[0001] The invention relates to a trigger method with which an active regeneration cycle
of a particle filter which is arranged in a vehicle can be started.
[0002] Particle filters in vehicles, in particular in vehicles using a combustion engine,
are designed to remove particulate matter (soot) from the exhaust gas of the combustion
engine. In particular, such particle filters are used in diesel combustion engines
to filter the exhaust gas of the diesel engine.
[0003] Unlike a catalytic converter, which is a flow-through device, a particle filter retains
bigger exhaust gas particles by forcing the gas to flow through the filter. There
are a variety of particulate filter technologies available, each designed around similar
requirements such as fine filtration, minimum pressure drop, low cost, mass production
suitability and product durability.
[0004] During use the particle filter gets clogged by the accumulating soot, such that the
particle filter needs regeneration from time to time. During the so called active
regeneration cycle a certain program is run in a manner that elevates the exhaust
temperature in conjunction with an extra fuel injection in the exhaust stream gas,
such that fuel is injected to burn off the accumulated soot and convert it to ash.
The fuel can, for example, be injected into the combustion chambers of the combustion
engine to create hotter than normal exhaust gases by which the particles in the particle
filter are burned off.
[0005] There are situations in which this system does not always work, in particular in
vehicles which are doing a high proportion of short runs from cold starts. In these
cases instead of burning off the particles, the extra fuel can instead find its way
into the engine's sump where it contaminates, for example, the lubrication oil being
present.
[0006] Hence, for the active regeneration cycle to be effective, the vehicle needs to be
in a favorable current drive pattern, in which the regeneration cycle can be completed
after being started.
[0007] Therefore, the active regeneration cycle of the particle filter is triggered by various
strategies. For a successful complete regeneration to happen with little fuel penalty,
it is necessary that the current drive pattern is aiding the regeneration. For the
regeneration to finish, once started, it is needed a minimum duration to stay in regeneration
mode. During this duration of time, the drive pattern has to be maintained. This will
reduce the fuel needed to raise and maintain the temperature for regeneration.
[0008] From
US 2010/0154389 A1 a procedure for regenerating an exhaust gas after treatment system, especially a
particle filter, of a combustion engine is known. The procedure comprises controlling
a particle filter regeneration cycle with a control unit wherein the control unit
is provided with data comprising information data relating to a route, and wherein
the route information data contains at least a plurality of driver specific data.
[0009] From
EP 1 195 508 A2 a method of operating an exhaust gas cleaning system of a combustion engine is known.
A regeneration condition is activated when predetermined regeneration start conditions
are present. It belongs to these regeneration start conditions that one exhaust gas
cleaning parameter has left a predetermined operation range. During the operation
of the combustion engine a specific operation profile is determined. The predetermined
operation range is predetermined in a variable manner dependent on the determined
specific operation profile.
[0010] Another system for the regeneration of a particle filter is known from
EP 1 203 877 A1. For determining an optimum operation point of regeneration the system uses information
about a current drive condition of the corresponding vehicle.
[0011] EP 1 439 294 A2 describes the regeneration of a Diesel particulate filter wherein a controller determines
a vehicle running pattern from the vehicle speed wherein the regeneration is carried
out dependent on the determined running pattern of the vehicle.
[0012] Object of the invention is to provide a trigger method with which a complete active
regeneration cycle can be provided.
[0013] This object is attained by a trigger method with the feature combination of independent
claim 1.
[0014] Advantageous features of the trigger method are defined in the independent claims.
[0015] In the trigger method three different parameters are used to forecast if a successful
complete regeneration cycle can be carried out. These three parameters are a general
drive index of the vehicle which indicates in which manner the vehicle is generally
driven, the current physical condition of the particle filter which indicates if it
is already necessary to regenerate the particle filter, and a current drive pattern
of the vehicle which indicates how the vehicle is driven at the moment.
[0016] The map which relates all three parameters to the decision if the regeneration of
the particle filter is necessary or not, is deposited in advance of carrying out the
trigger method, wherein from the map it can be drawn, if the overall situation of
the vehicle is suitable to carry out the active regeneration cycle of the particle
filter . In a preferred embodiment of the invention the vehicle in which the trigger
method is carried out is a combustion engine, in particular a diesel combustion engine,
wherein diesel is used as the combustion fuel.
[0017] Before step a) a first drive pattern is defined as being favorable for the regeneration,
and a second drive pattern is defined as being unfavorable for the regeneration. In
particular, the first drive pattern is a drive pattern with a vehicle velocity of
at least 50 km/h and the second drive pattern is a drive pattern with a vehicle velocity
of less than 50 km/h.
[0018] The general drive index of the vehicle is recorded by evaluating a predetermined
number of recorded drive styles of successive drive cycles of the vehicle. By "drive
cycle" of the vehicle an interval between a start of the vehicle and a stop of the
vehicle is to be understood. During this drive cycle a plurality of drive patterns
are present, wherein the vehicle drives at least 50 km/h or less than 50 km/h. Therefore,
a "drive cycle" is the sum of all first drive patterns and second drive patterns.
In this drive cycle the vehicle is driven in a drive style which is an average of
all drive patterns being present during this drive cycle. The general drive index
of the vehicle, i.e. the manner in which the vehicle is predictably generally driven
over a longer time slot, is an average of a plurality of drive styles . Preferably,
at least three drive styles, which happen successively, are used to record the general
drive index of the vehicle.
[0019] The drive style of a drive cycle is recorded as being a first drive style, which
is in particular a fast drive style, or as being a second drive style, which is in
particular a slow drive style. For example, the first drive style is corresponding
to a drive style in the drive cycle where the vehicle is driven mostly on a highway.
In this case, the vehicle mostly has a velocity of more than 50 km/h and mostly drives
in the first drive pattern. But it is also possible that the vehicle is driven mainly
in the city where the vehicle velocity is less than 50 km/h and where the drive style
is therefore a slow drive style, which is defined as being the second drive style.
When determining if the drive style of a considered drive cycle is a first drive style
or a second drive style the number of the first drive patterns in the drive cycle
and the number of the second drive patterns in the drive cycle are counted.
[0020] In case the number of the first drive patterns in this considered drive cycle predominates,
the drive style is recorded as being the first drive style. In case the number of
the second drive patterns predominates in the considered drive cycle, the drive style
in this drive cycle is recorded as being the second drive style.
[0021] A first general drive index is recorded if at evaluation of the predetermined number
of drive styles the first drive style predominates. The first general drive index
is in particular a fast general drive index. A second general drive index is recorded
if at evaluation of the predetermined number of drive styles the second drive style
predominates. The second general drive index is in particular a slow general drive
index.
[0022] In a preferred embodiment the regeneration necessity is affirmed for a first general
drive index if both the physical condition of the particle filter and the current
drive pattern of the vehicle are sensed as being favorable for the active regeneration.
Therefore, in the case a first general drive index is present in the vehicle, the
active regeneration cycle is only carried out if the physical condition as well as
the current drive pattern with which the vehicle is driven at the moment fulfill the
requirement "favorable for the active regeneration".
[0023] The higher the velocity of a vehicle, the higher is the temperature which is generated
in the exhaust gas of the vehicle and therefore in the area of the particle filter.
It is known that at a higher temperature of the particle filter a complete burning
off of the particles in the particle filter can be attained which is not the case
if the temperature is too low. Therefore, a drive pattern can advantageously only
be favorable for the regeneration if the velocity of the vehicle is high enough to
attain the necessary temperature in the particle filter to burn off the particles.
Hence, there is a first drive pattern defined which corresponds to a sufficient high
velocity of the vehicle and is therefore favorable for the regeneration. Additionally,
a second drive pattern is defined in which the vehicle does not attain the necessary
velocity and therefore the second drive pattern is defined as being unfavorable for
the regeneration.
[0024] In a preferred embodiment the regeneration necessity is affirmed if the drive pattern
is sensed as being favorable for the regeneration. Hence, the active regeneration
cycle is preferably carried out if the drive pattern guarantees a sufficient temperature
in the particle filter such that a successful regeneration cycle can be carried out.
[0025] Preferably before step a) a soot load of the particle filter is defined as being
the physical condition of the particle filter to be sensed in step b) . The soot load
corresponds to the portion of a surface of the particle filter which is clogged by
particles such that this portion cannot be active anymore when filtering the exhaust
gas of the vehicle. It is defined that a soot load of at least 50 % of the particle
filter is defined as being favorable for the regeneration. It is preferred if the
active regeneration cycle of the particle filter is only carried out if it is really
necessary, as in order to carry out the regeneration cycle additional fuel is needed.
In order to save fuel and energy, the regeneration cycle should not be carried out
too often. A threshold value from whereon it is okay to carry out the regeneration
cycle is the defined favorable soot load.
[0026] Preferably, the soot load of the particle filter is sensed by providing a pressure
difference sensor in the particle filter. By monitoring the pressure difference over
the particle filter, the soot load, i.e. the amount of particles being present in
the particle filter, can preferably be monitored. Alternatively or additionally it
is also possible to monitor the driving behavior of the vehicle and deduce out of
this driving behavior the soot load in the particle filter.
[0027] In a preferred embodiment a temperature of an exhaust gas of the vehicle which is
filtered by the particle filter is measured upstream the particle filter. The temperature
measurement enables additional monitoring if at the moment the situation in the vehicle
is suitable to carry out the active regeneration cycle. Even if the drive pattern
is in the favorable condition to carry out the active regeneration cycle as the vehicle
velocity is at least 50 km/h, it is possible that the temperature in the exhaust gas
and therefore in the particle filter is not yet high enough to successfully burn off
the particles. Therefore, it is preferred to additionally monitor the temperature
of the exhaust gas.
[0028] In a preferred embodiment the time duration of each counted first and second drive
patterns in the drive cycle is recorded and the number of the first and second drive
patterns in the drive cycle are weighted, if at least one of the counted first drive
patterns in the drive cycle exceeds a predefined threshold time duration.
[0029] In case at least one time in a drive cycle a first drive pattern, i.e. a velocity
of more than 50 km/h, is present for a sufficient time span, then it can be concluded
that in this drive cycle the active regeneration cycle could have been carried out
successfully. Therefore, there is no need to characterize this considered drive cycle
as having a slow drive style and therefore define it as being a second drive style,
but it is possible to define it as being a first drive style.
[0030] In a preferred embodiment the predefined threshold time duration is defined as being
a time duration needed to complete the active regeneration cycle after the start of
the active regeneration cycle, which in particular is a time duration of at least
10 minutes. If the time duration of at least one of the first drive patterns in the
drive cycle is exceeding this threshold time duration, the drive style of the drive
cycle is recorded as being the first drive style.
[0031] Therefore, out of the monitoring of all drive patterns being present in a single
drive cycle, it can be concluded in which drive style a vehicle was driven during
this drive cycle. If a vehicle is driven generally in a fast drive style, then it
can be concluded that the vehicle will be generally driven in the fast drive style
and the first general drive index is recorded. If during a plurality of drive cycles
the vehicle is always driven with the second drive pattern, i.e. a slow drive pattern,
it can be concluded that also in the future the vehicle will have a higher probability
to be driven with the second drive pattern again. Therefore, in this case, the general
drive index is recorded as being the second general drive index.
[0032] Hence, by observing the drive pattern of the vehicle over a number of driving cycles
it can be decided as to when the active regeneration cycle can start.
[0033] Out of the general drive index it can be derived a probability of the vehicle to
meet a favorable condition to carry out a successful active regeneration cycle. Therefore,
the trigger for starting the active regeneration cycle is based on the physical condition
of the particle filter, the current drive pattern of the vehicle and the general drive
index of the vehicle which gives the probability if a favorable drive pattern of the
vehicle to carry out the active regeneration cycle can be met again in the future.
[0034] Therefore, if the vehicle seldom does a favorable drive pattern and the soot load
in the particle filter is not high, and if the vehicle currently is in a favorable
drive pattern, the active regeneration cycle is triggered to make use of the seldom
favorable drive pattern to reduce the fuel penalty.
[0035] If the vehicle frequently does a favorable drive pattern, the active regeneration
cycle is only started when the soot load in the particle filter is high enough. Knowing
that this vehicle has a record of frequenting the favorable drive pattern the active
regeneration cycle will be started at the next favorable drive pattern after exceeding
the predefined soot load limit.
[0036] In a preferred embodiment if a regeneration necessity is affirmed in step d) the
active regeneration cycle of the particle filter is started.
[0037] Preferably the trigger method is carried out in an electronic control unit of the
vehicle.
[0038] In a preferred embodiment, if the regeneration necessity in step d) is continuously
negated and a soot load of the particle filter is exceeding a predefined threshold
value, a warn signal is put out by the electronic control unit. The predefined threshold
value can be a critical value of the particle filter which, for example, can be a
soot load of 100 %.
[0039] A preferred embodiment of the invention will be explained in the following with reference
to the accompanying drawings, wherein
- Fig. 1
- shows a vehicle comprising a particle filter and an electronic control unit which
triggers an active regeneration cycle of the particle filter;
- Fig. 2
- shows a detailed schematic view of the electronic control unit of fig. 1;
- Fig. 3
- shows a flow chart representing the steps carried out to determine if a vehicle is
driven in a first general drive index or in a second general drive index;
- Fig. 4
- shows a flow chart representing the steps carried out to determine if an active regeneration
cycle should be triggered or not;
- Fig. 5
- shows a diagram of a temperature of the particle filter in fig. 1 versus the soot
load of the particle filter, wherein at a certain soot load it is necessary to carry
out the active regeneration cycle;
- Fig. 6
- shows a matrix indicating at which general drive index and current drive pattern of
the vehicle the active regeneration cycle is unfavorable or favorable;
- Fig. 7
- shows diagrams representing the statistic evaluation of the general drive index of
a first vehicle;
- Fig. 8
- shows diagrams representing the statistic evaluation of the general drive index of
a second vehicle; and
- Fig. 9
- shows diagrams representing the statistic evaluation of the general drive index of
a third vehicle.
[0040] Fig. 1 shows a vehicle 10, in particular a car, which comprises a particle filter
12 being arranged in the vehicle 10 to filter exhaust gases 14 being a product of
a combustion process of a combustion engine.
[0041] In the particle filter, a pressure difference sensor 16 is arranged which can sense
the pressure difference over the particle filter 12. Additionally, upstream the particle
filter 12 in an exhaust pipe 18, a temperature sensor 20 is arranged to measure the
temperature of the exhaust gas 14 near the particle filter 12. Further, a velocity
sensor 22 is provided in the vehicle 10 which can measure the velocity of the vehicle
10 when in a driving state.
[0042] The pressure difference measured by the pressure difference sensor 16 in the particle
filter 12 gives information about the soot amount, i.e. the amount of particles which
have already been filtered out by the particle filter 12 and therefore are at the
moment clogging the particle filter 12 such that in this region where the clogging
particles are present the particle filter 12 is not effective anymore.
[0043] All sensors - pressure difference sensor 16, temperature sensor 20 and velocity sensor
22 - transmit the sensed values to an electronic control unit 24 which is provided
in the vehicle 10 to control, regulate and monitor all functions of the vehicle 10,
in particular the functions of a combustion engine arranged in the vehicle 10.
[0044] The electronic control unit 24 is shown in greater detail in fig. 2. The electronic
control unit 24 comprises a recording device 26 to record values measured by the different
sensors 16, 20, 22 arranged in the vehicle 10. Therefore, the recording device 26
comprises a velocity recording element 28, which records the velocity values sensed
by the velocity sensor 22, a temperature recording element 30, which records the temperature
of the exhaust gas 14 sensed by the temperature sensor 20, and a pressure difference
recording element 32, which records the pressure difference prevailing in the particle
filter 12 measured by the pressure difference sensor 16. Additionally, in the recording
device 26 there is provided at least one further recording element 34 which records
additional information about for example the driving behavior of the vehicle 10.
[0045] Besides the recording device 26 the electronic control unit 24 comprises a memory
device 36 in which a plurality of control maps are stored, for example a map 38, which
relates a general drive index GI of the vehicle 10, a physical condition of the particle
filter 12 and a current drive pattern DP of the vehicle 10 to the necessity if an
active regeneration cycle should be carried out.
[0046] Besides the recording device 26 and the memory device 36 the electronic control unit
24 comprises a processing device 40 in which at least an index calculator 42 and a
trigger calculator 44 are provided. With the index calculator 42 a general drive index
GI of the vehicle 10 is calculated based on a statistic processing of a plurality
of drive patterns DP of the vehicle 10.
[0047] The calculated general drive index GI is transmitted to an index memory 46 in the
memory device 36.
[0048] The values of the velocity in the velocity recording element 28, the pressure difference
in the pressure difference recording element 32 and the general drive index GI in
the index memory 46 are transmitted to the trigger calculator 44 together with the
map 38, which is stored in the memory device 36. Based on this data the trigger calculator
44 carries out a trigger method with which it can be decided if an active regeneration
cycle should take place or not. The trigger method will be later explained in greater
detail.
[0049] The trigger calculator 44 transmits the calculated result to a signal output device
48. This signal output device 48 can put out a signal to carry out the active regeneration
cycle, in case in the trigger calculator 44 the result is obtained that the active
regeneration cycle should take place. In case the trigger calculator 44 does not calculate
that the active regeneration cycle should take place for a longer time period in which
the particle filter 12 is clogged to a critical point, the signal output device 48
can also put out a warn signal in order to induce manual cleaning of the particle
filter 12.
[0050] Fig. 3 shows a flow chart representing the steps with which in the index calculator
42 it can be decided with which general drive index GI the vehicle 10 is normally
driven.
[0051] In a first step after the start of the method in the index calculator 42 it is counted
during a drive cycle DC, i.e. during an interval between the start and the stop of
the vehicle 10, how often the vehicle 10 attains a velocity of at least 50 km/h and
how often the vehicle 10 attains a velocity of less than 50 km/h. A velocity of 50
km/h and more corresponds to a first drive pattern DP
1 and a velocity of the vehicle 10 of less than 50 km/h corresponds to a second drive
pattern DP
2. At the same time of counting, the time duration t of each drive pattern DP
1, DP
2 is recorded.
[0052] Therefore, in the second step it is evaluated if at least one of the first drive
patterns DP
1 in the considered drive cycle DC has a time duration t which is long enough to carry
out a complete active regeneration cycle of the particle filter 12, for example 10
minutes. If this is the case, the drive style DS in the considered drive cycle DC
is evaluated as being a fast drive style FDS. If the time duration of all first drive
patterns DP
1 in the considered drive cycle DC does not exceed the threshold time duration to carry
out a complete active regeneration cycle, it is determined which of the drive patterns
DP
1 or DP
2 was predominating in the considered drive cycle DC based on the counted number of
each drive pattern DP. In case the first drive pattern DP
1 was predominating, the drive style DS in the considered drive cycle DC is evaluated
as being a fast drive style FDS, whereas in case the second drive pattern DP
2 was predominating in the considered drive cycle DC, the drive style DS is evaluated
as being a slow drive style SDS.
[0053] Therefore, for each drive cycle DC the drive style DS is evaluated. For a predefined
number of drive cycles DC the number of fast drive styles FDS and slow drive styles
SDS is counted in the next step. In a following step the number of fast drive styles
FDS and slow drive styles SDS are compared and in case the number of fast drive styles
FDS is predominating, it is determined and recorded that the vehicle 10 is generally
driven in the first general drive index GI
1. In case the number of slow drive styles is predominating, it is determined and recorded
that the vehicle 10 is generally driven in the second general drive index GI
2.
[0054] After the general drive index GI of the vehicle 10 is calculated in the index calculator
42 according to the above described method, the general drive index GI is stored in
the index memory 46.
[0055] When deciding if the active regeneration cycle of the particle filter 12 should be
triggered, the trigger calculator 44 carries out the trigger method as described in
the following with reference to fig 4.
[0056] After starting the method first, the current velocity of the vehicle 10 and therefore
the current drive pattern DP of the vehicle 10 is measured by the velocity sensor
22 and fed via the velocity recording element 28 into the trigger calculator 44. In
the next step in the trigger calculator 44 it is decided if the velocity and therefore
the drive pattern DP of the vehicle 10 is favorable to carry out the active regeneration
cycle. A favorable drive pattern DP is a velocity of at least 50 km/h where the temperature
is high enough to guarantee an effective active regeneration cycle. In case it is
decided that the current drive pattern DP is not favorable to carry out the active
regeneration cycle, the value of the pressure difference measured by the pressure
difference sensor 16 is fed to the trigger calculator 44 via the pressure difference
recording element 32 and it is evaluated if the pressure difference indicates a critical
soot value in the particle filter 12. If the soot value in the particle filter 12
is critical, but the drive pattern DP of the vehicle 10 is currently not favorable
to carry out the active regeneration cycle, a warn signal is put out by the signal
output device 48 indicating that the particle filter 12 needs cleaning. In case the
soot amount in the particle filter 12 is not critical, the method returns back to
carry out the first step of evaluating the vehicle velocity.
[0057] In a next step after evaluating that the drive pattern DP is favorable to carry out
the active regeneration cycle the trigger calculator 44 uses information from the
index memory 46 in which general drive index GI the vehicle 10 is generally driven.
In case the general drive index GI of the vehicle 10 is the second general drive index
GI
2, the active regeneration cycle is carried out.
[0058] In case the general drive index GI of the vehicle 10 is the first general drive index
GI
1, in a further step it is evaluated if the pressure difference and therefore the soot
amount in the particle filter 12 is favorable for the active regeneration cycle. In
case the pressure difference does not indicate a favorable state of the particle filter
12, for example because the particle filter 12 is not clogged enough, the method returns
to the first step of evaluating the velocity of the vehicle 10. In case the pressure
difference indicates a clogging of the particle filter 12 and therefore a high enough
soot amount, the active regeneration cycle is carried out.
[0059] Therefore, when evaluating the general drive index GI the drive patterns DP are monitored
and the different drive styles DS are sorted according to the considered drive cycles
DC, whereas the duration of each type of drive pattern DP is considered such that
more weightage is given to the first drive pattern DP
1 which is the favorable drive pattern DP to carry out the active regeneration cycle.
At the end of the drive cycle DC the maximum duration after considering the weightage
is identified and that drive style DS is assigned to the current drive cycle DC. This
is stored over a number of drive cycles DC.
[0060] Out of the general drive index GI it is possible to address conditions that normally
cause an incomplete active regeneration cycle. Usually, in frequent short distance
journeys a high soot loading is occurring while at the same time the regeneration
of the particle filter 12 does not take place because the conditions necessary were
not fulfilled. Sometimes frequent interrupted regenerations can happen, i.e. the engine
was switched off during regeneration. This can for example apply to short journey
vehicles 10 which have at least fulfilled the conditions for triggering regeneration.
[0061] In fig. 5 a map 38 is shown which represents a diagram showing in which situations
the active regeneration cycle is favorable. In the diagram the temperature of the
particle filter 12 measured by the temperature sensor 20 in the exhaust pipe 18 is
plotted against the soot amount in the particle filter 12. The active regeneration
cycle is usually only favorable if a soot amount of at least 50 % is attained. This
criterion holds in particular if the vehicle 10 is generally driven in the first general
drive index GI
1. But there are also vehicles 10 which are only seldom driven with the first drive
pattern DP
1 and therefore the probability that a favorable drive pattern DP can be attained is
low. Hence, for vehicles 10 with the second general drive index GI
2 it is already favorable to carry out the active regeneration cycle below the threshold
value of 50 % soot amount as soon as a drive pattern DP is attained which is favorable
to carry out active regeneration.
[0062] Fig. 6 shows a matrix which summarizes the above criteria. For both general drive
indices GI it is unfavorable (U) to carry out the active regeneration cycle if the
vehicle 10 is driven in the second drive pattern DP
2. Therefore, if the vehicle 10 is driven in a first drive pattern DP
1, i.e. with at least 50 km/h, it is favorable (F) to carry out the active regeneration
cycle. For the first general drive index GI
1, where it can be expected that the favorable drive pattern DP is attained a plurality
of times, additionally the map 38 of fig. 5 is regarded. The active regeneration cycle
is only carried out if the soot amount has attained a favorable (F) value. If the
vehicle 10 is generally driven in the second drive index GI
2, the active regeneration cycle is also carried out if the favorable (F) soot amount
in the particle filter 12 is not yet attained.
[0063] Fig. 7 shows diagrams representing the statistic evaluation of the general drive
index GI of a first vehicle 10. In diagram a) the velocity v of the vehicle 10 is
plotted against the time t, in diagram b) a current drive pattern DP of the vehicle
10 is plotted against the time t, in diagram c) the extracted drive style DS is plotted
against the time t and in diagram d) the recorded general drive index GI is plotted
against the time t. As can be seen, the velocity v in each drive cycle DC is lower
than 50 km/h. Therefore, the drive pattern DP in each drive cycle DC is set to "1"
= slow drive pattern. As there is no indication of a fast drive pattern with a velocity
of at least 50 km/h, the drive style DS of the first drive cycle DC is set to slow
drive style DS according to for example a city driver. After the third drive cycle
DC the drive style DS has occurred three times and therefore the general drive index
GI is the second general drive index GI
2 according to a slow general drive index GI.
[0064] Fig. 8 shows diagrams according to fig. 7 for a second vehicle 10 which mostly drives
with a vehicle speed of at least 50 km/h, where the drive pattern DP in each drive
cycle DC is set to "3" = fast drive pattern. Therefore, after statistically evaluating
the drive patterns DP in the single drive cycles DC this second vehicle 10 is evaluated
as being generally driven in the first general drive index GI
1, i.e. a fast general drive index GI.
[0065] Fig. 9 shows the situation for a third vehicle 10 which is often driven in a slow
city drive, but occasionally goes, for example, to a highway for sufficiently long
enough time to complete an active regeneration cycle. Therefore, after four drive
cycles DC the general drive index GI is evaluated as being the first general drive
index GI
1.
[0066] The favorable drive pattern DP is the pattern in which the particle filter 12 inlet
temperature is sufficiently high to start and successfully complete the active regeneration
cycle with minimal fuel penalty. The regeneration cycle is governed by the soot load
and the inlet temperature of the particle filter 12. If the driver does not drive
so as to have a high particle filter 12 inlet temperature, then it is better to start
the active regeneration cycle at lower soot loads to avoid overloading and insufficient
heat for successful regeneration.
1. Trigger method to start an active regeneration cycle of a particle filter (12) arranged
in a vehicle (10), the method comprising the steps of
a) recording a general drive index (GI) of the vehicle (10) ;
b) sensing a current physical condition of the particle filter (12);
c) sensing a current drive pattern (DP) of the vehicle (10) ;
d) affirming or negating a regeneration necessity based on a map (38) relating the
general drive index (GI) of the vehicle (10), the physical condition of the particle
filter (12) and the current drive pattern (DP) of the vehicle (10) to the regeneration
necessity,
wherein
before step a) a first drive pattern (DP
1), in particular a drive pattern (DP) with a vehicle velocity (v) of at least 50 km/h,
is defined as being favorable (F) for the regeneration, and a second drive pattern
(DP
2), in particular a drive pattern (DP) with a vehicle velocity (v) of less than 50
km/h, is defined as being unfavorable (U) for the regeneration,
the general drive index (GI) of the vehicle (10) is recorded by evaluating a predetermined
number of recorded drive styles (DS) of successive drive cycles (DC) of the vehicle
(10), in particular at least three drive styles (DS), wherein a drive cycle (DC) of
the vehicle (10) is defined as being an interval between a start of the vehicle (10)
and a stop of the vehicle (10),
the drive style (DS) of a drive cycle (DC) is recorded as being a first drive style
(DS), in particular a fast drive style (FDS), or as being a second drive style (DS),
in particular a slow drive style (SDS), by counting the number of the first drive
patterns (DP
1) in the drive cycle (DC) and the number of the second drive patterns (DP
2) in the drive cycle (DC), and by recording the drive style (DS) of the drive cycle
(DC)as the first drive style (DS) if the number of the first drive patterns (DP
1) predominates in the drive cycle (DC) and by recording the drive style (DS) of the
drive cycle (DC) as the second drive style (DS) if the number of the second drive
patterns (DP
2) predominates in the drive cycle (DC), and
a first general drive index (GI
1), in particular a fast general drive index, is recorded if at evaluation of the predetermined
number of drive styles (DS) the first drive style (DS) predominates, and a second
general drive index (GI
2), in particular a slow general drive index, is recorded if at evaluation of the predetermined
number of drive styles the second drive style (DS) predominates.
2. Trigger method according to claim 1,
characterized in that the regeneration necessity is affirmed for a first general drive index (GI1) if both the physical condition of the particle filter (12) and the current drive
pattern (DP) of the vehicle (10) are sensed as being favorable (F) for the active
regeneration.
3. Trigger method according to claim 1,
characterized in that the regeneration necessity is affirmed if the drive pattern (DP) is sensed as being
favorable (F) for the regeneration.
4. Trigger method according to any of the claims 1 to 3,
characterized in that before step a) a soot load of the particle filter (12) is defined as being the physical
condition of the particle filter (12) to be sensed in step b), wherein a soot load
of at least 50% of the particle filter (12) is defined as being favorable (F) for
the regeneration.
5. Trigger method according to claim 4,
characterized in that the soot load of the particle filter (12) is sensed by providing a pressure difference
sensor (16) in the particle filter (12) and/or by monitoring a driving behavior of
the vehicle (10).
6. Trigger method according to any of the claims 1 to 5,
characterized in that a temperature of an exhaust gas (14) of the vehicle (10) being filtered by the particle
filter (12) is measured upstream the particle filter (12).
7. Trigger method according to claim 1,
characterized in that the time duration (t) of each counted first and second drive patterns (DP1, DP2) in the drive cycle (DC) is recorded and that the number of the first and second
drive patterns (DP1, DP2) in the drive cycle (DC) are weighted if at least one of the counted first drive
patterns (DP1) in the drive cycle (DC) exceeds a predefined threshold time duration.
8. Trigger method according to claim 7,
characterized in that the predefined threshold time duration is defined as being a time duration (t) needed
to complete the active regeneration cycle after the start of the active regeneration
cycle, in particular at least 10 min, wherein if the time duration (t) of at least
one of the first drive patterns (DP1) in the drive cycle (DC) is exceeding the threshold time duration, the drive style
(DS) of the drive cycle (DC) is recorded as being the first drive style (DS).
9. Trigger method according to any of the claims 1 to 8,
characterized in that if a regeneration necessity is affirmed in step d) the active regeneration cycle
of the particle filter (12) is started.
10. Trigger method according to any of the claims 1 to 9,
characterized in that the trigger method is carried out in an electronic control unit (24) of the vehicle
(10).
11. Trigger method according to claim 10,
characterized in that if the regeneration necessity in step d) is continuously negated and a soot load
of the particle filter (12) is exceeding a predefined threshold value, in particular
a soot load of 100 %, a warn signal is put out by the electronic control unit (24).
1. Auslöseverfahren zum Beginnen eines aktiven Regenerationszyklus eines Partikelfilters
(12), der in einem Fahrzeug (10) angeordnet ist, wobei das Verfahren die folgenden
Schritte aufweist:
a) Aufzeichnen eines allgemeinen Fahrindex (GI) des Fahrzeugs (10) ;
b) Erfassen einer aktuellen physischen Bedingung des Partikelfilters (12);
c) Erfassen eines aktuellen Fahrmusters (DP) des Fahrzeugs (10) ;
d) Bestätigen oder Ablehnen einer Regenerationsnotwendigkeit aufgrund einer Abbildung
(38), die den allgemeinen Fahrindex (GI) des Fahrzeugs (10), die physische Bedingung
des Partikelfilters (12) und das aktuelle Fahrmuster (DP) des Fahrzeugs (10) mit der
Regenerationsnotwendigkeit in Beziehung bringt, wobei:
vor dem Schritt a) ein erstes Fahrmuster (DP1), insbesondere ein Fahrmuster (DP) mit einer Fahrzeuggeschwindigkeit (v) von mindestens
50 km/h als vorteilhaft (F) für die Regeneration definiert wird, und ein zweites Fahrmuster
(DP2), insbesondere ein Fahrmuster (DP) mit einer Fahrzeuggeschwindigkeit (v) von weniger
als 50 km/h als nachteilhaft (U) für die Regeneration definiert wird,
der allgemeine Fahrindex (GI) des Fahrzeugs (10) aufgezeichnet wird, indem eine vorbestimmte
Anzahl von aufgezeichneten Fahrstilen (DS) von aufeinanderfolgenden Fahrzyklen (DC)
des Fahrzeugs (10) insbesondere mindestens drei Fahrstile (DS) bewertet werden, wobei
ein Fahrzyklus (DC) des Fahrzeugs (10) als ein Intervall zwischen einem Start des
Fahrzeugs (10) und einem Anhalten des Fahrzeugs (10) definiert wird,
der Fahrstil (DS) eines Fahrzyklus (DC) als ein erster Fahrstil (DS) insbesondere
als ein schneller Fahrstil (FDS) oder als ein zweiter Fahrstil (DS) insbesondere als
ein langsamer Fahrstil (SDS) aufgezeichnet wird, indem die Anzahl der ersten Fahrmuster
(DP1) in dem Fahrzyklus (DC) und die Anzahl der zweiten Fahrmuster (DP2) in dem Fahrzyklus (DC) gezählt werden, und indem der Fahrstil (DS) des Fahrzyklus
(DC) als der erste Fahrstil (DS) aufgezeichnet wird, wenn die Anzahl der ersten Fahrmuster
(DP1) in dem Fahrzyklus (DC) vorherrscht, und indem der Fahrstil (DS) des Fahrzyklus (DC)
als der zweite Fahrstil (DS) aufgezeichnet wird, wenn die Anzahl der zweiten Fahrmuster
(DP2) in dem Fahrzyklus (DC) vorherrscht, und
ein erster allgemeiner Fahrindex (GI1) insbesondere ein schneller allgemeiner Fahrindex aufgezeichnet wird, wenn bei einer
Bewertung der vorbestimmten Anzahl von Fahrstilen (DS) der erste Fahrstil (DS) vorherrscht,
und wobei ein zweiter allgemeiner Fahrindex (GI2) insbesondere ein langsamer allgemeiner Fahrindex aufgezeichnet wird, wenn bei einer
Bewertung der vorbestimmten Anzahl von Fahrstilen der zweite Fahrstil (DS) vorherrscht.
2. Auslöseverfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Regenerationsnotwendigkeit für einen ersten allgemeinen Fahrindex (GI1) bestätigt wird, wenn sowohl die physische Bedingung des Partikelfilters (12) als
auch das aktuelle Fahrmuster (DP) des Fahrzeugs (10) als vorteilhaft (F) für die aktive
Regeneration erfasst werden.
3. Auslöseverfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Regenerationsnotwendigkeit bestätigt wird, wenn das Fahrmuster (DP) als vorteilhaft
(F) für die Regenerationen erfasst wird.
4. Auslöseverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor dem Schritt a) eine Rußlast des Partikelfilters (12) als die in Schritt b) zu
erfassende physische Bedingung des Partikelfilters (12) definiert wird, wobei eine
Rußlast von mindestens 50 % des Partikelfilters (12) als vorteilhaft (F) für die Regeneration
definiert wird.
5. Auslöseverfahren nach Anspruch 4,
dadurch gekennzeichnet, dass die Rußlast des Partikelfilters (12) erfasst wird, indem ein Druckdifferenzsensor
(16) in dem Partikelfilter (12) bereitgestellt wird und/oder indem ein Fahrverhalten
des Fahrzeugs (10) überwacht wird.
6. Auslöseverfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass eine Temperatur eines Abgases (14) des Fahrzeugs (10), das durch den Partikelfilter
(12) gefiltert wird, vorgeschaltet zu dem Partikelfilter (12) gemessen wird.
7. Auslöseverfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Zeitdauer (t) von jedem gezählten ersten und zweiten Fahrmuster (DP1, DP2) in dem Fahrzyklus (DC) aufgezeichnet wird und dass die Anzahl der ersten und zweiten
Fahrmuster (DP1, DP2) in dem Fahrzyklus (DC) gewichtet wird, wenn mindestens eines der ersten gezählten
Fahrmuster (DP1) in dem Fahrzyklus (DC) eine vordefinierte Schwellenwertzeitdauer überschreitet.
8. Auslöseverfahren nach Anspruch 7,
dadurch gekennzeichnet, dass die vordefinierte Schwellenwertzeitdauer als eine Zeitdauer (t), die erforderlich
ist, um den aktiven Regenerationszyklus nach dem Beginn des aktiven Regenerationszyklus
abzuschließen, und insbesondere mit mindestens 10 min. definiert wird, wobei, wenn
die Zeitdauer (t) von mindestens einem der ersten Fahrmuster (DP1) in dem Fahrzyklus (DC) die Schwellenwertzeitdauer überschreitet, der Fahrstil (DS)
des Fahrzyklus (DC) als der erste Fahrstil (DS) aufgezeichnet wird.
9. Auslöseverfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass, wenn im Schritt d) eine Regenerationsnotwendigkeit bestätigt wird, der aktive Regenerationszyklus
des Partikelfilters (12) begonnen wird.
10. Auslöseverfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass das Auslöseverfahren in einer elektronischen Steuereinheit (24) des Fahrzeugs (10)
ausgeführt wird.
11. Auslöseverfahren nach Anspruch 10,
dadurch gekennzeichnet, dass, wenn im Schritt d) die Regenerationsnotwendigkeit kontinuierlich abgelehnt wird
und eine Rußlast des Partikelfilters (12) einen vordefinierten Schwellenwert insbesondere
eine Rußlast von 100 % überschreitet, wird von der elektronischen Steuereinheit (24)
ein Warnsignal ausgegeben.
1. Procédé de déclenchement pour démarrer un cycle de régénération active d'un filtre
à particules (12) disposé dans un véhicule (10), le procédé comprenant les étapes
consistant à :
a) enregistrer un indice d'entraînement général (GI) du véhicule (10) ;
b) détecter une condition physique actuelle du filtre à particules (12) ;
c) détecter un modèle d'entraînement (DP) actuel du véhicule (10) ;
d) confirmer ou infirmer une nécessité de régénération sur la base d'une correspondance
(38) entre l'indice d'entraînement général (GI) du véhicule (10), la condition physique
du filtre à particules (12) et le modèle d'entraînement (DP) actuel du véhicule (10)
et la nécessité de régénération,
et dans lequel :
avant l'étape a), un premier modèle d'entraînement (DP1), en particulier un modèle d'entraînement (DP) avec une vitesse de véhicule (v) d'au
moins 50 km/h, est défini comme étant favorable (F) à la régénération, et un second
modèle d'entraînement (DP2), en particulier un modèle d'entraînement (DP) avec une vitesse de véhicule (v) inférieure
à 50 km/h, est défini comme étant défavorable (U) à la régénération,
l'indice d'entraînement général (GI) du véhicule (10) est enregistré en évaluant un
nombre prédéterminé de styles d'entraînement (DS) enregistrés de cycles d'entraînement
(DC) successifs du véhicule (10), en particulier au moins trois styles d'entraînement
(DS), un cycle d'entraînement (DC) du véhicule (10) étant défini comme étant un intervalle
entre un démarrage du véhicule (10) et un arrêt du véhicule (10),
le style d'entraînement (DS) d'un cycle d'entraînement (DC) est enregistré comme étant
un premier style d'entraînement (DS), en particulier un style d'entraînement rapide
(FDS), ou comme étant un second style d'entraînement (DS), en particulier un style
d'entraînement lent (SDS), en comptant le nombre de premiers modèles d'entraînement
(DP1) dans le cycle d'entraînement (DC) et le nombre de seconds modèles d'entraînement
(DP2) dans le cycle d'entraînement (DC), et en enregistrant le style d'entraînement (DS)
du cycle d'entraînement (DC) en tant que premier style d'entraînement (DS) si le nombre
de premiers modèles d'entraînement (DP1) prédomine dans le cycle d'entraînement (DC), et en enregistrant le style d'entraînement
(DS) du cycle d'entraînement (DC) en tant que second style d'entraînement (DS) si
le nombre de seconds modèles d'entraînement (DP2) prédomine dans le cycle d'entraînement (DC), et
un premier indice d'entraînement général (GI1), en particulier un indice d'entraînement général rapide, est enregistré si le premier
style d'entraînement (DS) prédomine à l'évaluation du nombre prédéterminé de styles
d'entraînement (DS), et un second indice d'entraînement général (GI2), en particulier un indice d'entraînement général lent, est enregistré si le second
style d'entraînement (DS) prédomine à l'évaluation du nombre prédéterminé de styles
d'entraînement.
2. Procédé de déclenchement selon la revendication 1,
caractérisé en ce que la nécessité de régénération est confirmée pour un premier indice d'entraînement
général (GI1) si la condition physique du filtre à particules (12) et le modèle d'entraînement
(DP) actuel du véhicule (10) sont l'un et l'autre détectés comme étant favorables
(F) à la régénération active.
3. Procédé de déclenchement selon la revendication 1,
caractérisé en ce que la nécessité de régénération est confirmée si le modèle d'entraînement (DP) est détecté
comme étant favorable (F) à la régénération.
4. Procédé de déclenchement selon l'une quelconque des revendications 1 à 3,
caractérisé en ce que, avant l'étape a), une charge de suie du filtre à particules (12) est définie comme
étant la condition physique du filtre à particules (12) qui doit être détectée à l'étape
b), une charge de suie d'au moins 50 % du filtre à particules (12) étant définie comme
étant favorable (F) à la régénération.
5. Procédé de déclenchement selon la revendication 4,
caractérisé en ce que la charge de suie du filtre à particules (12) est détectée en situant un capteur
de différence de pression (16) dans le filtre à particules (12) et/ou en surveillant
un comportement d'entraînement du véhicule (10).
6. Procédé de déclenchement selon l'une quelconque des revendications 1 à 5,
caractérisé en ce qu'une température d'un gaz d'échappement (14) du véhicule (10) filtré par le filtre
à particules (12) est mesurée en amont du filtre à particules (12).
7. Procédé de déclenchement selon la revendication 1,
caractérisé en ce que la durée (t) de chacun des premier et second modèles d'entraînement (DP1, DP2) comptés dans le cycle d'entraînement (DC) est enregistrée, et en ce que le nombre de premiers et seconds modèles d'entraînement (DP1, DP2) dans le cycle d'entraînement (DC) est pondéré si au moins un des premiers modèles
d'entraînement (DP1) comptés dans le cycle d'entraînement (DC) dépasse une durée-seuil prédéfinie.
8. Procédé de déclenchement selon la revendication 7,
caractérisé en ce que la durée-seuil prédéfinie est définie comme étant une durée (t) nécessaire pour terminer
le cycle de régénération active après le démarrage du cycle de régénération active,
en particulier au moins 10 min, le style d'entraînement (DS) du cycle d'entraînement
(DC) étant enregistré comme étant le premier style d'entraînement (DS) si la durée
(t) d'au moins un des premiers modèles d'entraînement (DP1) dans le cycle d'entraînement (DC) dépasse la durée-seuil.
9. Procédé de déclenchement selon l'une quelconque des revendications 1 à 8,
caractérisé en ce que le cycle de régénération active du filtre à particules (12) est démarré si une nécessité
de régénération est confirmée à l'étape d).
10. Procédé de déclenchement selon l'une quelconque des revendications 1 à 9,
le procédé de déclenchement étant caractérisé en ce qu'il est réalisé dans une unité de contrôle électronique (24) du véhicule (10).
11. Procédé de déclenchement selon la revendication 10,
caractérisé en ce qu'un signal d'avertissement est émis par l'unité de contrôle électronique (24) si la
nécessité de régénération à l'étape d) est infirmée de façon continue et si une charge
de suie du filtre à particules (12) dépasse une valeur-seuil prédéfinie, en particulier
une charge de suie de 100 %.