(11) **EP 3 095 911 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.11.2016 Bulletin 2016/47

(51) Int Cl.: **D06F** 37/42 (2006.01)

D06F 33/02 (2006.01)

D06F 58/28 (2006.01) D06F 37/30 (2006.01)

(21) Application number: 15168654.0

(22) Date of filing: 21.05.2015

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

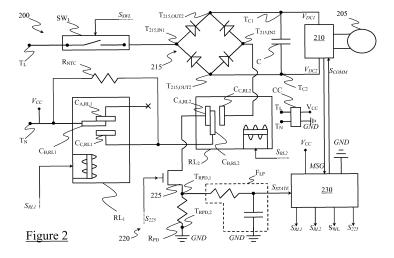
Designated Extension States:

BA ME

Designated Validation States:

MA

(71) Applicant: Electrolux Appliances Aktiebolag 105 45 Stockholm (SE) (72) Inventors:


- Aprea, Vincenzo 33080 Porcia (PN) (IT)
- Montebello, Christian 33080 Porcia (PN) (IT)
- (74) Representative: Electrolux Group Patents
 AB Electrolux
 Group Patents
 105 45 Stockholm (SE)

(54) METOHD FOR SAFELY MANAGING ELECTRIC MOTOR ACTIVATION AND DEACTIVATION, AND CORRESPONDING APPLIANCE

(57) A washing and/or drying appliance (100) is proposed. The appliance comprises: an electric load (205),

a driving arrangement (210,215,C) for driving the electric load (205), the driving arrangement (210,215,C) having first ($T_{205,IN1}$) and second ($T_{205,IN2}$) terminals coupleable, respectively, to a line terminal (T_L) and to a neutral terminal (T_N) providing a reference voltage (V_{CC}), an inrush current limiting device (R_{FUSE} ; R_{NTC}) and a switching device (RL; RL_1) between the reference terminal (T_N) and the second terminal ($T_{205,IN2}$) of the driving arrangement (210,215,C), the switching device (RL; RL_1) being operable in first or second states preventing or allowing, respectively, an electric current to flow through the inrush current limiting device (R_{FUSE} ; R_{NTC}), and a sensing network (R_{PD}) for sensing the first or second

states of the switching device (RL;RL₁) and for providing a corresponding state signal (S_{STATE} ; S^*_{STATE}), the sensing network (R_{PD}) having a first terminal (T_{RPD,1}), and a second terminal (T_{RPD,2}) coupled to a reference terminal providing a further reference voltage (GND) lower than the reference voltage (V_{CC}), wherein, during sensing: in the first state of the switching device (RL;RL₁) the reference terminal (T_N) and the first terminal (T_{RPD,1}) of the sensing network (R_{PD}) being coupled to each other such that the first terminal (T_{RPD,1}) of the sensing network (R_{PD}) receives the reference voltage (V_{CC}) and the state signal (S_{STATE} ; S^*_{STATE}) takes a first level ($S_{STATE,H}$) equal to the reference voltage (V_{CC}), in the second state the state signal ($S_{STATE,I}$; S^*_{STATE}) taking a second level ($S_{STATE,I}$; $S_{STATE,I}$) lower than the first level ($S_{STATE,H}$).

25

35

40

45

Field of the invention

[0001] The present invention generally relates to electric appliances, such as washing, drying, washing/drying, dishwashing appliances, both for domestic and professional use. More particularly, the present invention relates to a circuit and a method for safely managing activation/deactivation of electric motors in such appliances.

1

Background of the invention

[0002] Nowadays most of electric appliances, hereinafter appliances, make use of electric motors. In case of a laundry washing appliance, a laundry washing/drying appliances and a laundry drying appliance, the electric motor is intended to rotate a rotatable drum (*i.e.* the rotatable container arranged inside the appliance wherein a laundry load is placed/housed in order to be washed and/or dried).

[0003] In order to activate/deactivate the electric motor, the appliance typically comprises electrically-operated switching devices and a power conversion/driving system for converting an AC supply voltage into a DC supply voltage allowing driving of the electric motor.

[0004] According to known solutions, the power conversion/driving system comprises a rectifying arrangement and a bulk capacitor for providing said DC supply voltage, and a driving arrangement, fed with said DC supply voltage, for driving the electric motor (e.g., for controlling activation/deactivation thereof). Due to inherently low input resistance exhibited by the power conversion/driving system, especially when the bulk capacitor is initially discharged, large surge currents (or inrush currents) may arise, which are very stressful to power conversion/driving system.

[0005] Inrush current limiting devices (e.g. including negative temperature coefficient (NTC) thermistor or resistor) connected between the AC power supply and the power conversion/driving system and electrically-operated switching devices in parallel with the inrush current limiting devices, are often used to mitigate the inrush current during starting.

Summary of invention

[0006] The Applicant has realized that the known solutions are not satisfactory for modem requirements.

[0007] Indeed, each switching device which the known solutions makes use of is prone to errors (*e.g.*, absence of switching), thus impairing appliance operation. Some known solutions provide sensing arrangements for sensing the switching state of the switching devices, however these sensing arrangements provide high-voltage sensing (as typically based on sensing provision/absence of the AC supply voltage through the switching device), which translates into power consumptions not compati-

ble with nowadays restrictive powers saving requirements.

[0008] Due to high power consumption of the sensing arrangement, only some of the switching devices are typically sensed (low sensing activity), thus exposing the appliance to reliability issues when failures of the nonsensed switching devices arise.

[0009] Low sensing activity also involves that some critical procedures (such as electric motor activation and deactivation procedures) are handled by the appliance in a manner not oriented to avoid safety risks for the user.

[0010] One or more aspects of the present invention are set out in the independent claims, with advantageous features of the same invention that are indicated in the

[0011] An aspect of the present invention relates to a washing and/or drying appliance. The appliance comprises:

an electric load,

dependent claims

a driving arrangement for driving the electric load, the driving arrangement having first and second terminals coupleable, respectively, to a line terminal and to a neutral terminal providing a reference voltage,

an inrush current limiting device and a switching device between the reference terminal and the second terminal of the driving arrangement, the switching device being operable in first or second states preventing or allowing, respectively, an electric current to flow through the inrush current limiting device, and a sensing network for sensing the first or second states of the switching device and for providing a corresponding state signal, the sensing network having a first terminal, and a second terminal coupled to a reference terminal providing a further reference voltage lower than the reference voltage. During sensing, in the first state of the switching device the reference terminal and the first terminal of the sensing network being coupled to each other such that the first terminal of the sensing network receives the reference voltage and the state signal takes a first level equal to the reference voltage, in the second state the state signal taking a second level lower than the first level.

[0012] According to an embodiment of the present invention, in the second state of the switching device the reference terminal and the first terminal of the sensing network are coupled to each other with interposition of the inrush current limiting device, whereby the second level of the state signal is between the first the reference voltage and the further reference voltage according to a partition between the inrush current limiting device and the sensing network.

[0013] According to an embodiment of the present invention, in the second state of the switching device the first terminal of the sensing network is electrically floating,

20

25

30

40

45

50

55

whereby the second level of the state signal is at the further reference voltage by pull-down action of the sensing network.

[0014] According to an embodiment of the present invention, the switching device has a first contact electrically coupled, during sensing, to the sensing network, a second contact coupled to the second terminal of the driving arrangement, and a third contact electrically coupled to the reference terminal and contacting the first or second contacts in first or second states, respectively, of the switching device.

[0015] According to an embodiment of the present invention, the switching device has a first contact electrically floating, a second contact, and a third contact electrically coupled to the reference terminal and contacting the first or second contacts in first or second states, respectively, of the switching device. The appliance also comprises a further switching device operable in first or second states electrically coupling the second contact of the switching device to the first terminal of the sensing network or to the second terminal of the driving arrangement, respectively.

[0016] According to an embodiment of the present invention, the first terminal of the sensing network is coupled, during sensing, to the second contact of the switching device, in the second state of the further switching device the state signal taking a third level equal to the further reference voltage.

[0017] According to an embodiment of the present invention, the sensing network is a resistive network.

[0018] According to an embodiment of the present invention, the appliance further comprises a filtering arrangement for suppressing disturbances from the state signal.

[0019] According to an embodiment of the present invention, the inrush current limiting device is a fusible resistor or a negative temperature coefficient thermistor.

[0020] According to an embodiment of the present invention, the electric load is an electric motor, for example a "Variable-Frequency Drive" motor or a Brushless DC motor

[0021] According to an embodiment of the present invention, the appliance is a laundry washing appliance intended to perform only laundry washing operations, or a laundry drying appliance intended to perform only laundry drying operations, or a laundry washing/drying appliance intended to perform both laundry washing and laundry drying operations.

[0022] According to an embodiment of the present invention, the appliance further comprises a mechanical door-lock device for mechanically locking an appliance door thereby preventing door opening when the electric load is activated.

[0023] Another aspect of the present invention relates to a method for operating a washing and/or drying appliance. The appliance comprises:

an electric motor and a driving arrangement for driv-

ing it, the driving arrangement being coupleable to a line terminal and to a neutral terminal providing a reference voltage.

between the neutral terminal and the driving arrangement, an inrush current limiting device and a switching device, the switching device being operable between first and second states allowing and preventing, respectively, an electric current to flow through the inrush current limiting device, and

a sensing arrangement configured for sensing the first or second states of the switching device and for providing a corresponding state signal, in the first state of the switching device the state signal taking a first level equal to the reference voltage, and in the second state of the switching device the state signal taking a second level lower than the first level.

[0024] The method comprises, under the control of a control unit of the appliance and in response to a motor activation request:

if the state signal takes the second level, feeding the driving arrangement with a first electric current limited by the inrush current limiting device, and if communication between the electric motor and the driving arrangement is active, operating the switching device into the second state thereby allowing a second electric current not limited by the inrush current limiting device to be fed to the driving arrangement, and activating the electric motor.

[0025] According to an embodiment of the present invention, the appliance further comprises a mechanical door-lock device for mechanically locking an appliance door thereby preventing door opening when the electric motor is activated. The method further comprises enabling mechanical door locking, said feeding the driving arrangement with a first electric current limited by the inrush current limiting device being performed if mechanical door locking is enabled.

[0026] According to an embodiment of the present invention, the appliance further comprises a further switching device operable in first or second states electrically coupling the switching device to the sensing arrangement or to the driving arrangement, respectively, in the first state of the further switching device the state signal taking the first or second levels according to the first or second states, respectively, of the switching device. Said enabling mechanical door locking if the state signal takes the second level comprises:

operating the switching device in the first state, if the state signal takes the first level, operating the switching device in the second state, and if the state signal takes the second level, performing said enabling mechanical door locking.

[0027] According to an embodiment of the present in-

vention, in the second state of the further switching device the state signal takes a third level lower than the first and second levels. The method further comprises, after said enabling mechanical door locking:

if mechanical door locking is enabled, operating the further switching device in the second state, and performing said operating the switching device into the second state if communication between the electric motor and the driving arrangement is active and if the state signal takes the third level.

[0028] According to an embodiment of the present invention, the method further comprises, in response to a motor deactivation request:

if motor deactivation has occurred, operating the further switching device into the first state, and if the state signal takes the second level, operating the switching device into the first state and disenabling mechanical door locking.

[0029] According to an embodiment of the present invention, the method further comprises, in response to a motor deactivation request:

if motor deactivation has occurred, operating the switching device into the first state, and if the state signal takes the first level and if a predefined time period has passed since motor deactivation request, disenabling mechanical door locking.

Brief description of the annexed drawings

[0030] These and other features and advantages of the present invention will be made apparent by the following description of some exemplary and non limitative embodiments thereof; for its better intelligibility, the following description should be read making reference to the attached drawings, wherein:

Figure 1 shows a perspective view of an appliance wherein the present invention may be applied;

Figure 2 schematically shows a portion of a circuit system of the appliance according to an embodiment of the present invention;

Figures 3 and **4** show simplified flowcharts of respective procedures implemented by the circuit system of **Figure 2** according to an embodiment of the present invention;

Figure 5 schematically shows a portion of a circuit system of the appliance according to another embodiment of the present invention, and

Figures 6 and **7** show simplified flowcharts of respective procedures implemented by the circuit system of **Figure 5** according to an embodiment of the present invention.

Detailed description of preferred embodiments of the invention

[0031] Referring now to the drawings, Figure 1 schematically shows an appliance 100, for example for domestic use (i.e., a household appliance), wherein the present invention may be applied. The appliance 100 may for example be a laundry washing appliance intended to perform only laundry washing operations (i.e., without laundry drying operations), a laundry drying appliance intended to perform only laundry drying operations (i.e., without laundry washing operations), or a laundry washing/drying appliance intended to perform both laundry washing and laundry drying operations (as generically illustrated in the figure, and to which reference will be made in the following by way of a non-limiting example only).

[0032] The appliance **100** preferably comprises a substantially parallepiped-shaped cabinet **105**, which encloses an inner compartment.

[0033] In the exemplarily considered appliance 100 (which is intended to perform both laundry washing and laundry drying operations), the inner compartment accommodates a tub (not visible), adapted to be filled with washing water, and a (e.g., perforated) rotatable drum 110 mounted therein (in either a horizontal or vertical orientation) adapted to house the laundry to be treated (i.e., the laundry to be washed and/or dried, in the example at issue). Anyway, according to the considered appliance (and, hence, according to the treatment the appliance is intended/designed to perform), the inner compartment may accommodate, instead of the tub and the rotatable drum 110, any suitable treatment chamber (e.g., a rotatable, non-perforated drum in case of a laundry drying appliance).

[0034] The inner compartment (i.e., the rotatable drum 110) is accessible through an access door 115 (shown in a closed configuration), preferably provided on a front panel 105_F of the cabinet 105 for loading/unloading the laundry.

[0035] The inner compartment also accommodates, not visible in such a figure, a number of well-known electronic, electro-hydraulic and/or electro-mechanical components, which form (as a whole) a circuit system allowing operation of the appliance **100**.

[0036] Hereinafter, reference will be also made to Figure 2, which schematically shows a portion of a circuit system 200 according to an embodiment of the present invention. In the following, in order to take into account possible circuit system variants, all falling within the scope of the present invention, the term coupling will be used for denoting both direct and indirect coupling (unless explicitly referring to direct coupling, when relevant for the present invention).

[0037] The circuit system 200 comprises one or more electric loads, such has the electric load 205, for example an electric motor for drum rotation. Preferably, although not necessarily, the electric motor 205 is a "Variable-Fre-

40

45

50

quency Drive" (VFD) motor or a Brushless DC motor, so that control of drum rotation speed (e.g., according to an actual laundry load, and/or to an actual amount of washing water within the rotatable drum 110) is possible. However, as will be understood from the following description, the present invention may be applied for any electric load (for example, an electric heater, a drain or recirculation pump, a fan).

[0038] In the considered embodiment, the circuit system 200 also comprises a driving arrangement, generally configured for driving the electric motor 205. In order to achieve that, the driving arrangement preferably comprises a motor module 210, powered between first V_{DC1} and second V_{DC2} DC supply voltages, for controlling activation and deactivation of the electric motor 205, as well as a power conversion arrangement for providing said DC supply voltages V_{DC1} , V_{DC2} according to an AC supply voltage selectively received from supply (e.g., line) T_{L} and reference (e.g., neutral) T_{N} terminals of an AC power supply.

[0039] Preferably, the power conversion module comprises a rectifying circuit (e.g., a diodes bridge) 215, having two input terminals $\mathbf{T_{215,IN1}}, \mathbf{T_{215,IN2}}$ (selectively coupleable to the line T_L and neutral T_N terminals, respectively) for receiving the AC supply voltage and two output terminals T_{215,OUT1},T_{215,OUT2} for providing pulsed DC voltages (deriving from full-wave rectification of the AC supply voltage), and a smoothing (or bulk) capacitor C, whose terminals T_{C1} , T_{C2} are electrically coupled to the output terminals T_{215,OUT1}, T_{215,OUT2}, respectively, of the rectifying circuit 215 for smoothing the pulsed DC voltages into said DC supply voltages V_{DC1} , V_{DC2} . By virtue of the considered implementation, the input terminals T_{215,IN1},T_{215,IN2} of the rectifying circuit 215 also represent, by the logical viewpoint, input terminals of the driving arrangement as a whole (although the motor module 210, typically provided as a dedicated printed circuit board, is structurally separated from the power conversion module 215,C), the driving arrangement 210,215,C being thus selectively coupleable to the line T_L and neutral T_N terminals by means of the input terminals $\mathsf{T}_{215,\mathsf{IN1}},\mathsf{T}_{215,\mathsf{IN2}},$ respectively.

[0040] The circuit system 200 also comprises an ACDC conversion circuit (denoted by the reference CC in the figure) comprising transforming, rectifying and regulating components for receiving the AC supply voltage and providing one or more further DC voltages, such as a lower reference, or ground, voltage GND (e.g., 0V), and an upper reference voltage Vcc (e.g., a 5V DC voltage with respect to the ground voltage GND) for powering electronic components of the appliance 100 (as mentioned in the following). As visible in the figure, the neutral terminal T_N is preferably set at the upper reference voltage Vcc (so as to allow proper driving of power components of the appliance 100, e.g. triacs, not shown).

[0041] An inrush current limiting device R_{NTC} (better discussed in the following) is provided between the neutral terminal T_N and the input terminal $T_{205,IN2}$ of the rec-

tifying circuit **215** (*i.e.*, of the driving arrangement **210,215,C**) in order to limit large peak surge currents, or inrush currents, flowing through (thus electrically stressing) the rectifying arrangement **215** and the bulk capacitor **C** (especially when the bulk capacitor **C** is initially discharged).

[0042] Selective coupling between line T_L and neutral T_N terminals and the rectifying circuit 215 is achieved by means of a number of electrically-operated switching devices. As illustrated, a safety switch (e.g., a door switch) SW_L is provided between the line terminal T_L and the input terminal $T_{215,lN1}$ of the rectifying arrangement 215, whereas a switching arrangement is provided between the neutral terminal T_N and the input terminal $T_{215,lN2}$ of the rectifying arrangement 215.

[0043] According to the exemplary illustrated embodiment, the switching arrangement comprises a (e.g., electromagnetic) relay RL_1 having bypass functions (thus, referred to as bypass relay RL_1 hereinafter) electrically coupled to the neutral terminal T_N , and a (e.g., electromagnetic) relay RL_2 having safety functions (thus, referred to as safety relay RL_2 hereinafter) provided between the bypass relay RL_1 and the input terminal $T_{215,IN2}$ of the rectifying circuit 215 (the bypass RL_1 and safety RL_2 relays being assumed preferably structurally similar to each other).

[0044] For the purposes of the present disclosure, the bypass RL₁ and safety RL₂ relays comprise respective $C_{A,RL1}, C_{B,RL1}, C_{C,RL1}$ $\mathbf{C}_{\mathbf{A},\mathbf{RL2}}$, $\mathbf{C}_{\mathbf{B},\mathbf{RL2}}$, $\mathbf{C}_{\mathbf{C},\mathbf{RL2}}$, as well as a coil of wire wrapped around an iron core. A central contact of each relay, e.g. the contact C_{B.RL1},C_{B.RL2}, is movable with respect to the other, or fixed, (mechanically separated and electrically insulated) side contacts of the same relay (i.e. the side contacts CARL1, CCRL1 and CARL2, CCRL2, respectively). In absence of current across the coil (relay de-energization), the central contact $C_{B,RL1}$, $C_{B,RL2}$ of each relay RL₁,RL₂ is electrically coupled to a respective side contact, e.g. the contact $C_{A,RL1}$, $C_{A,RL2}$ (and an air gap, and hence electrical insulation, is established between the central contact $C_{B,RL1}$, $C_{B,RL2}$ and the opposite side contact C_{C,RL1},C_{C,RL2}). When instead an electric current is passed through the coil (relay energization), a magnetic field is generated that activates movement of the central contact $C_{B,RL1}$, $C_{B,RL2}$ from the side contact $\mathbf{C_{A,RL1}}$, $\mathbf{C_{A,RL2}}$ to the respective side contact $\mathbf{C_{C,RL1}}$, $\mathbf{C_{C,RL2}}$ (until mechanical and electrical contacting is established therebetween). Thus, in the considered embodiment, the bypass RL1 and safety RL2 relays are in a first, de-energized, state wherein the central contacts C_{B.RL1},C_{B.RL2} contact the side contacts C_{A.RL1},C_{A.RL2}, respectively, and are operable in a second, energized, state wherein the central contacts $\mathbf{C}_{\mathsf{B},\mathsf{RL1}}$, $\mathbf{C}_{\mathsf{B},\mathsf{RL2}}$ contact

[0045] In the exemplary illustrated embodiment, the side contact $C_{A,PL1}$ of the bypass relay RL_1 is floating, whereas the central contact $C_{B,RL1}$ of the bypass relay RL_1 is electrically coupled to the neutral terminal T_N (so

the side contacts C_{C,RL1},C_{C,RL2}, respectively.

as to contact the side contact CARL1 or the side contact C_{C.RL1} in the de-energized or energized states, respectively, of the bypass relay RL_1). The side $C_{A,RL2}$, $C_{C,RL2}$ and central $C_{B,RL2}$ contacts of the safety relay RL_2 are instead electrically coupled to the input terminal T_{215,IN2} of the rectifying arrangement 215, to a sensing arrangement 220 (as discussed in the following) and to the side contact C_{C,RL1} of the bypass relay RL₁, respectively. In other words, in the de-energized state of the safety relay RL2, the side contact C_{C.RL1} of the bypass relay RL1 is electrically coupled to the sensing arrangement 220 (through the side CARL2 and central CBRL2 contacts of the safety relay RL2), and in the energized state of the safety relay RL2 the side contact C_{C.RL1} of the bypass relay RL1 is electrically coupled to the input terminal T_{215,IN2} of the rectifying circuit **215**, whereas the bypass relay RL₁ in the energized state identifies said first configuration of the switching arrangement (i.e., electric current being prevented from flowing through the inrush current limiting device R_{NTC}) and the bypass relay RL_1 in the de-energized states identifies said second configuration of the switching arrangement (i.e., electric current being allowed to flow through the inrush current limiting device R_{NTC}).

[0046] The door switch SWL can be switched between an opened, or off, condition electrically decoupling the line terminal T_L and the input terminal T_{215,IN2} of the rectifying arrangement 215 from each other thereby preventing, in door-opened configuration, energization of the electric motor 205 (and/or of any other electric loads downstream the door switch SWL), and a closed, or on, condition. When the door switch SWL is instead in the closed condition, electrical coupling between the line terminal $\mathbf{T_L}$ and the input terminal $\mathbf{T_{215,IN2}}$ of the rectifying arrangement 215 is established, and mechanical lock of the door 115 is commanded (e.g., by means of a proper door-lock command, not shown, provided to a proper mechanical door-lock device, also not shown). Preferably, such a mechanical lock is provided to prevent opening of the door for safety reasons, e.g. when the electric motor 205 is activated, when washing or rinsing water is provided within the tub, when a dangerous temperature in the inner compartment is detected, or when the drum **110** is still rotating.

[0047] Thus, when the door switch SW_L is in the opened condition, no activation of the electric motor 205 arises (regardless of the bypass RL_1 and safety RL_2 relays states, either energized or de-energized states), and when the door switch SW_L is in the closed condition, energization of the electric motor 205 can take place only upon energization of the safety relay RL_2 (thus allowing the AC supply voltage from the line T_L and neutral T_N terminals to be fed across the input terminals $T_{215,IN1}$, $T_{215,IN1}$ of the rectifying arrangement 215).

[0048] The inrush current limiting device R_{NTC} may be a fusible resistor or, as in the exemplary considered embodiment, a negative temperature coefficient (NTC) thermistor electrically coupled in parallel with the bypass re-

lay RL_1 . According to the exemplary illustrated embodiment, the NTC thermistor R_{NTC} is electrically coupled between the central $C_{B,RL1}$ and side $C_{C,RL1}$ contacts of the bypass relay RL_1 .

 $\textbf{[0049]} \quad \text{Basically, the NTC thermistor } \textbf{R}_{\textbf{NTC}} \text{ is a resistive}$ component whose resistance decreases as its temperature increases. During startup, with the door switch SW, in the closed condition, the bypass relay RL1 in the de-energized state and the safety relay RL2 in the energized state (so that the neutral terminal T_N is electrically coupled to the input terminal $T_{215,IN2}$ of the rectifying arrangement 215 through the NTC thermistor R_{NTC} and the safety relay RL_2 , i.e. the central $C_{B,RL2}$ and side $C_{C,RL2}$ contacts thereof), the temperature of the NTC thermistor R_{NTC} is cold and its resistance is high, and a relatively low starting current is allowed to flow therethrough. As operation continues, the temperature of the NTC thermistor R_{NTC} increases (due to starting current flowing therethrough) and its resistance decreases, thereby an increasing amount of starting current is allowed to flow therethrough. After startup completing or preset time elapsing, the bypass relay RL1 is operated into the energized state (i.e., central contact C_{B.RL1} of the bypass relay RL₁ being moved into contact with the side contact $C_{C.RL1}$ thereof), thus bypassing (i.e., substantially short-circuiting) the NTC thermistor R_{NTC} and allowing a working current (substantially depending on the AC supply voltage and on the experienced impedance) to be fed to the rectifying arrangement 215 (through the bypass relay RL_1 , i.e. the central C_{B,RL_1} and side C_{C.RL1} contacts thereof, and the safety relay RL₂, i.e. the central C_{B,RL2} and side C_{C,RL2} contacts thereof). [0050] As mentioned above, the circuit system 200 also comprises a sensing arrangement 220, selectively coupleable to the side contact CARL2 of the safety relay RL2. Broadly speaking, the sensing arrangement 220 is configured for sensing the first or second states (i.e., the energized or de-energized states) of the bypass relay RL₁, as well as the energized or de-energized states of the safety relay RL2 (being the sensing allowed/prevented based on the de-energized/energized state of the safety relay RL2), and for providing a corresponding signal S_{STATE} (hereinafter, state signal). As better discussed herebelow, by virtue of the considered circuit system 200 implementation, the state signal S_{STATE} may advantageously take three different levels according to the bypass RL1 and safety RL2 relays states, namely a low level S_{STATE I} equal to the lower reference voltage GND, a high level S_{STATE,H} equal to the upper reference voltage V_{CC} , and an intermediate level $S_{STATE,L}$ between the low S_{STATE I} and high S_{STATE H} levels.

[0051] In order to achieve that, the sensing arrangement 220 comprises a sensing network, for example a (e.g., resistive) pull-down network R_{PD} (schematically represented as a single resistor in the figure, and referred to as pull-down resistor in the following), having a first terminal $T_{RPD,1}$ providing the state signal S_{STATE} and adapted to be electrically coupled to the side contact

 $C_{C,RL2}$ of the safety relay RL_2 (and hence, to the side contact $C_{C,RL1}$ of the bypass relay RL_1) and a second terminal $T_{RPD,2}$ receiving the lower reference voltage GND.

[0052] Preferably, as illustrated, a filtering arrangement (e.g., a low pass filter) $\mathbf{F_{LP}}$ is provided for suppressing possible disturbances from (i.e., associated with) the state signal S_{STATE^-} anyway, as should be readily understood, embodiments are possible wherein the filtering arrangement $\mathbf{F_{LP}}$ is not provided, in which case the state signal S_{STATE} may be directly taken from the first terminal $\mathbf{T_{RPD}}$ of the pull-down resistor $\mathbf{R_{PD}}$.

[0053] As mentioned above, the safety relay RL2 is operable in a first, energized, state electrically coupling the side contact C_{C,RL1} of the bypass relay RL₁ to sensing arrangement **220** (*i.e.*, to the pull-down network **R**_{PD}) or in a second, de-energized, state electrically coupling the side contact $\mathbf{C}_{\mathbf{C},\mathbf{RL1}}$ of the bypass relay $\mathbf{RL_1}$ to the input terminal $\mathbf{T_{215,IN2}}$ of the driving arrangement 210,215,C, respectively. Preferably, as illustrated, the actual sensing start is controlled by means of an electrically-operated switching device (e.g., a MOS transistor) 225 between the side $\operatorname{terminal} \mathsf{C}_{\mathsf{C},\mathsf{RL2}}$ of the safety relay $\mathsf{RL_2}$ and the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} - with the sensing start that may take place, as herein exemplary considered, according to closed/opened states of the MOS transistor 225 controlled according to corresponding values of a control signal S_{225} .

[0054] During sensing, the following configurations of the bypass RL_1 and safety RL_2 relays states may be discriminated (and signaled, through the respective high $S_{STATE,H}$, low $S_{STATE,L}$ or intermediate $S_{STATE,I}$ levels of the state signal S_{STATE}):

 $\frac{\text{Bypass relay}}{\text{RL}_{\textbf{1}}} \underbrace{\text{in the energized state and safety relay}}_{\text{In the de-energized state}}.$

[0055] In this configuration, the NTC thermistor R_{NTC} is short-circuited (bypassed) by the bypass relay RL_1 , thus the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} and the neutral terminal T_N are both at the upper reference voltage V_{CC} . Otherwise stated, the neutral terminal T_N and the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} are coupled to each other such that the first terminal $T_{RPD,1}$ of the pull-down resistor receives the upper reference voltage V_{CC} In other words, a direct coupling (unless unavoidable parasitic components - such as wires, contacts $C_{B,RL1}$, $C_{C,RL1}$ and MOS transistors 225 parasitic resistances) is established between the neutral terminal T_N and the pull-down resistor R_{PD} . Thus, the state signal S_{STATE} takes the high level $S_{STATE,H}$.

 $\frac{\text{Safety relay}}{\text{either in the }} \frac{\text{RL}_2}{\text{energized or de-energized states).}} \frac{\text{RL}_1}{\text{energized or de-energized states).}}$

[0056] In this configuration, the central contact $C_{B,RL2}$ of the safety relay RL_2 is electrically coupled to the side contact $C_{C,RL2}$, the side contact coupled to the sensing

arrangement **220** (*i.e.*, the side contact $C_{A,RL2}$) being instead floating (*i.e.*, no direct or indirect coupling between the neutral terminal T_N and the pull-down resistor R_{PD} takes place). As a result of that, by effect of the pull-down resistor R_{PD} , the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} is pulled-down to the lower reference voltage GND. Thus, the state signal S_{STATE} takes the low level $S_{STATE,L}$.

Bypass RL₁ and safety RL₂ relays in the de-energized state

[0057] In this configuration, the neutral terminal T_N and the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} are coupled to each other with interposition of the NTC thermistor R_{NTC}. Thus, no direct coupling between the neutral terminal T_N and the pull-down resistor R_{PD} takes place, and a conductive path is generated from the neutral terminal T_N and the pull-down resistor R_{PD} through the NTC thermistor R_{NTC} and the safety relay RL₂ (i.e., the central C_{B.RL2} and side C_{C.RL2} contacts thereof). As a result of that, the upper reference voltage V_{CC} at the neutral terminal T_N experiences a partition between the NTC thermistor R_{NTC} and the pull-down resistor R_{PD} (omitting possible resistive effects of the bypass RL1 and safety RL2 relays and/or of the transistor 225). Hence, the state signal S_{STATE} takes the intermediate level $S_{STATE,I}$ (whose value depends on NTC thermistor $\mathbf{R}_{\mathbf{NTC}}$ and pull-down resistor R_{PD} sizing, not limiting for the present invention). [0058] As better discussed in the following, when the state signal S_{STATE} takes levels different from the expected one in a current (expected) bypass RL₁ and safety RL2 relays configuration, other problems to the bypass relay RL1 or to the safety relay RL2 or to the NTC thermistor R_{NTC} or to the circuit system may also be inferred (such as contacts and/or resistors wear).

[0059] The circuit system 200 further comprises a control 230, example for microcontroller/microprocessor. As conceptually represented in the figure, the control unit 230 is configured to receive the state signal $S_{\textit{STATE}}$ (or, in the considered example, a filtered version thereof) from the sensing arrangement 220 (i.e., the first terminal T_{RPD,1} of the pull-down resistor R_{PD}) and standard error/control messages MSG from the motor module 210, and, accordingly, to control the door switch SW_L , the bypass RL₁ and safety RL₂ relays and the MOS transistor 225 (e.g., by means of respective control signals $S_{SWL}, S_{RL1}, S_{RL2}, S_{225}$) and to command motor module 210 205) (and, hence, electric motor activation/deactivation (e.g., by means of command signals S_{COMM}). The control unit 230 is herein assumed to be capable of commanding mechanical lock of the door (by means of the door lock command), and determining whether such a mechanical lock has taken place correctly.

[0060] The illustrated circuit system 200 allows achieving a low-voltage sensing, which makes it highly power-

saving and reliable. Moreover, the circuit system 200 makes use of a single sensing arrangement for sensing the states of both bypass RL_1 and safety RL_2 relays, thus some critical procedures (such as electric motor activation and deactivation procedures, discussed below) may be handled by the appliance 100 in a manner totally oriented to avoid safety risks for the user, while substantially unaffecting power consumption.

[0061] Figure 3 shows a simplified flowchart of a motor activation procedure 300, carried out under the control of the control unit 230 in response to a motor activation request, according to an embodiment of the present invention. Broadly speaking, the motor activation procedure 300 is aimed at activating the electric motor 205 if, from a default configuration wherein the bypass RL₁ and safety RL2 relays are both in the de-energized state (i.e., the state signal S_{STATE} takes the intermediate level S_{STATE.I}), mechanical door locking is enabled, the starting current (i.e., the electric current limited by the NTC thermistor R_{NTC}) is correctly fed to the driving arrangement 205,210,C, communication between the electric motor 205 and the driving arrangement 205,210,C is active, and the working current is allowed to be fed to the driving arrangement 205,210,C (i.e., bypass relay RL₁ in the de-energized state and safety relay RL2 in the energized state). In addition, as better discussed herebelow, the motor activation procedure 300 also performs check phases aimed at evaluating bypass relay RL₁, safety relay RL2 or NTC thermistor RNTC failures.

[0062] The motor activation procedure 300 starts by operating the bypass relay RL_1 into the energized state (action block 305), and by checking (decision block 310) whether $S_{STATE}=S_{STATE,H}$ - which means that bypass relay RL_1 energization has taken place correctly, the safety relay RL_2 is in the de-energized state (as expected from the last motor deactivation procedure), and no malfunction affect the NTC resistor R_{NTC} .

[0063] In the negative case (exit branch N of the decision block 310), the motor activation procedure 300 ends without that motor activation takes place (activity block 360), possibly by displaying an error code and/or emitting a sound alarm signal indicative of detected or inferred errors. Among the inferable errors, a low level $S_{STATE,L}$ of the state signal S_{STATE} (instead of the expected high level $S_{STATE,L}$) may denote NTC thermistor R_{NTC} opencircuit or undesired energized state the safety relay RL_2 , an intermediate level $S_{STATE,L}$ of the state signal S_{STATE} (instead of the expected high level $S_{STATE,H}$) may denote a bypass relay RL_1 energization failure, whereas a level different from the high $S_{STATE,H}$, intermediate $S_{STATE,1}$ and low $S_{STATE,L}$ levels may denote a generic error of the sensing arrangement 220.

[0064] Otherwise (exit branch Y of the decision block 310), the motor activation procedure 300 continues by operating the bypass relay RL_1 into the de-energized state (activity block 315) and by checking (decision block 320) whether $S_{STATE} = S_{STATE, I}$ (i.e., whether the bypass RL_1 and safety RL_2 relays are both in the de-energized

state and no malfunction affect the NTC resistor R_{NTC}). [0065] In the negative case (exit branch N of the decision block 320), the motor activation procedure 300 ends without that motor activation takes place (activity block 360), possibly by displaying an error code and/or emitting a sound alarm signal indicative of detected or inferred errors. Among the inferable errors, a high level S_{STATE.H} of the state signal S_{STATE} (instead of the expected intermediate level $S_{STATE,I}$) may denote NTC thermistor R_{NTC} short-circuit or bypass relay RL₁ de-energization failure, a low level S_{STATE} of the state signal S_{STATE} (instead of the expected intermediate level S_{STATE,I}) may denote NTC thermistor R_{NTC} open-circuit or undesired energized state the safety relay RL2, whereas a level different from the high $S_{STATE,H}$, intermediate $S_{STATE,I}$ and low S_{STATE.L} levels may denote, as before, a generic error of the sensing arrangement 220. Undesired energized state of the safety relay RL2 is the least likely error that could affect the circuit system 200 at decision blocks 310 and 320 (indeed, as better understood from the following description, safety relay RL2 de-energization state is ensured before ending each motor deactivation procedure). [0066] Back to decision block 320, if instead the state signal S_{STATE} takes the intermediate level $S_{STATE,L}$ (exit branch Y of the decision block 320), the motor activation procedure 300 continues by switching the door switch **SW**₁ into the closed configuration (by means of the signal S_{SWI} , so that electrical coupling between the line terminal $\mathbf{T_L}$ and the input terminal $\mathbf{T_{215,IN2}}$ of the rectifying arrangement 215 is established), and by providing the door lock command to the mechanical lock of the door (activity block 325), thereafter correct door locking is checked at the decision block 330.

[0067] If mechanical lock of the door has failed, exit branch N of the decision block 330, the motor activation procedure 300 ends (activity block 360), as the possibility of opening the door 115 when the electric motor 105 is activated is not prevented. Otherwise, exit branch Y of the decision block 330, it meaning that the electric motor 105 can be activated without risks for any user accidentally tenting to open the door 115, the motor activation procedure 300 goes on by operating the safety relay RL₂ into the energized stated (activity block 335) - thereby allowing the AC supply voltage to be fed across the input terminals $T_{205,IN1}$, $T_{205,IN2}$ of the rectifying arrangement 215 and a limited inrush current (i.e., the inrush current limited by the NTC thermistor $\mathbf{R}_{\mathbf{NTC}}$) to softly charge the bulk capacitor ${\bf C}$ at the DC supply voltages V_{DC1}, V_{DC2} and by checking (decision block 340) whether safety relay RL2 energization has taken place correctly - i.e., whether S_{STATE} = $S_{STATE,L}$ indicating that the bypass RL_1 and safety RL2 relays are in the de-energized and energized states, respectively, and no malfunction affects the NTC thermistor R_{NTC} .

[0068] In the negative case (exit branch N of the decision block 340), the motor activation procedure 300 ends (activity block 360), possibly by displaying proper error codes and/or emitting alarm signals indicative of the de-

40

tected error.

[0069] In the positive case (exit branch Y of the decision block 340), another check is performed for determining (decision block 345) correct, active and functioning communication between the electric motor 205 and the motor module 210 by means of the standard error/control messages MSG. If correct, active and functioning communication between the electric motor 205 and the motor module 210 is determined (exit branch Y of the decision block 345), the bypass relay RL1 is operated into the energized state (activity block 350) - so that the working current substantially depending on the AC supply voltage and on the experienced impedance is entirely fed to the rectifying arrangement 215) - and motor module 210 activation (and, hence, electric motor 205 correct and safe activation) is commanded by means of the command signals S_{COMM} (activity block **355**), otherwise (exit branch N of the decision block 345) the motor activation procedure 300 ends (activity block 360) possibly by displaying proper error codes and/or emitting alarm signals indicative of the detected error. As visible in the figure, the motor activation procedure 300 ends in any case after electric motor 205 activation.

[0070] Turning now to Figure 4, it shows a simplified flowchart of a motor deactivation procedure 400 carried out by the control unit 230 in response to a motor deactivation request, according to an embodiment of the present invention. Broadly speaking, the motor deactivation procedure 400 is aimed at disenabling mechanical door locking only if, upon motor deactivation has occurred, the safety relay RL2 is operated into the de-energized state (i.e., state signal S_{STATE} taking the intermediate level $S_{\text{STATE},I}$, so that no electric current is allowed to flow to the driving arrangement 210,215,C any longer), and the bypass relay $\mathbf{RL_1}$ is operated into the de-energized state (for consistency with a following motor activation procedure, wherein, as discussed above, the bypass RL₁ and safety RL₂ relays in the de-energized states represent the preferred default starting configuration for inferring failures).

[0071] The motor deactivation procedure 400 starts by commanding, by means of the command signals $\mathcal{S}_{\textit{COMM}}$, deactivation of the electric motor 205 (activity block 405) in response to the motor deactivation request, and by operating the safety relay RL2 into the de-energized state (action block 420) as soon as the electric motor 205 has stopped or, anyway, after a predefined time interval has elapsed from the command signals S_{COMM} . This is conceptually represented in the figure by loop connection between a decision block 410 (wherein electric motor 205 stopping is checked) and a decision block 415 (wherein predefined time interval elapsing is checked). Briefly, the motor deactivation procedure 400 keeps running the decision blocks 410,415 as long as the electric motor 205 has not stopped (exit branch N of the decision block 410) and the predefined time interval has not elapsed (exit branch N of the decision block 415). Instead, if (i.e., as soon as) the electric motor 205 has stopped (exit branch Y of the decision block 410), or the predefined time interval has elapsed without that the electric motor 205 has stopped (exit branch Y of the decision block 415), the safety relay RL₂ is operated into the de-energized state (activity block 420). As should be understood, elapsing of the predefined time interval might mean that communication between the electric module 205 and the motor module 210 is temporary or permanently prejudiced (in which case the motor module 210 may not have deactivated the electric motor 205, or may not have received confirmation about electric motor 205 stopping), so that operating the safety relay RL₂ into the de-energized state allows safely interrupting electric motor 205 powering in any case.

[0072] The motor deactivation procedure 400 goes on by checking (decision block 425) whether the bypass relay RL_2 de-energization has taken place correctly and the bypass relay RL_1 is energized, as expected - *i.e.*, whether the bypass RL_1 and safety RL_2 relays are in the energized and de-energized states, respectively, namely whether $S_{STATE} = S_{STATE}$.

[0073] In the negative case (exit branch N of the decision block 425), meaning that safe interruption of electric motor 205 powering is not possible, emergency procedures, not shown, are invoked (possibly, by displaying an error code and/or emitting a sound alarm signal indicative of the detected error), thereafter the motor deactivation procedure 400 ends (activity block 440). Preferably, the motor deactivation procedure 400 ends by displaying proper error codes and/or emitting alarm signals indicative of detected or inferred errors. Similarly to the above, among the inferred errors, a low level S_{STATE I} of the state signal S_{STATE} (instead of the expected high level S_{STATE,L}) may denote safety relay **RL₂** de-energization failure, an intermediate level S_{STATE.L} of the state signal S_{STATE} (instead of the expected high level S_{STATE} H) may denote undesired de-energized state the bypass relay RL₁, whereas a level different from the high S_{STATE,H}, intermediate S_{STATE.I} and low S_{STATE.L} levels may denote, as before, a generic error of the sensing arrangement 220.

[0074] If instead the state signal S_{STATE} takes the high level $S_{STATE,H}$ (exit branch Y of the decision block 425), the motor deactivation procedure 400 goes on by operating the bypass relay RL_1 into the de-energized state (activity block 430), and by disenabling mechanical door locking (activity block 435) -preferably, while switching on the door switch SW_L by means of the control signal S_{SWL} , so as to cause electrical decoupling between the line terminal T_L and the input terminal $T_{215,IN2}$ of the rectifying arrangement 215), thereafter the motor deactivation procedure 400 ends (activity block 440).

[0075] As mentioned above, bypass relay RL_1 de-energization, altough not necessary, is advantageously carried out for consistency with a following motor activation procedure (such as the motor activation procedure 300 discussed in the foregoing) providing the de-energized state of both bypass RL_1 and safety RL_2 relays as default

starting configuration for inferring failures - anyway, nothing prevents from carrying out bypass relay RL_1 de-energization at the start of the motor activation procedure ${\bf 300}$. For the same reasons, as illustrated, no check of whether bypass relay ${\bf RL}_1$ de-energization has taken place correctly is carried out after the activity block ${\bf 430}$ (this check being indeed carried out at the start of the motor activation procedure following the motor de-activation procedure ${\bf 400}$), although this should not be construed limitatively.

[0076] Turning now to Figure 5, it schematically shows a portion of a circuit system 500 of the appliance 100 according to another embodiment of the present invention. The circuit system 500 is similar to the circuit system 200, reason why, in the following, same or similar elements will not be discussed again for the sake of conciseness

[0077] Specifically, according to the considered embodiment, the circuit system **500** comprises, as above, the electric motor **205**, the motor module **210** (powered between the first V_{DC1} and second V_{DC2} DC supply voltages), the power conversion arrangement for (selectively) providing said DC supply voltages V_{DC1} , V_{DC2} according to the AC supply voltage selectively received from the line $\mathbf{T_L}$ and neutral $\mathbf{T_N}$ terminals of the AC power supply, and the sensing arrangement **220**.

[0078] The power conversion arrangement comprises, as before, the rectifying arrangement 215, whose input terminals $T_{215,\text{IN1}},T_{215,\text{IN2}}$ are selectively coupleable to the line T_L and neutral T_N terminals, respectively, for receiving the AC supply voltage and whose output terminals $T_{215,\text{OUT1}},T_{215,\text{OUT2}}$ provide pulsed DC voltages, and a smoothing (or bulk) capacitor C, whose terminals T_{C1},T_{C2} are electrically coupled to the output terminals $T_{215,\text{OUT1}},T_{215,\text{OUT2}}$, respectively, of the rectifying arrangement 215 for smoothing the pulsed DC voltages into said DC supply voltages V_{DC1},V_{DC2} .

[0079] Selective reception of the AC supply voltage from line T_L and neutral T_N terminals is achieved by means of a number of electrically-operated switching devices, comprising, as above, a door switch $\mathbf{SW_L}$ provided between the line terminal T_L and the input terminal T_{215,IN1} of the rectifying arrangement 215, and a switching arrangement provided between the neutral terminal T_N and the input terminal $T_{215,IN2}$ of the rectifying arrangement 215. Differently from the above, the switching arrangement comprises a single (e.g., electromagnetic) relay RL having both bypass and safety functions (thus, referred to as bypass/safety relay hereinafter), and electrically coupled between the neutral terminal T_N and the input terminal T_{215,IN2} of the rectifying arrangement 215. The use of a single relay RL makes the circuit system 500 more simple and cheap than the circuit system 200. [0080] The bypass/safety relay RL, e.g. structurally similar to the bypass RL1 and safety RL2 relays, comprises side (fixed) contacts $C_{A,RL}C_{C,RL}$ electrically coupled to a sensing arrangement 520 and to the input terminal T_{215.IN2} of the rectifying arrangement 215, respectively, and a central contact $\mathbf{C}_{B,RL}$, movable with respect to the side contacts $\mathbf{C}_{A,RL}\mathbf{C}_{C,RL}$, electrically coupled to the neutral terminal \mathbf{T}_N . In the considered example, the bypass/safety relay $\mathbf{R}\mathbf{L}$ is herein assumed, in the de-energized state (*i.e.*, in absence of current across the coil), with the central contact $\mathbf{C}_{B,RL}$ electrically coupled to a respective side contact (*e.g.* the side contact $\mathbf{C}_{A,RL}$), and, in the energized state (*i.e.*, in presence of an electric current across the coil)with the central contact $\mathbf{C}_{B,RL}$ electrically coupled to the other side contact (*i.e.*, the side contact $\mathbf{C}_{C,RL}$).

[0081] In order avoid (in the off condition of the door switch SW₁) large peak surge currents, or inrush currents, flowing through (thus electrically stressing) the door switch SW1, the rectifying arrangement 215 and the bulk capacitor C (especially when the bulk capacitor C is initially discharged), the circuit system 500 also comprises an inrush current limiting device, for example a NTC thermistor (as before) or, as in the exemplary considered embodiment, a fusible resistor R_{FUSE} electrically coupled in parallel with the bypass/safety relay RL for mitigating the inrush current experienced during startup. According to the exemplary illustrated embodiment, the fusible resistor R_{FUSE} is electrically coupled between the central CB.RL and side CC.RL contacts of the bypass/safety relay RL (and, hence, between the neutral terminal T_N and the input terminal T_{215.IN2} of the rectifying arrangement 215).

[0082] Basically, a fusible resistor is a standard resistor by the electrical viewpoint, and if further designed to open without flames when overloaded (thus, sometimes also referred to as flameproof resistor). The use of the fusible resistor \mathbf{R}_{FUSE} instead of the NTC thermistor \mathbf{R}_{NTC} makes the circuit system **500** cheaper than the circuit system **200**, and ensures a constant starting current to be fed to the rectifying arrangement during startup.

[0083] Thus, by proper sizing of the fusible resistor Reuse, during startup (door switch SWI in the on condition and bypass/safety relay RL in the de-energized state) the neutral terminal T_N is electrically coupled to the input terminal T_{215,IN2} of the rectifying arrangement 215 through the fusible resistor R_{FUSE}, and a fixed starting current (depending on fusible resistor \mathbf{R}_{FUSE} resistance) is allowed to flow therethrough. After startup completing or preset time elapsing, the bypass/safety relay RL is operated into the energized state (i.e., central contact $C_{B,RL}$ thereof moved to the side contact $C_{C,RL}$), thus bypassing (i.e., substantially short-circuiting) the fusible resistor R_{FUSE} and allowing a working current (substantially depending on the AC supply voltage and on the experienced impedance) to be fed to the rectifying arrangement 215 (through the bypass/safety relay RL, i.e. the central $C_{B,RL}$ and side $C_{C,RL}$ contacts thereof).

[0084] The sensing arrangement **520** comprises, similarly to the sensing arrangement **220**, the pull-down resistor R_{PD} , whose first terminal $T_{RPD,1}$ is adapted to be electrically coupled to the side terminal $C_{A,RL}$ of the bypass/safety relay **RL** (e.g., as above, by means of the

MOS transistor 225, or other electrically-operated switching device) and whose second terminal $T_{RPD,2}$ is configured to receive the lower reference voltage GND, and, preferably, the filtering arrangement F_{LP} .

[0085] The sensing arrangement 520, when coupled to the side contact $\mathbf{C_{A,RL}}$ of the bypass/safety relay RL (MOS transistor 225 in the on condition), is intended to sense the (energized or de-energized) state of the bypass/safety relay RL and to provide a corresponding state signal S^*_{STATE} . As better discussed herebelow, by virtue of the considered circuit system 500 implementation, the state signal S^*_{STATE} may take two different levels according to the bypass/safety relay RL state, namely the low $S_{STATE,L}$ and high $S_{STATE,H}$ levels.

[0086] During sensing, the following bypass/safety relay **RL** states may be discriminated (and signaled, through the respective high $S_{STATE,H}$ or low $S_{STATE,L}$ levels of the state signal S^*_{STATE}):

Bypass/safety relay RL in the energized state

[0087] In this state, the fusible resistor R_{FUSE} is short-circuited (bypassed) by the bypass/safety relay RL. The central terminal $C_{B,RL}$ of the bypass/safety relay RL is electrically coupled to the side terminal $C_{C,RL}$, the side terminal coupled to the sensing arrangement 520 (i.e., the side terminal $C_{A,RL2}$) being instead floating. As a result of that, by effect of the pull-down resistor R_{PD} , the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} is pulled down to the lower reference voltage GND. Thus, the state signal S^*_{STATE} takes the low level $S_{STATE,L}$.

Bypass/safety relay RL in the de-energized state

[0088] In this state, the first terminal $T_{RPD,1}$ of the pull-down resistor R_{PD} and the neutral terminal T_{N} are both at the upper reference voltage V_{CC} (as being directly coupled to each other). Thus, the state signal S^*_{STATE} takes the high level $S_{STATE,H}$.

[0089] As better discussed in the following procedures, errors to the bypass/safety relay **RL** or to the fuse resistor \mathbf{R}_{FUSE} may also be inferred when the state signal S^*_{STATE} takes a level different from the expected one.

[0090] The circuit system 500 further comprises a control unit 530, similar to the control unit 230, configured to receive the state signal S^*_{STATE} from the sensing arrangement 520 and the standard error/control messages MSG from the motor module 210, and, accordingly, to control the door switch SW_L , the bypass/safety relay RL and the MOS transistor 225 (e.g., by means of respective control signals S_{SWL} , S_{RL} , S_{225}) and to command motor module 210 (e.g., by means of the command signals S_{COMM}). As for the control unit 230, the control unit 530 is herein assumed to be capable of commanding mechanical lock of the door 115 (by means of the door lock command), and determining whether such a mechanical lock has taken place correctly.

[0091] Figures 6 and 7 show simplified flowcharts of

respective procedures implemented by the circuit system of **Figure 5** according to an embodiment of the present invention.

[0092] With reference first to Figure 6, it shows a motor activation procedure 600 carried out under the control of the control unit 530 in response to a motor activation request, according to an embodiment of the present invention. Broadly speaking, the motor activation procedure 600 is aimed at activating the electric motor 205 if, from a default configuration wherein the bypass/safety RL is in the de-energized state (i.e., the state signal S_{STATE} takes the high level S_{STATE.H}), mechanical door locking is enabled, the starting current (i.e., the electric current limited by the fuse resistor R_{FUSE}) is correctly fed to the driving arrangement 205,210,C, communication between the electric motor 205 and the driving arrangement 205,210,C is active, and the working current is allowed to be fed to the driving arrangement 205,210,C (i.e., bypass/safetyrelay **RL** in the energized state). In addition, as better discussed herebelow, the motor activation procedure 600 also performs check phases aimed at evaluating bypass/safety relay RL or fuse resistor R_{FUSE}.

[0093] The motor activation procedure 600 starts by checking (decision block 605) whether $S^*_{STATE} = S_{STATE,H}$ - it meaning that bypass/safety relay RL is in the de-energized state (as expected from the last motor deactivation procedure), and no malfunction affect the fuse resistor R_{FUSE} .

[0094] In the negative case (exit branch N of the decision block 605), the motor activation procedure 600 ends without that motor activation takes place (activity block 640), possibly by displaying an error code and/or emitting a sound alarm signal indicative of detected or inferred errors. Among the inferable errors, a low level $S_{STATE,L}$ of the state signal S^*_{STATE} (instead of the expected high level $S_{STATE,H}$) may denote fuse resistor R_{FUSE} short-circuit or undesired bypass/safety relay RL energized state, whereas a level different from the high $S_{STATE,H}$ and low $S_{STATE,L}$ levels may denote a generic error of the sensing arrangement 520.

[0095] Otherwise (exit branch Y of the decision block 605), the motor activation procedure 600 goes on by enabling mechanical door locking (activity block 610), thereafter correct door locking is checked at the decision block 615.

[0096] If mechanical lock of the door has failed, exit branch N of the decision block 615, the motor activation procedure 600 ends (activity block 640), as the possibility of opening the door 115 when the electric motor 205 is activated is not prevented. Otherwise, exit branch Y of the decision block 615, it meaning that the electric motor 205 can be activated without risks for any user accidentally tenting to open the door 115, the motor activation procedure 600 goes on by determining (decision block 620) correct, active and functioning communication between the electric motor 205 and the motor module 210 by means of the standard error/control messages *MSG*.

[0097] If correct, active and functioning communication between the electric motor 205 and the motor module 210 is determined (exit branch Y of the decision block 620), the bypass/safety relay RL is operated into the energized state (activity block 625) - so that the working current substantially depending on the AC supply voltage and on the experienced impedance is entirely fed to the rectifying arrangement 215). Otherwise, the motor activation procedure 600 ends without that motor activation takes place, possibly by displaying an error code and/or emitting a sound alarm signal indicative of the detected error. Preferably, the error detected in this case may be either fusible resistor R_{FUSE} opening (so that the motor module 210, being not powered, is not able to provide the standard error/control messages MSG to the control unit 530) or motor module 210 malfunctioning.

[0098] Then, decision block 630, the motor activation procedure 600 checks wether bypass/safety relay RL energization has taken place correctly - *i.e.*, whether $S^*_{STATE} = S_{STATE,L}$. In the affirmative case (exit branch Y of the decision block 630), motor module 210 activation (and, hence, electric motor 205 correct and safe activation) is commanded by means of the command signals S_{COMM} (activity block 635), thereafter the motor activation procedure 600 ends (activity block 640).

[0099] If instead bypass/safety relay RL energization has not taken place correctly (exit branch N of the decision block 630), the motor activation procedure 600 ends (activity block 640) without motor activation, possibly by displaying proper error codes and/or emitting alarm signals indicative of detected or inferred errors. Among the inferable errors, a level different from the high $S_{\text{STATE},H}$ and low $S_{\text{STATE},L}$ levels may denote, as before, a generic error of the sensing arrangement 520.

[0100] Turning now to **Figure 7**, it shows a simplified flowchart of a motor deactivation procedure **700** carried out under the control of the control unit **530** in response to a motor deactivation request, according to an embodiment of the present invention. Broadly speaking, the motor deactivation procedure **700** is aimed at disenabling mechanical door locking if motor deactivation has occurred, and if, after operating the bypass/safety relay **RL** into the energized state, the state signal S^*_{STATE} takes the high level $S_{STATE,H}$ and if a predefined time period has passed since motor deactivation request.

[0101] The motor deactivation procedure 700 starts by commanding, by means of the command signals S_{COMM} , deactivation of the electric motor 205 (activity block 705) in response to the motor deactivation request, and by operating the bypass/safety relay RL into the de-energized state (action block 720) as soon as the electric motor 205 has stopped or, anyway, after a predefined time interval has elapsed from the motor deactivation request (or, alternatively, from transmission of the command signals S_{COMM}). This is conceptually represented in the figure by loop connection between a decision block 710 (wherein electric motor 205 stopping is checked) and a decision block 715 (wherein predefined time interval

elapsing is checked). Briefly, the motor deactivation procedure 700 keeps running the decision blocks 710,715 as long as the electric motor 205 has not stopped (exit branch N of the decision block 710) and the predefined time interval has not elapsed (exit branch N of the decision block 715). Instead, if (i.e., as soon as) the electric motor 205 has stopped (exit branch Y of the decision block 710), or the predefined time interval has elapsed without that the electric motor 205 has stopped (exit branch Y of the decision block 715), the bypass/safety relay RL is operated into the de-energized state (activity block 720). As discussed above, elapsing of the predefined time interval might mean that communication between the electric module 205 and the motor module 210 is temporary or permanently prejudiced (in which case the motor module 210 may not have deactivated the electric motor 205, or may not have received confirmation about electric motor 205 stopping), so that operating the bypass/safety relay RL into the de-energized state allows safely interrupting electric motor 205 powering in any case. Indeed, bypass/safety relay RL de-energization causes intervention of the fusible resistor R_{FUSE}, and hence unpowering the motor module 210 (in fact, the inrush current through the fusible resistor \mathbf{R}_{FUSE} is not sufficient to keep the electric motor 205 powered).

[0102] The motor deactivation procedure **700** goes on by checking (decision block **725)** whether the bypass/safety relay **RL** de-energization has taken place correctly - *i.e.*, whether $S^*_{STATE} = S_{STATE,H}$.

[0103] In the negative case (exit branch N of the decision block 425), the motor deactivation procedure 700 ends (activity block 740) without door unlocking (so as to prevent the user from opening the door 115 in a not safe condition of the appliance 100), preferably by displaying proper error codes and/or emitting alarm signals indicative of detected or inferred errors. Similarly to the above, among the inferred errors, a level different from the high S_{STATE,H} and low S_{STATE,L} levels may denote a generic error of the sensing arrangement 520.

[0104] If instead the state signal S^*_{STATE} takes the high level $S_{STATE,H}$ (exit branch Y of the decision block 725), the motor deactivation procedure 700 goes on by disenabling mechanical door locking (activity block 735) - preferably, while switching off the door switch SW_L by means of the control signal S_{SWL} , so as to cause electrical decoupling between the line terminal T_L and the input terminal $T_{215,IN2}$ of the rectifying arrangement 215) - after a safety time interval (e.g., from bypass/safety relay RL de-energization) has elapsed(decision block 730), thereafter the motor deactivation procedure 700 ends (activity block 740).

[0105] Naturally, in order to satisfy local and specific requirements, a person skilled in the art may apply to the invention described above many logical and/or physical modifications and alterations. More specifically, although the invention has been described with a certain degree of particularity with reference to preferred embodiments thereof, it should be understood that various omissions,

40

20

30

40

substitutions and changes in the form and details as well as other embodiments are possible. In particular, different embodiments of the invention may even be practiced without the specific details (such as the numeric examples) set forth in the preceding description for providing a more thorough understanding thereof; on the contrary, well known features may have been omitted or simplified in order not to obscure the description with unnecessary particulars.

Claims

1. Washing and/or drying appliance (100) comprising:

an electric load (205), a driving arrangement (210,215,C) for driving the electric load (205), the driving arrangement (210,215,C) having first ($T_{205,IN1}$) and second ($T_{205,IN2}$) terminals coupleable, respectively, to a line terminal (T_L) and to a neutral terminal (T_N) providing a reference voltage (V_{CC}), an inrush current limiting device (R_{FUSE} ; R_{NTC}) and a switching device (R_{I} ; R_{I}) between the

and a switching device (RL;RL₁) between the reference terminal (T_N) and the second terminal (T_{205,IN2}) of the driving arrangement (210,215,C), the switching device (RL;RL₁) being operable in first or second states preventing or allowing, respectively, an electric current to flow through the inrush current limiting device (R_{FUSE},R_{NTC}), and

a sensing network (R_{PD}) for sensing the first or second states of the switching device $(RL;RL_1)$ and for providing a corresponding state signal $(S_{STATE};S^*_{STATE})$, the sensing network (R_{PD}) having a first terminal $(T_{RPD,1})$, and a second terminal $(T_{RPD,2})$ coupled to a reference terminal providing a further reference voltage (GND) lower than the reference voltage (V_{CC}) , wherein, during sensing:

in the first state of the switching device ($RL;RL_1$) the reference terminal (T_N) and the first terminal ($T_{RPD,1}$) of the sensing network (R_{PD}) being coupled to each other such that the first terminal ($T_{RPD,1}$) of the sensing network (R_{PD}) receives the reference voltage (V_{CC}) and the state signal ($S_{STATE;}S^*_{STATE}$) takes a first level ($S_{STATE,H}$) equal to the reference voltage (V_{CC}), in the second state the state signal ($S_{STATE,H}$) are second level ($S_{STATE,I}$; $S^*_{STATE,L}$) lower than the first level ($S_{STATE,I}$).

 Washing and/or drying appliance (100) according to Claim 1, wherein in the second state of the switching device (RL₁) the reference terminal (T_N) and the first terminal ($T_{RPD,1}$) of the sensing network (R_{PD}) are coupled to each other with interposition of the inrush current limiting device (R_{NTC}), whereby the second level ($S_{STATE,I}$) of the state signal (S_{STATE}) is between the first the reference voltage (V_{CC}) and the further reference voltage (GND) according to a partition between the inrush current limiting device (R_{NTC}) and the sensing network (R_{PD}).

- 3. Washing and/or drying appliance (100) according to Claim 1, wherein in the second state of the switching device (RL) the first terminal (T_{RPD,1}) of the sensing network (R_{PD}) is electrically floating, whereby the second level (S_{STATE,L}) of the state signal (S_{STATE}) is at the further reference voltage (GND) by pull-down action of the sensing network (R_{PD}).
- 4. Washing and/or drying appliance (100) according to Claim 3, wherein the switching device (RL) has a first contact (C_{A,RL}) electrically coupled, during sensing, to the sensing network (R_{PD}), a second contact (C_{C,RL}) coupled to the second terminal (T_{205,IN2}) of the driving arrangement (210,215,C), and a third contact (C_{B,RL}) electrically coupled to the reference terminal (T_N) and contacting the first (C_{A,RL}) or second (C_{C,RL}) contacts in first or second states, respectively, of the switching device (RL).
- 5. Washing and/or drying appliance (100) according to Claim 1 or 2, wherein the switching device (RL₁) has a first contact (C_{A,RL1}) electrically floating, a second contact (C_{C,RL1}), and a third contact (C_{B,RL1}) electrically coupled to the reference terminal (T_N) and contacting the first (C_{A,RL1}) or second (C_{C,RL1}) contacts in first or second states, respectively, of the switching device (RL₁), and wherein the appliance (100) also comprises a further switching device (RL₂) operable in first or second states electrically coupling the second contact (C_{C,RL1}) of the switching device (RL₁) to the first terminal (T_{RPD,1}) of the sensing network (R_{PD}) or to the second terminal (T_{215,IN2}) of the driving arrangement (210,215,C), respectively.
- 45 6. Washing and/or drying appliance (100) according to Claim 5, wherein the first terminal (T_{RPD,1}) of the sensing network (R_{PD}) is coupled, during sensing, to the second contact (C_{C,RL1}) of the switching device (RL₁), and wherein in the second state of the further switching device (RL₂) the state signal (S_{STATE}) takes a third level (S_{STATE,L}) equal to the further reference voltage (GND).
 - Washing and/or drying appliance (100) according to any of the preceding Claims, wherein the sensing network (R_{PD}) is a resistive network (R_{PD}).
 - 8. Washing and/or drying appliance (100) according to

55

15

20

25

30

35

40

45

any of the preceding Claims, further comprising a filtering arrangement (F_{LP}) for suppressing disturbances from the state signal (S_{STATE} , S_{STATE}^*).

- Washing and/or drying appliance (100) according to any of the preceding Claims, wherein the inrush current limiting device (R_{FUSE};R_{NTC}) is a fusible resistor (R_{FUSE}) or a negative temperature coefficient thermistor (R_{NTC}).
- 10. Washing and/or drying appliance (100) according to any of the preceding Claims, wherein the electric load (205) is an electric motor, for example a "Variable-Frequency Drive" motor or a Brushless DC motor
- 11. Washing and/or drying appliance (100) according to any of the preceding Claims, wherein the appliance is a laundry washing appliance intended to perform only laundry washing operations, or a laundry drying appliance intended to perform only laundry drying operations, or a laundry washing/drying appliance intended to perform both laundry washing and laundry drying operations.
- 12. Washing and/or drying appliance (100) according to any of the preceding Claims, wherein the appliance (100) further comprises a mechanical door-lock device for mechanically locking an appliance door (120) thereby preventing door opening when the electric load (205) is activated.
- 13. Method (300,400;600,700) for operating a washing and/or drying appliance (100), the appliance (100) comprising:

an electric motor (205) and a driving arrange-

ment (205,210,C) for driving it, the driving arrangement (210,215,C) being coupleable to a line terminal (T_L) and to a neutral terminal (T_N) providing a reference voltage (V_{CC}) , between the neutral terminal (T_N) and the driving arrangement (210,215,C), an inrush current limiting device (R_{FUSE};R_{NTC}) and a switching device (RL;RL₁), the switching device (RL;RL₁) being operable between first and second states allowing and preventing, respectively, an electric current to flow through the inrush current limiting device (R_{FUSE},R_{NTC}), and a sensing arrangement (220) configured for sensing the first or second states of the switching device (RL;RL₁) and for providing a corresponding state signal (S_{STATE} ; S^*_{STATE}), in the first state of the switching device (RL;RL₁) the state signal $(S_{STATE}; S^*_{STATE})$ taking a first level $(S_{STATE.H})$ equal to the reference voltage (V_{CC}) ,

and in the second state of the switching device

 $(RL;RL_1)$ the state signal (S_{STATE}, S_{STATE}^*) tak-

ing a second level $(S_{STATE,I},S_{STATE,L})$ lower than the first level $(S_{STATE,H})$,

the method comprising, under the control of a control unit (230,530) of the appliance (100) and in response to a motor activation request:

if (310;605) the state signal (S_{STATE} ; S_{STATE}^*) takes the second level ($S_{STATE,I}$; $S_{STATE,L}$), feeding (335,340;615) the driving arrangement (205,210,C) with a first electric current limited by the inrush current limiting device (R_{FUSE} ; R_{NTC}), and if (345;620) communication between the electric motor (205) and the driving arrangement (205,210,C) is active, operating (350;625) the switching device (R_{L,RL_1}) into the second state thereby allowing a second electric current not limited by the inrush current limiting device (R_{FUSE} ; R_{NTC}) to be fed to the driving arrangement (205,210,C), and activating (355;635) the electric motor (205).

- 14. Method (300,400;600,700) according to Claim 13, wherein the appliance (100) further comprises a mechanical door-lock device for mechanically locking an appliance door (120) thereby preventing door opening when the electric motor (205) is activated, wherein the method (300,400;600,700) further comprises enabling (325;610) mechanical door locking, and wherein said feeding (335,340;615) the driving arrangement (205,210,C) with a first electric current limited by the inrush current limiting device (R_{FUSE};R_{NTC}) is performed if (330;615) mechanical door locking is enabled.
- 15. Method (300) according to Claim 14, wherein the appliance (100) further comprises a further switching device (RL₂) operable in first or second states electrically coupling the switching device (RL₁) to the sensing arrangement (220) or to the driving arrangement (205,210,C), respectively, in the first state of the further switching device (RL₂) the state signal (S_{STATE}) taking the first (S_{STATE,H}) or second (S_{STATE,I}) levels according to the first or second states, respectively, of the switching device (RL₁), and wherein said enabling (325) mechanical door locking if (310;605) the state signal (S_{STATE}) takes the second level (S_{STATE,I}) comprises:

operating (305) the switching device (RL_1) in the first state,

if (310) the state signal (S_{STATE}) takes the first level ($S_{STATE,I}$), operating (315) the switching device (RL_1) in the second state, and if (320) the state signal (S_{STATE}) takes the second level ($S_{STATE,I}$), performing said enabling (325;610) mechanical door locking.

35

40

45

50

55

16. Method (300) according to Claim 15, wherein in the second state of the further switching device (RL₂) the state signal (S_{STATE}) takes a third level (S_{STATE,L}) lower than the first (S_{STATE,H}) and second (S_{STATE,I}) levels, the method further comprising, after said enabling (325;610) mechanical door locking:

if (330) mechanical door locking is enabled, operating (335) the further switching device (RL_2) in the second state, and performing said operating (350) the switching device (RL_1) into the second state if (345) communication between the electric motor (205) and the driving arrangement (205,210,C) is active and if (340) the state signal (S_{STATE}) takes the third level ($S_{STATE,L}$).

17. Method (400) according to Claim 14, 15 or 16, further comprising, in response to a motor deactivation request:

if **(410,415)** motor deactivation has occurred, operating **(420)** the further switching device $(\mathbf{RL_2})$ into the first state, and if the state signal (S_{STATE}) takes the second level $(S_{STATE,1})$, operating **(430)** the switching device $(\mathbf{RL_1})$ into the first state and disenabling **(435)** mechanical door locking.

18. Method **(700)** according to Claim 14, further comprising, in response to a motor deactivation request:

operating **(720)** the switching device **(RL)** into the first state, and if the state signal (S_{STATE}) takes the first level $(S_{STATE,H})$ and if (730) a predefined time period has passed since motor deactivation request, disenabling (735) mechanical door locking.

if (710,715) motor deactivation has occurred,

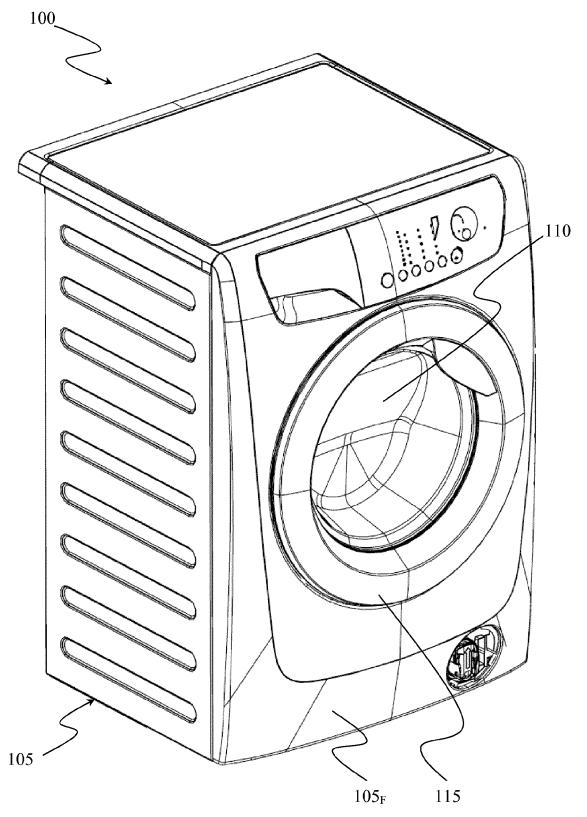
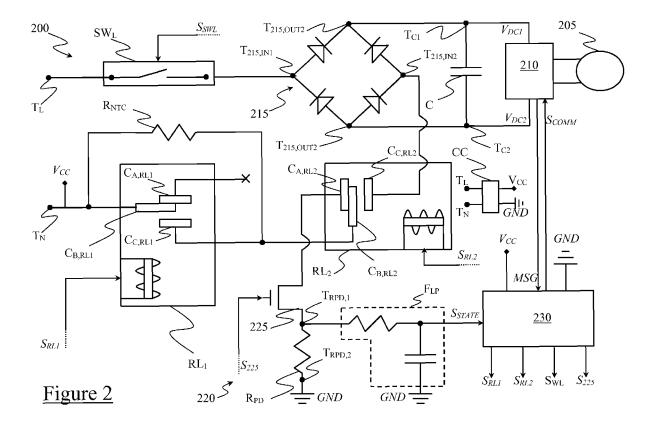



Figure 1

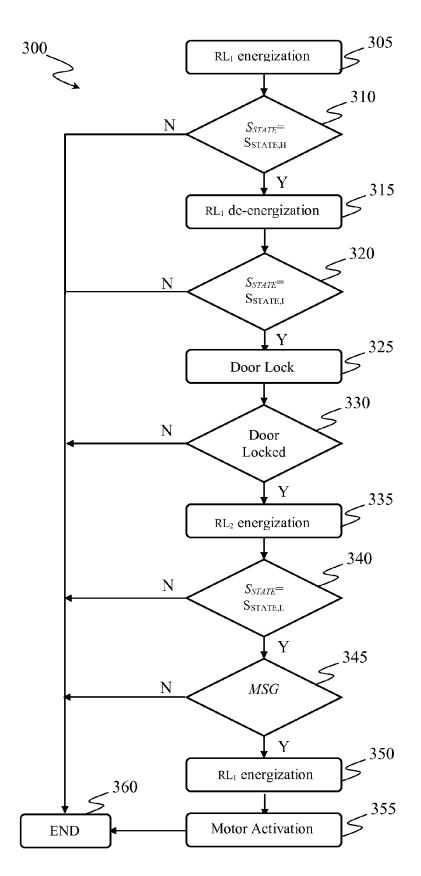


Figure 3

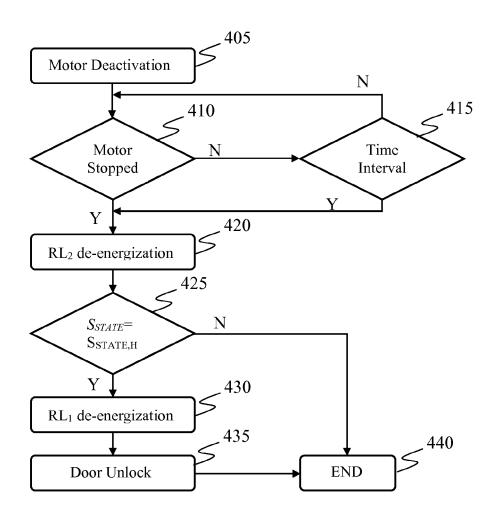
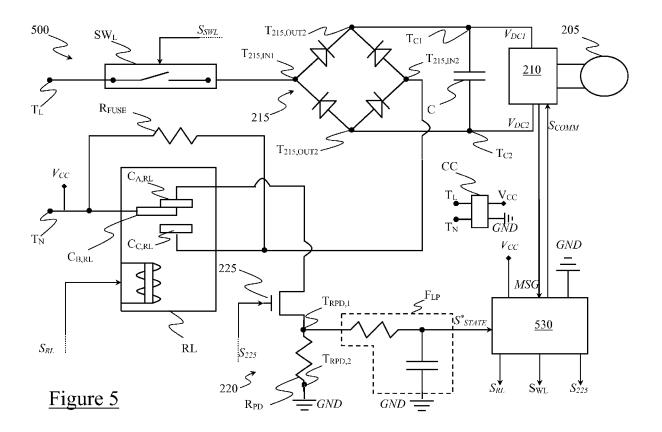



Figure 4

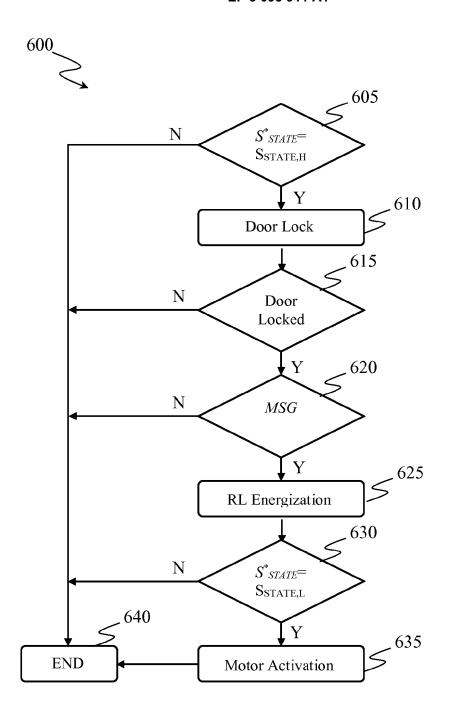


Figure 6

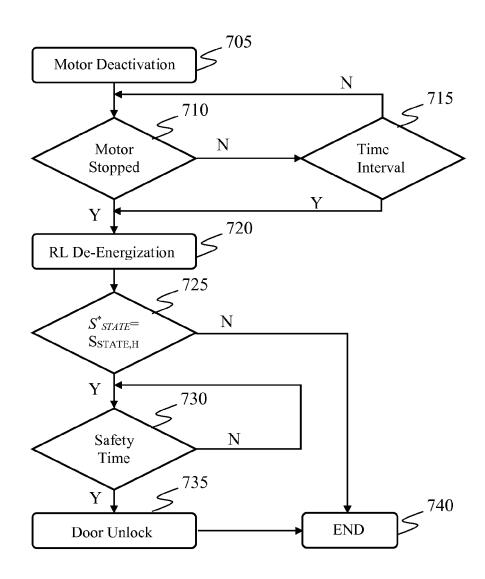


Figure 7

EUROPEAN SEARCH REPORT

Application Number

EP 15 16 8654

CLASSIFICATION OF THE APPLICATION (IPC)

INV. D06F37/42 D06F58/28 D06F33/02

D06F37/30

Relevant

5	de	is brevets		
		DOCUMENTS CONSID	ERED TO BE RELEVAN	IT
	Categor	y Citation of document with i	ndication, where appropriate, ages	Releva to clair
10	A	EP 2 586 898 A1 (EL [BE]) 1 May 2013 (2 * the whole documer		ORP 1-18
15	A	WO 2012/025395 A2 (HAUSGERAETE [DE]; A Marc The whole document	ÀLBAYRAK HASAN GOEKCE ch 2012 (2012-03-01)	R 1-18
20	А	DE 10 2006 060208 A 26 June 2008 (2008- * the whole documer	 A1 (MIELE & CIE [DE]) -06-26) nt * 	1-18
25				
30				
35				
40				
45				
	1	The present search report has	<u> </u>	
50	£	Place of search	Date of completion of the sear	
	P04CC	Munich	11 November 2	015
55	WHO 203 03 08 4 1 te	CATEGORY OF CITED DOCUMENTS articularly relevant if taken alone urticularly relevant if combined with anot cument of the same category chnological background on-written disclosure termediate document	E : earlier pate after the fill her D : document L : document	rinciple underlying ent document, but ng date cited in the applic- cited for other reas the same patent
	<u>ā</u>			

	TECHN SEARC	NICAL FIELDS CHED (IPC)				
	D06F					
or all claims						
of completion of the search November 2015	Examine	, Krzysztof				
		, Krzysztul				
T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons 8: member of the same patent family, corresponding						
& : member of the same p	went rarniny, correspond	anry				

EP 3 095 911 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 16 8654

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

11-11-2015

c	Patent document cited in search report		Publication date	Patent family member(s)	Publication date
E	P 2586898	A1	01-05-2013	AU 2012327514 A1 CN 103975102 A EP 2586898 A1 US 2015028016 A1 WO 2013060453 A1	01-05-2014 06-08-2014 01-05-2013 29-01-2015 02-05-2013
W	0 2012025395	A2	01-03-2012	CN 103069067 A DE 102010039667 A1 EA 201390257 A1 EP 2609239 A2 WO 2012025395 A2	24-04-2013 01-03-2012 29-11-2013 03-07-2013 01-03-2012
_ D	E 102006060208	A1	26-06-2008	NONE	
99					
)RM P0459					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82