EP 3 128 269 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

08.02.2017 Bulletin 2017/06

(51) Int Cl.:

F25D 11/02 (2006.01) F25B 41/04 (2006.01)

F25B 5/02 (2006.01)

(21) Application number: 16182816.5

(22) Date of filing: 04.08.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

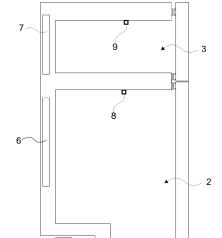
BA ME

Designated Validation States:

MA MD

(30) Priority: 07.08.2015 TR 201509811

(71) Applicant: Arçelik Anonim Sirketi 34950 Istanbul (TR)


(72) Inventors:

- KAYA, UNSAL 34950 Istanbul (TR)
- SAHNALI, KAAN 34950 Istanbul (TR)

A COOLING DEVICE WITH IMPROVED REFRIGERATION PERFORMANCE (54)

(57)The present invention relates to a cooling device (1) comprising a fresh food compartment (2) wherein foodstuffs are placed to be cooled; a freezing compartment (3) kept at lower temperatures than the fresh food compartment (2) and wherein the foodstuffs are placed to be frozen; a compressor (4) that provides the compression of the refrigerant fluid; a condenser (5) that enables the refrigerant fluid leaving the compressor (4) to be condensed and changed to liquid phase; at least one fresh food compartment evaporator (6) which provides the cooling of the fresh food compartment (2) by enabling heat transfer between the refrigerant fluid and the environment; at least one freezing compartment evaporator (7) which provides the cooling of the freezing compartment (3) by enabling heat transfer between the refrigerant fluid and the environment; a first temperature sensor (8) which measures the temperature of the fresh food compartment (2) for the control of the cooling process, and a second temperature sensor (9) which measures the temperature of the freezing compartment (3) for the control of the freezing process.

Figure 1

EP 3 128 269 A1

10

15

20

25

30

35

40

45

50

Description

[0001] The present invention relates to a cooling device the refrigeration performance of which is improved by controlling the refrigerant circulation.

[0002] In the cooling devices, circulation of the refrigeration cycle fluid used through the units composed of the compressor, the condenser, the capillary tubes and the evaporator makes up the refrigeration cycle. Especially in the cooling devices composed of fresh food and freezing compartments and comprising evaporators connected in parallel in both compartments thereof, the refrigerant fluid is directed by means of valve to one of the compartments. The refrigerant fluid is directed to the evaporator in the compartment where the thermal load has increased and the compartment is cooled by means of the evaporator and the thermal load built up in the compartment is discharged by means of the condenser to the outer environment. After leaving the evaporator in the respective compartment, the refrigerant fluid recirculates the entire refrigeration cycle so as to be cooled again and then directed to the other compartment. The thermal loads occurring in the compartments differ depending on the design and use of the cooling device, in which case the refrigeration cycle cannot meet the thermal load occurring in the compartments efficiently.

[0003] In the state of the art United States Patent Application No. US2010095691A1, a cooling device comprising parallel connected evaporators in the cooling and freezing compartments thereof is disclosed.

[0004] The aim of the present invention is to realize a cooling device of which the refrigeration performance is improved by controlling the condenser capacity according to the temperature value measured inside the compartment.

[0005] The cooling device realized in order to attain the aim of the present invention explicated in the first claim and the respective claims thereof comprises a fresh food compartment; a freezing compartment; a compressor enabling the refrigeration cycle to be carried out; a condenser enabling the refrigerant fluid leaving the compressor as superheated steam to be condensed and to be changed to liquid phase; at least one fresh food compartment evaporator that enables the fresh food compartment to be cooled; at least one freezing compartment evaporator that enables the freezing compartment to be cooled; a first temperature sensor that measures the temperature inside the fresh food compartment; a second temperature sensor that measures the temperature inside the freezing compartment; a first valve located at the outlet of the condenser, and a control unit that enables the refrigerant fluid leaving the condenser to be directed through the first valve to the fresh food compartment evaporator and/or the freezing compartment evaporator by analyzing the data from the first temperature sensor and the second temperature sensor. The condenser is preferably a mini-channel heat exchanger.

[0006] The cooling device (1) of the present invention

comprises

- the condenser comprising a first condenser line extending to the first valve and a second condenser line to which the refrigerant fluid from the first valve is transmitted, and
 - the control unit that enables the refrigerant fluid to be directed from the first valve to the fresh food compartment evaporator, the freezing compartment evaporator or the second condenser line depending on the data received from the first temperature sensor and the second temperature sensor. The control unit evaluates the data from the first temperature sensor and the second temperature sensor to determine the thermal load and if the thermal load is high, directs the refrigerant fluid to the second condenser line. If the thermal load in the compartments is low, the control unit detects the compartment where the thermal load has increased and directs the refrigerating fluid to the evaporator of the respective compartment without circulating the same through the second condenser line. Thus, the refrigerant fluid is enabled to be passed through the first condenser line only and directed to the compartments. Thus, the refrigeration cycle is shortened so that the refrigerant fluid is transmitted to the evaporators faster. Thus, the performance of the refrigeration cycle is improved. Moreover, in case that the refrigerant fluid is passed through the first condenser line only, the amount of load occurring in the compressor is reduced.

[0007] In an embodiment of the present invention, the control unit

- compares the temperature of the fresh food compartment detected by the first temperature sensor with the fresh food compartment limit temperature predetermined by the producer, and
- compares the temperature of the freezing compartment detected by the second temperature sensor with the freezing compartment limit temperature predetermined by the producer. If the temperature measured inside the compartments is greater than the limit temperature of the respective compartment, the control unit enables transmission of the refrigerant fluid to the evaporator of the respective compartment to cool down the respective compartment. Thus, the compartment with increased thermal load can be detected by evaluating the temperatures of the compartments, and by providing the cooling of the detected compartment, the foodstuffs in the relevant compartment are prevented from spoiling.

[0008] In another embodiment of the present invention, the control unit

- compares the temperature of the fresh food com-

25

30

35

40

45

partment detected by the first temperature sensor with the critical temperature of the fresh food compartment predetermined by the producer, and

compares the temperature of the freezing compartment detected by the second temperature sensor with the critical temperature of the freezing compartment as predetermined by the producer. When the thermal load occurring inside the fresh food compartment and the freezing compartment has increased excessively, inner temperatures of the compartments exceed the compartment limit temperatures, reaching the compartment critical temperatures higher than the limit temperatures at which point the food stuff inside the compartment begin to spoil. In this case, the control unit enables the refrigerant fluid leaving the first condenser line to be passed through the second condenser line as well. When the refrigerant fluid is passed through the second condenser line, the amount of heat discharged to the outer environment increases and thus excessive heat load occurred in the fresh food compartment or the freezing compartment is discharged to the outer environment.

[0009] In another embodiment of the present invention, the cooling device comprises a second valve at the outlet of the second condenser line. The second valve is preferably a three-way solenoid valve.

[0010] In another embodiment of the present invention, the control unit enables the refrigerant fluid to be directed from the second valve to the fresh food compartment evaporator or the freezing compartment evaporator depending on the data received from the first temperature sensor and the second temperature sensor. The control unit checks the temperatures of the fresh food department and the freezing department and if the temperature of the fresh food compartment is greater than the critical temperature of the fresh food compartment, the control unit enables the refrigerant fluid to be transmitted to the fresh food compartment evaporator and if the temperature of the freezing compartment is greater than the critical temperature of the freezing compartment, the control unit enables the refrigerant fluid to be transmitted to the freezing compartment evaporator. Thereby, it is ensured that the compartment where the thermal load is high, in which the food stuff run the risk of spoiling, is cooled in the first place efficiently.

[0011] In another embodiment of the present invention, the control unit enables the compressor to be stopped if the temperature of the fresh food compartment is lower than the limit temperature of the fresh food temperature and if the temperature of the freezing compartment is lower than the limit temperature of the freezing compartment, so that transmission of the refrigerant fluid is terminated. In case the fresh food compartment and the freezing compartment are sufficiently cooled, the control unit prevents unnecessary energy consumption by terminating the refrigeration cycle.

[0012] By means of the present invention, a cooling device is realized, wherein the refrigerant fluid is passed through only some part of the condenser and sent to the respective compartment when the refrigeration need in the compartments is low and thus the refrigeration need of the compartments is met faster. The temperatures inside the fresh food compartment and the freezing compartment are detected to determine the refrigeration need and if the refrigeration need in the compartments is low, the refrigerant fluid is passed only through the first condenser line of the condenser and directed to the fresh food compartment evaporator or the freezing compartment evaporator and if the refrigeration need in the compartments is high, the refrigerant fluid is passed through both the first condenser line and the second condenser line of the condenser and directed to the fresh food compartment evaporator or the freezing compartment evaporator.

[0013] The cooling device realized in order to attain the aim of the present invention is illustrated in the attached figures, where:

Figure 1 - is the schematic view of a cooling device. Figure 2 - is the schematic view of a refrigeration cycle.

[0014] The elements illustrated in the figures are numbered as follows:

- 1. Cooling device
- 2. Fresh food compartment
- 3. Freezing compartment
- 4. Compressor
- 5. Condenser
- 6. Fresh food compartment evaporator
- 7. Freezing compartment evaporator
- 8. First temperature sensor
- 9. Second temperature sensor
- 10. First valve
- 11. Control unit
- 12. First condenser line
- 13. Second condenser line
- 14. Second valve

[0015] The cooling device (1) comprises a fresh food compartment (2) wherein foodstuffs are placed to be cooled; a freezing compartment (3) kept at lower temperatures than the fresh food compartment (2) and wherein the foodstuffs are placed to be frozen; a compressor (4) that provides the compression of the refrigerant fluid; a condenser (5) that enables the refrigerant fluid leaving the compressor (4) to be condensed and changed to liquid phase; at least one fresh food compartment evaporator (6) which provides the cooling of the fresh food compartment (2) by enabling heat transfer between the refrigerant fluid and the environment; at least one freezing compartment evaporator (7) which provides the cooling of the freezing compartment (3) by enabling

55

25

35

40

45

heat transfer between the refrigerant fluid and the environment; a first temperature sensor (8) which measures the temperature of the fresh food compartment (2) for the control of the cooling process; a second temperature sensor (9) which measures the temperature of the freezing compartment (3) for the control of the freezing process; a first valve (10) at the outlet of the condenser (5), and a control unit (11) which evaluates the data received from the first temperature sensor (8) and the second temperature sensor (9) and enables the refrigerant fluid leaving the condenser (5) to pass through the first valve (10) and to be directed to the fresh food compartment evaporator (6) or the freezing compartment evaporator (7).

- the condenser (5) comprising a first condenser line (12) extending to the first valve (10) and a second condenser line (13) to which the refrigerant fluid leaving the first valve (10) is transmitted, and
- the control unit (11) that enables the refrigerant fluid to be directed from the first valve (10) to the fresh food compartment evaporator (6), to the freezing compartment evaporator (7) or to the second condenser line (13) according to the data received from the first temperature sensor (8) and the second temperature sensor (9) (Figure 1 and Figure 2).

[0017] The control unit (11) evaluates the data received from the first temperature sensor (8) and the second temperature sensor (9) and determines the compartment where the thermal load has increased and enables the refrigerant fluid leaving the first condenser line (12) to pass through the first valve (10) so as to be directed to the determined compartment and to be directed to the fresh food compartment evaporator (6) and/or the freezing compartment evaporator (7). According to the thermal load in the fresh food compartment (2) and the freezing compartment (3), the refrigerant fluid is passed through both the first condenser line (12) and the second condenser line (13) or through only the first condenser line (12) and transmitted to the fresh food compartment (2) and/or the freezing compartment (3). Thus, efficient use of the condenser (5) depending on the thermal load occurred in the fresh food compartment (2) or the freezing compartment (3) is ensured.

[0018] In an embodiment of the present invention, the control unit (11)

- compares the temperature (T_{FF}) of the fresh food compartment (2) detected by the first temperature sensor (8) with the limit temperature (T_{EF}) of the fresh food compartment (2) predetermined by the producer, and
- compares the temperature (T_{FRZ}) of the freezing compartment (3) detected by the second temperature sensor (9) with the limit temperature (T_{FRZlim}) of the freezing compartment (3) predetermined by the producer. If the temperature (T_{FF}) of the fresh

food compartment (2) is greater than the limit temperature (T_{FFlim}) of the fresh food comportment (2), the control unit (11) decides that the fresh food compartment (2) needs to be cooled and enables the refrigerant fluid to be transmitted to the fresh food compartment evaporator (6) so that the fresh food compartment (2) is cooled. If the temperature (T_{FRZ}) of the freezing compartment (3) is greater than the limit temperature (T_{FRZlim}) of the freezing compartment (3), the control unit (11) decides that the freezing compartment (3) needs to be cooled and enables the refrigerant fluid to be transmitted to the freezing compartment evaporator (7) so that the freezing compartment (3) is cooled.

[0019] In another embodiment of the present invention, the control unit (11)

- compares the temperature (T_{FF}) of the fresh food compartment (2) detected by the first temperature sensor (8) with the critical temperature (T_{FFcr}) of the fresh food compartment (2) predetermined by the producer, and
- compares the temperature (TFRZ) of the freezing compartment (3) detected by the second temperature sensor (9) with the critical temperature (T_{FRZcr)} of the freezing compartment (3) predetermined by the producer. The critical temperatures (TFFcr. T_{FRZcr)} determined for the fresh food compartment (2) and the freezing compartment (3) are the limit temperatures where the foodstuff contained therein begin to spoil. If the temperature (T_{FF}) of the fresh food compartment (2) is greater than the critical temperature (T_{FFcr}) and/or the temperature (T_{FRZ}) of the freezing compartment (3) is greater than the critical temperature (TFRZcr) of the freezing compartment, the control unit (11) detects that the thermal load of the fresh food compartment (2) and/or the freezing compartment (3) has increased. In this case, the control unit (11) directs the refrigerant fluid from the first valve (10) to the second condenser line (13), and by passing the refrigerant fluid through the second condenser line (13), ensures that more thermal load is discharged to the outer environment. Thereby, the capacity of the condenser (5) is enabled to be increased so that the thermal load occurring in the fresh food compartment (2) or the freezing compartment (3) is discharged to the outer environment.
- [0020] In another embodiment of the present invention, the cooling device (1) comprises a second valve (14) at the outlet of the second condenser line (13). The second valve (14) has one inlet connected to the second condenser line (13) and at least two outlets connected to the fresh food compartment evaporator (6) and the freezing compartment evaporator (7). When the shutter at the outlet of the second valve (14) connected to the fresh food compartment evaporator (6) is in the open position, the

15

20

25

30

40

45

50

55

refrigerant fluid leaving the second condenser line (13) is transmitted to the fresh food compartment evaporator (6) and when the shutter at the outlet of the second valve (14) connected to the freezing compartment evaporator (7) is in the open position, the refrigerating fluid leaving the second condenser line (13) is transmitted to the freezing compartment evaporator (7).

[0021] In another embodiment of the present invention, the control unit (11) enables the refrigerant fluid to be directed from the second valve (14) to the fresh food compartment evaporator (7) or the freezing compartment evaporator (7) according to the data received from the first temperature sensor (8) and the second temperature sensor (9). If the temperature (T_{FF}) of the fresh food compartment (2) is greater than the critical temperature (T_{FFcr}) of the fresh food compartment (2), the control unit (11) detects that the fresh food compartment (2) needs to be cooled and ensures the transmission of the refrigerant fluid from the second valve (14) to the fresh food compartment evaporator (6) so that the fresh food compartment (2) is cooled. If the temperature (T_{FR7}) of the freezing compartment (3) is greater than the critical temperature (T_{FRZcr}) of the freezing compartment (3), the control unit (11) detects that the freezing compartment (3) needs to be cooled and ensures the transmission of the refrigerant fluid from the second valve (14) to the freezing compartment evaporator (7) so that the freezing compartment (3) is cooled.

[0022] In another embodiment of the present invention, if the temperature (T_{FF}) of the fresh food compartment (2) is lower than the limit temperature (T_{FFlim}) of the fresh food compartment (2) and the temperature (T_{FR7}) of the freezing compartment (3) is lower than the limit temperature (T_{FRZlim}) of the freezing compartment (3), the control unit (11) provides that the compressor (4) is stopped and transmission of the refrigerant fluid is ceased. In this case, the control unit (11) decides that the fresh food compartment (2) and the freezing compartment (3) are not required to be cooled, thus terminates the delivery of the refrigerant fluid to the fresh food compartment evaporator (6) and the freezing compartment evaporator (7). [0023] In the cooling device (1) of the present invention, depending on the value of the thermal load occurred in the fresh food compartment (2) and the freezing compartment (3), the refrigerant fluid is passed through only the first condenser line (12) of the condenser or through both of the first condenser line (12) and the second condenser line (13). Thereby, the capacity of the condenser (5) is enabled to be increased or decreased so as to meet the different thermal loads occurred.

Claims

1. A cooling device (1) comprising a fresh food compartment (2) wherein foodstuffs are placed to be cooled; a freezing compartment (3) kept at lower temperatures than the fresh food compartment (2)

and wherein the foodstuffs are placed to be frozen; a compressor (4) that provides the compression of the refrigerant fluid; a condenser (5) that enables the refrigerant fluid leaving the compressor (4) to be condensed and changed to liquid phase; at least one fresh food compartment evaporator (6) which provides the cooling of the fresh food compartment (2) by enabling heat transfer between the refrigerant fluid and the environment; at least one freezing compartment evaporator (7) which provides the cooling of the freezing compartment (3) by enabling heat transfer between the refrigerant fluid and the environment; a first temperature sensor (8) which measures the temperature of the fresh food compartment (2) for the control of the cooling process; a second temperature sensor (9) which measures the temperature of the freezing compartment (3) for the control of the freezing process; a first valve (10) at the outlet of the condenser (5), and a control unit (11) which evaluates the data received from the first temperature sensor (8) and the second temperature sensor (9) and enables the refrigerant fluid leaving the condenser (5) to pass through the first valve (10) and to be directed to the fresh food compartment evaporator (6) or the freezing compartment evaporator (7), characterized by

- the condenser (5) comprising a first condenser line (12) extending to the first valve (10) and a second condenser line (13) to which the refrigerant fluid leaving the first valve (10) is transmitted, and
- the control unit (11) that enables the refrigerant fluid to be directed from the first valve (10) to the fresh food compartment evaporator (6), to the freezing compartment evaporator (7) or to the second condenser line (13) according to the data received from the first temperature sensor (8) and the second temperature sensor (9).
- 2. A cooling device (1) as in Claim 1, characterized by the control unit (11)
 - that compares the temperature (T_{FF}) of the fresh food compartment (2) detected by the first temperature sensor (8) with the limit temperature (T_{FFlim}) of the fresh food compartment (2) predetermined by the producer,
 - that compares the temperature (T_{FRZ}) of the freezing compartment detected by the second temperature sensor (9) with the limit temperature (T_{FRZlim}) of the freezing compartment (3) predetermined by the producer,
 - that provides the transmission of the refrigerant fluid to the fresh food compartment evaporator (6) if the temperature (T_{FF}) of the fresh food compartment (2) is greater than the limit temperature (T_{FFlim}) of the fresh food compartment (2), and

- that provides the transmission of the refrigerant fluid to the freezing compartment evaporator (7) if the temperature (T_{FRZ}) of the freezing compartment (3) is greater than the limit temperature (T_{FRZlim}) of the freezing compartment.

3. A cooling device (1) as in Claim 1 or 2, **characterized by** the control unit (11)

- that compares the temperature (T_{FF}) of the fresh food compartment (2) detected by the first temperature sensor (8) with the critical temperature (T_{FFcr}) of the fresh food compartment (2) predetermined by the producer,
- that compares the temperature (T_{FRZ}) of the freezing compartment detected by the second temperature sensor (9) with the critical temperature ($T_{FRZcr)}$) of the freezing compartment (3) predetermined by the producer,
- that provides the transmission of the refrigerant fluid to the fresh food compartment evaporator (6) if the temperature (T_{FF}) of the fresh food compartment (2) is greater than the critical temperature (T_{FFcr}) of the fresh food compartment (2), and
- that provides the transmission of the refrigerant fluid to the freezing compartment evaporator (7) if the temperature (T_{FRZ}) of the freezing compartment (3) is greater than the critical temperature ($T_{FRZcr)}$ of the freezing compartment.
- **4.** A cooling device (1) as in any of the above claims, **characterized by** a second valve (14) located at the outlet of the second condenser line (13).
- 5. A cooling device (1) as in Claim 4, characterized by the control unit (11) that enables the refrigerant fluid to be directed from the second valve (14) to the fresh food compartment evaporator (6) or the freezing compartment evaporator (7) according to the data received from the first temperature sensor (8) and the second temperature sensor (9).
- **6.** A cooling device (1) as in any of the above claims, **characterized by** the control unit (11) that enables the compressor (4) to be stopped and the transmission of the refrigerant fluid to be terminated if the temperature (T_{FF}) of the fresh food compartment (2) is lower than the limit temperature (T_{FRIm}) of the fresh food compartment (2) and the temperature (T_{FRZ}) of the freezing compartment (3) is lower than the limit temperature (T_{FRZlim}) of the freezing compartment (3).

10

15

20

25

30

35

40

45

50

Figure 1

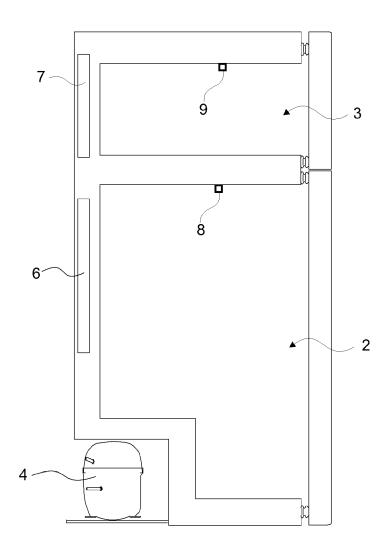
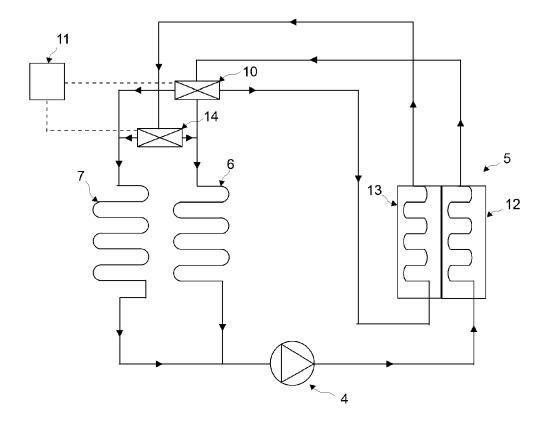



Figure 2

DOCUMENTS CONSIDERED TO BE RELEVANT

JP 2009 264629 A (TOSHIBA CORP; TOSHIBA CONSUMER ELECT HOLDING; TOSHIBA HOME APPLIANCES) 12 November 2009 (2009-11-12)

US 2015/121927 A1 (LEE SANGBONG [KR] ET

* paragraphs [0079], [0081], [0099];

WO 2014/023689 A1 (BSH BOSCH SIEMENS

Citation of document with indication, where appropriate,

of relevant passages

AL) 7 May 2015 (2015-05-07)

HAUSGERAETE [DE])
13 February 2014 (2014-02-13)
* figure 1 *

* figures 1,6 *

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone
Y : particularly relevant if combined with another
document of the same category

A : technological background
O : non-written disclosure
P : intermediate document

figure 1 *

Category

Υ

Α

EUROPEAN SEARCH REPORT

Application Number

EP 16 18 2816

CLASSIFICATION OF THE APPLICATION (IPC)

INV. F25D11/02 F25B5/02

F25B41/04

Relevant

1-6

1-6

2-5

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application

& : member of the same patent family, corresponding

L: document cited for other reasons

1	0		

5

15

20

25

30

35

40

45

50

55

1503 03.82

	А	WO 2008/056913 A2 ([KR]; LEE MOO YEON [KR]; PARK) 15 May * figures 7,8 *	(LG ELECTRONICS INC [KR]; LEE MYUNG RYUL 2008 (2008-05-15)	1,4	4		
	A	DE 10 2008 024325 A HAUSGERAETE [DE]) 26 November 2009 (2 * figure 5 *	A1 (BSH BOSCH SIEMENS 2009-11-26)	1		TECHNICAL FIELDS SEARCHED (IPC) F25D F25B B60H	
1							
04C01)	Place of search The Hague		Date of completion of the search 8 November 2016		Kul	jis, Bruno	

EP 3 128 269 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 18 2816

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-11-2016

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	JP 2009264629 A	12-11-2009	JP 5135045 B2 JP 2009264629 A	30-01-2013 12-11-2009
15	US 2015121927 A	L 07-05-2015	CN 104613697 A US 2015121927 A1	13-05-2015 07-05-2015
	WO 2014023689 A	l 13-02-2014	DE 102012214117 A1 WO 2014023689 A1	13-02-2014 13-02-2014
25	WO 2008056913 A	2 15-05-2008	CN 101535745 A EP 2079971 A2 JP 5260535 B2 JP 2010509560 A KR 100808180 B1 US 2010037650 A1 WO 2008056913 A2	16-09-2009 22-07-2009 14-08-2013 25-03-2010 29-02-2008 18-02-2010 15-05-2008
30	DE 102008024325 A	l 26-11-2009	CN 102037294 A DE 102008024325 A1 EP 2297531 A2 RU 2010149138 A WO 2009141282 A2	27-04-2011 26-11-2009 23-03-2011 27-06-2012 26-11-2009
35				
40				
45				
50				
55 OH MEO				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 128 269 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2010095691 A1 [0003]