(19)
(11) EP 3 095 533 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.11.2016  Patentblatt  2016/47

(21) Anmeldenummer: 16001047.6

(22) Anmeldetag:  10.05.2016
(51) Internationale Patentklassifikation (IPC): 
B21D 3/00(2006.01)
B21D 3/10(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
MA MD

(30) Priorität: 13.05.2015 AT 3002015

(71) Anmelder: GTech Automatisierungstechnik GmbH
4551 Ried im Traunkreis (AT)

(72) Erfinder:
  • Gebeshuber, Josef
    4551 Ried im Traunkreis (AT)

   


(54) VERFAHREN UND ANLAGE FÜR DAS RICHTEN VON METALLISCHEN TEILEN


(57) Die Erfindung betrifft ein Verfahren und eine Anlage für das Richten eines metallischen Richtobjektes (1), wobei die Anlage eine Datenverarbeitungsanlage und eine Richtvorrichtung (2) aufweist, wobei die Richtvorrichtung (2) einen Rahmen (3), Halterungen (4) für das Halten des Richtobjektes (1), Sensoren für die Messung der Geometrie des Richtobjektes (1), sowie Richtstempel (6) für das kraftbedingte Verändern der Form des Richtobjektes (1) aufweist, wobei die Datenverarbeitungsanlage mit den Sensoren und den Richtstempeln (6) in Verbindung ist, und dazu in der Lage ist Bewegung der Richtstempel (6) zu steuern,
dadurch gekennzeichnet, dass
die Datenverarbeitungsanlage eine Datenbank (7) umfasst in welcher Daten bezüglich Ausgangssituation, Maßnahmen und Ergebnissen von schon geschehenen Verformungsvorgängen an Richtobjekten (1) enthalten sind und in welche Daten die während betriebsmäßig stattfindender Richtvorgänge anfallen, automatisch einspeisbar sind.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren und eine Anlage für das Richten von metallischen Teilen.

[0002] Nach dem Urformen, typischerweise nach dem Gießen, weicht die Form von metallischen Teilen oftmals noch von der gewünschten Endform etwas ab. Das "Richten" ist ein Verfahrensschritt in welchem ein urgeformter Teil in Abhängigkeit von festgestellten Maßdifferenzen zu den Sollmaßen plastisch umgeformt wird, bis idealerweise alle Abmessungen den Sollmaßen entsprechen.

[0003] Die Anwendung der Erfindung ist besonders dann besonders vorteilhaft, wenn die Geometrie der metallischen Teile vor allem aus flächigen Abschnitten besteht, die komplex gekrümmt sind und/oder aus verschieden ausgerichteten Abschnitten zusammengesetzt sind, sodass die genaue Vorausberechnung von plastischer Verformung durch Biegung zufolge Krafteinwirkung mittels Hydraulikstempeln oder Ähnlichem, nicht bzw. nur mit vielerlei Schwierigkeiten und Einschränkungen möglich ist. Derartige Teile sind beispielsweise eher größere, flächige Aluminiumdruckgussteile komplexer Gestalt, die als Teil des Chassis eines Automobils statisch tragende Funktion haben.

[0004] Die DE 196 11 897 C2 befasst sich mit dem Richten von länglichen metallischen Teilen. Ein Teil wird erst vermessen und dann durch Biegen gerichtet. Die plastische Biegeverformung zufolge des durch das Biegewerkzeug temporär erzwungenen Verformungsweges wird unter Berücksichtigung der Materialeigenschaften errechnet. Die Bewegung des Biegewerkzeuges beim Biegevorgang ist aus einer großen, gleich gerichteten Bewegung und einer dieser Bewegung überlagerten, schnellen Folge von Vorwärts-Rückwärtsbewegungen mit relativ kleinem Hub, zusammengesetzt. Für die Berechnung des Biegeergebnisses sind im Berechnungsprogramm Zahlenwerte hinterlegt, welche Materialparameter repräsentieren. In Anpassung an Ergebnisse von tatsächlich stattgefundenen Richtvorgängen können diese hinterlegten Zahlenwerte verändert werden, sodass mit vermehrten Erfahrungswerten die Berechnung zunehmend besser mit der Wirklichkeit in Übereinstimmung gebracht wird. Das Verfahren ist für einfache längliche Teile bei denen in der Praxis nur wenige verschiedene Formabweichungen zu korrigieren sind, sehr gut geeignet. Für das Richten von Teilen mit komplexerer Geometrie ist das Verfahren auf Grund des mit der Komplexität drastisch steigenden Rechenaufwandes nicht anwendbar.

[0005] In der DE 102004043401 A1 wird vorgeschlagen, Aluminiumgussteile, mittels eines Prägewerkzeuges zu richten. Das Prägewerkzeug weist dabei mehrere Paare, die jeweils aus Unterteil und Oberteil bestehen, auf, wobei alle Paare gemeinsam einen Formhohlraum einschließen, und wobei Paare individuell gegenüber den anderen Paaren in Schließrichtung des Prägewerkzeuges versetzt angeordnet werden können. Durch nachträgliches Prägen des gegossenen Werkstückes in diesem Werkzeug wird das Werkstück plastisch umgeformt. Indem der Versatz der einzelnen Paare aus Unter- und Oberteilen gegeneinander geschickt eingestellt wird, können systematische Geometriefehler der Gussteile gut korrigiert werden. Auf Grund des hohen Aufwandes für das Herstellen und Optimieren der Form ist die Methode nur dann wirtschaftlich sinnvoll anwendbar, wenn große Serien gefertigt werden und dabei nach dem Gießen die Maßabweichungen von Teil zu Teil immer ziemlich gleich sind.

[0006] Die DE 102008003882 B4 befasst sich mit einer vorteilhaften Methode für das Richten von flächigen metallischen Gussteilen wie insbesondere Flugzeugfensterrahmen. Nach dem Lösungsglühen wird die Geometrie des Gussteils automatisch vermessen und das Ausmaß des Verformungsbedarfes an den einzelnen Flächenbereichen automatisch errechnet, wobei das Maß der Verschiebung der Flächenbereiche normal zu ihrer Ebene wichtig ist. Die richtende Verformung wird dann durchgeführt, indem ein Strahlgut wie typischerweise Stahlkugeln normal zu deren Oberfläche auf ausgesuchte Flächenbereiche aufgestrahlt wird. Das Richten kann iterativ in mehreren Zyklen aus Messen und Strahlen bis zum gewünschten Endergebnis betrieben werden. Vorteilhaft an dem Verfahren ist vor allem seine Flexibilität. Es ist soweit automatisierbar, dass es bei Serienfertigung vollautomatisch auf die von Teil zu Teil verschiedenen Formabweichungen eingeht. Für die Fertigung in größeren Serien ist nachteilig, dass die Taktzeit relativ lang ist. Auf Grund des Umformens durch ein Strahlmittel ist auch der Wartungs- und Betriebsmittelaufwand für die Anlage relativ hoch.

[0007] Die Aufgabenstellung an die Erfindung besteht darin, eine Methode für das Richten eines Richtobjektes bereitzustellen, wobei das Richtobjekt ein urgeformtes Metallteil sein kann, insbesondere ein Metallgussteil. Im Gegensatz zu den aus dem besprochenen Stand der Technik bekannten Methoden, soll die zu schaffende Methode bezüglich aller nachfolgenden Kriterien vorteilhaft sein:

a) Anwendbarkeit auch bei sehr komplexer Geometrie des Richtobjekts.

b) Automatische Auswahl der jeweils passenden Richtverformung auch bei von Richtobjekt zu Richtobjekt stark unterschiedlichen Maßabweichungen.

c) Kurze Taktzeit

d Wenig Aufwand für Wartung und Betriebsmittel der Anlage.



[0008] Für das Lösen der Aufgabe wird von einem Verfahren ausgegangen, welches wie folgt abläuft:

Das Richtobjekt wird definiert gehalten und die Geometrie die das Richtobjekt hat, wenn es sich in entspanntem Zustand befindet, wird messtechnisch erfasst. Dann wird berechnet, in welcher Richtung und um welchen Betrag geometrische Maße des Richtobjekts von hinterlegten Sollmaßen abweichen. Dann wird das Richtobjekt einer sich im Bedarfsfall wiederholenden Folge von Arbeitsschritten unterzogen die folgende Arbeitsschritte umfasst:

  • Auswahl einer Verformung die durch ein oder mehrere Richtstempel auf das Richtobjekt aufzubringen ist.
  • Ausführen der ausgewählten Verformung.
  • Aufheben der Krafteinwirkung der Richtstempel auf das Richtobjekt.
  • Direktes oder indirektes messtechnisches Erfassen der Geometrie die das Richtobjekt in entspanntem Zustand hat.
  • Berechnen in welcher Richtung und um welchen Betrag geometrische Maße des Richtobjekts von hinterlegten Sollmaßen abweichen.



[0009] Das Verfahren ist dann zu Ende, wenn entweder im letztgenannten Arbeitsschritt keine Maßabweichungen von den Sollmaßen mehr festgestellt werden, oder wenn eine andere Abbruchbedingung erreicht ist.

[0010] Als erfindungsgemäße Verbesserung zu dieser an sich bekannten Vorgangsweise sind folgende beide Maßnahmen vorgesehen:
  • Die im ersten genannten Arbeitsschritt ("Auswahl einer Verformung die durch ein oder mehrere Richtstempel auf das Richtobjekt aufzubringen ist") zu treffende Auswahl wird unter Inanspruchnahme eines Datenbestandes einer Datenbank getroffen, welche Daten bezüglich Ausgangssituation, Maßnahmen und Ergebnissen von schon geschehenen Verformungsvorgängen an Richtobjekten enthält.
  • Daten bezüglich der am aktuell gerichteten Richtobjekt durchgeführten Verformungsvorgänge (jeweilige Ausgangsgeometrie, Maßnahmen, Ergebnisgeometrie) werden in die Datenbank eingespeist und der besagte Datenbestand über vergangene Verformungsvorgänge wird damit erweitert.


[0011] Durch die erfindungsgemäßen Maßnahmen, welche eigentlich erstaunlich einfach sogar in schon bestehende Anlagen zu implementieren sind, wird ein selbstlernendes System geschaffen, welches laufend die, an konkreten Richtvorgängen gewonnenen, Erfahrungen verwertet und von Richtobjekt zu Richtobjekt das Richten perfektioniert und nach und nach auch für selten auftretende Kombinationen von Maßabweichungen verlässlich erfolgreiche Richtrezepte liefert.
Fig. 1:
zeigt extrem stilisiert wesentliche mechanische Komponenten einer erfindungsgemäß verwendbaren Richtvorrichtung
Fig. 2:
zeigt das grundlegende Ablaufschema entsprechend welchem gemäß dem erfindungsgemäßen Verfahren ein Richtobjekt gerichtet wird.


[0012] Gemäß Fig. 1 ist das Richtobjekt 1 in einer Richtvorrichtung 2 angeordnet. Die Richtvorrichtung 2 weist einen starren Rahmen 3 auf.

[0013] Vom Rahmen 3 aus ragen Halterungen 4 auf definierte Punkte des Richtobjektes 1 und fixieren diese Punkte des Richtobjektes 1 gegenüber dem Rahmen 3. Typischerweise werden drei Halterungen 4 verwendet. Eine Halterung 4 kann beispielsweise durch zwei Hydraulik- oder Pneumatikzylinder gebildet sein, welche vom Rahmen 3 aus von gegenüberliegenden Seiten her an das Richtobjekt 1 gerichtet sind und deren Stellung optional mechanisch verriegelbar ist.

[0014] Am Rahmen 3 ist gemäß dem skizzierten Beispiel eine Reihe von Messfühlern 5 angeordnet, welche an das Richtobjekt 1 heranragen und an einer Mehrzahl von Stellen den Abstand der Oberfläche des Richtobjektes 1 vom Rahmen 3 messen. Die skizzierten Messfühler 5 können beispielsweise kontrolliert teleskopartig ausfahrbare Stäbe sein, an deren freier Spitze sich ein Berührungs- oder Drucksensor befindet, welcher ein Signal generiert, wenn er mit dem Richtobjekt in Kontakt kommt. Die notwendige Entfernungsmessung zwischen Punkten des Rahmens 3 und Punkten des Richtobjektes 1 könnte aber beispielsweise auch berührungslos mittels optischer Methoden erfolgen.

[0015] Vom Rahmen 3 aus ragt weiter eine Mehrzahl von Richtstempeln 6 auf das Richtobjekt 1. Die Richtstempel sind typischerweise Hydraulikzylinder, deren Hub gesteuert und gemessen werden kann und von welchen idealerweise auch die Kraft gesteuert oder zumindest gemessen werden kann. Selbstverständlich ist auch ein anderes Antriebsprinzip als Hydraulik für den Antrieb der Richtstempel denkbar, beispielsweise elektrisch (z.B. mit motorgetriebener Schraubspindel) oder pneumatisch.

[0016] Der Verfahrensablauf sei kurz an Hand der Zeichnungen verdeutlicht:

Arbeitsschritt a (Fig. 2): Das Richtobjekt 1 wird in definierter Position und Ausrichtung in die Richtvorrichtung 2 eingelegt. Die Halterungen 4 werden geschlossen und das Richtobjekt gegenüber dem Rahmen 3 in definierter Position starr und de facto spannungsfrei gehalten.
Im Detail kann Arbeitsschritt a folgendermaßen ablaufen:

Das Richtobjekt 1 wir erst auf Ablagepunkte gelegt, die aus dem Rahmen 3 nach oben ragen. Dann fahren von unten her drei Halterungen 4 soweit an jeweils einen von drei Referenzpunkten am Richtobjekt 1, dass dieses mit den drei Referenzpunkten auf den drei Halterungen 4 in einer Dreipunktauflage aufliegt. Dann fahren genau von der gegenüberliegenden Seite (also von oben) her drei weitere Halterungen 4 an das Richtobjekt heran und halten dieses auch nach oben hin spielfrei, allerdings dabei so gut wie möglich ohne Krafteinwirkung und damit so gut wie möglich spannungsfrei.

Arbeitsschritt b: Mit Hilfe der Messfühler 5, welche Abstände messen, wird für eine Reihe von Punkten an der Oberfläche des Richtobjektes 1 deren Lage relativ zum Rahmens 3 gemessen.

Arbeitsschritt c: Eine - nicht dargestellte - Datenverarbeitungsanlage errechnet die Unterschiede zwischen gemessenen Positionsdaten von Oberflächenpunkten des Richtobjektes 1 zu idealen Positionsdaten dieser Oberflächenpunkte und damit wie sehr die Oberfläche des Richtobjektes 1 an diesen Oberflächenbereichen gegenüber der idealen Position verschoben ist.
Gemäß einer vorteilhaften - weil einfachen und dennoch zielführenden - Vorgangsweise wird von der Verschiebung der einzelnen Oberflächenpunkte gegenüber der idealen Position immer nur jener skalare Wert gemessen und aufgezeichnet, welcher aussagt, wie sehr der betrachtete Oberflächenpunkt in Normalrichtung zu der betrachteten Oberfläche gegenüber der idealen Position verschoben ist.
Der Datensatz, welcher beschreibt wie sehr die einzelnen vermessenen Oberflächenpunkte des Richtobjektes 1 gegenüber ihrer idealen Position verschoben sind, wird als "Verschiebungsdatensatz" bezeichnet. Mathematisch kann er in vielem gleich wie ein Vektor angesehen und behandelt werden. Dieser Datensatz wird in eine Datenbank 7 eingelesen.

Arbeitsschritt d: Die Datenverarbeitungsanlage prüft, ob die gemessenen Werte von Verschiebungen innerhalb der jeweiligen Zulässigkeitsgrenzen liegen oder nicht. Wenn jeder Wert des Verschiebungsdatensatzes innerhalb der zulässigen Grenzen liegt, ist am Richtobjekt 1 kein weiteres Richten erforderlich. Wenn Werte außerhalb besagter Grenzen liegen, wird an Hand hinterlegter Kriterien entschieden, ob ein Richtvorgang durchgeführt wird, oder ob das Richtobjekt als Ausschuss definiert und von weiterer Verarbeitung ausgeschieden wird. Ausscheiden kann beispielsweise gefordert sein, wenn Maßabweichungen so groß sind, dass die notwendige Verformbarkeit des Materials nicht ausreicht um das durch Richten korrigieren zu können, oder wenn das Richtobjekt schon eine zugelassene Höchstzahl von Richtzyklen erreicht hat. Wenn festgestellt wird, dass Richten erforderlich ist, geht es weiter zu Arbeitsschritt e.

Arbeitsschritt e: Durch Vergleich des in Schritt c festgestellten Verschiebungsdatensatzes mit in der Datenbank 7 hinterlegten Verschiebungsdatensätzen, zu denen auch Daten über erfolgte Richtvorgänge hinterlegt sind, wird ein Datensatz festgelegt, welcher aussagt, wie die einzelnen Richtstempel 6 zu bewegen sind. Dieser Datensatz wird des Weiteren als "Bewegungsdatensatz" bezeichnet.
Beispielhafte vorteilhafte Algorithmen, die in die vorteilhafte Festlegung des Bewegungsdatensatzes münden, sind weiter unten detailliert beschrieben.
In der Datenbank 7 wird vermerkt, welcher Bewegungsdatensatz gewählt wurde.

Arbeitsschritt f: Die, gemäß in Arbeitsschritt e festgelegtem Bewegungsdatensatz betroffenen Richtstempel 6, werden in die Ausgangsposition am Richtobjekt 1 gefahren und die Bewegungen gemäß Bewegungsdatensatz werden durchgeführt.
Im Allgemeinen reicht es aus, die gemäß Bewegungsdatensatz durchzuführenden Bewegungen der einzelnen Richtstempel 6 alle gleichzeitig zu starten und bis zu ihrem jeweiligen Ende ablaufen zu lassen. Bei sehr komplexen Geometrien und Verformungen kann es aber auch sinnvoll sein, eine detaillierte zeitliche Abfolge von Bewegungen der Richtstempel 6 festzulegen.

Arbeitsschritt g: Die Richtstempel 6 werden entspannt und eventuell etwas vom Richtobjekt 1 zurückgefahren, sodass das Richtobjekt seine entspannte Form einnehmen kann. Eventuell werden dazu auch eine oder zwei Halterungen 4 gelockert.

Arbeitsschritt b (zweiter Durchgang): siehe obigen Text zu "Arbeitsschritt b".

Arbeitsschritt c (zweiter Durchgang): siehe obigen Text zu "Arbeitsschritt c".
Ergänzung: Zusätzlich zu jener Berechnung, welche einen neuen Verschiebungsdatensatz als Ergebnis liefert, wird nun auch berechnet, wie sich die Form des Richtobjektes gegenüber dem Zustand vor dem Richtzyklus verändert hat. Der Datensatz welcher diese Veränderung beschreibt wird des Weiteren als "Veränderungsdatensatz" bezeichnet. Er wird in der Datenbank 7 gespeichert und ist dort dem zuletzt angewendeten Bewegungsdatensatz zugeordnet, der ja zu den betreffenden Veränderungen am Richtobjekt 1 geführt hat.
Der Veränderungsdatensatz kann einfach durch jene Zahlenwerte gebildet sein, welche beschreiben, um wieviel sich die von den einzelnen Messfühlern 5 am gleichen Richtobjekt 1 gemessenen Werte vor und nach dem Richtvorgang (Arbeitsschritt f) unterscheiden. Mathematisch kann auch der Veränderungsdatensatz in vielem gleich wie ein Vektor angesehen und behandelt werden.



[0017] Der beschriebene Zyklus wird so oft durchlaufen, bis in Schritt d entweder festgestellt wird, dass die Geometrie des Richtobjektes der Sollgeometrie entspricht oder bis dass ein anderes Abbruchkriterium erfüllt ist.

[0018] In der Datenbank 7 werden die erwähnten Datensätze Verschiebungsdatensatz, Bewegungsdatensatz und Veränderungsdatensatz am besten jeweils in Form einer Kombination aus einem Vektor und einem Betrag abgespeichert. Der Vektor ist dabei eine geordnete Gruppe von mehreren Zahlenwerten und der Betrag eine einfache skalare Zahl.

[0019] Am Beispiel des Verschiebungsdatensatzes sind im Vektor die an den einzelnen Messfühlern 5 festgestellten Abweichungen von der Idealposition der jeweiligen Oberflächenbereiche des Richtobjektes 1 festgehalten, allerdings nicht in einem Zahlenwert der ihrer absoluten Größe entspricht, sondern in einer normierten Größe, sodass der Vektor also eine Art Einheitsvektor ist. Erst durch die Multiplikation der Zahlenwerte der einzelnen Komponenten des Vektors mit dem Betrag, kommt man zu jenen Zahlenwerten, welche aussagen, um welche Strecke am jeweiligen einzelnen Messfühler 5 der dortige Oberflächenbereich des Richtobjektes 1 von der idealen Position verschoben ist.

[0020] Analog zu der bei der Vektorrechnung üblichen Methode kann der Betrag als Wurzel aus der Summe der Quadrate der Einzelwerte der an den einzelnen Messfühlern 5 gemessenen Verschiebungen errechnet werden. Die einzelnen Komponenten des besagten (Einheits-) Vektors sind dann die einzelnen Verschiebungswerte, dividiert durch den Betrag.

[0021] Am Bewegungsdatensatz sind die einzelnen Komponenten des (Einheits-) Vektors jeweils einem bestimmten Richtstempel 6 zugeordnet. Analog zum Verschiebungsdatensatz ergibt sich der Betrag, um welchen ein Richtstempel 6 bei einem Richtvorgang bewegt werden muss, durch die Multiplikation der dem Richtstempel zugeordneten Komponente des Vektors mit dem Betrag.

[0022] Beim Veränderungsdatensatz sind wie beim Verschiebungsdatensatz die einzelnen Komponenten des Vektors den einzelnen Messfühlern 5 und damit den Oberflächenbereichen des Richtobjektes 1 zugeordnet, deren Position mit Messfühlern 5 festgestellt wird. Die Komponenten des zum Veränderungsdatensatz gehörenden Vektors multipliziert mit dem zum Veränderungsdatensatz gehörenden Betrag ergeben die jeweilige Strecke, um die ein Oberflächenbereich zufolge Richtstempelbewegung entsprechend jenem Bewegungsdatensatz der dem Veränderungsdatensatz zugeordnet ist, verschoben wurde.

[0023] Es gibt wohl eine unendliche Vielzahl von Algorithmen, entsprechend welchen, durch eine Datenverarbeitungsanlage die Datenbank 7 betrieben werden kann und Bewegungsdatensätze festgelegt werden können.

[0024] Unter der Annahme, dass Verschiebungsdatensätze, Bewegungsdatensätze und Veränderungsdatensätze wie beschrieben als Kombination von Einheitsvektor und Skalar gespeichert sind, kann ein einfacher und gut wirksamer Algorithmus für die Auswahl eines Bewegungsdatensatzes (Arbeitsschritt e gemäß Fig. 2) folgendermaßen funktionieren:

Zu dem Verschiebungsdatensatz des aktuell vorliegenden Richtobjektes muss aus den in der Datenbank 7 abgespeicherten Veränderungsdatensätzen der am besten geeignete Veränderungsdatensatz ausgesucht werden. Der im Verschiebungsdatensatz enthaltende Vektor hat etwa die Bedeutung einer Richtung, ebenso die in den Veränderungsdatensätzen enthaltenden Vektoren. Es wird einfach jener Veränderungsdatensatz gesucht, dessen Vektor dem Vektor des Verschiebungsdatensatzes möglichst genau entgegen gerichtet ist. Gemäß den bekannten Regeln der Vektorrechnung ist das jener Vektor, bei welchem das innere Produkt, mit dem Vektor des Verschiebungsdatensatzes den betragsmäßig größten negativen Zahlenwert hat. Konsequenterweise wird durch die Datenverarbeitungsanlage das innere Produkt des Vektors des Verschiebungsdatensatzes den Vektoren aller Veränderungsdatensätze gebildet und es wird jener Veränderungsdatensatz ausgewählt, bei welchem das Ergebnis - also das innere Produkt - den größten negativen Zahlenwert hat.



[0025] (Das innere Produkt zweier Vektoren ergibt sich als Summe der Produkte der Zahlenwerte der gleichartigen Komponenten; Z.B.:

)

[0026] Im nächsten Schritt wird der Betrag des aktuellen Verschiebungsdatensatzes mit dem Absolutwert des zuvor gefundenen inneren Produktes (welches den größten negativen Zahlenwert hat) multipliziert, und durch den Betrag des gefundenen Veränderungsdatensatzes dividiert. Mit dem Ergebnis wird der Betrag des in der Datenbank 7 dem Veränderungsdatensatz zugeordneten Bewegungsdatensatzes multipliziert.

[0027] Es ergibt sich damit ein neu gebildeter Bewegungsdatensatz. Wenn man diesen als Bewegungsvorschrift für die Richtstempel 6 (Arbeitsschritt f gemäß Fig. 2) anwendet ergibt sich theoretisch ein Veränderungsdatensatz, welcher zum zuvor ausgewählten Veränderungsdatensatz gleich gerichtet ist und im Betrag so groß ist, dass er die vorliegende Verschiebung bei der durch den Veränderungsdatensatz gegebenen Veränderungsrichtung bestmöglich korrigiert. Man kann den errechneten Bewegungsdatensatz schon gleich anwenden und damit im Zyklus gemäß Fig. 2 weiter fortschreiten.

[0028] Wenn man schon bei der Vorausberechnung in Schritt e sieht, dass sich bei Anwendung des berechneten Bewegungsdatensatzes theoretisch zwar ein verbesserter Verschiebungsdatensatz ergeben wird, dieser aber dennoch noch nicht im Sollbereich liegen wird (- weil die prognostizierte Veränderung nicht in genau die richtige Richtung geht -), so ist es zu empfehlen, die Festlegung des anzuwendenden Bewegungsdatensatzes gleich vorweg noch zu verfeinern. Nur für die Berechnung kann man dazu annehmen, dass der erste gefundene Bewegungsdatensatz angewendet wurde, dass sich der damit theoretisch vorausberechnete weitere Verschiebungsdatensatz ergeben hat und für diesen weiteren Verschiebungsdatensatz, wie beschrieben wiederum einen weiteren Veränderungsdatensatz, nebst zugehörigem, wie beschrieben passend skalierten weiteren Bewegungsdatensatz errechnen. Der tatsächlich anzuwendende Bewegungsdatensatz ist dann die vektorielle Addition des zuerst berechneten Bewegungsdatensatzes mit dem darauffolgend berechneten Bewegungsdatensatz.

[0029] Theoretisch könnte man auch mehr als zwei Bewegungsdatensätze rechnerisch vorausbestimmen und überlagern.

[0030] Wichtig ist, dass die Informationen über die letztendlich tatsächlich angewendeten Bewegungsdatensätze einschließlich der zugehörigen Informationen, also ursprünglicher Verschiebungsdatensatz und erreichter Veränderungsdatensatz in der Datenbank 7 gespeichert werden, sodass damit die Datenbasis verbessert wird und das System damit lernt.

[0031] Es ist sinnvoll, begrenzende Randbedingung für Verformungen festzulegen und automatisch zu überwachen, wobei sich die diesbezüglichen Grenzen aus den Eigenschaften des Materials des Richtobjektes 1 ergeben. So sollte es beispielsweise eine Obergrenze für den gesamten Verformungsweg geben und auch eine Obergrenze für die Anzahl von Verformungsvorgängen.

[0032] Es ist sinnvoll bei der Bewegung durch welche Richtstempel 6 das Richtobjekt 1 verformen, zu unterscheiden ob die Bewegung elastische oder plastische Verformung des Richtobjektes bewirkt. Zumindest näherungsweise kann man den Übergang von elastischer Verformung zu plastischer Verformung bekanntlich an Hand des Abflachens des Funktionsgraphen erkennen, welcher die Verformungskraft als Funktion des Verformungsweges beschreibt. Es ist daher sinnvoll, an den Richtstempeln 6, sowohl Weg als auch Kraft ständig mitzumessen und in der Datenverarbeitungsanlage hinsichtlich Verformungswirkung auszuwerten. Für die in den Bewegungsdatensätzen hinterlegten Daten sind die Bewegungen der Richtstempel 6 die diese durchführen während sie am Richtobjekt 1 plastisch verformen, von entscheidender Bedeutung.

[0033] In einer vorteilhaften Ausführungsform einer erfindungsgemäßen Vorrichtung sind die Richtstempel 6 auch mit einer Sensorik ausgestattet, mit Hilfe derer sie Berührung mit dem Richtobjekt 1 detektieren können, sodass sie also auch die Funktion von Messfühlern 5 ausführen können.

[0034] In einer vorteilhaften Ausführung können die Richtstempel 6 auch die Funktion von Halterungen 4 übernehmen, also Punkte des Richtobjektes 1 an welchen sie anliegen in einer gegenüber dem Rahmen 3 starren Position halten.

[0035] In einer vorteilhaften Ausführung sind die Richtstempel 6 an einem anderen Rahmen gelagert als die Messfühler 5 und der Rahmen, welcher die Messfühler 5 trägt ist unabhängig von jenem Rahmen gehalten, welcher die Richtstempel 6 trägt. Auf diese Weise werden jene Messfehler einfach vermeidbar, die ansonsten dadurch entstehen, dass der Rahmen, welcher die Richtstempel trägt, bei der Kraftaufbringung durch die Richtstempel auf das Richtobjekt, zwangsweise selbst auch etwas verformt wird.

[0036] Es ist natürlich sehr sinnvoll, wenn es eine Benutzerschnittstelle zu der Datenverarbeitungsanlage gibt, welche die Richtvorrichtung 2 steuert und die Datenbank 7 umfasst. Idealerweise kann man über diese Benutzerschnittstelle Daten über aktuelle Arbeitsvorgänge einsehen, gespeicherte Daten editieren und die Auswahl von Bewegungen von Richtstempeln 6 (Arbeitsschritt e) mit beeinflussen. Insbesondere während der Lernphase einer erfindungsgemäßen Anlage ist es sinnvoll, wenn in Arbeitsschritt e Bewegungsdatensätze einfach durch Menschen vorgegeben und eingegeben werden können.

[0037] Es ist vorteilhaft hinsichtlich in der Datenbank 7 gespeicherter Datensätze, statistische Auswertungen durchzuführen und daraus abgeleitete wertende Klassifizierungen den einzelnen Datensätzen zuzuordnen. Beispielsweise kann man damit erkennen, das manche Bewegungsdatensätze besser reproduzierbar zu vorherbestimmbaren Veränderungsdatensätzen führen als andere, sowie dass manche Bewegungsdatensätze störend häufig in eine Beschädigung eines Richtobjektes münden. Durch statistische Auswertung - die durchaus durch die Datenverarbeitungsanlage auch automatisch vorgenommen werden kann - können somit Verbotsregeln für problematische Bewegungsdatensätze automatisch generiert und zur automatischen Anwendung gebracht werden. Ebenso kann so eine Gruppe von besonders gut funktionierenden Bewegungsdatensätzen identifiziert werden und daraus bevorzugt ausgewählt werden.


Ansprüche

1. Verfahren für das Richten eines metallischen Richtobjektes (1) wobei das Richtobjekt (1) gegenüber dem Rahmen (3) einer Richtvorrichtung (2) in einer definierten Position gehalten wird, die Geometrie des Richtobjektes (1) messtechnisch erfasst wird, berechnet wird in welcher Richtung und um welchen Betrag die Position von einzelnen Oberflächenbereichen des Richtobjekts von einer hinterlegten Idealposition abweicht, und das Richtobjekt einer sich im Bedarfsfall wiederholenden Folge der Arbeitsschritte

- berechnen in welcher Richtung und um welchen Betrag geometrische Maße des Richtobjekts von hinterlegten Sollmaßen abweichen,

- Auswahl einer Verformung die durch ein oder mehrere Richtstempel (6) auf das Richtobjekt (1) aufzubringen ist.

- ausführen der ausgewählten Verformung,

- aufheben der Krafteinwirkung der Richtstempel (6) auf das Richtobjekt (1),

- Geometrie des Richtobjektes (1) messtechnisch erfassen und berechnen in welcher Richtung und um welchen Betrag die Position von einzelnen Oberflächenbereichen des Richtobjekts von einer hinterlegten Idealposition abweicht

unterzogen wird,
dadurch gekennzeichnet, dass
die Auswahl einer Verformung unter Inanspruchnahme jenes Datenbestandes einer Datenbank (7) getroffen wird, welcher Daten bezüglich Ausgangssituation, Maßnahmen und Ergebnissen von schon geschehenen Verformungsvorgängen an Richtobjekten umfasst, und
dass Daten die während betriebsmäßig stattfindender Richtvorgänge automatisch in die Datenbank (7) eingespeist werden und den Datenbestand für weitere Auswahlen von Verformungen an Richtobjekten (1) erweitern.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Daten einen Verschiebungsdatensatz, einen Bewegungsdatensatz und einen Veränderungsdatensatz enthalten, wobei der Verschiebungsdatensatz Aussagen über die Abweichung der Form des Richtobjektes (1) von der Idealform enthält, der Bewegungsdatensatz Aussagen enthält über Bewegungen der Richtstempel (6) mit denen diese das Richtobjekt (1) verformen und der Veränderungsdatensatz Aussagen enthält, wie die Form des Richtobjektes (1) als Folge von Bewegung der Richtstempel (6) gemäß dem Bewegungsdatensatz verändert wurde.
 
3. Anlage für das Richten eines metallischen Richtobjektes (1), wobei die Anlage eine Datenverarbeitungsanlage und eine Richtvorrichtung (2) aufweist, wobei die Richtvorrichtung (2) einen Rahmen (3), Halterungen (4) für das Halten des Richtobjektes (1), Sensoren für die Messung der Geometrie des Richtobjektes (1), sowie Richtstempel (6) für das kraftbedingte Verändern der Form des Richtobjektes (1) aufweist, wobei die Datenverarbeitungsanlage mit den Sensoren und den Richtstempeln in Verbindung ist, und dazu in der Lage ist Bewegung der Richtstempel (6) zu steuern,
dadurch gekennzeichnet, dass
die Datenverarbeitungsanlage eine Datenbank (7) umfasst in welcher Daten bezüglich Ausgangssituation, Maßnahmen und Ergebnissen von schon geschehenen Verformungsvorgängen an Richtobjekten (1) enthalten sind und in welche Daten die während betriebsmäßig stattfindender Richtvorgänge anfallen, automatisch einspeisbar sind.
 




Zeichnung










Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente