Related Applications
[0001] This application is based on and claims priority to Korean Patent Application No.
10-2015-0086083, filed on June 17, 2015 for inventor Sung Jin Yang. The disclosure of this application is incorporated herein
in its entirety by reference.
Field of the Invention
[0002] The present invention relates to a refrigerator and a method for manufacturing said
refrigerator.
Background of the Invention
[0003] A refrigerator is a device for low temperature storage of food and may be configured
to provide freezing storage or cold storage of food according to the kind of food
a user wants to store.
[0004] The inside of a refrigerator is cooled by a supply of cold air; this cold air is
continuously generated by a heat exchange process with a refrigerant, based on a freezing
cycle which goes through a process of compression-condensation-expansion-evaporation.
The cold air supplied to the inside of the refrigerator is evenly transferred to the
inside of the refrigerator by convection.
[0005] Generally, the main body of a refrigerator has a rectangular parallelepiped shape,
the front surface of which opens, and the main body of the refrigerator may harbor
a refrigerating compartment and a freezing compartment. Further, the front surface
of the main body may be provided with a refrigerating compartment door and a freezing
compartment door for selectively shielding an opening portion. A storage space in
the refrigerator may be provided with multiple drawers, shelves or receiving boxes
in which various foods may be stored in an optimal condition.
[0006] Top mount type refrigerators, in which a freezing compartment is positioned in the
upper section and a refrigerating compartment is positioned in the lower section,
are well-known. Recently, however, for user convenience, bottom freezer type refrigerators
(in which the freezing compartment is positioned in the lower section) have been produced.
In the case of the bottom freeze type refrigerator, the more frequently used refrigerating
compartment is positioned in the upper section and a relatively less used freezing
compartment is positioned at a lower position; thus, a user may conveniently use the
refrigerating compartment. However, since the freezing compartment is located in the
lower section, the bottom freezer type refrigerator has a disadvantage in that a user
needs to bend down to open the freezing compartment door to take out ice.
[0007] To solve the above issue, a refrigerator has been produced in which a dispenser for
taking out ice is installed in the refrigerating compartment door positioned in the
upper part of the bottom freeze type refrigerator. In this case, the refrigerating
compartment door, or the inside of the refrigerating compartment, may be provided
with an ice machine which generates ice.
[0008] The ice machine may include an ice making system which includes an ice tray for generating
ice, an ice bucket in which the generated ice is stored, and a transfer system transferring
the ice stored in the ice bucket to the dispenser.
[0009] Moreover, the conventional ice machine has a thermal insulation structure to prevent
cold air in the ice machine from increasing in temperature by heat exchange with the
outside air. A representative example of the conventional ice machine having such
a thermal insulation structure is shown in Fig. 7.
[0010] Fig. 7 is a sectional view showing an enlargement of a portion of a conventional
refrigerator in which an ice machine is installed.
[0011] Referring to Fig. 7, the ice machine 20 of the conventional refrigerator 2 includes
an insulator 22 provided along the perimeter of the ice machine 20. For example, the
insulator 22, made of foaming urethane, functions to prevent the cold temperature
in the ice machine 20 from increasing by heat exchange with the outside air.
[0012] Typically, a thermal insulator 24 is for a casing of the refrigerator 2 and is provided
between an inner layer and an outer layer of the housing of the refrigerator 2. Therefore,
portions of an insulator 22a for the ice machine 20 that are disposed in the parts
of the ice machine 20 that make contact with the inner layer of the housing of the
refrigerator 2 overlap with the insulator 24 for the housing of the refrigerator 2.
[0013] Consequently, a dead space is present in the refrigerator 2; this reduces the internal
capacity.
[0014] Furthermore, the overlapping insulation structure increases the number of parts,
thereby increasing the material cost.
[0015] In addition, the casing of the ice machine is assembled by coupling parts to each
other, but there is a problem in that the junction of the coupled parts of the casing
is not always reliably sealed.
Summary of the Invention
[0016] In view of the above, the present invention provides a refrigerator configured so
that the internal capacity thereof can be increased by reducing a dead space in the
refrigerator. In one embodiment, a refrigerator is provided, the refrigerator comprising
a main body, wherein said body comprises a food storage space, a casing disposed in
the storage space, the casing comprising a space for producing ice, and an ice tray
disposed in the casing and configured to contain water for producing ice. This casing
comprises a first outer frame and a second outer frame, an inner frame provided between
the first outer frame and the second outer frame, and an L-shaped thermal insulation
frame configured to reside within a space between the inner frame and the first outer
frame.
[0017] Furthermore, the present invention provides a method for manufacturing the refrigerator,
the method comprising preparing a first outer frame configured to form a portion of
an outer surface of a casing, wherein the casing comprises a cooling space for an
ice machine, installing a heater on an end of the first outer frame, installing a
thermal insulation frame having an L-shaped cross-section inside the first outer frame,
installing an inner frame on the thermal insulation frame, coupling a second outer
frame to the first outer frame, the second outer frame being configured to form a
remaining portion of the outer surface of the casing, and installing a sealing membrane
on at least one edge of the first and second outer frames, wherein said membrane is
brought into contact with the main body of the refrigerator when the casing is installed
in the refrigerator.
Brief Description of the Drawings
[0018] The objects and features of the present invention will become apparent from the following
description of embodiments given in conjunction with the accompanying drawings, in
which:
Fig. 1 is a view showing a refrigerator provided with an ice machine in accordance
with an embodiment of the present invention;
Fig. 2 is a side sectional view of the ice machine of Fig. 1;
Fig. 3 is an exploded perspective view illustrating a casing of the ice machine of
Fig. 1;
Fig. 4 is a view showing a layout of a sealing membrane provided in the ice machine
of Fig. 1;
Fig. 5 is a sectional view showing an enlargement of a portion of the refrigerator
in which the ice machine of Fig. 1 is installed;
Fig. 6 is a flowchart showing an exemplary method for manufacturing the ice machine
of Fig. 1; and
Fig. 7 is a sectional view showing an enlargement of a portion of a conventional refrigerator
in which an ice machine is installed.
Detailed Description of the Embodiments
[0019] Hereinafter, embodiments of the present invention will be described in detail with
reference to the accompanying drawings which form a part hereof.
[0020] In describing the embodiments of the present invention, a detailed description of
known functions or constructions related to the present invention will be omitted
if it is deemed that such description would make the gist of the present invention
unnecessarily vague.
[0021] Fig. 1 is a view showing a refrigerator provided with an ice machine in accordance
with an embodiment of the present invention. Fig. 2 is a side sectional view of the
ice machine of Fig. 1. Fig. 3 is an exploded perspective view illustrating a casing
of the ice machine of Fig. 1. Fig. 4 is a view showing a layout of a sealing membrane
provided in the ice machine of Fig. 1.
[0022] Referring to Figs. 1 to 4, a refrigerator 1 is provided with an ice machine 10 in
accordance with the embodiment of the present invention that includes a main body
12, a barrier 14, refrigerating compartment doors 13, and a freezing compartment door
15. The main body 12 forms the appearance of the refrigerator 1. The barrier 14 partitions
a food storage space defined in the main body 12 into an upper refrigerating compartment
R and a lower freezing compartment F. The refrigerating compartment doors 13 are provided
on respective opposite edges of a front surface of the main body 12 and configured
so as to be rotatable so that the refrigerating compartment R can be selectively opened
or closed by movement of the refrigerating compartment doors 13.
[0023] Although the ice machine 10 has been illustrated as being disposed at a predetermined
position in an upper portion of the refrigerating compartment R, other embodiments
are possible. For example, the ice machine 10 may be installed at another position
in the refrigerating compartment R or at a predetermined position in the refrigerating
compartment door 13 or other element.
[0024] Further, the ice machine 10 may be installed to make close contact with an inner
surface of the refrigerator 1.
[0025] The ice machine 10 may include a casing 100, a cooling unit (not shown), an ice-making
system 200, an ice bucket 320, a transfer system 400, and an outlet port 500.
[0026] A cooling space 105, in which ice can be generated, is defined in the casing 100.
The ice-making system 200 is disposed at an upper position in the cooling space 105.
The ice bucket 320 is disposed below the ice-making system 200.
[0027] The outlet port 500 is provided in a first end of the casing 100. A cold air supply
port, through which cold air is supplied into the casing 100, is provided in a second
end of the casing 100 that is opposed to the first end thereof.
[0028] The casing 100 includes a first outer frame 110 and a second outer frame 120 which
form the appearance of the casing 100, an inner frame 130 which is provided between
the first outer frame 110 and the second outer frame 120, and a thermal insulation
frame 140 which is installed between the first outer frame 110 and the inner frame
130 so that space between the first outer frame 110 and the inner frame 130 is filled
with the thermal insulation frame 140.
[0029] The first outer frame 110 includes at least one of the surfaces which form the casing
100. The first outer frame 110 includes a coupling part 112 provided for assembly
with the outlet port 500. The coupling part 112 may be a frame which has a communication
hole through which ice passes when it is transferred to the outlet port 500.
[0030] The coupling part 112 may be provided with a heater 150 so that when dew forms on
the coupling part 112, the heater 150 can evaporate the dew and thus remove it.
[0031] In detail, when the ice bucket 320 is opened so a user can draw out a large amount
of ice at one time, or to check the ice machine 10 for defects, warm air may enter
the ice machine 10 and meet cold air in the ice machine 10, thereby causing dew to
form. Generally, dew may mainly form on the junction between the ice-making system
200 and the outlet port 500. In the present embodiment, the heater 150 can remove
the dew by evaporation.
[0032] The thermal insulation frame 140 is provided inside the first outer frame 110. The
thermal insulation frame 140 is made of material such as urethane foam having excellent
thermal insulation performance and may be manufactured by foaming the raw material
in a mold and then hardening it.
[0033] Furthermore, the thermal insulation frame 140 has an L-shaped cross-section. When
the ice machine 10 is installed in the main body 12 of the refrigerator 1, the thermal
insulation frame 140 thermally insulates a part of the ice machine 10 that is opposed
to the inner surface of the refrigerator 1 that makes contact with the ice machine
10.
[0034] The inner frame 130 is provided inside the thermal insulation frame 140 and may be
coupled to the first outer frame 110, e.g. by screws or similar devices. In other
words, a variety of well-known methods can be used to couple the inner frame 130 to
the first outer frames 110.
[0035] The inner frame 130 that is reliably coupled and fastened to the first outer frame
110 serves to bring the thermal insulation frame 140 into close contact with the first
outer frame 110 and fix the thermal insulation frame 140 to the first outer frame
110. As such, the thermal insulation frame 140 is disposed and fixed between the inner
frame 130 and the first outer frame 110
[0036] The second outer frame 120 is coupled to the inner frame 130 and the first outer
frame 110. The cooling space 105 is defined between the second outer frame 120 and
the inner frame 130. The ice-making system 200, the ice bucket 320, and the transfer
system 400 are disposed in the cooling space 105 between the second outer frame 120
and the inner frame 130.
[0037] Furthermore, when the casing 100 is installed in the main body 12 of the refrigerator
1 such that the casing 100 makes close contact with the inner surface of the main
body 12, a sealing membrane 160 is provided on edges of the first and second outer
frames 110 and 120 that come into contact with the inner surface of the main body
12 of the refrigerator 1. The sealing membrane 160 is made of elastic material such
as rubber and is compressed by pressure generated when the casing 100 comes into close
contact with the inner surface of the main body 12, thus completely sealing the gap
between the casing 100 and the inner surface of the main body 12.
[0038] The cooling unit generates cold air and supplies the generated cold air to an ice
tray 210. The cooling unit may include a compressor, a condenser, an expansion valve,
and an evaporator to form a cooling cycle. The cooling unit generates cold air by
means of heat exchange between refrigerant and air. Generated cold air is supplied
to the ice tray 210 by an air blower or the like via a discharge duct 310 connected
to the cool air supply port of the casing 100 and via a cold air guide unit 220.
[0039] The ice-making system 200 includes the ice tray 210 which can contain water therein,
the cold air guide unit 220, which guides the flow of cold air so that the cold air
that is supplied from the cooling unit can flow along the bottom of the ice tray 210,
and a rotating unit 230 which rotates the ice tray 210 to drop the generated ice in
the ice tray 210 downward.
[0040] The ice tray 210 provides a space which receives water from a water supply pipe (not
shown) or the like and in which the water is cooled to form ice. In detail, the ice
tray 210 includes in an upper surface thereof with a plurality of forming spaces which
contains water therein. The forming spaces can have a variety of shapes depending
on shapes of ice to be produced. The number of forming spaces can also be changed.
[0041] The ice tray 210 is preferably made of metal, such as, for example, aluminum, having
high thermal conductivity. As the thermal conductivity of the ice tray 210 is increased,
a heat exchange rate between water and cold air in the ice tray 210 can be enhanced.
In this way, the ice tray 210 functions as a type of heat exchanger. Although it is
not shown in the drawings, cooling ribs or the like may be provided under the lower
surface of the ice tray 210 so as to increase the area with which the ice tray 210
makes contact with cold air.
[0042] The cold air guide unit 220 guides cold air supplied from the cooling unit to space
under the ice tray 210. The cold air guide unit 220 is connected to the discharge
duct 310 by a passage through which cold air is supplied from the cooling unit. The
cold air guide unit 220 includes first and second cold air guide membranes 221 and
222 which are connected to at least one surface of the discharge duct 310. In detail,
as shown in the drawing, the first cold air guide membrane 221 extends from an upper
surface of the discharge duct 310, and the second cold air guide membrane 222 extends
from a lower surface of the discharge duct 310.
[0043] The first cold air guide membrane 221 is connected between the upper surface of the
discharge duct 310 and a bracket 211 to which the ice tray 210 is mounted. The second
cold air guide membrane 222 extends from the lower surface of the discharge duct 310
and is disposed to be spaced apart from the lower surface of the ice tray 210 by a
predetermined distance. Thereby, a cold air flow passage 225 through which cold air
can flow is defined between the lower surface of the ice tray 210 and the upper surface
of the second cold air guide membrane 222.
[0044] Cold air guided by the cold air guide membranes 221 and 222 flows toward the lower
surface of the ice tray 210 and then receives heat from the ice tray 210, whereby
the water contained in the ice tray 210 is phase-changed into ice.
[0045] When the rotating unit 230 rotates the ice tray 210, the ice that has been produced
in the ice tray 210 is dropped into the ice bucket 320 that is disposed below the
ice tray 210. In detail, when the rotating shaft 231 is rotated, the ice tray 210
is turned upside down such that the upper surface of the ice tray 210 faces the ice
bucket 320. Here, when the ice tray 210 is rotated to a predetermined angle or more,
the ice tray 210 is twisted by an interference membrane (not shown). Then, pieces
of ice that have been in the ice tray 210 are dropped into the ice bucket 320 by twisting
of the ice tray 210.
[0046] Furthermore, a plurality of ejectors (not shown) may be provided on the rotating
shaft 231 and arranged along the length of the rotating shaft 231 so that ice can
be removed from the ice tray 210 by rotating only the ejectors without rotating the
entirety of the ice tray 210.
[0047] The transfer system 400 functions to transfer ice toward the outlet port 500 and
includes an auger 410 and an auger motor 420. The auger 410 is a rotating membrane
which has a screw or a spiral blade. The auger motor 420 rotates the auger 410. The
auger 410 is disposed in the ice bucket 320. Pieces of ice that are in the ice bucket
320 are disposed between portions of the blade of the auger 410 and thus can be transferred
to the outlet port 500 by the rotation of the auger 410. The auger motor 420 is housed
in an auger motor housing 430.
[0048] The outlet port 500 may be connected to a dispenser (not shown) that is provided
in either of the refrigerating compartment doors 13. Depending on the selection of
the user, pieces of ice can be transferred by the transfer system 400 and supplied
to the user via the dispenser. Although it is not shown in the drawings, a cutting
unit that can cut ice into a predetermined size may be provided in the outlet port
500.
[0049] Hereinbelow, the operation and effect of the ice machine 10 of the refrigerator 1
having the above-mentioned construction will be described.
[0050] In the ice machine 10 in accordance with the present embodiment, cold air generated
via the compressor, the condenser, the expansion valve, and the evaporator can be
supplied to the cooling space 105 through the discharge duct 310. The cold air freezes
water contained in the ice tray 210 that is disposed in the cooling space 105. Here,
because the cold air guide unit 220 extends from the discharge duct 310, cold air
discharged from the discharge duct 310 can flow along the cold air guide unit 220.
[0051] In detail, the cold air flows into space between the first and second cold air guide
membranes 221 and 222 and then moves along the cold air flow passage 225 formed between
the lower surface of the ice tray 210 and the second cold air guide membrane 222.
The cold air flows along the lower surface of the ice tray 210 and receives heat from
the lower surface of the ice tray 210, thereby cooling and freezing the water contained
in the ice tray 210. When the rotating shaft 231 is rotated, ice that has been produced
in the ice tray 210 is dropped downward and stored in the ice bucket 320 that is disposed
below the ice tray 210.
[0052] Moreover, to prevent cold air supplied into the cooling space 105 from receiving
heat from the outside air of the ice machine 10 during the process of supplying cold
air to the ice machine 10 and producing ice, the cooling space 105 needs to be thermally
insulated. Given this, the thermal insulation frame 140 is provided in the casing
100 to insulate the cooling space 105 from the outside.
[0053] A space in panels that form the main body 12 of the refrigerator 1 is filled with
an insulator. The ice machine 10 is installed in the main body 12 at close contact
with a corner of the main body 12. Therefore, a separate insulator is not required
in at least two surfaces of the ice machine 10. This will be described in more detail
with reference to Fig. 5.
[0054] Fig. 5 is a sectional view showing an enlargement of a portion of the refrigerator
in which the ice machine of Fig. 1 is installed.
[0055] Referring to Fig. 5, an insulator 16 is provided in the panels that form the main
body 12 of the refrigerator 1. The ice machine 10 is installed in the main body 12
in such a way that it is brought into close contact with a corner of the main body
12. Referring to Fig. 5, the left and upper surfaces of the ice machine 10 are insulated
by the insulator 16. Therefore, a separate insulator is not required for the left
or upper surface of the ice machine 10. The thermal insulation frame 140 is provided
for the right and lower surfaces of the ice machine 10 that are opposed to the left
and upper surfaces thereof, which make close contact with the inner surface of the
main body 12. Consequently, the internal space of the ice machine 10 can be reliably
insulated from the outside.
[0056] The thermal insulation frame 140 has a substantially L-shaped cross-section. The
description "having the L-shaped cross-section" can be construed as including two
surfaces that respectively correspond to the two surfaces (the right and lower surfaces
of the case of Fig. 5) of the ice machine 10 and are connected to each other at a
predetermined angle. For example, the predetermined angle may be 90°, but the spirit
of the present invention is not limited to this.
[0057] In further embodiments, the outlet port 500 that is installed on the first end of
the ice machine 10 may be provided with a separate insulation membrane. The cold air
supply port provided on the second end of the ice machine 10 may be closely connected
to a cold air duct (not shown) that functions as a passage for the supply of cold
air from the cooling unit.
[0058] In accordance with the ice machine 10 of the refrigerator 1 of the present embodiment,
the internal capacity of the refrigerator 1 can be increased compared to that of refrigerators
of other designs. The material expense for producing the refrigerator 1 can be reduced,
and the productivity can be enhanced. Further, the ice machine 10 can be effectively
thermally sealed.
[0059] Hereinafter, a method for manufacturing the ice machine 10 of the refrigerator 1
in accordance with the present embodiment will be described in detail with reference
to Fig. 6.
[0060] Fig. 6 is a flowchart showing an exemplary method for manufacturing the ice machine
of Fig. 1.
[0061] Referring to Fig. 6, the ice machine 10 includes multiple systems such as the ice-making
system 200, the ice bucket 320, and the transfer system 400. Further, the ice machine
10 is configured such that these systems are installed in the casing 100.
[0062] The ice-making system 200, the ice bucket 320 and the transfer system 400 can be
manufactured in accordance with various well-known techniques.
[0063] To manufacture the casing 100 that receives the produced systems, the first outer
frame 110 that forms some of the outer surface of the casing 110 is prepared, at step
S1. Thereafter, at step S2, the heater 150 is installed in the coupling part 112 provided
on the first end of the prepared first outer frame 110. Here, the heater 150 may be
installed along the perimeter of the communication hole that is formed, for transfer
of ice, in the coupling part 112.
[0064] At step S3, the thermal insulation frame 140 is installed inside the first outer
frame 110. At step S4, the inner frame 130 is installed on the thermal insulation
frame 140, whereby the thermal insulation frame 140 is consequently installed between
the inner frame 130 and the first outer frame 110.
[0065] Here, the inner frame 130 may be coupled to the first outer frame 110 by a coupling
means such as bolt coupling or the like. Furthermore, the inner frame 130 is coupled
to the first outer frame 110 such that the thermal insulation frame 140 is brought
into close contact with the first outer frame 110.
[0066] Subsequently, at step S5, the ice-making system 200, the ice bucket 320, and the
transfer system 400 that have been pre-manufactured are assembled with the inner frame
130 or the first outer frame 110. At step S6, the second outer frame 120 is coupled
to the first outer frame 110. Here, the coupled systems are disposed in the space
between the inner frame 130 and the second outer frame 120.
[0067] At step S7, the sealing membrane is provided on edges of the first and second outer
frames 110 and 120 that come into contact with the inner surface of the main body
12 of the refrigerator 1 when the casing 100 is installed in the refrigerator 1. The
ice machine 10 that is manufactured by the above-mentioned method is installed in
the main body 12 of the refrigerator 1 in such a way that the ice machine 10 is brought
into close contact with a corner of the main body 12.
[0068] As described above, in accordance with an embodiment of the present invention, the
internal capacity of a refrigerator can be increased compared to that of a refrigerator
with other design. The material cost for producing the refrigerator can be reduced,
and the productivity can be enhanced. Further, the ice machine can be effectively
thermally sealed.
[0069] While an ice machine of a refrigerator in accordance with the invention have been
shown and described with respect to the exemplary embodiments, the present invention
is not limited thereto. It will be understood by those skilled in the art that various
changes and modifications may be made without departing from the scope of the invention
as defined in the following claims.
1. A refrigerator, comprising:
a main body comprising a food storage space;
a casing disposed in the storage space, the casing comprising a space for producing
ice; and
an ice tray disposed in the casing and configured to contain water for producing ice,
wherein the casing comprises:
a first outer frame and a second outer frame;
an inner frame provided between the first outer frame and the second outer frame;
and
an L-shaped thermal insulation frame configured to reside within a space between the
inner frame and the first outer frame.
2. The refrigerator of claim 1, further comprising:
an ice bucket disposed below the ice tray and configured to receive ice dropped from
the ice tray; and
an outlet port through which the ice is removed from the ice bucket, wherein the outlet
port is connected to a first end of the casing, and wherein a cold air supply port
is installed on a second end of the casing and configured to supply cold air from
a cooling unit.
3. The refrigerator of claim 2, further comprising:
a transfer system configured to transfer the ice to the outlet port.
4. The refrigerator of claim 2, wherein a heater is installed on the first end of the
casing.
5. The refrigerator of claim 4, wherein:
the casing is installed in close contact with the main body of the refrigerator; and
a sealing membrane is provided on at least one edge of the first and second outer
frames, wherein said membrane is disposed in contact with the main body of the refrigerator.
6. A method for manufacturing a refrigerator, the method comprising:
preparing a first outer frame configured to form a portion of an outer surface of
a casing, the casing comprising a cooling space for an ice machine;
installing a heater on an end of the first outer frame;
installing a thermal insulation frame having an L-shaped cross-section inside the
first outer frame;
installing an inner frame on the thermal insulation frame;
coupling a second outer frame to the first outer frame, the second outer frame being
configured to form a remaining portion of the outer surface of the casing; and
installing a sealing membrane on at least one edge of the first and second outer frames,
wherein said membrane is brought into contact with the main body of the refrigerator
when the casing is installed in the refrigerator.
7. The method of claim 6, further comprising, after installing the inner frame,
installing an ice-making system comprising:
an ice tray configured to contain water therein;
an ice bucket configured to receive ice dropped from the ice tray;
an outlet port through which the ice is removed from the ice bucket;
and a transfer system configured to transfer the ice toward the outlet port.
8. A refrigerator, comprising:
a main body comprising a food storage space;
a casing disposed in the storage space, the casing comprising a space for producing
ice; and
an ice tray disposed in the casing and configured to contain water for producing ice,
wherein the casing comprises:
a first outer frame and a second outer frame;
an inner frame provided between the first outer frame and the second outer frame;
and
a thermal insulation frame configured to fill a space between the inner frame and
the first outer frame.
9. The refrigerator of claim 8, further comprising:
an ice bucket disposed below the ice tray and configured to receive ice dropped from
the ice tray; and
an outlet port through which the ice is removed from the ice bucket, wherein the outlet
port is connected to a first end of the casing, and wherein a cold air supply port
is installed on a second end of the casing and configured to supply cold air from
a cooling unit.
10. The refrigerator of claim 9, further comprising:
a transfer system configured to transfer the ice to the outlet port.
11. The refrigerator of claim 9, wherein a heater is installed on the first end of the
casing.
12. The refrigerator of claim 11, wherein:
the casing is installed in close contact with the main body of the refrigerator; and
a sealing membrane is provided on at least one edge of the first and second outer
frames, wherein said membrane is disposed in contact with the main body of the refrigerator.