
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

10
4

61
2

A
1

TEPZZ¥_Z46_ A_T
(11) EP 3 104 612 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
14.12.2016 Bulletin 2016/50

(21) Application number: 16173445.4

(22) Date of filing: 08.06.2016

(51) Int Cl.:
H04N 19/577 (2014.01) H04N 19/587 (2014.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 08.06.2015 GB 201509881

(71) Applicant: Imagination Technologies Limited
Kings Langley, Hertfordshire WD4 8LZ (GB)

(72) Inventors:
• DIGGINS, Jonathan

Waterlooville, Hampshire PO8 9SJ (GB)
• FISHWICK, Steven

Kings Langley, Hertfordshire WD4 8LZ (GB)

(74) Representative: Slingsby Partners LLP
1 Kingsway
London WC2B 6AN (GB)

(54) COMPLEMENTARY VECTORS

(57) A data processing system for performing motion
estimation comprising: a vector generator configured to
form a set of forward vectors for blocks of the first frame
and a set of backward vectors for blocks of the second
frame, each forward vector identifying a possible map-
ping of a block into the second frame, and each backward
vector identifying a possible mapping of a block into the
first frame; and a processor configured to, for a block of

an output frame interpolated between the first and sec-
ond frames, identify a first forward vector formed for the
first frame and collocated with the search block and a
first backward vector formed for the second frame and
collocated with the search block; the processor being
configured to, if the first forward and backward vectors
are inverse, generate an output vector for the search
block from the first forward and backwards vectors.

EP 3 104 612 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

[0001] This invention relates to a method and data processing system for performing motion estimation.
[0002] In systems for handling video streams or other sequences of frames it is useful to be able to estimate the motion
of features depicted in the stream between frames. Such motion estimation information has a variety of uses. For
example, in a playback device, motion estimation information can be used to guess where features will be at a point in
time between video frames and hence enable frame rate conversion through the generation of one or more interpolated
frames between the frames of a video stream. In recording or encoding devices, motion estimation information allows
efficient compression of a video stream since it is possible to, over a period of one or more video frames, replace the
pixels representing the same feature in multiple video frames with a compressed description of the pixels and information
describing the movement of those pixels between frames.
[0003] Various techniques for estimating the motion of pixels or groups of pixels between video frames are known.
One common method, known as block based motion estimation, will now be described by way of example. Block based
motion estimation subdivides frames of a video sequence into multiple regions known as blocks or macroblocks. Generally
speaking, in order to identify the motion of a block between frames, pixel data in each block of a frame is compared with
pixel data from various candidate locations in a previous or following frame. The relative position of the candidate that
gives the best match may be expressed as a vector which is then used to represent the motion of that block between
the frames. By repeating these steps over the blocks of a frame, a set of motion vectors can be generated for the frame
which is known as its motion vector field.
[0004] Motion estimation techniques commonly use what may be referred to as single-ended motion vectors. Figure
1 shows an example block based single-ended motion estimation. An image 100 is divided into a regular array of blocks
105, and motion estimation proceeds for each block in turn.
[0005] Figure 1 shows a moving object 110 at a certain position in one frame of a video sequence, and, superimposed
onto the same figure, the same object 115, at its position in the previous frame in the sequence. The image data in block
120 contains a number of pixels representing part of object 110. Motion estimation for block 120 involves searching the
previous frame in the sequence to find the area of image data with contents most similar to the contents of block 120.
Assuming that the motion estimation performs well, the area 125 is found. It can be seen that area 125 is the same size
as block 120, but is not aligned to the grid 105. The position of the area of matching pixels 125, relative to block 120,
determines motion vector 130 which reflects the motion of object 110, and is said to be the motion vector of block 120.
[0006] Single-ended motion estimation works well in some applications, such as video encoding, since it produces
one vector for each block, such as 120, in each frame 100 that is encoded.
[0007] In a motion compensated frame rate converter it is generally necessary to produce an interpolated frame at an
intermediate position between two existing source frames in a video sequence. Figure 2 shows the motion estimation
result from Figure 1 being used to interpolate image data in a new frame mid-way between two source frames from the
original video sequence. Motion estimation for block 200 determines motion vector 205, and pixels for a new area of
frame 215, positioned at the midpoint of the vector, are derived from the pixels in block 200 and from the pixels in area
210. Notice that the interpolated area 215 is not necessarily aligned to the block grid.
[0008] Figure 3 illustrates a problem that arises when using single-ended vectors in a frame rate converter. Objects
300 and 305 are moving at different speeds, giving rise to unequal motion vectors 320 and 325 for the blocks 310 and
315 respectively. In this example the vectors are converging. Interpolation of a new frame involves the creation of pixel
data at positions 330 and 335, the mid-points of the two vectors. Blocks 310 and 315 are adjacent, but the interpolated
areas, 330 and 335 are not. This leads to a hole, 340, in the interpolated frame. An alternative situation exists where
vectors diverge, leading to overlap of interpolated areas. In either case, additional frame processing is required to resolve
holes and overlap areas, in order to produce an output frame with one value at each pixel position.
[0009] Figure 4 shows an example of double-ended (or bidirectional) motion estimation. When used in the example
application of a frame rate converter, this type of motion estimation has the advantage of producing exactly one value
for each pixel position in the interpolated frame. The frame to be interpolated, 400, is divided into a regular array of
blocks, 405, and motion estimation takes place for each block in turn. Motion estimation for block 405 involves searching
the previous and next frames in the sequence for areas of image data that are most similar to each other. The search
is constrained, in this example, by requiring that the offsets of the areas tested are equal in magnitude and opposite in
direction with respect to the position of block in the interpolated frame (representative of an interpolation at the temporal
mid-point between the previous and next source frames). In this example, the best match is found between area 410 in
the previous frame and area 415 in the next frame, both of which are shown superimposed onto the grid of blocks in the
interpolated frame. Note that neither area is necessarily aligned with the grid. The forward offset 420 is equal to the
backward offset 425. In combination the two offsets may be said to be the motion vector of block 405, and represent
the motion of an object in the interval between source frames.

EP 3 104 612 A1

3

5

10

15

20

25

30

35

40

45

50

55

[0010] Interpolation of pixel data in block 405 requires that pixel data be derived from one or both of the areas of pixel
data 410 and 415. The alignment of the grid to the interpolated frame means that exactly one value is produced for each
pixel position.
[0011] The example of Figure 4 shows interpolation occurring at the temporal mid-point between two source frames.
In frame rate conversion it is common that other interpolation phases are required, for example interpolation at one
quarter of the interval between source frames. In such a situation several possibilities exist, two of which are illustrated
in Figure 5.
[0012] In one example, a block 500 is motion estimated and interpolated using a method similar to that illustrated in
Figure 4. However, it is known that interpolation at one quarter of the frame interval is required, and so the forward offset
505 is scaled such that it is three times the size of the backward offset 510. The scaled offsets are then used in motion
estimation and interpolation. This gives correct interpolation of object 515. Should further interpolations be required, for
example at half and three-quarter intervals, further motion estimations are performed with forward and backward offset
sizes adjusted accordingly. This method performs well, but may require several motion estimations per source frame
interval. Where frame rate is being increased by a large factor, the cost of these motion estimations can be significant.
[0013] In another example, interpolation is required at several fractions within the source frame interval, but motion
estimation is performed only once per interval, typically at the mid-point. Motion estimation for block 550 therefore
searches for matching image areas with equal and opposite offsets, and may find areas 555 and 560 with offsets 565
and 570 respectively. For interpolation, the motion vector is scaled according to the position of the interpolation within
the interval. For example, interpolation at one quarter of the interval sees the vector scaled into forward component 575
and backward component 580. Generally, when motion is uniform across large parts of the image, the resulting inter-
polation is reasonably accurate. The example of Figure 5 shows an example where an error occurs. Offsets 575 and
580 cause the interpolation to be derived from image areas 585 and 590. Note that the method used for the motion
estimation of block 500 would not have selected areas 585 and 590 because the image data in those areas does not
match. However, the interpolation of block 550 has no alternative but to derive an interpolated output from this data.
The result may be a composite of the two areas, as shown at 595.
[0014] Block based motion estimators typically select their output motion vector by testing a set of motion vector
candidates for a block against the pixels of the source frames by using a method such as a sum of absolute differences
(SAD) or mean of squared differences (MSD) to identify motion vectors which give the lowest error block matches. One
or more single-ended or double-ended motion vector candidates are generated to describe the motion of a block of
pixels between frames by searching for a match for the block of pixels in that pair of frames.
[0015] In various video coding standards, for example, H.264, "B frames" are bi-directionally predicted using a different
mechanism to that described above for frame rate conversion. Each encoded block may choose to use one or two
reference frames. Where one reference frame is used the encoding is similar to that used in a uni-directionally predicted,
"P", frame. Where two reference frames are used, the prediction may be an average of reference pixels taken from one
frame preceding the encoded frame, and from one frame following it. The vectors identifying the reference pixel areas
in the two reference frames are not necessarily equal in length or co-linear, and motion estimation attempts to match
pixel data in each of the reference frames with the pixel data in the block being encoded.
[0016] Conventional motion estimation systems can introduce flicker and other artefacts into an output video stream.
Flicker is generally considered to be the presence of unwanted (often chaotic) variations in intensity over time. It is a
particular problem in regions of a frame where it is difficult to identify good motion vectors to describe the movement of
pixels between frames. For example, in systems which rely on pixel matching to identify motion vectors, poor motion
vectors can be generated for frame regions which exhibit little variation in contrast (e.g. a white wall in a video) or which
comprise areas of repeating patterns (e.g. a dense forest of trees or grass on a sports pitch). Such regions of uncertain
vectors lead to flicker and swirling effects in an output video stream.
[0017] Various approaches have been previously used in motion estimation systems to reduce flicker and similar
artefacts. For example, Y. Kuszpet et al. describe a post-processing technique which uses a simple motion compensated
averaging filter for flicker reduction in "Post-Processing for Flicker Reduction in H.264/AVC," Proc. Picture Coding
Symposium, Lisbon, Portugal, Nov. 2007. H. Abbas and L. J. Karam describe the use of recursive filters to reduce
mosquito noise and associated flicker in "Suppression of Mosquito Noise by recursive Epsilon-filters," Proc. IEEE ICASSP,
Honolulu, Hawaii, April 2007. And V. Naranjo and A. Albiol describe a histogram-matching method to reduce the brightness
and contrast variation in consecutive frames of old films in "Flicker reduction in old films," Proc. IEEE ICIP, Vancouver,
Canada, Sep. 2000.
[0018] However, such conventional techniques attempt to reduce flicker and associated artefacts through post-process-
ing of video frames and do not address the introduction of flicker by a motion estimation system. Furthermore, these
techniques require a system to perform significant processing in addition to any motion estimation performed by the
system.

EP 3 104 612 A1

4

5

10

15

20

25

30

35

40

45

50

55

BRIEF SUMMARY OF THE INVENTION

[0019] According to a first aspect of the present invention there is provided a data processing system for performing
motion estimation in a sequence of frames comprising first and second frames each divided into respective sets of blocks
of pixels, comprising: a vector generator configured to form a set of forward vectors for the blocks of the first frame and
a set of backward vectors for the blocks of the second frame, each forward vector identifying a possible mapping of the
respective block into the second frame, and each backward vector identifying a possible mapping of the respective block
into the first frame; and a processor configured to, for a search block of an output frame interpolated between the first
and second frames of the sequence, identify a first forward vector formed in respect of one or more blocks of the first
frame collocated with the search block and a first backward vector formed in respect of one or more blocks of the second
frame collocated with the search block; wherein the processor is configured to, if the first forward and backward vectors
are substantially inverse to one another, generate an output vector for the search block of the output frame in dependence
on one or both of the first forward and backwards vectors.
[0020] The processor may be configured to generate the output bidirectional vector by forming an average of the first
forward and backward vectors.
[0021] The processor may be configured to form the average of the first forward and backward vectors by calculating
a vector sum of the first forward vector and the first backward vector inverted.
[0022] The processor may be configured to, if the first forward and backward vectors are not substantially inverse to
one another, generate a vector candidate for the search block of the output frame by identifying areas of similar pixels
in the first and second frames.
[0023] The processor may be configured to, if the first forward and backward vectors are substantially inverse to one
another, not generate vector candidates for the search block of the output frame by identifying areas of similar pixels in
the first and second frames.
[0024] The processor may be configured to identify as being collocated with the search block one or more blocks of
the first and second frames that are located at a frame position corresponding to the search block in the output frame.
[0025] On identifying a plurality of blocks of the first/second frame collocated with the search block, the processor may
be configured to identify a first forward/backward vector for the plurality of blocks of the first/second frame by: calculating
an average of the forward/backward vectors formed at the vector generator for two or more of the plurality of blocks of
the first/second frame; determining the most common vector of the forward/backward vectors formed at the vector
generator for the plurality of blocks of the first/second frame; or selecting at random or according to a predefined scheme
one of the forward/backward vectors formed at the vector generator for the plurality of blocks of the first/second frame.
[0026] The vector generator may be configured to form a forward vector of the set for a block of the first frame by
identifying an area of pixels in the second frame which most closely matches the pixels of the block of the first frame,
and to form a backward vector of the set for a block of the second frame by identifying an area of pixels in the first frame
which most closely matches the pixels of the block of the second frame.
[0027] The first forward and backward vectors may be substantially inverse to one another if: the directions of the first
forward and backward vectors are opposed within first bounds; and/or the magnitudes of the first forward and backward
vectors are equal within second bounds.
[0028] The first and/or second bounds may be empirically determined.
[0029] The first and/or second bounds may be a function of characteristics of the first forward/backward vectors and/or
the sequence of frames.
[0030] The data processing system may further comprise a candidate assessor operable to output a best match vector
for each block of the output frame from a set of one or more vector candidates generated for each block, wherein the
processor is configured to, for the search block if the first forward and backward vectors are inverse to one another:
replace any vector candidates generated for the search block with the output vector as the best match vector for the
search block; or add the output vector to any vector candidates generated for the search block so as to cause the
candidate assessor to select the output vector as the best match vector for the search block.
[0031] The candidate assessor may be operable to calculate a score for each vector candidate of a block, each score
being a measure of the similarity of the pixels in the first and second frames at each end of the respective vector candidate,
and the candidate assessor being configured to select the best match vector for the block in dependence on the calculated
scores.
[0032] The candidate assessor may be configured not to calculate a score for the output vector of the search block
and/or any other vector candidates available for the search block.
[0033] The data processing system may further comprise interpolation logic configured to operate the best match
vectors from the candidate assessor on pixels of the first and second frames so as to generate the output frame interpolated
between the first and second frames.
[0034] The data processing system may further comprise encoding logic configured to operate the best match vectors
from the candidate assessor on pixels of the first and second frames so as to generate an encoded stream of frames.

EP 3 104 612 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0035] According to a second aspect of the present invention there is provided a method for performing motion esti-
mation in a sequence of frames, the sequence comprising first and second frames each divided into respective sets of
blocks of pixels, the method comprising: forming a set of forward vectors for the blocks of the first frame, each vector
identifying a possible mapping of the respective block into the second frame; forming a set of backward vectors for the
blocks of the second frame, each vector identifying a possible mapping of the respective block into the first frame; and,
for a search block of an output frame interpolated between the first and second frames of the sequence: identifying
blocks of the first and second frames that are collocated with the search block; determining whether a first forward vector
formed in respect of one or more collocated blocks of the first frame and a first backward vector formed in respect of
one or more collocated blocks of the second frame are substantially inverse to one another; and if the first forward and
backward vectors are substantially inverse to one another, generating an output vector for the search block of the output
frame in dependence on one or both of the first forward and backward vectors.
[0036] The method may further comprise, if the first forward and backward vectors are substantially inverse to one
another, preventing vector candidates being generated for the search block of the output frame other than the output
vector.
[0037] The method may further comprise, if the first forward and backward vectors are not substantially inverse to one
another, generating a vector candidate for the search block of the output frame by identifying areas of similar pixels in
the first and second frames.
[0038] Identifying blocks of the first and second frames that are collocated with the search block may comprise iden-
tifying one or more blocks of each of the first and second frames that are located at a frame position corresponding to
the search block in the output frame.
[0039] Forming a forward vector of the set for a block of the first frame may comprise identifying an area of pixels in
the second frame which most closely matches the pixels of the block of the first frame, and forming a backward vector
of the set for a block of the second frame comprises identifying an area of pixels in the first frame which most closely
matches the pixels of the block of the second frame.
[0040] Generating an output vector may comprise forming an average of the first forward and backwards vectors.
[0041] Determining whether the first forward and backward vectors are substantially inverse to one another may
comprises verifying that: the directions of the first forward and backward vectors are opposed within first bounds; and/or
the magnitudes of the first forward and backward vectors are equal within second bounds.
[0042] Computer program code may be provided defining the data processing system whereby the data processing
system is manufacturable. A non-transitory computer readable storage medium may be provided having stored thereon
computer readable instructions that, when processed at a computer system for generating a manifestation of an integrated
circuit, cause the computer system to generate a manifestation of the data processing system.
[0043] Computer readable code may be provided for implementing the method of performing motion estimation. A
non-transitory computer readable storage medium may be provided having stored thereon computer readable instructions
that, when processed at a processor, cause the processor to implement the method of performing motion estimation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] The present invention will now be described by way of example with reference to the accompanying drawings.
In the drawings:

Figure 1 shows an example block based single-ended motion estimation.
Figure 2 shows the motion estimation result from Figure 1 being used to interpolate image data in a new frame mid-
way between two source frames from the original sequence of frames.
Figure 3 illustrates a problem that arises when using single-ended vectors in a frame rate converter.
Figure 4 shows interpolation occurring at a temporal mid-point between two source frames.
Figure 5 shows interpolation occurring at other points between two source frames.
Figure 6 illustrates the generation of a bidirectional complementary vector.
Figure 7 illustrates the significance of object size to the generation of complementary vectors.
Figure 8 is a schematic diagram of a data processing system configured to perform motion estimation using com-
plementary vectors.
Figure 9 is a flowchart illustrating a method for performing motion estimation in a sequence of frames.

DETAILED DESCRIPTION OF THE INVENTION

[0045] The following description is presented by way of example to enable any person skilled in the art to make and
use the invention. The present invention is not limited to the embodiments described herein and various modifications
to the disclosed embodiments will be readily apparent to those skilled in the art.

EP 3 104 612 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0046] There is a need for a method and data processing system for performing motion estimation in a manner which
minimises the introduction of flicker into a sequence of frames without requiring additional image processing. There is
furthermore a general need for a more efficient method and data processing system for performing motion estimation
which has lower processing demands than conventional motion estimation methods and systems.
[0047] In the examples described herein, the methods and systems for performing motion estimation perform block
based motion estimation. Other types of motion estimation are known and it is envisaged that the principles described
herein may be applied to such other types of motion estimation. The methods and systems for performing motion
estimation described herein may be applied to any sequence of frames, such as video streams (including interlaced or
non-interlaced video streams) or a series of images (including photographs or rendered images).
[0048] A data processing system 800 for performing motion estimation in a sequence of frames is shown in Figure 8.
The configuration of the system so as to minimise the introduction of flicker and associated artefacts into the video
stream whilst reducing the processing required to generate motion vectors will now be described. The system of Figure
8 is merely an example and other configurations are possible in accordance with the principles described herein.
[0049] Data processing system 800 is configured to receive a stream of frames 801 which in this example comprises
a sequence of video frames. At least two consecutive frames of the stream are stored at frame buffer 802. These frames
will be referred to as the previous frame 803 and next frame 804 indicating that the frames represent the start and end
(respectively) of a current span in respect of which one or more motion vectors are to be determined. Each motion vector
is generated in respect of a block of pixels of the previous, next or output frame. Each block represents a region of the
previous/next/output frame comprising a group of pixels whose movement between the previous and next frames across
the current span is to be identified.
[0050] Data processing system 800 comprises a single-ended vector processor 805 and a bidirectional vector processor
808. In the present example, these processors are configured to operate on the pixels of the previous and next frames
held at the frame buffer so as to generate single-ended and bidirectional motion vectors, respectively. Since it is trivial
to convert between single-ended and double-ended (bidirectional) motion vectors, in other examples the processors
805 and 808 could be configured to generate and operate on any kind of motion vector with a given vector being generated
or interpreted as a single or double-ended vector as appropriate to the implementation. Generally, single-ended vector
processor 805 may be any kind of vector generator for generating vectors representing pixel mappings between a pair
of frames of a sequence, and bidirectional vector processor 808 may be any kind of processor for operating on the
vectors generated by the vector generator so as to form complementary vectors in accordance with the principles
described herein.
[0051] The motion vectors generated by the processors are provided to candidate buffer 812 as candidate motion
vectors for the current span between the previous and next frames. The single-ended vector processor 805 first operates
on the frames held at the frame buffer 804 so as to generate its candidate motion vectors for the blocks of the previous
and next frames. Subsequently, bidirectional vector processor 808 operates on the frames held at the frame buffer 804
so as to generate its candidate motion vectors for the blocks of an interpolated output frame lying within the current span
between the previous and next frames. (The interpolated output frame may be hypothetical in the sense that the inter-
polated frame is not actually generated.) The bidirectional vector processor may use the single-ended vector candidates
held at the candidate buffer in the generation of its candidate vectors.
[0052] Single-ended vector processor 805 comprises forward vector generator 806 and backward vector generator
807. The forward vector generator 806 is configured to search in the next frame 804 for matches to blocks of pixels
defined for the previous frame 803. When a match is found in the next frame for a block of the previous frame, a single-
ended vector pointing forwards in time from the previous frame to the next frame is generated to describe the position
of the block in the next frame relative to the position of the block in the previous frame: this is a forward single-ended
motion vector. The backward vector generator 807 is configured to search in the previous frame 803 for matches to
blocks of pixels defined for the next frame 804. When a match is found in the previous frame for a block of the next
frame, a single-ended vector pointing backwards in time from the next frame to the previous frame is generated to
describe the position of the block in the previous frame relative to the position of the block in the next frame: this is a
backward single-ended motion vector.
[0053] The forward and backward vector generators may search for similar groups of pixels according to any suitable
algorithm. For example, the vector generators may determine the similarity of groups of pixels in the two frames based
on a measure of the net similarity of pixels of the two groups - e.g. a sum of the absolute differences (SAD) or mean of
squared differences (MSD) in a given pixel value, such as colour or luma. The vector generators may provide one or
more single-ended vectors as motion vector candidates to the candidate buffer for each block. For example, up to three
single-ended vectors representing the best matches identified for a block may be provided to the candidate buffer.
[0054] The pixels searched by the single-ended vector generator in the previous and next frames may be selected
according to a predefined pattern or in dependence on additional information. For example, search regions may be
selected in dependence on the motion vector(s) (or derivative(s) thereof) established for the block or neighbouring blocks
in respect of one or more previous spans, and/or search regions may be selected based on the similarity of colour or

EP 3 104 612 A1

7

5

10

15

20

25

30

35

40

45

50

55

luma values of pixel regions.
[0055] In practice, it is not usually possible to search every possible mapping of a block of pixels between frames and
the object represented by those pixels may change in size or orientation between frames due to its movement in the
scene. As a result, it is not always possible to identify the most appropriate motion vector by a pixel-matching search of
consecutive frames alone. It can therefore be advantageous to generate additional candidate vectors for assessment.
A vector candidate generator 822 may optionally be provided to generate any number of different vector candidates
derived by mechanisms other than matching pixels between the previous and next frames. The vector candidate generator
may operate at any suitable time with respect to the operation of the single-ended and bidirectional vector processors.
[0056] Other vector candidates may be generated by the vector candidate generator for a block in various ways.
Motion vectors are known to be highly correlated both spatially and temporally with vectors in adjacent blocks, so the
vector candidate generator 822 could introduce neighbouring vectors into the set of vector candidates for a block. This
can be especially useful when those neighbouring vectors represent a good match between pixels (e.g. have a low SAD)
and the best vector established by the pixel matcher represents a poor match (e.g. has a high SAD). The vector candidate
generator 822 may provide one or more candidates based on the output motion vector calculated for the block in respect
of previous spans, or based on motion vectors formed in previous spans which end in the block.
[0057] The vector candidate generator may alternatively or additionally generate one or more pseudo-random vector
candidates so as to allow the system to improve its matches and introduce an adaptive element as the motion in the
video changes. Where a block has motion that is not simply predicted by its neighbours, the pseudo-random perturbation
of vector candidates can often predict the changes in motion. This method works well for slowly changing vector fields.
[0058] As is described in more detail below, the vector candidates 813 held for a block at candidate buffer 812 are
assessed in order to determine which of the candidates represents the best estimate for the motion vector of the block.
This assessment is performed at candidate assessor 814. The candidate assessor may determine the best vector output
in any suitable manner. In the present example, the candidate assessor compares the pixels at each end of the vector
in the previous and next frames in order to determine the similarity of those pixels. The candidate assessor is therefore
provided with access to appropriate pixel data 823. For example, the candidate assessor could be configured to perform
a lookup into frame buffer 802.
[0059] Bidirectional vector processor 808 comprises a bidirectional vector generator 811 configured to generate bidi-
rectional vector candidates for the blocks of an interpolated output frame. The bidirectional vector generator may operate
in the manner described above with respect to Figure 4 by searching the previous and next frames for areas of image
data that are most similar to each other. The search is performed with a view to identifying a double-ended vector for
each search block of the interpolated frame which originates at the block and points to similar areas of the previous and
next frames. Double ended vectors may be constrained such that the offsets of the areas tested in the previous and
next frames are equal in magnitude and opposite in direction with respect to the position of the search block in the
interpolated frame. This corresponds to a motion estimation at the temporal mid-point between the previous and next
frames. Different constraints may be used for an interpolated frame having a different position within the current span.
Bidirectional vector candidates generated by the bidirectional vector generator are provided to candidate buffer 812.
[0060] The bidirectional vector processor 808 further comprises checking logic 809 and complementary vector gen-
erator 810 which operate so as to generate bidirectional vectors by an alternative mechanism and in doing so reduce
the processing burden on the system. The checking logic 809 operates on the single-ended vectors generated by the
single-ended vector processor. The checking logic may receive single-ended vectors in any suitable manner, including:
directly from the single-ended vector processor 805 as indicated by arrow 824; from the candidate buffer 812; from the
candidate assessor 814; or, as is described in the present example and shown in Figure 8, from the vector memory 815.
The operation of the checking logic and complementary vector generator 810 will now be described with respect to
Figure 6.
[0061] Figure 6 shows an interpolated output frame 605 lying in the current span between a pair of input frames:
previous frame 803 and next frame 804. Consider a block 601 of the interpolated output frame for which the bidirectional
vector processor is to generate a bidirectional vector. In order to check whether it is possible to generate a bidirectional
vector for block 601 by the alternative mechanism, checking logic 809 receives: (a) the single-ended forward vector 607
for block 602 of the previous frame which, with respect to the frame bounds, is collocated with search block 601; and
(b) the single-ended backwards vector 606 for block 603 of the next frame which is also collocated with search block
601. As shown in Figure 8, in the present example the checking logic 809 receives single-ended vectors 607 and 606
for blocks 602 and 603 from the vector memory 815. This has the advantage that the single-ended vectors 607 and 606
represent the best match vectors for blocks 602 and 603 as determined by the candidate assessor 814.
[0062] Blocks of the previous and next frames which overlap the frame coordinates of the centre of the search block
may be considered to be collocated with the search block of the interpolated output frame. If more than one block of the
previous or next frame overlaps those coordinates, the single-ended vectors of one or more of those blocks may be
considered by the checking logic or the closest block to the frame coordinates identifying the centre of the search block
may be selected for comparison at the checking logic, to give two examples.

EP 3 104 612 A1

8

5

10

15

20

25

30

35

40

45

50

55

[0063] The single ended vectors and double ended vectors may be generated at a different resolutions to one another.
For example one motion vector field may use 8x8 pixel blocks and the other may use 16x16 pixel blocks. A block of a
lower resolution vector field may be considered collocated with all blocks of a higher resolution vector field which, relative
to the bounds of the frames, overlap in some manner with the first vector field. For example, all of the blocks of the
higher resolution vector whose centres lie within the bounds of a block of the lower resolution vector may be considered
to be collocated with that low resolution block. Various schemes may be used to identify which complementary vector
to use for a block of the bidirectional vector field when the resolution of the bidirectional vector field differs from the
resolution of the single ended vector field. For example, if the block size of a single ended vector field is greater than
the block size of a bidirectional vector field then each single ended block will be collocated with multiple bidirectional
blocks; in this case the same complementary vector defined for a single ended block may be assigned to multiple
overlapping bidirectional blocks. If the block size of a single ended vector field is smaller than the block size of a
bidirectional vector field then each bidirectional block will be collocated with multiple single ended blocks; in this case,
for example, an average (e.g. a mean, median or mode) of the complementary vectors defined for the collocated single
ended blocks could be used, or one of the complementary vectors defined for the collocated single ended blocks could
be used at random.
[0064] The checking logic compares the single-ended forward and back vectors of the collocated blocks of the previous
and next frames in order to determine whether those vectors are "complementary". The forwards and backwards vectors
are complementary if they are the inverse of one another: in other words, the vectors have the substantially the same
magnitude but have substantially opposite directions. Forwards and backwards vectors may be considered to have
substantially the same magnitude if their magnitudes are within a predefined length or proportion of one another. Forwards
and backwards vectors may be considered to have substantially opposite directions if their directions are opposed to
one another within a predefined angle or proportion of one another. For example, a maximum difference between the
lengths or orientations of a pair of forward and backward vectors beyond which they are no longer considered to be
complementary may be expressed as a proportion of the lengths/angles of one or both (e.g. an average) of the vectors
or as a proportion of the temporal distance between frames/some reference angle. In other examples, forwards and
backwards vectors may be considered to be inverse if they are of the same length and exactly opposed to one another
(to within the resolution to which the vectors are defined). The checking logic may identify whether a forward and backward
vector pair are inverse in any suitable manner; such identification may or may not include explicit identification of the
lengths and directions of the forward and backward vectors.
[0065] Appropriate tolerances within which a forwards vector and a backwards vector are considered to be inverse
may be determined through trial and error so as to achieve the desired motion estimate characteristics for the intended
purpose - for example, a desired level of efficiency and/or quality in an encoded video stream, or a desired image quality
in an interpolated frame.
[0066] Forwards and backwards vectors may be required to have lengths within, for example, 5%, 3%, 2% or 1 % of
one another if they are to be inverse to one another. Considering the example of a 1080p video frame, forwards and
backwards vectors may be required to have lengths within 8 pixels of one another if they are to be considered inverse
to one another. Forwards and backwards vectors may be required to have angles within, for example, 5%, 3%, 2% or
1 % of one another if they are to be inverse to one another.
[0067] A compound measure of any difference in length and angle between forwards and backwards vectors may be
used to determine whether such vectors are inverse to one another. For example, a compound measure of the deviation
of a pair of vectors from perfectly inverse may be formed from measures of the differences in length and differences in
angle between forwards and backwards vectors:

[0068] If the deviation measure exceeds some predefined threshold, the forwards and backwards vectors would not
be considered inverse; below that threshold the forwards and backwards vectors would be considered inverse. The
lengthPenalty and anglePenalty parameters may be determined through trial and error for the units in which the measures
of length and angle deviation are expressed. The compound deviation measure may vary linearly with the measures of
length and angle deviation; in other examples, the lengthPenalty and anglePenalty parameters may themselves depend
on the measures of length and angle deviation such that the compound deviation measure varies non-linearly (e.g.
exponentially) with the measures of length and angle deviation.
[0069] If the checking logic determines that a pair of forward and backward vectors are complementary, the checking
logic causes the complementary vector generator 810 to form a bidirectional vector equivalent to an average of the
forward vector plus the inverse of the backwards vector (i.e. the backwards vector with its direction reversed), represented
as a double-ended vector. The complementary vector generator 810 may be configured to calculate a complementary

EP 3 104 612 A1

9

5

10

15

20

25

30

35

40

45

50

55

vector from a forwards vector and backwards vector in any suitable manner. The vectors generated by complementary
vector generator 810 will be referred to as bidirectional complementary vectors. For example, returning to Figure 6,
complementary bidirectional vector 608 may be formed by calculating half of the vector sum of the single ended forward
vector and the inverse of the backwards vector, the result being expressed as a double-ended vector originating at block
601 of the interpolated output frame rather than single ended vector. This can be expressed mathematically as:

where a is the forward vector 607, b is the backwards vector 606 and c is the output complementary bidirectional vector,
though this particular calculation need not be explicitly performed by the complementary vector generator. As described
below, the checking logic preferably does not pass the search block to the bidirectional vector generator if the checking
logic determines that the pair of forward and backward vectors in respect of that block are complementary.
[0070] If the forwards and backwards vectors are considered to be complementary then only one of the forwards and
backwards vectors need be used to form the output complementary bidirectional vector. In cases where the forwards
and backwards vectors need not be exactly the inverse of one another to be considered complementary, forming the
output complementary bidirectional vectorfrom both the forwards and backwards vectors can provide a better estimate
of the vector field at the search block of the output frame.
[0071] In the example shown in Figure 8, a best single-ended vector would typically be available at the vector memory
for each block of the previous and next frames. In other implementations, multiple single-ended vector candidates may
be available for the collocated blocks of the previous and next frames - e.g. where the checking logic receives single-
ended vector candidates directly from the single-ended vector processor of candidate buffer prior to a best vector being
determined for each block. In such circumstances, the checking logic may be configured to determine which vectors
which exhibit the best match between the pixels at the endpoints of the available vectors and test those vectors (e.g.
the checking logic could receive such information from the candidate assessor of vector memory). Alternatively, the
checking logic may be configured to test multiple vectors to identify which combinations represent a pair of complementary
vectors.
[0072] If the checking logic determines that a pair of forward and backward vectors are not complementary, it preferably
does not pass the forward and backward vectors to the complementary vector generator in order to generate a comple-
mentary bidirectional vector. The checking logic would preferably pass the search block to the bidirectional vector
generator for conventional pixel matching to be performed so as to generate one or more bidirectional vector candidates.
The checking logic may then proceed to check the next block of the interpolated output frame.
[0073] The complementary vector generator 810 may be configured to provide each complementary bidirectional
vector it generates to the candidate buffer 812 as a vector candidate. In other examples, the complementary vector
generator may provide each complementary bidirectional vector it generates to vector memory 815, optionally replacing
any other vectors provided in respect of the same block.
[0074] When a complementary bidirectional vector is generated for a block and added to the candidate buffer, it is
advantageous to prevent the bidirectional vector generator from also generating vector candidates for that block and/or
to prevent the candidate assessor from assessing any vector candidates available for that block. This substantially
reduces the processing which is performed at candidate assessor 814 in order to identify the best candidate vector for
the block. The candidate assessor may be configured to avoid evaluating the complementary bidirectional vector. For
example: the candidate assessor may be configured not to evaluate a vector candidate when there is only one vector
candidate; alternatively, complementary bidirectional vectors may be identified to the candidate assessor (e.g. by a flag
or other indicator) so as to cause the candidate assessor not to evaluate complementary bidirectional vectors and to
output the complementary bidirectional vector as the best vector for the block. Preventing the bidirectional vector generator
from generating vector candidates, also substantially reduces the processing required at the bidirectional vector proc-
essor. This is especially significant because forming a bidirectional vector is computationally expensive relative to gen-
erating single-ended vector. For example, forming each bidirectional vector requires double the number of fetches from
pixel memory (e.g. frame buffer 801) in order to compare blocks of the two frames.
[0075] For a typical video stream, generating a complementary bidirectional vector at the complementary vector gen-
erator and so preventing the bidirectional vector generator from forming vector candidates enables the processing load
on the system to be reduced by around a third compared to an equivalent system which does not perform these advan-
tageous methods.
[0076] In alternative examples, instead of preventing the bidirectional vector generator from generating vector candi-
dates for the search block, the bidirectional vector processor 808 may delete (or otherwise render unusable, e.g. by
means of a suitable flag) any other vector candidates in the candidate buffer for that block. In other examples, the

EP 3 104 612 A1

10

5

10

15

20

25

30

35

40

45

50

55

bidirectional vector generator may provide a complementary bidirectional vector for a search block to the candidate
buffer for assessment by the candidate assessor along with any other candidates for the block. The complementary
bidirectional vector would preferably be assigned a low error score (see below) so as to cause the complementary
bidirectional vector to be selected in most (if not all) circumstances.
[0077] Complementary bidirectional vectors formed in accordance with the principles described herein often provide
a close match to the true bidirectional vector describing the motion of the search block from the interpolated output frame
to the two input frames. For example, in the described system, a complementary bidirectional vector will represent the
true bidirectional vector more than 50% of the time to within an acceptable level of error. In the exemplary system
described herein, the error is typically no more than 1-2 pixels, although this can increase for longer vectors: for example,
for single-ended vectors which are 32 pixels in length, the error can be up to around 4 pixels.
[0078] As well as substantially reducing the processing load on the system, the use of complementary bidirectional
vectors addresses the problems of flicker and associated image artefacts significantly better than do conventional post-
processing techniques. This is because the approach makes the assumption that vector fields are spatially consistent
within the frame region between the start and end points of the forward and backward single-ended vectors. For example,
in Figure 6, by generating complementary bidirectional vector 608, region 609 of the previous frame and region 610 of
the next frame are effectively assumed to be regions in which the motion vectors are constant. The use of complementary
vectors avoids spurious vectors being generated within such regions and ensures that those regions are homogeneously
mapped into the interpolated output frame. This minimises the introduction of flicker by the system through its performance
of motion estimation.
[0079] Furthermore, the use of complementary bidirectional vectors tends to give preference to objects moving with
a velocity slower than their dimensions. This can be appreciated from Figure 7 which illustrates how a larger object can
move faster than a smaller object and still allow complementary bidirectional vectors to be generated for the object.
Because the blocks of the previous and next frames at which the single-ended vectors originate must be collocated with
the search block of the interpolated frame, there is an upper limit to the speed at which an object of a given size can
move through the frames and for which a complementary bidirectional vector can be generated.
[0080] Figures 7(a) to 7(c) illustrates the maximum speed at which objects 701-703, respectively, can move through
a sequence of frames and still permit a complementary vector to be generated. Each object has a pair of single-ended
vectors drawn at the extremities of the object with respect to the spatial dimension shown in Figure 7 (pairs 710 and
711, 712 and 713, and 714 and 715). On the assumption that the object is a solid with homogeneous translational motion
(e.g. it does not rotate as it moves), the single-ended vectors will be complementary and the vector field over the object
will be uniform. The speed of an object is indicated by the gradient of the single-ended vectors, with a steeper gradient
indicating greater movement between frames. From Figures 7(a) to (c) and the respective gradients of the single-ended
vectors, it will be observed that the largest object 701 can move with the greatest speed, the smallest object 703 can
move with the lowest speed, and the object 702 of intermediate size can move with an intermediate speed.
[0081] Since large motions in a video tend to be in the background and foreground detail tends to move more slowly,
it will be appreciated that the use of complementary bidirectional vectors both allows large areas of homogeneous
background to be mapped into an interpolated output frame and smaller areas of foreground to be mapped without loss
of detail, both whilst avoiding the introduction of flicker. In general, because of the constraint that complementary vectors
are generated from the vectors of collocated blocks consecutive frames, it can be said that the use of complementary
vectors tends to favour small objects which move relatively slowly. Such objects tend to be features in the foreground
of a video and systems configured to make use of complementary vectors perform particularly well at reducing flicker
in the foreground detail of a video stream.
[0082] In the example shown in Figure 8, the vector candidates 813 held for a block at candidate buffer 812 are
assessed in order to determine which of the candidates represents the best estimate for the motion vector of the block.
This assessment is performed at candidate assessor 814. The candidate assessor may determine the best vector output
in any suitable manner. For example, the assessor may compare the groups of pixels of the previous and next frames
at each end of the vector in order to determine the similarity of those groups. As noted above, the candidate assessor
preferably does not assess complementary bidirectional vectors and such vectors are passed as the best vector output.
[0083] For those vector candidates which are to be assessed, an error score is formed representing the degree of
similarity of the pairs of pixels groups indicated by each candidate vector so as to allow comparison of the vectors. Such
an error score could, for example, be determined based on a measure of the differences between pixels of the two
groups - e.g. a sum of the absolute differences (SAD) or a mean of the squared differences (MSD) in a given pixel value,
such as colour or luma. The error score may further depend on the similarity of vectors generated for neighbouring
blocks such that the error score of a block is a compound measure of the pixel differences between its endpoint blocks
and a measure of the similarity of the vectors formed in respect of neighbouring blocks. Various algorithms are known
in the art for generating such error scores, including iterative algorithms which form an initial set of vectors which are
selected on the basis of pixel similarity alone which are then refined based on the similarity of neighbouring vectors.
[0084] For each block, the vector with the lowest error score (or otherwise determined to be the best vector output for

EP 3 104 612 A1

11

5

10

15

20

25

30

35

40

45

50

55

the block) is stored at vector memory 815 for use as the vector output for that block.
[0085] In the present example, the candidate assessor operates on the values of pixels in the previous and next frames
and is therefore provided with access to pixel data 823. This may be limited to the pixel data required by the assessor
in order to form a similarity score for each vector candidate, or the pixel values of the previous and next frames may be
made available in their entirety to the assessor (e.g. the assessor may be operable to perform a lookup into frame buffer
802).
[0086] It may be advantageous to provide the candidate assessor 814 with data generated by the single-ended and
bidirectional vector processors. For example, if the vector processors identify vector candidates by matching groups of
pixels in the previous and next frames, the vector processors may generate data which the assessor can use in its
determination of an error score for the candidates generated by the vector processors. In some implementations, a
vector processor could provide the error score itself for the candidates it generates: e.g. in the case that a vector processor
calculates a sum of the absolute differences (SAD) for a candidate vector and the candidate assessor uses a sum of
the absolute differences as its error score for each vector.
[0087] Other approaches for determining the most appropriate vector for a block are known and any such approach
may be used in combination with the generation of complementary vectors in accordance with the principles described
herein.
[0088] The data processing system 800 may be configured to use the vector field generated for the current span and
stored at vector memory 815 in a variety of different ways. Two exemplary implementations of the data processing
system for motion estimation are described below. It will often be necessary to maintain the vector field generated in
respect of a pair of frames for use when processing subsequent frames (e.g. in a video encoder vector fields of a plurality
of frame pairs may be used in the encoding of a single frame). The system may be configured to update the vector field
maintained at the vector memory 815 for a span to include the complementary bidirectional vectors generated for that
span. This allows the complementary bidirectional vectors to be used when processing other parts of the video stream.
Alternatively, the system may be configured not to update the vector field for the span to include the complementary
bidirectional vectors and to restrict the use of those vectors to the processing of the span for which the complementary
bidirectional vectors have been created. The complementary bidirectional vectors may in this case be stored in the vector
memory 1212 but suitably tagged to identify them as complementary bidirectional vectors. For example, the comple-
mentary bidirectional vectors could be used in a frame rate converter to generate an interpolated frame in the current
span but the vector field for that span is not updated to include the complementary bidirectional vectors. Occasionally
complementary bidirectional vectors can represent poor pixel mappings and this can avoid such errors propagating over
multiple spans between frame pairs.
[0089] In a first example, the data processing system is a frame rate converter and includes interpolation logic 816
configured to use the vector field generated for a span between a pair of consecutive frames to generate one or more
interpolated frames 820 within that span. For example, interpolation logic 816 may be configured to double the frame
rate of a video stream 801 by generating an interpolated frame halfway between every pair of consecutive frames. Figure
6 shows such an interpolated output frame 605 lying at the centre of a current span between previous and next frames.
Any suitable interpolation technique may be used which forms new frames from pixel data 818 of the previous and next
frames and a vector field (held at vector memory 815) generated for the current span in accordance with the principles
described herein. The vector field generated in accordance with the principles described herein may include comple-
mentary bidirectional vectors.
[0090] Generally speaking, interpolation techniques build up an interpolated frame by identifying the vectors which
pass through each block of the interpolated frame (e.g. 601 in Figure 6) and mapping pixels of the previous and/or next
frames onto each block in accordance with those vectors which pass through that block. For example, in Figure 6,
complementary bidirectional vector 608 may indicate that block 601 of the output frame 605 is to be formed from the
pixels of the previous and next frames at the endpoints of the vector. This is because vector 608 represents a linear
estimate of the movement of the pixels of the previous and next frames over the current span. Typically algorithms will
be employed to blend together overlapping pixels which are mapped into the current frame by the vector field. Many
other approaches to interpolation are possible.
[0091] In a second example, the data processing system is a video encoder and includes encoding logic 817 configured
to use the vector field generated for a span between a pair of consecutive frames to encode the video stream 801 into
a compressed form 821. The vector field generated in accordance with the principles described herein may include
complementary bidirectional vectors. For example, the encoding logic may periodically replace a sequence of one or
more frames of the stream with coded information derived from the vector fields stored at vector memory 815 which
describe how the pixels of reference frames immediately preceding and following the sequence of frames move over
the period represented by the sequence. When provided with the preceding and following reference frames, the coded
information enables the sequence of frames to be largely recreated at a decoder. As is well known in the art, algorithms
may be employed to create pixels which cannot be generated from pixels present in the reference frames (e.g. from
neighbouring pixels).

EP 3 104 612 A1

12

5

10

15

20

25

30

35

40

45

50

55

[0092] Different types of motion estimation can place different requirements on the vectors. In a video encoder appli-
cation, for example, the requirement is typically to form the most compact representation of a frame, by using motion
vectors to reference pixel data from a previous frame from the sequence. These motion vectors generally focus on
providing the "closest match" to a block of pixel data (or the lowest residual error), and while the resulting motion vectors
are usually representative of the actual motion of objects in the scene, there is no requirement that this is always the
case. In other applications, such as de-interlacing or frame rate conversion, where objects in the frame are interpolated
at intermediate positions between their locations in the source frames, it is more important that the motion vectors
represent the "true motion" of objects in the scene, even if other distortions in the video mean that those vectors do not
always give the closest match (or lowest residual error) between blocks of pixel data. By applying appropriate constraints
to the candidate motion vectors during motion search, the results can be guided towards "closest match" or "true motion"
as necessary.
[0093] A flowchart illustrating a method for performing motion estimation in a sequence of frames according to the
principles described herein is shown in Figure 9. Such a method might be performed by data processing system 800
above. Initially, first and second frames are received 901 which define a current span in respect of which motion estimation
is to be performed so as to generate a vector field describing the movement of pixels between the first and second
frames. Forward vector candidates 902 and backward vector candidates 903 are formed for the current span according
to any suitable technique for identifying pixel mappings between frames. The motion vector candidates may be single-
ended or double-ended vectors.
[0094] Subsequently or concurrently to the formation of motion vector candidates, blocks of the first and second frames
that are collocated with a search block of the output frame lying in the current span between the first and second frames
are identified 904. A check is then performed 905 to identify whether the forward and backward vectors of blocks of the
first and second frames collocated with the search block are inverse to one another. If the vectors are inverse to one
another then a complementary vector is generated 906 for the search block from the forward and backward vectors
according to the principles described herein. The complementary vector may be provided as the output vector for the
search block 908 so as to avoid the need for other vector candidates to be generated and/or assessed for the search
block. If the forwards and backwards vectors are not inverse, a vector is generated 907 for the search block in a
conventional manner, e.g. by identifying pixel mappings between the first and second frames based on the similarity of
groups of pixels between the frames. Such a vector is may be provided as a motion vector candidate for the search
block 909 and subject to assessment along with any other motion vector candidates for that block.
[0095] In order to generate complementary vectors wherever possible for the blocks of the output frame, the identifi-
cation of pairs of collocated blocks and their forward and backward vectors are repeated over the blocks of the output
frame 910, with each block taking its turn at being a search block of the output frame.
[0096] In the examples described herein, block-based motion estimation is performed. Other forms of motion estimation
are possible for which complementary bidirectional vectors may be generated in accordance with the described principles.
A block may refer to any contiguous group of one or more pixels, the group of pixels having any shape. As is known in
the art, different frames may have different blocks defined for them. Blocks need not be of constant size or shape within
a frame or over time between frames; block size and/or shape may be adapted based on the characteristics of the stream
of frames.
[0097] A frame may be any kind of image information represented or interpreted as a set of pixels. A stream of frames
could be a sequence of frames from any source, including: a video; a sequence of still images, such as a sequence of
photographs from camera operated in burst mode; a rendered sequence of images or images representing a rendered
3D scene. A sequence of frames may or may not be in temporal order. For example, a sequence of frames may be
ordered according to some basis other than time: e.g. a set of frames could be ordered according to a measure of their
overall similarity, or a set of images could be ordered according to the position from which each image is captured.
[0098] The data processing system of Figure 8 is shown as comprising a number of functional blocks. This is schematic
only and is not intended to define a strict division between different logic elements of a data processing system. Each
functional block may be provided in any suitable manner.
[0099] A data processing system configured in accordance with the principles described herein may be embodied in
hardware (e.g. as an integrated circuit with the processing being performed at binary logic) and/or software (e.g. as a
set of routines running at a processor such as a graphics processing unit (GPU) or central processing unit (CPU) with
access to one or more memories for storing pixel data, motion vector data and other values).
[0100] The terms software, program code and computer-readable code encompass executable code for processors
(e.g. CPUs and/or GPUs), firmware, bytecode, programming language code such as C or OpenCL, and modules for
reconfigurable logic devices such as FPGAs. Computer-readable code further includes code defining representations
of integrated circuits at any level, including at register transfer level (RTL), at high-level circuit representations such as
Verilog or VHDL, and lower-level representations such as OASIS and GDSII. When executed at a computer system
configured for generating a representation of an integrated circuit in hardware, such code defining representations of
integrated circuits may cause such a computer system to generate the integrated circuit as defined in the code. The

EP 3 104 612 A1

13

5

10

15

20

25

30

35

40

45

50

55

code may include definitions of circuit elements and/or rules for combining circuit elements. Some or all of the rules for
combining the defined circuit elements may be provided at the computer system as default rules for generating a
representation of an integrated circuit in hardware from such computer-readable code.
[0101] The algorithms and methods described herein could be performed by one or more physical processing units
executing software that causes the unit(s) to perform the algorithms/methods. The or each physical processing unit
could be any suitable processor, such as a CPU or GPU (or a core thereof), or fixed function or programmable hardware.
Machine-readable code could be stored in non-transitory form at a machine readable medium such as an integrated
circuit memory, or optical or magnetic storage. A machine readable medium might comprise several memories, such
as on-chip memories, computer working memories, and non-volatile storage devices.
[0102] The applicant hereby discloses in isolation each individual feature described herein and any combination of
two or more such features, to the extent that such features or combinations are capable of being carried out based on
the present specification as a whole in the light of the common general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve any problems disclosed herein, and without limitation to the
scope of the claims. The applicant indicates that aspects of the present invention may consist of any such individual
feature or combination of features. In view of the foregoing description it will be evident to a person skilled in the art that
various modifications may be made within the scope of the invention.

Claims

1. A data processing system for performing motion estimation in a sequence of frames comprising first and second
frames each divided into respective sets of blocks of pixels, comprising:

a vector generator configured to form a set of forward vectors for the blocks of the first frame and a set of
backward vectors for the blocks of the second frame, each forward vector identifying a possible mapping of the
respective block into the second frame, and each backward vector identifying a possible mapping of the re-
spective block into the first frame; and
a processor configured to, for a search block of an output frame interpolated between the first and second
frames of the sequence, identify a first forward vector formed in respect of one or more blocks of the first frame
collocated with the search block and a first backward vector formed in respect of one or more blocks of the
second frame collocated with the search block;

wherein the processor is configured to, if the first forward and backward vectors are substantially inverse to one
another, generate an output vector for the search block of the output frame in dependence on one or both of the
first forward and backwards vectors.

2. A data processing system as claimed in claim 1, wherein the processor is configured to generate the output vector
by forming an average of the first forward and backward vectors.

3. A data processing system as claimed in claim 2, wherein the processor is configured to form the average of the first
forward and backward vectors by calculating a vector sum of the first forward vector and the first backward vector
inverted.

4. A data processing system as claimed in any preceding claim, wherein the processor is configured to, if the first
forward and backward vectors are not substantially inverse to one another, generate a vector candidate for the
search block of the output frame by identifying areas of similar pixels in the first and second frames.

5. A data processing system as claimed in any preceding claim, wherein the processor is configured to, if the first
forward and backward vectors are substantially inverse to one another, not generate vector candidates for the search
block of the output frame by identifying areas of similar pixels in the first and second frames.

6. A data processing system as claimed in any preceding claim, wherein the processor is configured to identify as
being collocated with the search block one or more blocks of the first and second frames that are located at a frame
position corresponding to the search block in the output frame.

7. A data processing system as claimed in any preceding claim, wherein, on identifying a plurality of blocks of the
first/second frame collocated with the search block, the processor is configured to identify a first forward/backward
vector for the plurality of blocks of the first/second frame by:

EP 3 104 612 A1

14

5

10

15

20

25

30

35

40

45

50

55

calculating an average of the forward/backward vectors formed at the vector generator for two or more of the
plurality of blocks of the first/second frame;
determining the most common vector of the forward/backward vectors formed at the vector generator for the
plurality of blocks of the first/second frame; or
selecting at random or according to a predefined scheme one of the forward/backward vectors formed at the
vector generator for the plurality of blocks of the first/second frame.

8. A data processing system as claimed in any preceding claim, wherein the vector generator is configured to form a
forward vector of the set for a block of the first frame by identifying an area of pixels in the second frame which most
closely matches the pixels of the block of the first frame, and to form a backward vector of the set for a block of the
second frame by identifying an area of pixels in the first frame which most closely matches the pixels of the block
of the second frame.

9. A data processing system as claimed in any preceding claim, wherein the first forward and backward vectors are
substantially inverse to one another if:

the directions of the first forward and backward vectors are opposed within first bounds; and/or
the magnitudes of the first forward and backward vectors are equal within second bounds.

10. A data processing system as claimed in claim 9, wherein the first and/or second bounds are empirically determined.

11. A data processing system as claimed in claim 9 or 10, wherein the first and/or second bounds are a function of
characteristics of the first forward/backward vectors and/or the sequence of frames.

12. A data processing system as claimed in any preceding claim, further comprising a candidate assessor operable to
output a best match vector for each block of the output frame from a set of one or more vector candidates generated
for each block, wherein the processor is configured to, for the search block if the first forward and backward vectors
are inverse to one another:

replace any vector candidates generated for the search block with the output vector as the best match vector
for the search block; or
add the output vector to any vector candidates generated for the search block so as to cause the candidate
assessor to select the output vector as the best match vector for the search block.

13. A data processing system as claimed in claim 12, the candidate assessor being operable to calculate a score for
each vector candidate of a block, each score being a measure of the similarity of the pixels in the first and second
frames at each end of the respective vector candidate, and the candidate assessor being configured to select the
best match vector for the block in dependence on the calculated scores.

14. A data processing system as claimed in claim 13, the candidate assessor being configured not to calculate a score
for the output vector of the search block and/or any other vector candidates available for the search block.

15. A method for performing motion estimation in a sequence of frames, the sequence comprising first and second
frames each divided into respective sets of blocks of pixels, the method comprising:

forming a set of forward vectors for the blocks of the first frame, each vector identifying a possible mapping of
the respective block into the second frame;
forming a set of backward vectors for the blocks of the second frame, each vector identifying a possible mapping
of the respective block into the first frame;

and, for a search block of an output frame interpolated between the first and second frames of the sequence:

identifying blocks of the first and second frames that are collocated with the search block;
determining whether a first forward vector formed in respect of one or more collocated blocks of the first frame
and a first backward vector formed in respect of one or more collocated blocks of the second frame are sub-
stantially inverse to one another; and
if the first forward and backward vectors are substantially inverse to one another, generating an output vector
for the search block of the output frame in dependence on one or both of the first forward and backward vectors.

EP 3 104 612 A1

15

EP 3 104 612 A1

16

EP 3 104 612 A1

17

EP 3 104 612 A1

18

EP 3 104 612 A1

19

EP 3 104 612 A1

20

EP 3 104 612 A1

21

5

10

15

20

25

30

35

40

45

50

55

EP 3 104 612 A1

22

5

10

15

20

25

30

35

40

45

50

55

EP 3 104 612 A1

23

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• Post-Processing for Flicker Reduction in H.264/AVC.
Proc. Picture Coding Symposium, November 2007
[0017]

• Suppression of Mosquito Noise by recursive Epsi-
lon-filters. Proc. IEEE ICASSP, April 2007 [0017]

• Flicker reduction in old films. Proc. IEEE ICIP, Sep-
tember 2000 [0017]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

