Field of the Invention
[0001] The present invention relates to a surface finishing process in manufacture of printed
circuit boards (PCB), IC substrates, microchips and related electronic devices. The
process according to the present invention is used to suppress extraneous and skip
metal or metal alloy plating on a substrate having a copper patterned surface after
activation with noble metal ions when depositing a metal or metal alloy layer by electroless
(autocatalytic) plating thereon.
Background of the Invention
[0002] Surface finishing processes for metal deposition in the manufacture of printed circuit
boards, IC substrates, microchips and related electronic devices are employed to provide
bondable and/or solderable surface areas whereon active and passive components can
be mechanically and electrically contacted to electronic devices. Frequently applied
surface finishing processes are the ENIG process (
Electroless
Nickel
Immersion
Gold) and Ni/Pd(/Au) processes. In both types of processes, a copper surface of an
electronic device is activated with an activation composition containing noble metal
ions followed by electroless (autocatalytic) deposition of a metal or metal alloy
layer thereon.
[0003] An activation of a copper surface prior to electroless plating of e.g. nickel is
required because copper is classified as a non-catalytic metal for electroless deposition
of for example nickel deposited from hypophosphite containing electrolytes (
W. Riedel, Electroless Nickel Plating, ASM International, reprint 1998, p. 189). The purpose of the activation step is to deposit an immersion coating of a catalyst
on the copper surface. The catalyst lowers the activation energy and allows a metal
such as nickel or a metal alloy such as a nickel-phosphorous alloy to be deposited
on the copper surface by electroless plating. Examples of suitable catalysts are palladium
and ruthenium (
Printed Circuits Handbook, Ed.: C. F. Coombs, Jr., McGraw-Hill, 2001, p. 32.3). Usually, a palladium seed layer is immersion plated onto the copper surface, wherein
the palladium ions are deposited onto the copper surface, reduced by copper to metallic
state palladium and copper ions are released into the immersion plating bath. The
copper surface is then coated with metallic palladium which serves as a seed/catalyst
for the following electroless metal or metal alloy plating.
[0004] It is important to rinse the substrate carefully between activation of the copper
surface with noble metal ions and electroless metal or metal alloy plating to remove
all excessive noble metal ions. Otherwise precipitates formed of e.g. noble metal
hydroxides can lead to extraneous (uncontrolled) metal or metal alloy deposition around
individual copper features on the substrate surface, surfaces made of plastic materials
and other dielectric materials.
[0005] The phrase 'plastic materials' comprises bare PCB laminates, solder masks and photoimageable
resists such as dry film resists. Other materials which can be affected by said uncontrolled
deposition of noble metal ions or precipitates thereof comprise silicon dioxide, silicon
and non-metallic glasses.
[0006] The noble metal ion precipitates act as seed/catalyst for uncontrolled and undesired
deposition of a metal or metal alloy during electroless plating. Typical phenomena
of extraneous metal or metal alloy plating are for example nickel bridges and nickel
feet formed during electroless plating of nickel. Extraneous plating leads for example
to circuit shorts, especially in high density circuits with line and space widths
of 50 µm or less. Extraneous metal or metal alloy deposits have a weak adhesion on
laminate and solder mask surfaces and can fracture off the PCB and then also cause
circuit shorts at other locations of the PCB. Metal and metal alloy bridges between
individual copper contact pads or copper trenches can directly result in circuit shorts.
Metal and metal alloy feet around copper contact pads in fine line circuits also can
cause circuit shorts by bridging individual copper contact pads.
[0007] The problem of extraneous plating, particularly of nickel is known in the prior art
and different approaches towards this problem are described:
US 2001/0040047 teaches a method which reduces bridging that can occur during plating. Said method
comprises the following steps: contacting a circuitized substrate with a swelling
agent, treating the substrate with a composition of an alkaline permanganate, a chromate
or chlorite salt followed by applying a metal layer on the treated circuitized portion
of the substrate. The method is an alternative to the process according to the present
invention as no noble metal ion activation is applied.
[0008] US 2008/0073614 A1 discloses an acidic etchant for metallic palladium comprising at least 500 mg/l thiourea.
Such an etchant is not suitable to selectively remove palladium ions or precipitates
thereof and results in undesired skip plating (Example 5).
[0009] The patent document
EP 0 707 093 discloses an activator which will selectively activate the copper surfaces for electroless
nickel plating and thereby minimize or eliminate extraneous plating. Said activator
composition comprises an imidazole compound and may further contain palladium ions.
[0010] Excess noble metal ions during activation of a copper surface tend to hydrolyze in
the rinse step(s) applied before electroless plating of nickel and form noble metal-containing
precipitates. Said precipitates can be adsorbed onto surface areas of the substrate
that are made of plastic or other dielectric materials or can be trapped in cavities
formed between structural features made of copper and plastic or other dielectric
materials, e.g., laminates, photoresists and/or solder masks on the substrate surface.
Said precipitates can be reduced to metallic state noble metal by the reducing agent
present in the electroless metal or metal alloy plating bath utilized for depositing
the metal or metal alloy layer onto the substrate (step iv. of the process according
to the present invention). Metal or metal alloy plating will occur on such reduced
noble metal precipitates. If the reduced noble metal is present on surface areas of
the substrate other than the copper surface, unwanted extraneous metal or metal alloy
plating can occur and lead to undesired circuit shorts.
[0011] A rinse step is applied after activation with noble metal ions in order to remove
all excess noble metal ions before contacting the substrate with the electroless metal
or metal alloy plating composition. On the other hand, hydrolysis and precipitation
of noble metal ions occurs preferably during such rinse steps. Therefore, at least
one rinse step is usually done in a rinse solution consisting of diluted sulfuric
acid. But in case of high density circuits the sulfuric acid rinse is not sufficient
to suppress extraneous metal or metal alloy plating.
[0012] Another method to suppress undesired extraneous metal and metal alloy plating is
disclosed in
EP 2233608 A1. The substrate is contacted with an aqueous composition comprising an organic aminocarboxylic
acid after activation of the substrate with noble metal ions and prior to electroless
nickel plating.
[0013] A method for depositing a nickel alloy onto a metal substrate by electroless plating
is disclosed in
US 5,843,538 A. The substrate is contacted, in this order, with an aqueous solution comprising an
organic acid and a fluorosurfactant, then with an activator solution comprising palladium
ions and then with an electroless nickel plating bath which comprises thiourea as
a stabilizer additive.
[0014] A palladium removal treatment is disclosed in
US 2013/0058062 A1. A copper surface is contacted after activation with palladium ions with an alkaline
solution comprising a sulfur compound. Such alkaline solutions suppress extraneous
plating but result in undesired skip plating of the copper surface, i.e. palladium
is also removed from the copper surface where it should remain in order to initiate
electroless nickel plating (Examples 9 and 10).
[0015] An etchant for metals such as palladium comprising hydrochloric acid and thiourea
is disclosed in
US 2005/0109734 A1. This etchant is applied to remove oxides from the surface of metals such as palladium
prior to etching of metallic palladium. Accordingly, said etchant is not suitable
to selectively remove metallic palladium from a substrate without causing undesired
skip plating.
[0016] In addition, palladium ions or precipitates formed thereof are adsorbed onto the
copper contact pads and should not be removed before electroless plating in order
to prevent skip plating. Skip plating is an undesired phenomenon wherein an incomplete
metal or metal plating occurs on the copper contact pads. Accordingly, such skip plating
results in a disrupted metal or metal alloy layer on top of the copper contact pads
and leads to failures during bonding and soldering.
Brief Description of the Figures
[0017]
Figure 1 shows a top view of a copper bond pad coated with a metal (or metal alloy)
2 deposited by autocatalytic plating on a PCB substrate 1 with undesired extraneous plating 3 (Examples 1 and 2).
Figure 2 shows a top view of a copper bond pad coated with a metal (or metal alloy)
2 deposited by autocatalytic plating on a PCB substrate 1 with undesired skip plating 4, i.e. a disrupted metal (or metal alloy) layer on top of the copper contact pad (Examples
3 to 5 and 9 to 10).
Figure 3 shows a top view of a copper bond pad coated with a metal (or metal alloy)
2 deposited by autocatalytic plating on a PCB substrate 1. No undesired extraneous plating and undesired skip plating is observed (Examples
6 to 8).
Objective of the present invention
[0018] It is the objective of the present invention to provide a process for electroless
(autocatalytic) plating of a metal or metal alloy layer onto a substrate comprising
a copper surface which suppresses the undesired formation of extraneous metal or metal
alloy between individual features of said copper surface such as copper contact pads
and at the same time results in a non-disrupted metal or metal alloy layer on top
of said individual features of the copper surface.
Summary of the Invention
[0019] This objective is solved by a process for electroless (autocatalytic) metal and metal
alloy plating according to the present invention which comprises, in the following
order, the steps of
- i. providing a substrate comprising a copper patterned surface,
- ii. contacting said substrate with a noble metal ion containing composition; thereafter
- iii. contacting said substrate with an aqueous pre-treatment composition comprising
an acid, a source for halide ions and an additive selected from the group consisting
of thiourea,
compounds according to formula (1)

wherein R1, R2 and R3 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl, and R4 is selected from the group consisting of H, substituted C1 to C6 alkyl, unsubstituted C1 to C6 alkyl and -N(R7)-C(S)-NR5R6 wherein R5, R6 and R7 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl,
compounds according to formula (2)
R8-C(S)-NR9R10 (2)
wherein R8 is selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl and R9 and R10 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl and polymers comprising thiourea groups wherein the concentration of said additive
ranges from 1 to 200 mg/l; and wherein the pH value of the aqueous pre-treatment composition
is ≤ 3 and
- iv. depositing a metal or metal alloy layer onto said substrate by electroless (autocatalytic)
plating utilizing a plating bath.
[0020] Undesired extraneous plating and skip plating of a metal or metal alloy deposited
by electroless (autocatalytic) plating can be successfully suppressed when applying
the process according to the present invention.
Detailed Description of the Invention
[0021] The deposition of noble metal ions or precipitates formed thereof shall only occur
on surface areas of the substrate comprising a copper surface designated for electroless
(autocatalytic) metal and metal alloy plating. This can be achieved by applying the
aqueous pre-treatment composition for electroless metal and metal alloy plating according
to the present invention. Said aqueous pre-treatment composition comprises an acid,
a source for halide ions and an additive selected from the group consisting of thiourea,
thiourea derivatives and polymers comprising thiourea groups wherein the concentration
of said additive ranges from 1 to 200 mg/l.
[0022] The substrate comprising a copper patterned surface is for example a printed circuit
board (PCB) substrate comprising copper contact pads which should be coated with the
metal or metal alloy layer deposited by electroless plating thereon, the dielectric
base material (e.g. epoxy resins) and a solder mask layer (e.g. an polyacrylate and/or
poymethacrylate-based material). Other substrate materials comprising a copper patterned
surface are for example devices made of a non-metallic glass such as glass interposers
and semiconducting materials such as silicon which optionally also comprises dielectric
materials such as dielectric layers made of silicon dioxide and the like.
[0023] In all cases, the metal or metal alloy layer should only be deposited onto selected
areas of the copper surface which are exposed to the electroless plating bath utilized
in step iv. of the process according to the present invention.
[0024] The term "electroless plating" means autocatalytic plating, hence the plating baths
utilized in step iv. of the process according to the present invention comprises a
chemical reducing agent which reduces metal ions in said plating bath to metallic
state and thereby deposit a metal or metal alloy layer onto the noble metal activated
copper surface.
[0025] The copper surface requires an activation prior to electroless metal or metal alloy
plating. Compositions for activation of copper surfaces for electroless metal and
metal alloy plating, particularly for electroless nickel plating are well known in
the art (
K. Johal, SMTA International, Chicago, October 2001, Proceedings of the Technical
Program, 612-620). Acidic solutions of noble metal ions such as palladium ions are frequently applied
for said purpose. Such solutions comprise at least one acid, at least one source of
palladium ions and optionally a surfactant.
[0026] The at least one acid is preferably selected from the group comprising hydrochloric
acid, sulfuric acid, toluene sulfonic acid and methane sulfonic acid. The concentration
of the at least one acid preferably ranges from 25 g to 150 g/l, more preferred from
50 g/l to 100 g/l.
[0027] The noble metal ions are preferably palladium ions.
[0028] The at least one source of palladium ions preferably is selected from the group comprising
palladium chloride, palladium sulfate and palladium acetate. The concentration of
the at least one source of palladium ions ranges from 10 mg/l to 100 mg/l, more preferably
from 30 mg/l to 70 mg/l.
[0029] The substrate comprising a copper patterned surface is contacted with such an activator
solution at a temperature in the range of 10 °C to 40 °C, more preferably of 20 °C
to 30 °C for 30 s to 300 s, more preferably for 60 s to 240 s.
[0030] Next, the noble metal activator is selectively removed from the substrate comprising
a copper patterned surface. It is important, that the noble metal activator only remains
on those portions of the copper surface whereon the metal or metal alloy layer is
to be deposited by electroless plating. "Selectively removed" means that only noble
metal activator deposited between those portions of the copper surface, e.g. between
such a portion of the copper surface and the solder mask layer or those portions of
the copper surface and the dielectric substrate base material is removed in step iii.
of the process according to the present invention.
[0031] The acid present in the aqueous pre-treatment composition applied in step iii. of
the process according to the present invention is preferably selected from the group
consisting of inorganic acids, carboxylic acids, organic sulfonic acids and mixtures
thereof. More preferably, the acid is selected from the group consisting of sulfuric
acid, methane sulfonic acid, toluene sulfonic acid, phosphoric acid, hydrochloric
acid and mixtures thereof.
[0032] The pH value of the aqueous pre-treatment composition is ≤ 3, preferably ≤ 2 and
more preferably ≤ 1.
[0033] The concentration of the acid is selected in order to obtain a pH value of the aqueous
pre-treatment composition of ≤ 3, preferably ≤ 2 and more preferably ≤ 1. The required
pH value can be determined with conventional pH meters.
[0034] The acidic pH value of the aqueous pre-treatment composition is required to clean
the copper surface on the substrate and thereby provide a sufficiently clean copper
surface for the process according to the present invention.
[0035] The aqueous pre-treatment composition further comprises a source for halide ions,
preferably a source for chloride and/or bromide ions and more preferably a source
for chloride ions. In case hydrochloric acid is selected as the acid, the required
amount of halide ions may be provided completely by hydrochloric acid. Other suitable
sources for halide ions are for example halides of alkali metals such as lithium chloride,
sodium chloride, potassium chloride, lithium bromide, sodium bromide and potassium
bromide, the corresponding ammonium halides and alkaline earth halides. Mixtures of
different sources for halide ions may be employed in the aqueous pre-treatment composition.
[0036] The concentration of halide ions in the aqueous pre-treatment composition preferably
ranges from 0.01 to 100 g/l, more preferably from 0.05 to 50 g/l and most preferably
from 0.1 to 25 g/l.
[0037] Halide ions in the aqueous pre-treatment composition are required to obtain a non-disrupted
metal or metal alloy layer on top of the copper surface, e.g. the copper contact pads.
Said metal or metal alloy layer must be non-disrupted in order to e.g. serve as a
barrier layer between the coated copper contact pads and one or more further metal
and/or metal alloy layer(s) plated on top of the metal or metal alloy layer deposited
in step iv. of the process according to the present invention.
[0038] Skip plating, i.e. a disrupted metal or metal alloy layer on top of a copper contact
pad occurs when halide ions are missing in the aqueous pre-treatment composition (Example
4, comparative). Such a disrupted metal or metal alloy layer is not desired.
[0039] The aqueous pre-treatment composition further comprises an additive selected from
the group consisting of thiourea, thiourea derivatives and polymers comprising thiourea
groups.
[0040] Thiourea derivatives suitable as the additive in the process according to the present
invention are compounds represented by formula (1)

wherein R
1, R
2 and R
3 are independently selected from the group consisting of H, substituted C
1 to C
6 alkyl and unsubstituted C
1 to C
6 alkyl, and R
4 is selected from the group consisting of H, substituted C
1 to C
6 alkyl, unsubstituted C
1 to C
6 alkyl and -N(R
7)-C(S)-NR
5R
6 wherein R
5, R
6 and R
7 are independently selected from the group consisting of H, substituted C
1 to C
6 alkyl and unsubstituted C
1 to C
6 alkyl,
preferably, R
1, R
2 and R
3 are independently selected from the group consisting of H, methyl, ethyl, propyl
and butyl, and R
4 is selected from the group consisting of H, methyl, ethyl, propyl, butyl and -N(R
7)-C(S)-NR
5R
6, and R
5, R
6 and R
7 are independently selected from the group consisting of H, methyl, ethyl, propyl,
butyl,
and compounds according to formula (2)
R
8-C(S)-NR
9R
10 (2)
wherein R
8 is selected from the group consisting of H, substituted C
1 to C
6 alkyl and unsubstituted C
1 to C
6 alkyl, and R
9 and R
10 are independently selected from the group consisting of substituted C
1 to C
6 alkyl and unsubstituted C
1 to C
6 alkyl.
[0041] Substituted C
3 to C
6 alkyl and unsubstituted C
3 to C
6 alkyl in general comprise branched C
3 to C
6 alkyl residues and unbranched C
3 to C
6 alkyl residues.
[0042] Suitable functional groups for substituted C
1 to C
6 alkyl in compounds according to formulae (1) and (2) are for example hydroxyl and
amino residues attached to C
1 to C
6 alkyl groups. Preferably, R
8 is selected from the group consisting of H, methyl, ethyl, propyl and butyl and R
9 and R
10 are independently selected from the group consisting of H, methyl, ethyl, propyl
and butyl.
[0043] More preferred are thiourea and symmetrically substituted thiourea derivatives according
to formula (1) wherein the residue pairs R
1 / R
3 and R
2 / R
4 independently have the same substituent selected from the group consisting of H,
methyl, ethyl, propyl and butyl.
[0044] Most preferably, residues R
1, R
2, R
3 and R
4 in thiourea derivatives according to formula (1) are all the same and selected from
the group consisting of H, methyl, ethyl, propyl and butyl.
[0045] More preferably, R
9 and R
10 of thiourea derivatives according to formula (2) are the same and selected from the
group consisting of H, methyl, ethyl, propyl and butyl.
[0046] Propyl and butyl residues in general comprise branched and unbranched propyl and
butyl residues.
[0047] Examples of suitable thiourea derivatives are N-alkyl substituted thiourea derivatives
such as dimethylthiourea, diethylthiourea, tetramethylthiourea, thioacetamide and
2,5-dithiodiurea.
[0048] The concentration of said additive in the aqueous pre-treatment composition ranges
from 1 to 200 mg/l, preferably from 5 to 150 mg/l and more preferably from 10 to 100
mg/l.
[0049] In case the concentration of said additive is below 1 mg/l, undesired extraneous
plating is not suppressed.
[0050] In case the concentration of said additive is above 200 mg/l, undesired skip plating
is observed, i.e. a disrupted metal or metal alloy layer is obtained on top of the
copper contact pads (Example 5).
[0051] The aqueous pre-treatment composition according to the present invention may further
contain a surfactant, which can be selected by routine experiments.
[0052] Such an optional surfactant improves the wettability of the substrate and may also
be required to provide a sufficient solubility of thiourea, thiourea derivative or
polymer comprising thiourea groups in the aqueous pre-treatment composition. Particularly
butyl substituted thiourea derivatives such as N,N'-dibutylthiourea and N,N,N',N'-tetrabutylthiourea
may require a surfactant in order to dissolve said thiourea derivatives in the aqueous
pre-treatment composition in a concentration of 1 to 200 mg/l.
[0053] The aqueous pre-treatment composition optionally further comprises at least one complexing
agent selected from the group consisting of aminocarboxylic acids, hydroxycarboxylic
acids and mixtures thereof. Preferred organic aminocarboxylic acids are selected from
alanine, aspartic acid, cysteine, glutamic acid, glycine, isoleucine, leucine, lysine,
methionine, threonine, valine, N,N-dimethyl glycine, β-alanine, β-leucine, β-isoleucine,
β-glutamine, β-glutamic acid, β-methionine, β-asparagic acid. Hydroxycarboxylic acids
are preferably selected from lactic acid and citric acid.
[0054] The concentration of the optional complexing agent preferably ranges from 0.1 to
100 g/l, more preferably from 0.5 to 50 g/l and most preferably from 1 to 15 g/l.
Such a complexing agent can increase the desired properties of the aqueous pre-treatment
composition by preventing palladium ions which are dissolved in step iii. of the process
according to the present invention to re-deposit onto the substrate.
[0055] Undesired extraneous metal or metal alloy plating is not suppressed when applying
other sulfur compounds such as 3-mercaptopropan-1-sulfonic-acid and the corresponding
disulfide adduct bis-(sodium-sulfopropyl)-disulfide instead of an additive selected
from the group consisting of thiourea, thiourea derivatives and polymers comprising
thiourea groups (Example 2).
[0056] Undesired skip plating on the surface of the copper contact pads is observed when
applying sulfur compounds such as thiosulfate and/or thiocyanate ions instead of thiourea,
thiourea derivatives and polymers comprising thiourea groups (Examples 3 and 4) or
thiourea in a concentration of more than 200 mg/l (Example 5). Hence, in those cases,
an undesired disrupted metal or metal alloy layer is obtained by electroless plating
onto the copper surface.
[0057] At least one additional rinse step between process steps ii. and iii. using essentially
water is optional. At least one additional rinse step between process step iii. and
iv. using essentially water is optional, but preferred because then an undesired drag
over of e.g. thiourea and/or a derivative thereof from the aqueous solution used in
step iii. into the autocatalytic metal or metal alloy plating bath used in step iv.
shall be minimized.
[0058] The substrate comprising an activated copper surface is contacted with the aqueous
pre-treatment composition preferably at a temperature of 20 °C to 80 °C, more preferably
25 °C to 70 °C and most preferably 30 to 60 °C. The contact time preferably ranges
from 10 s to 20 min and more preferably from 1 min to 6 min.
[0059] The substrate comprising a copper patterned surface is then suited for electroles
metal or metal alloy plating onto the activated copper surface. The metal or metal
alloy deposited in step iv. of the process according to the present invention is preferably
selected from the group consisting of nickel, Ni-P alloys, Ni-B alloys, Ni-B-P alloys,
Ni-Mo-P alloys, Ni-Mo-B alloys, Ni-Mo-B-P alloys, Ni-W-P alloys, Ni-W-B alloys, Ni-W-B-P
alloys, Ni-Mo-W-P alloys, Ni-Mo-W-B alloys, Ni-Mo-W-B-P alloys, cobalt, Co-P alloys,
Co-B alloys, Co-B-P alloys, Co-Mo-P alloys, Co-W-P alloys, Co-W-B alloys, Co-W-B-P
alloys, Co-Mo-W-P alloys, Co-Mo-W-B alloys and Co-Mo-W-B-P alloys, palladium, Pd-B
alloys, Pd-P alloys and Pd-B-P alloys.
[0060] More preferably, the metal or metal alloy is selected from the group consisting of
nickel, Ni-P alloys, Ni-B alloys, palladium, Pd-B alloys and Pd-P alloys.
[0061] Suitable plating bath compositions and plating parameters such as bath temperature
during plating and plating time for depositing the above mentioned metals and metal
alloys are known in the art and can be utilized for step iv. of the process according
to the present invention.
[0062] Extraneous plating of a metal and metal alloy is suppressed by the process according
to the present invention. Furthermore, there is no risk of undesired metal and metal
alloy skip plating as re-dissolution of the noble metal activator from the copper
surface does not occur when contacting the substrate comprising a copper patterned
surface with the aqueous pre-treatment composition in the process according to the
present invention. Skip plating means a lack of electroless metal or metal alloy plating
on copper surface areas where the copper is not sufficiently activated.
Examples
[0063] The invention will now be illustrated by reference to the following non-limiting
examples.
General procedure:
[0064] PCB substrates comprising copper contact pads and a solder mask layer around said
copper pads were used throughout all examples. A gap of approximately 10 to 20 µm
between the copper contact pads and the solder mask layer exposing the bare dielectric
substrate material (reinforced epoxy resin material) was present on all said PCB substrates.
[0065] The PCB substrates were contacted with a noble metal activator composition comprising
50 mg/l Pd
2+ ions and 90 g/l sulfuric acid at a temperature of 23 °C for 3 min (noble metal activation,
step ii.).
[0066] Next, the PCB substrates with activated copper contact pads where contacted with
various aqueous pre-treatment compositions (step iii.) followed by depositing a nickel-phosphorous
alloy layer by electroless plating (Examples 1 to 7) onto the activated copper contact
pads (Aurotech® HP, a product of Atotech Deutschland GmbH, thickness of the Ni-P alloy
layer = 5 to 6.5 µm). In example 8, a palladium layer was deposited in step iii. by
electroless plating instead of a nickel-phosphorous alloy layer. The palladium layer
was deposited from an electroless palladium plating bath according to
US 5,882,736.
[0067] The PCB substrates were then investigated with a scanning electron microscope (SEM),
particularly the gap between the copper contact pads and the solder mask layer in
order to determine if undesired extraneous nickel-phosphorous alloy plating or undesired
skip plating on top of the copper contact pads had occurred.
Example 1 (comparative)
[0068] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
60 g/l sulfuric acid and 5 g/l chloride ions at 20 °C for 5 min (step iii. of the
present invention) and then rinsed with water. The substrate surface was investigated
with SEM after electroless nickel deposition.
[0069] Undesired extraneous plating
3 occurred around the nickel-phosphorous alloy coated copper contact pads
2 on the substrate
1 (Fig. 1).
Example 2 (comparative)
[0070] The PCB substrate was rinsed with a pre-treatment solution consisting of 20 g/l sulfuric
acid, 5 g/l chloride ions and 100 mg/l bis-(sodium-sulfopropyl)-disulfide at 45 °C
for 3 min (step iii.) and then rinsed with water. The PCB substrate surface was investigated
with SEM after electroless nickel plating.
[0071] Undesired extraneous plating
3 occurred on the PCB substrate
1 around the nickel-phosphorous alloy coated copper contact pads
2 (Fig. 1).
Example 3 (comparative)
[0072] The PCB substrate was rinsed with a pre-treatment solution consisting of 20 g/l sulfuric
acid and 10 mg/l thiocyanate at 45 °C for 3 min (step iii.) and then rinsed with water.
The PCB substrate surface was investigated with SEM after electroless nickel plating.
[0073] Undesired skip plating
4 occurred on the PCB substrate
1 on top of the copper contact pads, i.e. an undesired, disrupted nickel-phosphorous
alloy layer
2 on top of the copper contact pads was obtained (Fig. 2).
Example 4 (comparative)
[0074] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
15 g/l sulfuric acid and 10 mg/l thiourea at 45 °C for 3 min (step iii.) and then
rinsed with water. Accordingly, the aqueous pre-treatment solution utilized was free
of halogenide ions. The substrate surface was investigated with a SEM after electroless
nickel deposition.
[0075] Undesired skip plating
4 was observed, hence the nickel-phosphorous alloy layer on top of the copper contact
pads
2 was disrupted (Fig. 2).
Example 5 (comparative)
[0076] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
20 g/l sulfuric acid, 3 g/l chloride ions and 250 mg/l thiourea at 45 °C for 3 min
(step iii.) and then rinsed with water. Accordingly, the concentration thiourea in
the aqueous pre-treatment solution utilized was too high. The substrate surface was
investigated with a SEM after electroless nickel deposition.
[0077] Undesired skip plating
4 was observed, hence the nickel-phosphorous alloy layer on top of the copper contact
pads
2 was disrupted (Fig. 2).
Example 6
[0078] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
15 g/l sulfuric acid, 10 g/l chloride ions and 10 mg/l thiourea at 45 °C for 3 min
(step iii.) and then rinsed with water. The substrate surface was investigated with
a SEM after electroless nickel deposition.
[0079] Neither extraneous plating
3 nor skip plating
4 of the nickel-phosphorous alloy layer was observed (Fig. 3).
Example 7
[0080] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
20 g/l sulfuric acid, 3 g/l chloride ions and 50 mg/l N,N,N',N'-tetramethylthiourea
at 45 °C for 3 min (step iii.) and then rinsed with water. The substrate surface was
investigated with a SEM after electroless nickel deposition.
[0081] Neither extraneous plating
3 nor skip plating
4 of the nickel-phosphorous alloy layer was observed (Fig. 3).
Example 8
[0082] The PCB substrate was rinsed with an aqueous pre-treatment solution consisting of
20 g/l sulfuric acid, 3 g/l chloride ions and 50 mg/l N,N,N',N'-tetramethylthiourea
at 45 °C for 3 min (step iii.) and then rinsed with water. The substrate surface was
investigated with a SEM after electroless palladium deposition.
[0083] Neither extraneous plating
3 nor skip plating
4 of the palladium layer was observed (Fig. 3).
Example 9 (comparative)
[0084] The PCB substrate was rinsed with an aqueous alkaline (pH = 9) pre-treatment solution
consisting of 2.2 g/l sodium chloride ions and 50 mg/l N,N-dimethylthiourea at 45
°C for 3 min (step iii.) and then rinsed with water. The substrate surface was investigated
with a SEM after electroless palladium deposition.
[0085] Undesired skip plating
4 was observed, hence the nickel-phosphorous alloy layer on top of the copper contact
pads
2 was disrupted (Fig. 2).
Example 10 (comparative)
[0086] The PCB substrate was rinsed with an aqueous alkaline (pH = 9) pre-treatment solution
consisting of 2.2 g/l sodium chloride ions and 50 mg/l thiourea at 45 °C for 3 min
(step iii.) and then rinsed with water. The substrate surface was investigated with
a SEM after electroless palladium deposition.
[0087] Undesired skip plating
4 was observed, hence the nickel-phosphorous alloy layer on top of the copper contact
pads
2 was disrupted (Fig. 2).
1. A process for electroless (autocatalytic) metal and metal alloy plating comprising,
in this order, the steps of
i. providing a substrate comprising a copper patterned surface,
ii. contacting said substrate with a noble metal ion containing composition,
iii. contacting said substrate with an aqueous pre-treatment composition comprising
an acid, a source for halide ions and an additive selected from the group consisting
of
thiourea, compounds according to formula (1)

wherein R1, R2 and R3 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl, and R4 is selected from the group consisting of H, substituted C1 to C6 alkyl, unsubstituted C1 to C6 alkyl and -N(R7)-C(S)-NR5R6 wherein R5, R6 and R7 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl,
compounds according to formula (2)
R8-C(S)-NR9R10 (2)
wherein R8 is selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl and R9 and R10 are independently selected from the group consisting of H, substituted C1 to C6 alkyl and unsubstituted C1 to C6 alkyl
and polymers comprising thiourea groups,
wherein the concentration of said additive ranges from 1 to 200 mg/l and wherein the
pH value of the aqueous pre-treatment composition is ≤ 3 and
iv. depositing a metal or metal alloy layer onto said substrate by electroless (autocatalytic)
plating utilizing a plating bath.
2. The process according to claim 1 wherein the noble metal ion is palladium.
3. The process according to any of the foregoing claims wherein the acid is selected
from the group consisting of inorganic acids, carboxylic acids, sulfonic acids and
mixtures thereof.
4. The process according to any of the foregoing claims wherein the source for halide
ions is selected from the group consisting of lithium chloride, sodium chloride, potassium
chloride and ammonium chloride.
5. The process according to any of the foregoing claims wherein the concentration of
halide ions in the aqueous pre-treatment composition ranges from 0.01 to 100 g/l.
6. The process according to any of the foregoing claims, wherein the concentration of
the additive in the aqueous pre-treatment composition ranges from 5 to 150 mg/l.
7. The process according to any of the foregoing claims wherein R1, R2 and R3 are independently selected from the group consisting of H, methyl, ethyl, propyl
and butyl, R4 is selected from the group consisting of H, methyl, ethyl, propyl, butyl and R8 is selected from the group consisting of H, methyl, ethyl, propyl and butyl and R9 and R10 are independently selected from the group consisting of H, methyl, ethyl, propyl
and butyl.
8. The process according to any of the foregoing claims wherein the additive in the aqueous
pre-treatment composition is selected from compounds according to formula (1) wherein
the residue pairs R1 / R3 and R2 / R4 independently have the same substituent selected from the group consisting of H,
methyl, ethyl, propyl and butyl.
9. The process according to any of the foregoing claims wherein the additive in the aqueous
pre-treatment composition is selected from compounds according to formula (1) wherein
residues R1, R2, R3 and R4 are all the same and selected from the group consisting of H, methyl, ethyl, propyl
and butyl.
10. The process according to any of the foregoing claims wherein the aqueous pre-treatment
composition further comprises a complexing agent selected from the group consisting
of aminocarboxylic acids, hydroxycarboxylic acids and mixtures thereof.
11. The process according to any of the foregoing claims wherein the aqueous pre-treatment
composition is held during step iii. at a temperature in the range of 20 to 80 °C.
12. The process according to any of the foregoing claims wherein the substrate comprising
a copper patterned surface is contacted with the aqueous pre-treatment composition
in step iii. for 10 s to 20 min.
13. The process according to any of the foregoing claims wherein the metal or metal alloy
deposited in step iv. is selected from the group consisting of nickel, Ni-P alloys,
Ni-B alloys, Ni-B-P alloys, Ni-Mo-P alloys, Ni-Mo-B alloys, Ni-Mo-B-P alloys, Ni-W-P
alloys, Ni-W-B alloys, Ni-W-B-P alloys, Ni-Mo-W-P alloys, Ni-Mo-W-B alloys, Ni-Mo-W-B-P
alloys, cobalt, Co-P alloys, Co-B alloys, Co-B-P alloys, Co-Mo-P alloys, Co-W-P alloys,
CoW-B alloys, Co-W-B-P alloys, Co-Mo-W-P alloys, Co-Mo-W-B alloys and Co-Mo-W-B-P
alloys, palladium, Pd-B alloys, Pd-P alloys and Pd-B-P alloys.
1. Verfahren zur stromlosen (autokatalytischen) Metall- und Metalllegierungsplattierung,
umfassend die Schritte in dieser Reihenfolge:
i. Bereitstellen eines Substrats, das eine kupferstrukturierte Oberfläche umfasst,
ii. Inkontaktbringen des Substrats mit einer Edelmetallionen-enthaltenden Zusammensetzung,
iii. Inkontaktbringen des Substrats mit einer wässrigen Vorbehandlungszusammensetzung
umfassend eine Säure, eine Quelle von Halogenidionen und einen Zusatzstoff ausgewählt
aus der Gruppe bestehend aus Thioharnstoff, Verbindungen gemäß Formel (1),

wobei R1, R2 und R3 unabhängig ausgewählt sind aus der Gruppe bestehend aus H, substituiertem C1- bis C6-Alkyl und unsubstituiertem C1- bis C6-Alkyl, und R4 ausgewählt ist aus der Gruppe bestehend aus H, substituiertem C1- bis C6-Alkyl, unsubstituiertem C1- bis C6-Alkyl und -N(R7)-C(S)-NR5R6, wobei R5, R6 und R7 unabhängig ausgewählt sind aus der Gruppe bestehend aus H, substituiertem C1- bis C6-Alkyl und unsubstituiertem C1- bis C6-Alkyl, Verbindungen gemäß Formel (2),
R8-C(S)-NR9R10 (2)
wobei R8 ausgewählt ist aus der Gruppe bestehend aus H, substituiertem C1- bis C6-Alkyl und unsubstituiertem C1- bis C6-Alkyl, und R9 und R10 unabhängig ausgewählt sind aus der Gruppe bestehend aus H, substituiertem C1-bis C6-Alkyl und unsubstituiertem C1- bis C6-Alkyl,
und Polymeren, die Thioharnstoffgruppen umfassen,
wobei die Konzentration des Zusatzstoffs in dem Bereich von 1 bis 200 mg/l liegt und
wobei der pH-Wert der wässrigen Vorbehandlungszusammensetzung ≤ 3 beträgt, und
iv. Abscheiden einer Metall- oder Metalllegierungsschicht auf das Substrat durch stromlose
(autokatalytische) Plattierung unter Verwendung eines Plattierungsbads.
2. Verfahren gemäß Anspruch 1, wobei das Edelmetallion Palladium ist.
3. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Säure ausgewählt ist aus
der Gruppe bestehend aus anorganischen Säuren, Carbonsäuren, Sulfonsäuren und Gemischen
davon.
4. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Quelle von Halogenidionen
ausgewählt ist aus der Gruppe bestehend aus Lithiumchlorid, Natriumchlorid, Kaliumchlorid
und Ammoniumchlorid.
5. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Konzentration von Halogenidionen
in der wässrigen Vorbehandlungszusammensetzung in dem Bereich von 0,01 bis 100 g/l
liegt.
6. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Konzentration des Zusatzstoffs
in der wässrigen Vorbehandlungszusammensetzung in dem Bereich von 5 bis 150 mg/l liegt.
7. Verfahren gemäß einem der vorstehenden Ansprüche, wobei R1, R2 und R3 unabhängig ausgewählt sind aus der Gruppe bestehend aus H, Methyl, Ethyl, Propyl
und Butyl, R4 ausgewählt ist aus der Gruppe bestehend aus H, Methyl, Ethyl, Propyl, Butyl, und
R8 ausgewählt ist aus der Gruppe bestehend aus H, Methyl, Ethyl, Propyl und Butyl, und
R9 und R10 unabhängig ausgewählt sind aus der Gruppe bestehend aus H, Methyl, Ethyl, Propyl
und Butyl.
8. Verfahren gemäß einem der vorstehenden Ansprüche, wobei der Zusatzstoff in der wässrigen
Vorbehandlungszusammensetzung ausgewählt ist aus Verbindungen gemäß Formel (1), wobei
die Paare von Resten R1/R3 und R2/R4 unabhängig den gleichen Substituenten ausgewählt aus der Gruppe bestehend aus H,
Methyl, Ethyl, Propyl und Butyl aufweisen.
9. Verfahren gemäß einem der vorstehenden Ansprüche, wobei der Zusatzstoff in der wässrigen
Vorbehandlungszusammensetzung ausgewählt ist aus Verbindungen gemäß Formel (1), wobei
die Reste R1, R2, R3 und R4 alle gleich sind und ausgewählt sind aus der Gruppe bestehend aus H, Methyl, Ethyl,
Propyl und Butyl.
10. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die wässrige Vorbehandlungszusammensetzung
ferner einen Komplexbildner ausgewählt aus der Gruppe bestehend aus Aminocarbonsäuren,
Hydroxycarbonsäuren und Gemischen davon umfasst.
11. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die wässrige Vorbehandlungszusammensetzung
bei Schritt iii. bei einer Temperatur in dem Bereich von 20 bis 80 °C gehalten wird.
12. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das Substrat, das eine kupferstrukturierte
Oberfläche aufweist, bei Schritt iii. 10 s bis 20 min mit der wässrigen Vorbehandlungszusammensetzung
in Kontakt gebracht wird.
13. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das/die bei Schritt iv. abgeschiedene
Metall oder Metalllegierung ausgewählt ist aus der Gruppe bestehend aus Nickel, Ni-P-Legierungen,
Ni-B-Legierungen, Ni-B-P-Legierungen, Ni-Mo-P-Legierungen, Ni-Mo-B-Legierungen, Ni-Mo-B-P-Legierungen,
Ni-W-P-Legierungen, Ni-W-B-Legierungen, Ni-W-B-P-Legierungen, Ni-Mo-W-P-Legierungen,
Ni-Mo-W-B-Legierungen, Ni-Mo-W-B-P-Legierungen, Cobalt, Co-P-Legierungen, Co-B-Legierungen,
Co-B-P-Legierungen, Co-Mo-P-Legierungen, Co-W-P-Legierungen, Co-W-B-Legierungen, Co-W-B-P-Legierungen,
Co-Mo-W-P-Legierungen, Co-Mo-W-B-Legierungen und Co-Mo-W-B-P-Legierungen, Palladium,
Pd-B-Legierungen, Pd-P-Legierungen und Pd-B-P-Legierungen.
1. Procédé pour le placage anélectrolytique (autocatalytique) de métal et d'alliage métallique
comprenant, dans cet ordre, les étapes consistant à
i. fournir un substrat comprenant une surface à motifs en cuivre,
ii. mettre en contact ledit substrat avec une composition comprenant des ions de métal
noble,
iii. mettre en contact ledit substrat avec une composition aqueuse de prétraitement
comprenant un acide, une source pour des ions halogénure et un additif choisi dans
le groupe constitué par
la thiourée,
les composés répondant à la formule (1)

dans laquelle R1, R2 et R3 sont indépendamment choisis dans le groupe constitué par H, les groupes alkyle en
C1 à C6 substitués et les groupes alkyle en C1 à C6 non substitués et R4 est choisi dans le groupe constitué par H, les groupes alkyle en C1 à C6 substitués, les groupes alkyle en C1 à C6 non substitués et -N(R7)-C(S)-NR5R6, R5, R6 et R7 étant indépendamment choisis dans le groupe constitué par H, les groupes alkyle en
C1 à C6 substitués et les groupes alkyle en C1 à C6 non substitués,
les composés répondant à la formule (2)
R8-C(S)-NR9R10 (2)
dans laquelle R8 est choisi dans le groupe constitué par H, les groupes alkyle en C1 à C6 substitués et les groupes alkyle en C1 à C6 non substitués et R9 et R10 sont indépendamment choisis dans le groupe constitué par H, les groupes alkyle en
C1 à C6 substitués et les groupes alkyle en C1 à C6 non substitués
et les polymères comprenant des groupes thiourée, la concentration dudit additif allant
de 1 à 200 mg/l et la valeur de pH de la composition aqueuse de prétraitement étant
≤ 3 et
iv. déposer une couche de métal ou d'alliage métallique sur ledit substrat par placage
anélectrolytique (autocatalytique) à l'aide d'un bain de placage.
2. Procédé selon la revendication 1 dans lequel l'ion de métal noble est le palladium.
3. Procédé selon l'une quelconque des revendications précédentes dans lequel l'acide
est choisi dans le groupe constitué par les acides inorganiques, les acides carboxyliques,
les acides sulfoniques et les mélanges de ceux-ci.
4. Procédé selon l'une quelconque des revendications précédentes dans lequel la source
pour des ions halogénure est choisie dans le groupe constitué par le chlorure de lithium,
le chlorure de sodium, le chlorure de potassium et le chlorure d'ammonium.
5. Procédé selon l'une quelconque des revendications précédentes dans lequel la concentration
d'ions halogénure dans la composition aqueuse de prétraitement va de 0,01 à 100 g/l.
6. Procédé selon l'une quelconque des revendications précédentes dans lequel la concentration
de l'additif dans la composition aqueuse de prétraitement va de 5 à 150 mg/l.
7. Procédé selon l'une quelconque des revendications précédentes dans lequel R1, R2 et R3 sont indépendamment choisis dans le groupe constitué par H et les groupes méthyle,
éthyle, propyle et butyle, R4 est choisi dans le groupe constitué par H et les groupes méthyle, éthyle, propyle,
butyle et R8 est choisi dans le groupe constitué par H et les groupes méthyle, éthyle, propyle
et butyle et R9 et R10 sont indépendamment choisis dans le groupe constitué par H et les groupes méthyle,
éthyle, propyle et butyle.
8. Procédé selon l'une quelconque des revendications précédentes dans lequel l'additif
dans la composition aqueuse de prétraitement est choisi parmi les composés répondant
à la formule (1) dans laquelle les paires de résidus R1/R3 et R2/R4 ont indépendamment le même substituant choisi dans le groupe constitué par H et les
groupes méthyle, éthyle, propyle et butyle.
9. Procédé selon l'une quelconque des revendications précédentes dans lequel l'additif
dans la composition aqueuse de prétraitement est choisi parmi les composés répondant
à la formule (1) dans laquelle les résidus R1, R2, R3 et R4 sont tous identiques et choisis dans le groupe constitué par H et les groupes méthyle,
éthyle, propyle et butyle.
10. Procédé selon l'une quelconque des revendications précédentes dans lequel la composition
aqueuse de prétraitement comprend en outre un agent complexant choisi dans le groupe
constitué par les acides aminocarboxyliques, les acides hydroxycarboxyliques et les
mélanges de ceux-ci.
11. Procédé selon l'une quelconque des revendications précédentes dans lequel la composition
aqueuse de prétraitement est maintenue pendant l'étape iii. à une température dans
la plage de 20 à 80 °C.
12. Procédé selon l'une quelconque des revendications précédentes dans lequel le substrat
comprenant une surface à motifs en cuivre est mis en contact avec la composition aqueuse
de prétraitement dans l'étape iii. pendant 10 s à 20 min.
13. Procédé selon l'une quelconque des revendications précédentes dans lequel le métal
ou l'alliage métallique déposé dans l'étape iv. est choisi dans le groupe constitué
par le nickel, les alliages de Ni-P, les alliages de Ni-B, les alliages de Ni-B-P,
les alliages de Ni-Mo-P, les alliages de Ni-Mo-B, les alliages de Ni-Mo-B-P, les alliages
de Ni-W-P, les alliages de Ni-W-B, les alliages de Ni-W-B-P, les alliages de Ni-Mo-W-P,
les alliages de Ni-Mo-W-B, les alliages de Ni-Mo-W-B-P, le cobalt, les alliages de
Co-P, les alliages de Co-B, les alliages de Co-B-P, les alliages de Co-Mo-P, les alliages
de Co-W-P, les alliages de Co-W-B, les alliages de Co-W-B-P, les alliages de Co-Mo-W-P,
les alliages de Co-Mo-W-B et les alliages de Co-Mo-W-B-P, le palladium, les alliages
de Pd-B, les alliages de Pd-P et les alliages de Pd-B-P.