teil (9) der Primärseitenverteileranordnung mit der Primärkreislaufpumpe verbunden
ist;
der Auslass der Primärkreislaufpumpe sich über den zweiten Teil (12) des Primärseitenverteilers
mit dem Rücklauf des Primärkreislaufs verbindet;
der zweite Teil des Primärseitenverteilers den Primärkreislaufstrom auch mit dem Wärmetauscher-Primärseiteneinlass
verbindet;
der Sekundärseiteneinlass (18) des Wärmetauschers an der Oberseite des Wärmetauschers
liegt und dieser durch den ersten Teil (8) der Sekundärseitenverteileranordnung mit
dem Auslass der Sekundärkreislaufpumpe verbunden ist;
der zweite Teil (6) der Sekundärseitenverteileranordnung eine Feedbackleitung beinhaltet,
die den Sekundärseitenauslass (21) des Wärmetauschers mit dem Einlass der Sekundärkreislaufpumpe
verbindet; und
der zweite Teil der Sekundärseitenverteileranordnung auch den Sekundärseitenauslass
des Wärmetauschers mit dem Rücklauf für den Sekundärkreislauf verbindet, und den Sekundärkreislaufstrom
mit dem Einlass der Sekundärkreislaufpumpe verbindet;
wobei ein Dreiwegeventil (5) den Strom durch die Feedbackleitung steuert.
12. Heizsystem, das einen Wärmetauscher nach einem der vorstehenden Ansprüche, eine kombinierte
Heiz- und Leistungsvorrichtung (13) und eine Heizlast (14) beinhaltet, wobei der Wärmetauscher
eingerichtet ist, um Wärme von dem Primärkreislauf, der der Kühlkreislauf der kombinierten
Heiz- und Leistungsvorrichtung ist, zu dem Sekundärkreislauf, der mit der Heizlast
verbunden ist, zu übertragen.
1. Appareil échangeur de chaleur comprenant :
un échangeur de chaleur (11), l'échangeur de chaleur présentant un côté primaire et
un côté secondaire, le côté secondaire présentant des raccordements pour une entrée
de côté secondaire (18) et une sortie de côté secondaire (21), et le côté primaire
présentant un raccordement pour une entrée de côté primaire (20 ; 19), dans lequel
une première extrémité de l'échangeur de chaleur présente le raccordement pour le
côté primaire (20 ; 19) et un raccordement pour le côté secondaire (18 ; 21), et dans
lequel une seconde extrémité de l'échangeur de chaleur présente l'autre raccordement
pour le côté secondaire (21 ; 18) ;
une pompe de circuit primaire (10) pour propulser un fluide à travers un circuit primaire
(23) depuis l'entrée de côté primaire vers une sortie de côté primaire (19) ;
une pompe de circuit secondaire (7) pour propulser un fluide à travers le côté secondaire
de l'échangeur de chaleur et à travers un circuit secondaire (22) raccordé à celui-ci
depuis l'entrée de côté secondaire vers la sortie de côté secondaire ; et
un agencement de collecteur de côté secondaire (8, 6) pour raccorder la pompe secondaire
à l'échangeur de chaleur et au circuit secondaire ;
dans lequel à la fois la pompe primaire et la pompe secondaire sont agencées en parallèle
avec la ligne entre la première extrémité et la seconde extrémité de l'échangeur de
chaleur et chacune des pompes présente une entrée de pompe et une sortie de pompe
avec des directions de flux d'entrée et de sortie généralement parallèles à la ligne
entre la première extrémité et la seconde extrémité de l'échangeur de chaleur ;
caractérisé en ce que le côté primaire de l'échangeur de chaleur présente un raccordement pour la sortie
de côté primaire (19 ; 20), et la seconde extrémité de l'échangeur de chaleur présente
l'autre raccordement (19 ; 20) pour le côté primaire ;
en ce que l'appareil échangeur de chaleur comprend en outre un agencement de collecteur de
côté primaire (9, 12) pour raccorder la pompe primaire à l'échangeur de chaleur et
au circuit primaire ;
en ce que la pompe de circuit primaire est destinée à propulser un fluide à travers le côté
primaire de l'échangeur de chaleur auquel le circuit primaire est raccordé ; et
en ce que les agencements de collecteur primaire et secondaire raccordent (9 ; 8) chacun un
raccord (19 ; 20 ; 18 ; 21) d'un côté de l'échangeur de chaleur à une entrée ou une
sortie de la pompe primaire ou secondaire respective, raccordent (12 ; 6) le second
raccord (20 ; 19 ; 21 ; 18) dudit un côté de l'échangeur de chaleur au circuit primaire
ou secondaire (23 ; 22) respectif, et raccordent le circuit primaire ou secondaire
respectif à l'autre de l'entrée ou de la sortie de la pompe primaire ou secondaire
respective.
2. Appareil échangeur de chaleur selon la revendication 1, dans lequel au moins un des
agencements de collecteur est divisé en deux parties, une première partie (9 ; 8)
formant un couplage entre la pompe (10 ; 7) respective et l'échangeur de chaleur,
et une seconde partie (12 ; 6) formant des couplages entre la pompe respective et
le circuit (23 ; 22) respectif et entre le circuit respectif et l'échangeur de chaleur.
3. Appareil échangeur de chaleur selon la revendication 2, dans lequel la seconde partie
(12 ; 6) de l'au moins un des collecteurs comprend des raccords (1, 2 ; 3, 4) pour
le couplage au circuit (23 ; 22) respectif, les raccords étant alignés et orientés
dans la même direction.
4. Appareil échangeur de chaleur selon la revendication 3, dans lequel les raccords (1,
2 ; 3, 4) sont orientés à l'opposé de la pompe (10 ; 7) respective et sont parallèles
à la ligne entre les deux extrémités de l'échangeur de chaleur.
5. Appareil échangeur de chaleur selon l'une quelconque des revendications précédentes,
dans lequel chaque agencement de collecteur est coulé et/ou usiné.
6. Appareil échangeur de chaleur selon l'une quelconque des revendications précédentes,
dans lequel l'échangeur de chaleur est un échangeur de chaleur à flux opposé, avec
la première extrémité de l'échangeur de chaleur présentant une entrée (20 ; 18) pour
un côté de l'échangeur de chaleur et une sortie (21 ; 19) pour l'autre côté, et la
seconde extrémité de l'échangeur de chaleur présentant une sortie (19 ; 21) pour l'un
côté et une entrée (18 ; 20) pour l'autre côté, de sorte qu'une extrémité de l'échangeur
de chaleur soit une extrémité chaude, avec une température maximale sur les deux côtés,
et l'autre extrémité de l'échangeur de chaleur soit une extrémité froide, avec une
température minimale sur les deux côtés.
7. Appareil échangeur de chaleur selon la revendication 6, dans lequel l'appareil échangeur
de chaleur est agencé, en utilisation, de sorte que l'extrémité froide soit au sommet
de l'échangeur de chaleur.
8. Appareil échangeur de chaleur selon la revendication 6 ou 7, dans lequel l'appareil
échangeur de chaleur est agencé de sorte qu'au moins une des pompes soit raccordée
à l'extrémité froide de l'échangeur de chaleur.
9. Appareil échangeur de chaleur selon l'une quelconque des revendications précédentes,
dans lequel l'appareil inclut un conduit de retour raccordant l'entrée (18) et la
sortie (21) du côté secondaire de l'échangeur de chaleur et une soupape à trois voies
(5) pour régler le flux à travers et dans au moins un des agencements de collecteur
(6).
10. Appareil échangeur de chaleur selon la revendication 9, dans lequel le conduit de
retour est formé comme une partie de l'agencement de collecteur.
11. Appareil échangeur de chaleur selon l'une quelconque des revendications précédentes,
dans lequel :
la sortie de côté primaire (19) de l'échangeur de chaleur est au sommet de l'échangeur
de chaleur, qui est, en utilisation, orienté verticalement, et celui-ci est raccordé
par une première partie (9) de l'agencement de collecteur de côté primaire à la pompe
de circuit primaire ;
la sortie de la pompe de circuit primaire se raccorde par l'intermédiaire de la seconde
partie (12) du collecteur de côté primaire au retour pour le circuit primaire ;
la seconde partie du collecteur de côté primaire raccorde également le flux de circuit
primaire à l'entrée de côté primaire d'échangeur de chaleur ;
l'entrée de côté secondaire (18) de l'échangeur de chaleur est au sommet de l'échangeur
de chaleur et celui-ci est raccordé par la première partie (8) de l'agencement de
collecteur de côté secondaire à la sortie de la pompe de circuit secondaire ;
la seconde partie (6) de l'agencement de collecteur de côté secondaire inclut un conduit
de retour raccordant la sortie de côté secondaire (21) de l'échangeur de chaleur à
l'entrée de la pompe de circuit secondaire ; et
la seconde partie de l'agencement de collecteur de côté secondaire raccorde également
la sortie de côté secondaire de l'échangeur de chaleur au retour pour le circuit secondaire,
et raccorde le flux de circuit secondaire à l'entrée de la pompe de circuit secondaire
;
dans lequel une soupape à trois voies (5) règle le flux à travers le conduit de retour.
12. Système de chauffage incluant un échangeur de chaleur selon l'une quelconque des revendications
précédentes, un dispositif de chaleur et d'électricité combinées (13), et une charge
thermique (14), dans lequel l'échangeur de chaleur est agencé pour transférer de la
chaleur depuis le circuit primaire, qui est le circuit de refroidissement du dispositif
de chaleur et d'électricité combinées, vers le circuit secondaire raccordé à la charge
thermique.