Technical field
[0001] The present invention relates to the fields of heating, ventilation and air conditioning,
motor vehicles, cooling and transportation, and in particular relates to a plate type
heat exchanger. The invention relates in particular to a heat exchanger according
to the preamble of claim 1. Such heat exchangers are known from
EP 2 172 730 A1.
Background art
[0002] With regard to heat exchangers (evaporators) with parallel channels, in particular
plate type heat exchangers and microchannel heat exchangers, the nonuniform distribution
(mal-distribution) of coolant is a global technical difficulty. In general, coolant
entering a heat exchanger exists in a two-phase form, and due to application conditions
and the complexity of two-phase flow, uniform distribution of coolant is very difficult
to achieve. In many cases, an excessive amount of liquid coolant flows into some channels,
while an excessive amount of gaseous coolant flows into other channels, and this has
a major impact on the overall performance of the evaporator.
[0003] However, if a heat exchange plate is too wide, such a large heat exchange plate will
fail to achieve good fluid distribution, e.g. in the longitudinal direction of the
heat exchange plate. Thus, there is definitely a need to provide a novel plate type
heat exchanger capable of at least partially solving the problem above.
[0004] EP 2 172 730 A1 discloses a heat exchanger having the features of the preamble of claim 1. The heat
exchanger plate of this heat exchanger comprises a number of protrusions which are
formed out of the respective plates. These protrusions separate the different flow
paths.
[0005] CN 102 404 547 A discloses a heat exchanger having a plurality of heat exchanger plates in which grooves
are provided, wherein the grooves form separate flow paths.
[0006] JP 2011-149667 A discloses a heat exchanger plate having a herringbone pattern.
[0007] WO 2006/110090 A1 shows a further plate heat exchanger having a number of heat exchange plates each
having an inlet and an outlet and a single flow path between inlet and outlet.
[0008] SE 8 702 608 L shows a heat exchanger having heat exchange plates with a herringbone pattern.
Content of the invention
[0009] The object of the present invention is to solve at least one aspect of the abovementioned
problems and shortcomings in the prior art.
[0010] According to one aspect of the present invention, a plate type heat exchanger is
provided. The plate type heat exchanger comprises multiple heat exchange plates which
are stacked together, each heat exchange plate comprising a fluid inlet and a fluid
outlet located at two opposite ends respectively in a longitudinal direction of the
heat exchange plate,
a separating part is provided on a top surface and/or a bottom surface of each heat
exchange plate, such that a fluid coming from the fluid inlet is split into different
flows at the fluid inlet, then flows into mutually independent fluid channel regions
separated by the separating part and converges at the fluid outlet, and finally flows
out of the fluid outlet, wherein the separating part comprises a separating strip,
which splits fluid into different flows at the fluid inlet, and a longitudinal piece
connected thereto.
[0011] Specifically, the longitudinal piece is arranged in one of the following three ways:
substantially parallel to the longitudinal direction of the heat exchange plate;
inclined relative to the longitudinal direction of the heat exchange plate;
having a bent or meandering shape in the longitudinal direction of the heat exchange
plate.
[0012] In another embodiment, the separating part comprises at least one separating strip
extending from the fluid inlet to the vicinity of the fluid outlet.
[0013] Specifically, the separating strip is arranged in one of the following three ways:
substantially parallel to the longitudinal direction of the heat exchange plate;
inclined relative to the longitudinal direction of the heat exchange plate;
having a bent or meandering shape in the longitudinal direction of the heat exchange
plate.
[0014] Specifically, at the fluid inlet, the separating strip is arranged to be in the angular
range of -45° to 45° relative to a direction perpendicular to the longitudinal direction
of the heat exchange plate, wherein the separating strip is in the shape of a straight
line or bent.
[0015] Specifically, the fluid inlet is at a top side at a left end of the top surface and/or
bottom surface of the heat exchange plate, and the fluid outlet is at a top side or
bottom side at a right end of the surface of the heat exchange plate.
[0016] Specifically, a fluid distributor is provided at the fluid inlet, the fluid distributor
having a middle cavity for receiving a fluid from the fluid inlet, and at least two
guide parts which pass through the fluid distributor and guide fluid out of the middle
cavity.
[0017] Specifically, the at least two guide parts comprise any one of a through-hole, a
duct and a channel passing through a main body of the fluid distributor, or any combination
thereof.
[0018] Specifically, the ducts comprise tubes and/or capillary tubes which introduce fluid
into different fluid channel regions respectively.
[0019] Specifically, the channel is formed on the heat exchange plate integrally or separately.
[0020] Specifically, the fluid distributor comprises an annular main body which the guide
parts pass through from the outside.
[0021] Specifically, the plate type heat exchanger also comprises end plates which are disposed
on outer sides of the heat exchange plates and used for fixing the heat exchange plates
in place.
[0022] Specifically, a structural pattern for distributing fluid is provided on the surface
of the heat exchange plate.
[0023] Specifically, multiple regularly arranged recesses or protrusions are provided on
the surface.
[0024] Specifically, multiple alternately arranged channels and ridges in an inverted-V-shape
are provided on the surface.
[0025] The main concept of the present invention is mainly based on the following aspects:
- 1) dividing a large heat exchange plate into multiple sections or channel regions
which extend substantially parallel to each other;
- 2) with regard to fluid distribution in a plate type heat exchanger, the narrower
the heat exchange plate after being divided, the better the fluid distribution;
- 3) fluid can enter at a port of the plate type heat exchanger and be guided to the
required region by means of the fluid distributor according to the present invention.
[0026] At least some of the above aspects of the present invention achieve the following
technical effects:
- 1) good fluid distribution is achieved without limiting or restricting the width of
the heat exchange plate;
- 2) recessing technology is used without the loss of strength; this is more competitive
in terms of reducing costs;
- 3) the specially designed fluid distributor according to the present invention can
provide a consistent and stable process and performance.
Description of the accompanying drawings
[0027] These and/or other aspects and advantages of the present invention will become obvious
and easy to understand through the following description of preferred embodiments
in conjunction with the accompanying drawings, wherein:
Fig. 1 is a view of an example of a heat exchange plate in a plate type heat exchanger
according to the present invention;
Fig. 2 is a view of another example of a heat exchange plate in a plate type heat
exchanger according to the present invention;
Fig. 3 is a view of a heat exchange plate, adjacent to the heat exchange plate shown
in Fig. 1 or 2, in a plate type heat exchanger according to the present invention;
Fig. 4 is an enlarged view of the rectangular frame shown in Fig. 1;
Fig. 5 is a view of another example of a heat exchange plate in a plate type heat
exchanger according to the present invention;
Fig. 6 is a view of another example of a heat exchange plate in a plate type heat
exchanger according to the present invention;
Fig. 7 is a view of another example of a heat exchange plate in a plate type heat
exchanger according to the present invention;
Figs. 8a - 8d are views of multiple examples of a fluid distributor used in a heat
exchange plate in a plate type heat exchanger according to the present invention;
Figs. 9a - 9b respectively show views of two examples of a heat exchange plate using
a fluid distributor; and
Fig. 10a shows a view of part of a heat exchange plate according to the present invention;
Fig. 10b is an enlarged view of part of Fig. 10a.
Particular embodiments
[0028] The technical solution of the present invention is explained in further detail below
by means of embodiments in conjunction with Figs. 1 - 10b. In this description, identical
or similar drawing labels indicate identical or similar components. The following
explanation of embodiments of the present invention with reference to the accompanying
drawings is intended to explain the overall inventive concept of the present invention,
and should not be interpreted as being a limitation of the present invention.
[0029] Reference is made to Fig. 1, which shows a front view of a heat exchange plate 10
in a plate type heat exchanger according to an embodiment of the present invention.
As is known by all those skilled in the art, a plate type heat exchanger comprises
multiple heat exchange plates 10 which are stacked together, and end plates (not shown)
disposed on outer sides of the plate type heat exchanger, for fixing the heat exchange
plates 10 in place. In other words, the multiple heat exchange plates 10 which are
stacked together are assembled by means of two end plates, e.g. by screw fastening,
screw-thread connection or welded connection. Generally, two adjacent heat exchange
plates 10 are alternately stacked together, to form a fluid channel or a single fluid
channel region for the passage of fluid. Clearly, the manner of installation described
above is just one example, and any known method in the prior art could be used to
fix the heat exchange plates of the present invention in place.
[0030] In view of the fact that the main improvement brought about by the present invention
is in the heat exchange plates in the heat exchanger, structures such as the end plates
and the manner of fixing are not described in detail. Those skilled in the art can
set these as required in accordance with the prior art.
[0031] The heat exchange plate 10 comprises a fluid inlet 1 and a fluid outlet 2 located
at two opposite ends in the longitudinal direction thereof (e.g. the top-left corner
and top-right corner shown in the figure). To achieve better fluid distribution, a
separating part is disposed on a top surface (i.e. the surface shown in the figure)
of the heat exchange plate 10 in this example; the separating part divides the surface
of the heat exchange plate 10 into two independent fluid channel regions 3 and 4.
The separating part comprises a separating strip 8 which splits fluid flow at the
fluid inlet 1, and a longitudinal piece 7 connected thereto. Thus, fluid (e.g. coolant,
as shown by the arrows in the figure) from the fluid inlet 1 is first split into different
flows by the separating strip 8, then flows into the two fluid channel regions 3 and
4 respectively and converges at the fluid outlet 2, finally flowing out of the fluid
outlet 2. It must be explained here that the fluid channel regions 3 and 4 are independent
of each other; in other words, once the fluid has been split into different flows
by the separating strip 8, the respective flows in the fluid channel regions 3 and
4 do not mix with each other; they only mix in the vicinity of the fluid outlet 2,
and finally flow out of the fluid outlet 2.
[0032] It must be explained that the separating strip 8 is not necessarily in the shape
of a straight line, and can be chosen to be in the angular range of -45° to 45° relative
to a vertical direction of the heat exchange plate 10 (i.e. the up-down direction
in the figure, perpendicular to the longitudinal direction of the heat exchange plate
10). To encourage fluid distribution, the separating strip 8 can be arranged to be
bent or inclined slightly to the left as shown in the figure.
[0033] The fluid inlet 1 is disposed at a top side at the left end (e.g. the top-left corner)
of the heat exchange plate 10; the fluid outlet 2 is disposed at a top side at the
right end (e.g. the top-right corner) of the heat exchange plate 10. Those skilled
in the art should understand that ports 5 and 6 are also disposed on the heat exchange
plate 10, in order to mate with an adjacent heat exchange plate; however, ports 5
and 6 play no role in or are not associated with fluid distribution on the top surface,
shown in the figure, of the heat exchange plate 10, so are not described in detail
below.
[0034] In order to ensure that the flow paths in the fluid channel regions 3 and 4 are independent
of each other or that no mixing of fluid occurs midway after it has been split into
different flows at the fluid inlet 1, the separating strip 8 is generally connected
to the longitudinal piece 7 in a sealed manner.
[0035] It can be seen from Fig. 1 that fluid is split into two branches at the fluid inlet
1. The two branches are first of all inclined downwards slightly overall. Then one
branch is guided rightwards through the fluid channel region 3; the other branch of
fluid is guided towards the bottom left side from the fluid inlet 1 (e.g. through
a region between the port 5 and a left side edge of the heat exchange plate 10), and
is then guided rightwards to the fluid channel region 4. The two branches converge
at the fluid outlet 2, and flow out of the fluid outlet 2.
[0036] Although Fig. 1 shows the longitudinal piece 7 as being substantially parallel to
the longitudinal direction of the heat exchange plate 10 (i.e. the left-right direction
shown in Fig. 1), those skilled in the art could, as required, arrange it to be inclined
by a predetermined angle relative to the longitudinal direction of the heat exchange
plate 10 (e.g. within the angular range of -45° to 45° relative to a direction perpendicular
to the longitudinal direction of the heat exchange plate, e.g. 30°), or to have a
bent or meandering shape in the longitudinal direction of the heat exchange plate
10.
[0037] It can be understood that such a separating part could be likewise disposed on another
surface of the heat exchange plate 10 (opposite the top surface described above, i.e.
the bottom surface); the number of separating parts can be specifically set as required
on the heat exchange plate 10, and is not limited to the scenario shown in the figure;
the separating part may also be formed in another way, and is not limited to the structure
shown in the figure.
[0038] As Fig. 2 shows, the fluid inlet 1 is disposed at the top left corner of the heat
exchange plate 10, while the fluid outlet 2 is disposed at a bottom side at the right
end (e.g. the bottom right corner) of the heat exchange plate 10. The position of
the fluid outlet 2 is different from the scenario shown in Fig. 1, therefore except
for the direction of fluid flow (as shown by the arrow in Fig. 2) which is different
from that shown in Fig. 1, everything else is the same as the structure shown in Fig.
1, and is not described in detail here.
[0039] In Figs. 1 and 2, there is no direct sealed connection between the separating strip
8 and the longitudinal piece 7; instead, separation of fluid is accomplished by means
of a sealed edge of the port 5. Of course, if no port 5 is provided or in another
case, the separating strip 8 and longitudinal piece 7 may be connected in a sealed
manner directly.
[0040] Fig. 3 shows another heat exchange plate 20 which is mated with or adjacent to the
heat exchange plate 10 described above. It can be understood that in order to mate
with the heat exchange plate 10, corresponding ports 25, 26 are disposed at the four
corners respectively of the heat exchange plate 20; the ports 25, 26 are arranged
such that fluid cannot be made to flow therethrough. In order to guide fluid (e.g.
water) on the heat exchange plate 20, a fluid inlet 21 and a fluid outlet 22 are disposed
in a middle position at two ends (left and right) thereof, respectively. As the figure
shows, fluid from the second fluid inlet 21 is guided directly to the second fluid
outlet 22 over the surface of the heat exchange plate 20; no separating part as described
above is provided thereon. Of course, those skilled in the art could provide a similar
separating part on the heat exchange plate 20 as required, in accordance with the
content disclosed above.
[0041] Reference is made to Fig. 4, which shows an enlarged view of part of the heat exchange
plate 10 shown in Fig. 1. As can be seen in the figure, most of the top surface of
the heat exchange plate 10 is provided with a recessed structural pattern as shown
in the figure, for helping to distribute fluid. It can be understood that when the
pattern structure of substantially hemispherical recesses described above is provided
on a surface (e.g. the top surface) of the heat exchange plate 10, a structure of
protrusions corresponding to the substantially hemispherical recesses described above
will be correspondingly provided on the other surface (e.g. the bottom surface) of
the heat exchange plate 10. The form of the recessed pattern structure described above,
as well as the distance between adjacent recesses and the size thereof, may be arranged
as required. Of course, if possible, the pattern structure of recesses 11 and protrusions
described above could also be replaced with an inverted-V-shaped pattern of grooves
and ridges, which is already known in the prior art. Of course, the present invention
could also be applied to a heat exchange plate with a dimpled pattern.
[0042] Fig. 5 shows another example of the heat exchange plate of the present invention.
Clearly, the heat exchange plate 30 shown in Fig. 5 differs from the heat exchange
plate 10 described above in that the heat exchange plate 30 is divided into three
fluid channel regions 331, 332 and 333, starting from a fluid inlet 31, by means of
separating strips 37 and 38 (i.e. two separating parts). The separating strip 37 extends
from the fluid inlet 31 at the top left corner to a region close to a fluid outlet
32 at the top right corner. The other separating strip 38 passes the left side of
a port 35 in a middle position at the left side from a fluid inlet 31, passes a port
35' at the bottom left corner, and then extends to a region between a port 36 in a
middle position at the right side and a fluid outlet 33 at the bottom right corner.
As shown by the arrows in the figure, fluid from the fluid inlet 31 is divided into
three parts, which flow in the three fluid channel regions 331, 332 and 333. Of course,
multiple separating parts could also be disposed based on the same principle, to divide
the heat exchange plate 30 into 4, 5 or an even greater number of fluid channel regions.
As stated above, the separating strips 37 and 38 may be arranged to be substantially
parallel to the longitudinal direction of the heat exchange plate 30 (i.e. be in the
form of straight lines), to be inclined relative to the longitudinal direction of
the heat exchange plate 30, or to have a bent or meandering shape in the longitudinal
direction of the heat exchange plate 30. In addition, the number of fluid outlets
32 and 33 may be set to be 2 or 1 as required.
[0043] Fig. 6 shows another example of the heat exchange plate 40 of the present invention.
A separating strip 47 extends from a fluid inlet 41 at the top left corner of the
heat exchange plate 40 to a region between a fluid outlet 42 at the top right corner
and a port 46 at the bottom right corner. Thus, as shown by the arrows in the figure,
fluid is split by a bent part 471 of the separating strip into two parts, which respectively
flow along the arrows shown in the figure in two fluid channel regions 43 and 44 separated
by the separating strip 47, finally converge and then flow out of the fluid outlet
42. Likewise, ports 45 and 46 for mating with an adjacent heat exchange plate are
also provided.
[0044] Fig. 7 shows another example of the heat exchange plate 50 of the present invention.
Two separating strips 57 respectively extend from a fluid inlet 51 at the top left
corner of the heat exchange plate 50 to a region between a fluid outlet 52 at the
top right corner and a port 56 at the bottom right corner, but the two separating
strips 57 are arranged to be separated by a predetermined distance. Thus, as shown
by the arrows in the figure, fluid is split into three parts, which respectively flow
in three fluid channel regions 53, 54 and 59 so formed, and finally flow out of the
fluid outlet 52. Likewise, ports 55 and 56 for mating with an adjacent heat exchange
plate are also provided.
[0045] It is clear from the above that the heat exchange plate is arranged to have at least
two independent fluid channel regions whether by means of separating strips or longitudinal
pieces, to improve the fluid distribution effect.
[0046] Figs. 1 - 7 all show the surface of the heat exchange plate to be provided with recesses
or protrusions, the details of which will not be described again.
[0047] Although no fluid distributor has been provided on the heat exchange plates shown
in Figs. 1 - 7, it is clear that in the case where it is necessary to distribute fluid
better, or fluid cannot be guided to the required heat transfer region without a fluid
distributing device, the following forms of fluid distributor may be employed. In
other words, preferably, the separating part described above is used in combination
with a fluid distributor in the present invention.
[0048] Figs. 8a - 8d each show an example of a fluid distributor 60 according to the present
invention. The fluid distributor 60 has a main body 61 and a middle cavity 62 located
inside the main body 61, for receiving fluid. In addition, the fluid distributor 60
also has at least two guide parts 63 and 64 which pass through the fluid distributor
60 and guide fluid out of the middle cavity 62. As the figure shows, the main body
61 is substantially annular or circularly annular, but could also be set to have various
feasible shapes such as square, rectangular or elliptical. The guide parts may be
set to take the form of a through-hole 63 or a duct 64 which passes through the main
body 61 from the outside to the middle cavity 62. The duct 64 may be a tube or a capillary
tube, and is used to guide fluid into different fluid channel regions. Fig. 8a shows
guide parts in the form of one through-hole 63 and one duct 64. Fig. 8b shows guide
parts in the form of one through-hole 63 and three ducts 64. Fig. 8c shows guide parts
in the form of one through-hole 63 and five ducts 64. Fig. 8d shows guide parts in
the form of three through-holes 63. It can be understood that the specific form of
the guide parts can be selected as required, e.g. through-holes, ducts and channels,
or any combination thereof.
[0049] Figs. 9a and 9b each show an enlarged view of part of a heat exchange plate, wherein
different examples of the guide parts are shown. Fig. 9a shows an example of fluid
from a fluid inlet 71 being guided to different fluid channel regions by means of
two guide parts, such as ducts 72 and 73. It is clear from Figs. 9a and 9b that both
guide parts are arranged to extend substantially downwards or towards a bottom left
side, in order to distribute fluid better.
[0050] Fig. 9b shows an example of fluid from a fluid inlet 81 being guided to different
fluid channel regions by means of two guide parts, such as channels 82 and 83, wherein
the channels 82 and 83 are integrally formed on the heat exchange plate. It can be
understood that although Figs. 9a and 9b only show scenarios in which there are two
guide parts, those skilled in the art would be able to understand scenarios in which
multiple similar guide parts are provided.
[0051] Figs. 10a and 10b show a partial view and an enlarged view respectively of part of
a heat exchange plate according to the present invention. Fig. 10a shows an example
of a fluid distributor with guide parts in the form of one through-hole 63 and one
duct 64 being used in a heat exchange plate of the present invention. As shown by
the arrows in the figure, the heat exchange plate is divided into two fluid channel
regions 105 and 106 by means of a separating part 107. As can be clearly seen in the
enlarged view of Fig. 10b, fluid guided through the through-hole 63 (i.e. the fluid
on the left side in the figure) returns upon encountering a left-side boundary of
the separating part 107, and then flows upwards until it flows to a fluid outlet.
Fluid is guided to the fluid channel region 106 at the right side of the separating
part 107 by means of a long tube or capillary tube 64 (i.e. the fluid on the right
side in the figure), and returns upon encountering a right-side boundary of the separating
part 107, and then flows upwards until it flows to a fluid outlet. It must be explained
that upon encountering a boundary of the heat exchange plate, fluid will similarly
return and flow towards the fluid outlet. As Fig. 10a shows, it is also possible to
provide separating strips 108 and 109 close to the bottom on left and right sides
of the heat exchange plate, to further enhance the fluid distribution effect. The
separating part 107 comprises a longitudinal piece or separating strip 104.
[0052] Although multiple structural features of the heat exchange plate of the present invention
are shown in the multiple embodiments above, it should be understood that those skilled
in the art could combine the multiple structural features in different embodiments
to form new embodiments, and this should be understood as being included in the scope
of protection of the present invention.
[0053] The above are merely some embodiments of the present invention. Those skilled in
the art will understand that changes may be made to these embodiments without departing
from the principles and spirit of the overall inventive concept. The scope of the
present invention shall be defined by the claims and their equivalents.
1. A plate type heat exchanger, comprising multiple heat exchange plates (10, 30) which
are stacked together, each heat exchange plate (10, 30) comprising a fluid inlet (1,
31) and a fluid outlet (2, 32) located at two opposite ends respectively in a longitudinal
direction of the heat exchange plate (10, 30), wherein
a separating part is provided on a top surface and/or a bottom surface of each heat
exchange plate (10, 30), such that a fluid coming from the fluid inlet (1, 31) is
split into different flows at the fluid inlet (1, 31), then flows into mutually independent
fluid channel regions (3, 4; 331, 332, 333) separated by the separating part and converges
at the fluid outlet (2, 32), and finally flows out of the fluid outlet (2, 32), characterized in that the separating part comprises a separating strip (8), which splits fluid into different
flows at the fluid inlet (1, 31), and a longitudinal piece (7) connected thereto.
2. The plate type heat exchanger as claimed in claim 1,
characterized in that
the longitudinal piece (7) is arranged in one of the following three ways:
substantially parallel to the longitudinal direction of the heat exchange plate (10,
30);
inclined relative to the longitudinal direction of the heat exchange plate (10, 30);
having a bent or meandering shape in the longitudinal direction of the heat exchange
plate (10, 30).
3. The plate type heat exchanger as claimed in claim 1, characterized in that
the separating part comprises at least one separating strip (8; 37, 38; 47; 57, 58)
extending from the fluid inlet (1, 31) to the vicinity of the fluid outlet (2, 32).
4. The plate type heat exchanger as claimed in claim 3,
characterized in that
the separating strip (8; 37, 38; 47; 57, 58) is arranged in one of the following three
ways:
substantially parallel to the longitudinal direction of the heat exchange plate (10,
30);
inclined relative to the longitudinal direction of the heat exchange plate (10, 30);
having a bent or meandering shape in the longitudinal direction of the heat exchange
plate (10, 30).
5. The plate type heat exchanger as claimed in claim 1 or 3, characterized in that
at the fluid inlet, the separating strip is arranged to be in the angular range of
-45° to 45° relative to a direction perpendicular to the longitudinal direction of
the heat exchange plate (10, 30), wherein the separating strip is in the shape of
a straight line or bent.
6. The plate type heat exchanger as claimed in any one of claims 1 - 5, characterized in that
the fluid inlet (1, 31) is at a top side at a left end of the top surface and/or bottom
surface of the heat exchange plate (10, 30), and the fluid outlet (2, 32) is at a
top side or bottom side at a right end of the surface of the heat exchange plate (10,
30).
7. The plate type heat exchanger as claimed in any one of claims 1-6, characterized in that
a fluid distributor (60) is provided at the fluid inlet (1, 31), the fluid distributor
(60) having a middle cavity (62) for receiving a fluid from the fluid inlet, and at
least two guide parts (63, 64) which pass through the fluid distributor (60) and guide
fluid out of the middle cavity (62).
8. The plate type heat exchanger as claimed in claim 7, characterized in that
the at least two guide parts (63, 64) comprise any one of a through-hole (63), a duct
(64) and a channel passing through a main body of the fluid distributor (60), or any
combination thereof.
9. The plate type heat exchanger as claimed in claim 8, characterized in that
the ducts (64) comprise tubes and/or capillary tubes which introduce fluid into different
fluid channel regions respectively.
10. The plate type heat exchanger as claimed in claim 8, characterized in that
the channel is formed on the heat exchange plate (10, 30) integrally or separately.
11. The plate type heat exchanger as claimed in claim 8, characterized in that
the fluid distributor (60) comprises an annular main body (61) which the guide parts
(63, 64) pass through from the outside.
12. The plate type heat exchanger as claimed in any one of claims 1-11, characterized by
also comprising end plates (20) which are disposed on outer sides of the heat exchange
plates (10, 30) and used for fixing the heat exchange plates (10, 30) in place.
13. The plate type heat exchanger as claimed in any one of claims 1-12, characterized in that
a structural pattern for distributing fluid is provided on the surface of the heat
exchange plate.
14. The plate type heat exchanger as claimed in claim 13, characterized in that
multiple regularly arranged recesses or protrusions are provided on the surface.
15. The plate type heat exchanger as claimed in claim 13, characterized in that
multiple alternately arranged channels and ridges in an inverted-V-shape are provided
on the surface.
1. Wärmetauscher vom Plattentyp, umfassend mehrere Wärmetauscherplatten (10, 30), die
miteinander gestapelt sind, wobei jede Wärmetauscherplatte (10, 30) einen Fluideinlass
(1, 31) und einen Fluidauslass (2, 32) umfasst, die sich an zwei gegenüber liegenden
Enden in einer Längsrichtung der Wärmetauscherplatte (10, 30) befinden, wobei ein
Trennteil auf einer Deckfläche und/oder einer Bodenfläche jeder Wärmetauscherplatte
(10, 30) bereitgestellt wird, so dass ein Fluid, welches aus dem Fluideinlass (1,
31) kommt, am Fluideinlass (1, 31) in unterschiedliche Ströme geteilt wird, dann in
voneinander unabhängige Fluidkanalregionen (3, 4; 331, 332, 333) strömt, die durch
das Trennteil getrennt sind, und am Fluidauslass (2, 32) konvergiert und schließlich
aus dem Fluidauslass (2, 32) herausströmt, dadurch gekennzeichnet, dass das Trennteil einen Trennstreifen (8), der Fluid am Fluideinlass (1, 31) in unterschiedliche
Ströme teilt, und ein Längsstück (7) umfasst, welches damit verbunden ist.
2. Wärmetauscher vom Plattentyp nach Anspruch 1,
dadurch gekennzeichnet, dass das Längsstück (7) auf eine der drei folgenden Weisen angeordnet ist:
im Wesentlichen parallel zu der Längsrichtung der Wärmetauscherplatte (10, 30);
geneigt relativ zu der Längsrichtung der Wärmetauscherplatte (10, 30);
mit einer gebogenen oder mäandernden Form in der Längsrichtung der Wärmetauscherplatte
(10, 30).
3. Wärmetauscher vom Plattentyp nach Anspruch 1, dadurch gekennzeichnet, dass das Trennteil mindestens einen Trennstreifen (8; 37, 38; 47; 57, 58) umfasst, der
sich von dem Fluideinlass (1, 31) in die Nähe eines Fluidauslasses (2, 32) erstreckt.
4. Wärmetauscher vom Plattentyp nach Anspruch 3,
dadurch gekennzeichnet, dass der Trennstreifen (8; 37, 38; 47; 57, 58) auf eine der drei folgenden Weisen angeordnet
ist:
im Wesentlichen parallel zu der Längsrichtung der Wärmetauscherplatte (10, 30);
geneigt relativ zu der Längsrichtung der Wärmetauscherplatte (10, 30);
mit einer gebogenen oder mäandernden Form in der Längsrichtung der Wärmetauscherplatte
(10, 30).
5. Wärmetauscher vom Plattentyp nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass der Trennstreifen an dem Fluideinlass so angeordnet ist, dass er in einem Winkelbereich
von -45° bis 45° relativ zu einer Richtung senkrecht zu der Längsrichtung der Wärmetauscherplatte
(10, 30) ist, wobei der Trennstreifen in Form einer geraden Linie oder gebogen ist.
6. Wärmetauscher vom Plattentyp nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich der Fluideinlass (1, 31) an einer Oberseite an einem linken Ende der Deckfläche
und/oder Bodenfläche der Wärmetauscherplatte (10, 30) befindet und der Fluidauslass
(2, 32) sich an einer Oberseite oder Bodenseite an einem rechten Ende der Oberfläche
der Wärmetauscherplatte (10, 30) befindet.
7. Wärmetauscher vom Plattentyp nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Fluidverteiler (60) am Fluideinlass (1, 31) bereitgestellt wird, wobei der Fluidverteiler
(60) einen mittleren Hohlraum (62) zum Empfangen eines Fluids von dem Fluideinlass
und mindestens zwei Führungsteile (63, 64) aufweist, die den Fluidverteiler (60) durchlaufen
und Fluid aus dem mittleren Hohlraum (62) herausführen.
8. Wärmetauscher vom Plattentyp nach Anspruch 7, dadurch gekennzeichnet, dass die mindestens zwei Führungsteile (63, 64) beliebige von einem durchgehenden Loch
(63), einem Durchgang (64) und einem Kanal umfassen, das/die einen Hauptkörper des
Fluidverteilers (60) durchlaufen, oder jedwede Kombination davon.
9. Wärmetauscher vom Plattentyp nach Anspruch 8, dadurch gekennzeichnet, dass die Durchgänge (64) Röhrchen und/oder Kapillarröhrchen umfassen, die Fluid in unterschiedliche
Fluidkanalregionen einbringen.
10. Wärmetauscher vom Plattentyp nach Anspruch 8, dadurch gekennzeichnet, dass der Kanal integral auf der Wärmetauscherplatte (10, 30) oder separat gebildet ist.
11. Wärmetauscher vom Plattentyp nach Anspruch 8, dadurch gekennzeichnet, dass der Fluidverteiler (60) einen ringförmigen Hauptkörper (61) umfasst, den die Führungsteile
(63, 64) von der Außenseite durchlaufen.
12. Wärmetauscher vom Plattentyp nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass er auch Endplatten (20) umfasst, die an Außenseiten der Wärmetauscherplatten (10,
30) angeordnet sind und zum Fixieren der Wärmetauscherplatten (10, 30) in Position
verwendet werden.
13. Wärmetauscher vom Plattentyp nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass auf der Oberfläche der Wärmetauscherplatte ein Strukturmuster zum Verteilen von Fluid
bereitgestellt wird.
14. Wärmetauscher vom Plattentyp nach Anspruch 13, dadurch gekennzeichnet, dass auf der Oberfläche mehrere regelmäßig angeordnete Vertiefungen oder Vorsprünge bereitgestellt
sind.
15. Wärmetauscher vom Plattentyp nach Anspruch 13, dadurch gekennzeichnet, dass auf der Oberfläche mehrere alternierend angeordnete Kanäle und Kämme in einer invertierten
V-Form bereitgestellt sind.
1. Échangeur thermique de type à plaques, comprenant de multiples plaques d'échange thermique
(10, 30) qui sont empilées ensemble, chaque plaque d'échange thermique (10, 30) comprenant
une entrée de fluide (1, 31) et une sortie de fluide (2, 32) respectivement situées
à deux extrémités opposées dans une direction longitudinale de la plaque d'échange
thermique (10, 30),
une partie de séparation étant prévue sur une surface supérieure et/ou une surface
inférieure de chaque plaque d'échange thermique (10, 30), de telle sorte qu'un fluide
provenant de l'entrée de fluide (1, 31) soit divisé en différents écoulements au niveau
de l'entrée de fluide (1, 31), puis s'écoule dans des régions formant canaux à fluide
(3, 4 ; 331, 332, 333) mutuellement indépendantes, séparées par la partie de séparation,
et converge au niveau de la sortie de fluide (2, 32), et s'écoule enfin vers l'extérieur
par la sortie de fluide (2, 32), caractérisé en ce que la partie de séparation comprend une bande de séparation (8), qui divise le fluide
en différents écoulements au niveau de l'entrée de fluide (1, 31), et une pièce longitudinale
(7) raccordée à celle-ci.
2. Échangeur thermique de type à plaques selon la revendication 1,
caractérisé en ce que la pièce longitudinale (7) est disposée de l'une des trois façons suivantes :
essentiellement parallèlement à la direction longitudinale de la plaque d'échange
thermique (10, 30) ;
inclinée par rapport à la direction longitudinale de la plaque d'échange thermique
(10, 30) ;
avec une forme courbe ou sinueuse dans la direction longitudinale de la plaque d'échange
thermique (10, 30).
3. Échangeur thermique de type à plaques selon la revendication 1, caractérisé en ce que la partie de séparation comprend au moins une bande de séparation (8 ; 37, 38 ; 47
; 57, 58) s'étendant de l'entrée de fluide (1, 31) jusqu'à proximité de la sortie
de fluide (2, 32).
4. Échangeur thermique de type à plaques selon la revendication 3,
caractérisé en ce que la bande de séparation (8 ; 37, 38 ; 47 ; 57, 58) est disposée de l'une des trois
façons suivantes :
essentiellement parallèlement à la direction longitudinale de la plaque d'échange
thermique (10, 30) ;
inclinée par rapport à la direction longitudinale de la plaque d'échange thermique
(10, 30) ;
avec une forme courbe ou sinueuse dans la direction longitudinale de la plaque d'échange
thermique (10, 30).
5. Échangeur thermique de type à plaques selon la revendication 1 ou 3, caractérisé en ce que au niveau de l'entrée de fluide, la bande de séparation est disposée de façon à se
situer dans la plage angulaire de -45° à 45° par rapport à une direction perpendiculaire
à la direction longitudinale de la plaque d'échange thermique (10, 30), la bande de
séparation présentant une forme rectiligne ou courbe.
6. Échangeur thermique de type à plaques selon l'une quelconque des revendications 1
à 5, caractérisé en ce que
l'entrée de fluide (1, 31) se trouve au niveau d'un côté supérieur à une extrémité
gauche de la surface supérieure et/ou de la surface inférieure de la plaque d'échange
thermique (10, 30), et la sortie de fluide (2, 32) se trouve au niveau d'un côté supérieur
ou d'un côté inférieur à une extrémité droite de la surface de la plaque d'échange
thermique (10, 30).
7. Échangeur thermique de type à plaques selon l'une quelconque des revendications 1
à 6, caractérisé en ce que
un dispositif de répartition de fluide (60) est prévu au niveau de l'entrée de fluide
(1, 31), le dispositif de répartition de fluide (60) comportant une cavité centrale
(62) destinée à recevoir un fluide provenant de l'entrée de fluide, et au moins deux
parties de guidage (63, 64) qui passent à travers le dispositif de répartition de
fluide (60) et guident le fluide vers l'extérieur de la cavité centrale (62).
8. Échangeur thermique de type à plaques selon la revendication 7, caractérisé en ce que les au moins deux parties de guidage (63, 64) comprennent l'un quelconque d'un trou
traversant (63), d'un conduit (64) et d'un canal passant à travers un corps principal
du dispositif de répartition de fluide (60), ou une combinaison de ceux-ci.
9. Échangeur thermique de type à plaques selon la revendication 8, caractérisé en ce que les conduits (64) comprennent des tubes et/ou des tubes capillaires qui introduisent
du fluide respectivement dans des régions formant canaux à fluide différentes.
10. Échangeur thermique de type à plaques selon la revendication 8, caractérisé en ce que le canal est formé sur la plaque d'échange thermique (10, 30) de façon à faire partie
intégrante ou être séparé de celle-ci.
11. Échangeur thermique de type à plaques selon la revendication 8, caractérisé en ce que le dispositif de répartition de fluide (60) comprend un corps principal (61) annulaire
à travers lequel passent les parties de guidage (63, 64) depuis l'extérieur.
12. Échangeur thermique de type à plaques selon l'une quelconque des revendications 1
à 11, caractérisé en ce que
il comprend en outre des plaques d'extrémité (20) qui sont disposées sur des côtés
extérieurs des plaques d'échange thermique (10, 30) et servent à fixer les plaques
d'échange thermique (10, 30) en position.
13. Échangeur thermique de type à plaques selon l'une quelconque des revendications 1
à 12, caractérisé en ce que
un motif structurel conçu à des fins de répartition de fluide est prévu sur la surface
de la plaque d'échange thermique.
14. Échangeur thermique de type à plaques selon la revendication 13, caractérisé en ce que de multiples renfoncements ou protubérances agencés de manière régulière sont prévus
sur la surface.
15. Échangeur thermique de type à plaques selon la revendication 13, caractérisé en ce que de multiples canaux et nervures agencés de manière alternée en forme de V à l'envers
sont prévus sur la surface.