CROSS REFERENCE TO RELATED APPLICATION:
TECHNICAL FIELD:
[0002] The exemplary and non-limiting embodiments of this invention relate generally to
wireless communication systems, methods, devices and computer programs and, more specifically,
relate to techniques for signalling channel quality indications between a network
and a portable communication device particularly when the communication device is
operating under a persistent (or semi-persistent) resource allocation.
BACKGROUND:
[0003] The following abbreviations are herewith defined:
3GPP third generation partnership project
AT allocation table (PDCCH)
CQI channel quality indicator/indication
DL downlink
DRX/DTX discontinuous reception / discontinuous transmission
eNB evolved nodeB (of an LTE system)
E-UTRAN evolved UTRAN (LTE or 3.9G)
LTE long term evolution of 3GPP
MAC medium access control
MCS modulation and coding scheme
Node B base station or similar network access node
PDCCH physical downlink control channel
PRB physical resource block
PS packet scheduler
PUCCH physical uplink control channel
RRC radio resource control
TTI transmission time interval
UE user equipment (e.g., mobile equipment/station)
UL uplink
UMTS universal mobile telecommunications system
UTRAN UMTS terrestrial radio access network
VoIP voice over IP (internet protocol)
[0004] A proposed communication system known as evolved UTRAN (E-UTRAN, also referred to
as UTRAN-LTE, E-UTRA or 3.9G) is currently under development within the 3GPP. One
specification of interest to these and other issues related to the invention is 3GPP
TS 36.213, V8.2.0 (2008-03), 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures (Release 8), which is attached to the priority document as Exhibit
A.
[0005] Relevant to this invention is the concept of resource allocations on a common channel
over which multiple users receive resources specifically allocated to only one of
them. LTE is one such system that employs this concept. In LTE, the network assigns
resources to UE's using the physical downlink control channel (PDCCH, also referred
to as allocation table AT). The network schedules UE' s at certain points in time
which are clearly defined and synchronized between the network and the various UEs
being allocated. These instants in time are also referred to as DRX timeout periods
(from the UE point of view). This allows the UE to re-tune its receiver from its downlink
data channel to the PDCCH in a manner in which it will not miss transmissions scheduled
for it on either channel, and to conserve its battery power by operating in a reduced
power state (except for scheduled paging instances) when not scheduled to receive.
A similar scheduling option exists on the UE's transmit side, termed a DTX period.
[0006] At each DRX the UE will read one or more PDCCH (this specific amount is also 'negotiated'
or otherwise commanded by the network previously, e.g. during setup of a connection
with the UE) in which the UE may then be assigned UL and/or DL resources by the network.
[0007] T hsi flexibility for scheduling resources leads to the potential for two problems,
most pronounced when there is a large number of active users all generating a large
amount of small data packages with tight delay constraints (e.g. VoIP, gaming etc.).
This dynamic scheduling can then lead to large control signaling overhead compared
to the actual transferred data, or to the wasting of air interface resources due to
lack of addressing possibilities (not enough space in AT/PDCCH for addressing a sufficient
number of UEs to allocate all available resources).
[0008] The LTE system and others address those problems with the concept of persistent scheduling,
where a resource allocated to a particular UE remains a valid allocation for more
than the next TTI. This means that the UL or DL resources are allocated in a persistent
manner, i.e. the resource allocation is given by the network only in the beginning
of the data transmission, not for each data packet separately. In semi persistent
allocation only the first transmissions use the persistent allocation while retransmissions
are explicitly scheduled. The agreement in 3GPP radio access network working group
2 (RAN WG2) is to allocate the resources for persistent transmissions using PDCCH
signalling.
[0009] W iht persistent/semi-persistent allocations comes the problem of how to inform the
network of channel quality. In LTE it has been agreed that an eNB can at any time
request a UE to send an aperiodic CQI report by sending it an uplink grant with an
aperiodic CQI trigger flag set to "on". The latest agreement in 3GPP is not to support
periodic CQI transmission on the PUSCH. However, the inventors have determined that
PUSCH-based reporting formats could potentially provide gains in persistent/semi-persistent
allocation scenarios, because transmission of UL grants for the sole purpose of triggering
an aperiodic CQI reports becomes costly in term of PDCCH resource consumption.
[0010] It was agreed in the RAN WG1 meeting 52bis in Shenzhen, China to not include periodic
CQI reporting on the PUSCH into the LTE specification, and in fact aperiodic reports
can anyway be triggered periodically by the eNB. However, with persistent/semi-persistent
allocations there can be potential issues, since when there is a large number of users,
triggering aperiodic CQI reports with a UL grant becomes very inefficient. This is
exactly the situation that would exist when there is a need for many persistent allocations.
One possibility would be to utilize the PUCCH based CQI formats. However they are
not able to deliver detailed frequency information to assist the eNB in the scheduling
decision due to the low number of payload bits. Moreover, the DRX pattern might limit
the possibilities to send PUCCH based CQI for users concentrated for VoIP. Hence there
is clearly a need for a mechanism to be able to efficiently get detailed CQI information
with the (semi) persistent transmissions.
SUMMARY:
[0011] In one exemplary aspect of the invention there is a method that comprises receiving
(e.g., at a receiver) a persistent or a semi-persistent uplink resource allocation
that also comprises an indication to send channel quality reports; determining (e.g.,
by a processor) a format for a channel quality report; and in at least first transmissions
of user data for instances of the persistently or semi-persistently allocated uplink
resource, sending (e.g., from a transmitter) user data and a channel quality report
according to the determined format.
[0012] In another exemplary aspect of the invention there is a computer readable memory
storing a program of machine readable instructions (computer readable code) that when
executed by a processor result in actions that comprise: in response to receiving
a persistent or a semi-persistent uplink resource allocation that also comprises an
indication to send channel quality reports, determining a format for a channel quality
report; and in at least first transmissions of user data for instances of the persistently
or semi-persistently allocated uplink resource, sending user data and a channel quality
report according to the determined format.
[0013] In yet another exemplary aspect of the invention there is an apparatus (e.g., a user
equipment) which comprises a receiver, a processor and a transmitter. The receiver
is configured to receive a persistent or a semi-persistent uplink resource allocation
that also comprises an indication to send channel quality reports. The processor is
configured to determine a format for a channel quality report. The transmitter is
configured to send, in at least first transmissions of user data for instances of
the persistently or semi-persistently allocated uplink resource, user data and a channel
quality report according to the determined format.
[0014] In still another exemplary aspect of the invention there is an apparatus which comprises
receiving means, processing means and sending means. The receiving means is for receiving
a persistent or a semi-persistent uplink resource allocation that also comprises an
indication to send channel quality reports. The processing means is for determining
a format for a channel quality report. The sending means if for sending, in at least
first transmissions of user data for instances of the persistently or semi-persistently
allocated uplink resource, user data and a channel quality report according to the
determined format.
[0015] In a further exemplary aspect of the invention there is a method comprising: sending
(e.g., from a transmitter) to a user equipment a persistent or a semi-persistent uplink
resource allocation that also comprises an indication to send channel quality reports;
and in at least first transmissions of user data for instances of the persistently
or semi-persistently allocated uplink resource, receiving (e.g., at a receiver) from
the user equipment user data and a channel quality report.
[0016] In yet a further exemplary aspect of the invention there is there is a computer readable
memory storing a program of machine readable instructions (computer readable code)
that when executed by a processor result in actions that comprise: sending to a user
equipment a persistent or a semi-persistent uplink resource allocation that also comprises
an indication to send channel quality reports; and in at least first transmissions
of user data for instances of the persistently or semi-persistently allocated uplink
resource, receiving from the user equipment user data and a channel quality report
[0017] In a still further exemplary aspect of the invention there is an apparatus (e.g.,
an access node/eNB) comprising a transmitter and a receiver. The transmitter is configured
to send to a user equipment a persistent or a semi-persistent uplink resource allocation
that also comprises an indication to send channel quality reports. The receiver is
configured, in at least first transmissions of user data for instances of the persistently
or semi-persistently allocated uplink resource, to receive from the user equipment
user data and a channel quality report.
[0018] In another further exemplary aspect of the invention there is an apparatus comprising
sending means and receiving means. The sending means is for sending to a user equipment
a persistent or a semi-persistent uplink resource allocation that also comprises an
indication to send channel quality reports. The receiving means is for receiving from
the user equipment user data and a channel quality report, in at least first transmissions
of user data for instances of the persistently or semi-persistently allocated uplink
resource.
BRIEF DESCRIPTION OF THE DRAWINGS:
[0019] The foregoing and other aspects of the exemplary embodiments of this invention are
made more evident in the following Detailed Description, when read in conjunction
with the attached Drawing Figures.
Figure 1 shows a simplified block diagram of various electronic devices that are suitable
for use in practicing the exemplary embodiments of this invention.
Figures 2A and 2B are schematic diagrams illustrating a discontinuous reception schedule
in which resource allocations are received.
Figure 3 is a signalling diagram showing communications according to embodiments of
the invention.
Figure 4 is a logical flow diagram that illustrates process steps according to different
embodiments of the invention.
DETAILED DESCRIPTION:
[0020] Though not limited thereto, embodiments of this invention are particularly advantageous
for use in an E-UTRAN (also known as LTE or 3.9G) system, and relate to CQI-related
signalling in the context of persistent/semi-persistent resource allocations. Detailed
below is a novel approach to allowing for CQI reports which can be embedded into a
persistent UL transmission without explicit triggering at each transmission interval,
and without expanding the control signaling already used in LTE for resource allocations.
While the concept is described with reference to LTE, that description is by example
only and not a limitation; these teachings may be readily extended to other communication
systems other than E-UTRAN.
[0021] In an embodiment of the invention, when the UE is given a persistent or semi-persistent
UL resource allocation in which a CQI indictor is set to a value indicating 'ON',
then the UE will send a CQI report with each of the first transmissions that it sends
on the persistently/semi-persistently allocated UL resource. In a variation, the UE
will also send a CQI report with each re-transmission that it sends on the persistently/semi-persistently
allocated UL resource. This avoids the need to trigger the CQI report with separate
control signaling for each of them from the network; the single flag or bit CQI indicator
in the grant of a persistent/semi-persistent UL resource allocation is the only control
signaling sent by the network to command the multiple CQI reports.
[0022] In an exemplary embodiment, the CQI reports follow a mode detailed below and also
seen at 3GPP TS 36.213 ver 8.2.0 at section 7.2.1. Note that in that reference the
CQI report modes are for aperiodic CQI reports, whereas they are sent repeatedly across
the persistently allocated UL resources according to these teachings (either each
first transmission or each first transmission plus each re-transmission of that persistent/semi-persistent
resource allocation).
[0023] Before detailing those modes, reference is made first to Figure 1 for illustrating
a simplified block diagram of various electronic devices that are suitable for use
in practicing the exemplary embodiments of this invention. In Figure 1 a wireless
network 1 is adapted for communication with a UE 10 via a node B (e.g., base station
or eNB) 12. The network 1 may include a higher controlling node generically shown
as a gateway GW 14, which may be referred to variously as a radio network controller
RNC, a user plane entity UPE, a mobility management entity MME, or a system architecture
evolution gateway SAE-GW. The GW 14 represents a network node higher in the network
than the eNB 12 and in certain embodiments the signaling detailed herein is independent
of that GW 14, except to the extent the eNB 12 may sometimes pass certain information
from the CQI reports it receives from the UE 10 to the GW 14.
[0024] The UE 10 includes a data processor (DP) 10A, a memory (MEM) 10B that stores a program
(PROG) 10C, and a suitable radio frequency (RF) transceiver 10D for bidirectional
wireless communications with the eNB 12, which also includes a DP 12A, a MEM 12B that
stores a PROG 12C, and a suitable RF transceiver 12D. The eNB 12 may be coupled via
a data path 16 (e.g., Iub or S1) to the serving or other GW 14. The eNB 12 and the
UE 10 communicate over a wireless link 15, each using one or more antennas 12E, 10E
(one antenna shown for each). In an embodiment, the wireless link 15 is a physical
downlink control channel such as PDCCH and the uplink is a physical uplink shared
channel such as the PUSCH. At least one of the PROGs 10C and 12C is assumed to include
program instructions that, when executed by the associated DP, enable the electronic
device to operate in accordance with the exemplary embodiments of this invention,
as discussed below in greater detail.
[0025] Also within the eNB 12, either separate from or within the DP 12A, is a packet scheduler
PS 12F that schedules the various UEs under its control for the various UL and DL
radio resources. Once scheduled, the eNB 12 sends messages to the UEs with the scheduling
grants (typically multiplexing grants for multiple UEs in one message/allocation table).
Generally, the eNB 12 of an LTE system is fairly autonomous in its scheduling and
need not coordinate with the GW/MME 14 excepting during handover of one of its UEs
to another Node B. Also within each device 10, 12, 14 is a modem; for the UE 10 and
eNB 12 such a modem is embodied within the respective transceiver 10D, 12D, and is
embodied within the DP 12A, 14A of the respective eNB 12 and GW 14 for communicating
over the data link 16 between them.
[0026] The terms "connected," "coupled, or any variant thereof, mean any connection or coupling,
either direct or indirect, between two or more elements, and may encompass the presence
of one or more intermediate elements between two elements that are "connected" or
"coupled" together. The coupling or connection between the elements can be physical,
logical, or a combination thereof. As employed herein two elements may be considered
to be "connected" or "coupled" together by the use of one or more wires, cables and
printed electrical connections, as well as by the use of electromagnetic energy, such
as electromagnetic energy having wavelengths in the radio frequency region, the microwave
region and the optical (both visible and invisible) region, as non-limiting examples.
[0027] At least one of the PROGs 10C, 12C and 14C is assumed to include program instructions
that, when executed by the associated DP, enable the electronic device to operate
in accordance with the exemplary embodiments of this invention. Inherent in the DPs
10A, 12A, and 214A is a clock to enable synchronism among the various devices for
transmissions and receptions within the appropriate time intervals and slots required,
as the scheduling grants and the granted resources/subframes are time dependent.
[0028] In general, the exemplary embodiments of this invention may be implemented by computer
software PROGs 10C, 12C, 14C embodied on the respective memories MEMs 10B, 12B, 14C
and executable by the respective DPs 10A, 12A, 14A of the UE 10, eNB 12 and GW 14,
or by hardware, or by a combination of software and/or firmware and hardware.
[0029] In general, the various embodiments of the UE 10 can include, but are not limited
to, cellular telephones, personal digital assistants (PDAs) having wireless communication
capabilities, portable computers having wireless communication capabilities, image
capture devices such as digital cameras having wireless communication capabilities,
gaming devices having wireless communication capabilities, music storage and playback
appliances having wireless communication capabilities, Internet appliances permitting
wireless Internet access and browsing, as well as portable units or terminals that
incorporate combinations of such functions.
[0030] The MEMs 10B and 12B may be of any type suitable to the local technical environment
and may be implemented using any suitable data storage technology, such as semiconductor-based
memory devices, magnetic memory devices and systems, optical memory devices and systems,
fixed memory and removable memory. The DPs 10A and 12A may be of any type suitable
to the local technical environment, and may include one or more of general purpose
computers, special purpose computers, microprocessors, digital signal processors (DSPs)
and processors based on a multi-core processor architecture, as non-limiting examples.
[0031] Figure 2A shows a transmission where control (24) and data (26) alternate. One duty
cycle of control and data represents a TTI (or sub-frame). Normally when a UE is scheduled
to send its data, the eNB sends control signaling on the PDCCH and if the UE is allocated
on the data channel, then the UE sends data on the PUSCH, which is the uplink version
of the packet data channel PDCH. At a first data interval 22 the UE 10 may send data
on the UL over a PDCH. Subsequently is a second interval or control interval 24 during
which time the UE 10 is expected to monitor a control channel, shown by example as
PDCCH. This series repeats in the illustrated intervals for data 26 and 30 and for
control information 28 and 32.
[0032] Relative to persistent/semi-persistent allocations, Figure 2B illustrates communications
in several successive intervals according to a DRX regimen, shown from the UE perspective.
Upon entry into the network 1, the UE 10 is given a DRX schedule (e.g., monitor PDCCH
at intervals of 20 ms), until the UE's DRX schedule is changed by the network, such
as when handed over to another eNB. Typically the UE is provided DRX parameters upon
entry into the cell/network. The length of time during which the UE 10 is instructed/expected
to monitor the control channel is termed the DRX timeout period 23, and the UE is
active. The length of time between DRX timeout periods 23 is termed the DRX 25, and
is when the UE is idle (with some waking to monitor for a page if the DRX is particularly
long). In the event a UE 10 receives the PDCCH during the DRX timeout period and is
not allocated (assuming dynamic allocation), it may enter a sleep mode for the duration
of the DRX and awake for the next DRX timeout period to check if it is allocated there.
If the UE is allocated, it only need monitor (or send on the UL) that portion of the
data interval for which the allocation is valid. The length of the DRX and the DRX
timeout period may be set by the network 1. The DRX timeout period is also sometimes
referred to as a duty cycle, the length of the 'reception window' per DRX. For example,
a duty cycle of 2 means the UE 10 receives two successive AT/PDCCHs per DRX. In current
practice one AT/PDCCH spans one TTI (or sub-frame of 1 ms or two slots each of 0.5
ms). A typical DRX for VoIP implementations is 20 ms minus the DRX timeout period.
[0033] In dynamic scheduling, the UE 10 is authorized by the network 1, on the PDCCH 24
during a DRX timeout period 23, a resource allocation by which it is to receive data
(or to transmit its data) during the next data interval PDCH 26. Since it is dynamic,
that resource allocation is valid only for the data interval following the DRX timeout
period in which the allocation was received. Multiple UEs may be allocated in the
same DRX timeout period 23 different allocations for the same data interval, but the
resources allocated are unique so that packets/transmissions directed to or sent from
different ones of those multiple allocated UEs do not interfere with one another though
received/sent in the same data interval 26. Each resource allocation identifies the
UE to which it is intended, such as through a c-RNTI (radio network temporary identifier)
or other identifier unique in the cell, so the same PDCCH can be shared by the multiple
UEs. A persistent or semi-persistent resource allocation is one in which a resource
allocation received in a DRX timeout period remains valid for more than data interval,
and in Figure 2B the persistent/semi-persistent allocation would extend to another
PDCH that lies within the next depicted DRX 25.
[0034] Consider now Figure 3, which is a signalling diagram showing a persistent/semi-persistent
resource allocation and the UE's use of those resources. At 302 the eNB 12 sends the
PDCCH that has the persistent (or semi-persistent) UL resource allocation for the
UE 10, and also with the CQI flag set to 'on' (e.g., bit 1 or 0 as mutually understood
by both the eNB and UE). The UE maps the PDCCH to its allocated UL resource and at
304 sends on the PUSCH its data with the CQI report embedded (302 is designated PUSCH-1
to indicate this is the first data transmission on the PUSCH under the persistent
resource). The eNB 12 sends an acknowledgement ACK 305 for PUSCH-1. At 306 the UE
10 sends PUSCH-2 with an embedded CQI report according to the persistent/semi-persistent
resource allocation 302, and again the eNB 12 sends its ACK 307.
[0035] Now in one embodiment the UE 10 sends PUSCH-3 with an embedded CQI report 308, but
receives a negative acknowledgement NACK 309 from the eNB 12, and so the UE 10 uses
its next instance of the persistently/semi-persistently allocated UL resource to re-transmit
308' the data of PUSCH-3 but without any CQI report. The eNB 12 receives that retransmission
308' and sends an ACK 309'. As the persistent/semi-persistent resource allocation
continues, the UE 10 sends in the next instance allocated by the PDCCH 302 a PUSCH-4
with an embedded CQI report 310, to which the eNB 12 sends an ACK 311. For the case
where the resource allocation 302 is semi-persistent, the re-transmission 308' is
not sent on the semi-persistently allocated UL resource but must be explicitly (dynamically)
scheduled by the eNB in another PDCCH.
[0036] In another embodiment of the invention and valid for either or both persistent and
semi-persistent resource allocation, for the case where there is a re-transmission
as at 308', the re-transmitted data is sent embedded with a CQI report. In one variation
the CQI report embedded into the re-transmission is the same one the eNB 12 failed
to receive as indicated by the NACK 309. In another variation the UE 10 compiles a
new CQI report since a bit of time has elapsed from the time it first compiled the
one which drew the NACK 309.
[0037] One concise way to state an exemplary embodiment of the invention is that, if in
the PDCCH UL grant which is used for configuring the persistent (or semi-persistent)
allocation the aperiodic CQI request flag is set to value "on", the UE shall embed
a CQI with the PUSCH reporting mode configured for aperiodic reporting into each of
the persistent (or semi-persistent) first transmissions.
[0038] Embodiments of this invention offer several benefits. First, this is readily adoptable
into existing wireless protocol since it is in line with previous agreements for persistent
scheduling. Second, there is no need to define any new physical signals; the existing
mechanisms are combined and enabled with some scheduling rules. Third, the possibility
of combining periodic (PUSCH CQI reporting together with a persistent data allocation
allows for more detailed frequency information to be available than what simple PUCCH
based CQI formats could offer. This information can be efficiently utilized with e.g.
scheduled retransmissions, simultaneous dynamic transmissions and reallocation of
persistent transmissions. Fifth, it is seen to align easily and seamlessly with DRX/DTX
patterns when compared to PUCCH based CQI reporting, as there is only the need to
configure the DTX/DRX pattern for the data.
[0039] Now are described briefly the different modes for the CQI reports. To provide for
a more seamless integration into existing understanding of LTE protocols, these modes
are taken from 3GPP TS 36.213 (v 8.2.0) at sections 7.1 through 7.1.4 and also 7.2.1.
Specifically, there are four modes relevant to the CQI reports. The UE is semi-statically
configured via higher layer signaling to receive the physical downlink shared channel
based on one of these four transmission modes, which include: 1) single-antenna port
(the eNB's transmission of the PDCCH); 2) transmit diversity (of the eNB's transmission
of the PDCCH); 3) open-loop spatial multiplexing (based on the rank indication RI
the UE determines, the UE assumes the eNB transmits on the PDCCH according to transmit
diversity if RI=1, and according to large delay CDD (cyclic delay diversity) if RI>1;
and 4) closed-loop spatial multiplexing (the UE assumes that the eNB transmits on
the PDCCH according to zero/small delay CDD). It is noted that a recent change request
(document R1-082254, 3GPP TSG-RAN Meeting #53, Kansas City, MO, USA, May 5-9, 2008),
which is attached to the priority document as exhibit B, expands the number of transmission
modes to seven, and adds: 5) multi-user MIMO (multiple input multiple output); 6)
closed loop with rank=1 precoding; and 7) another single antenna port [a different
port than used for #1) above].
[0040] Each of the original four transmission modes maps to a CQI report mode at table 7.2.1-1
of 3GPP TS 36.213 (v 8.2.0), and the mapped CQI report mode is the one the UE uses
for the CQI reports that it sends with its UL data (or at least its first-transmission
UL data and in some embodiments also re-transmissions of data) on the persistently
or semi-persistently allocated resource PUSCH that it receives on the PDCCH.
[0041] Respecting the proposed seven transmission modes at document R1-082254, the seven
modes map to a DCI format (dedicated control information format 1A, 1B or 2) as shown
at table 7.1-1 of that document. The UE is semi-statically configured with a transmission
mode to receive PDSCH (physical downlink shared channel) data transmissions with a
reference DCI format based on that table 7.1-1, which is signaled by a PDCCH in its
UE specific search spaces. Relevant to these teachings, a UE is configured to use
the PUCCH or PUSCH (physical uplink shared channel) feedback mode corresponding to
its reference DCI format.
[0042] For the aspects of this invention related to the network/eNB, embodiments of this
invention may be implemented by computer software executable by a data processor of
the Node B 12, such as the processor 12A shown, or by hardware, or by a combination
of software and hardware. For the aspects of this invention related to the UE, embodiments
of this invention may be implemented by computer software executable by a data processor
of the UE 10, such as the processor 10A shown, or by hardware, or by a combination
of software and hardware. Further in this regard it should be noted that the various
logical step descriptions above may represent program steps, or interconnected logic
circuits, blocks and functions, or a combination of program steps and logic circuits,
blocks and functions.
[0043] Further details and implementations are described particularly below with reference
to Figure 4. From the perspective of the UE, exemplary embodiments of this invention
encompass a method; an apparatus that includes a processor, memory, transmitter and
receiver; and a memory embodying a computer program; that operate to receive at block
402 a persistent or a semi-persistent uplink resource allocation (PDCCH) in a transmission
mode that is configured by the network, where the received allocation also comprises
an indication to send channel quality reports. At block 404 the UE maps the transmission
mode to a CQI reporting mode (e.g., PUSCH/CQI reporting mode of TS 36.213 at sec.
7.2.1, which is attached as Exhibit A to the priority document). At blocks 406 and
414 and for all corresponding instances of the persistently/semi-persistently allocated
uplink resource other than those following a NACK, the UE sends a corresponding set
of user data and a corresponding CQI report according to the mapped reporting mode.
[0044] If in reply to an instance of the UE sending its user data and a CQI report it receives
a NACK, then for the case where the allocation is persistent (and responsive to the
NACK), then the UE re-sends at block 410 in a next instance of the persistently allocated
uplink resource following the NACK the NACK'd (previous) set of user data and no CQI
report, and receives an ACK in reply. If in reply to an instance of the UE sending
its user data and a CQI report it receives a NACK, then for the case where the allocation
is semi-persistent (and responsive to the NACK), then at block 412 the UE receives
a dynamic resource allocation for an uplink resource, re-sends the NACK'd set of user
data and no CQI report on the dynamically allocated resource, and receives an ACK
in reply. As noted above, the CQI report may be included in these re-sending of user
data according to an embodiment.
[0045] In more general terms, in an exemplary embodiment of the invention there is a memory
storing a program of executable instructions, a device such as the UE or a component
or components thereof, and a method by which the UE receives a persistent or a semi-persistent
uplink resource allocation that also comprises an indication to send channel quality
reports; the UE determines a CQI report format, and in at least first transmissions
of user data for instances of the persistently allocated uplink resource the UE sends
user data and a CQI report according to the determined format. For the case that a
NACK is received in reply to one of those sent user data with CQI reports, four options
are detailed: re-send the NACK'd user data on a next instance of the persistently
allocated UL resource with or without a CQI report, and re-send the NACK'd user data
on a dynamically allocated uplink resource with or without a CQI report.
[0046] Note that the various blocks shown in Figure 4 for the UE (and their mirror transmissions/receptions
for the eNB) may be viewed as method steps, and/or as actions that result from execution
of computer program code, and/or as a plurality of coupled logic circuit elements
constructed to carry out the associated function(s).
[0047] In general, the various exemplary embodiments may be implemented in hardware or special
purpose circuits, software, logic or any combination thereof. For example, some aspects
may be implemented in hardware, while other aspects may be implemented in firmware
or software which may be executed by a controller, microprocessor or other computing
device, although the invention is not limited thereto. While various aspects of the
exemplary embodiments of this invention may be illustrated and described as block
diagrams, flow charts, or using some other pictorial representation, it is well understood
that these blocks, apparatus, systems, techniques or methods described herein may
be implemented in, as non-limiting examples, hardware, software, firmware, special
purpose circuits or logic, general purpose hardware or controller or other computing
devices, or some combination thereof.
[0048] As such, it should be appreciated that at least some aspects of the exemplary embodiments
of the inventions may be practiced in various components such as integrated circuit
chips and modules. The design of integrated circuits is by and large a highly automated
process. Complex and powerful software tools are available for converting a logic
level design into a semiconductor circuit design ready to be fabricated on a semiconductor
substrate. Such software tools can automatically route conductors and locate components
on a semiconductor substrate using well established rules of design, as well as libraries
of pre-stored design modules. Once the design for a semiconductor circuit has been
completed, the resultant design, in a standardized electronic format (e.g., Opus,
GDSII, or the like) may be transmitted to a semiconductor fabrication facility for
fabrication as one or more integrated circuit devices.
[0049] Various modifications and adaptations may become apparent to those skilled in the
relevant arts in view of the foregoing description, when read in conjunction with
the accompanying drawings and the appended claims. For example, certain steps shown
in Figure 3 may be executed in other than the order shown, and certain of the computations
described may be performed in other ways. However, all such and similar modifications
of the teachings of this invention will still fall within the scope of this invention.
[0050] Further, while the exemplary embodiments have been described above in the context
of the E-UTRAN (UTRAN-LTE) system, it should be appreciated that the exemplary embodiments
of this invention are not limited for use with only this one particular type of wireless
communication system, and that they may be used to advantage in other types of wireless
communication systems.
[0051] It should be noted that the terms "connected, " "coupled, " or any variant thereof,
mean any connection or coupling, either direct or indirect, between two or more elements,
and may encompass the presence of one or more intermediate elements between two elements
that are "connected" or "coupled" together. The coupling or connection between the
elements can be physical, logical, or a combination thereof. As employed herein two
elements may be considered to be "connected" or "coupled" together by the use of one
or more wires, cables and/or printed electrical connections, as well as by the use
of electromagnetic energy, such as electromagnetic energy having wavelengths in the
radio frequency region, the microwave region and the optical
[0052] (both visible and invisible) region, as several non-limiting and non-exhaustive examples.
[0053] Furthermore, some of the features of the examples of this invention may be used to
advantage without the corresponding use of other features. As such, the foregoing
description should be considered as merely illustrative of the principles, teachings,
examples and exemplary embodiments of this invention, and not in limitation thereof.
The claims of the parent application are reproduced below. These clauses define preferable
combinations of features. The applicant reserves the right to pursue protection for
these combinations of features, and/or any other subject-matter contained in the parent
application as filed, either in the present divisional application or in a further
application divided from the present divisional application. The claims of the parent
application are not the claims of the current application which are contained in a
separate section headed "claims".
- 1. A method comprising:
receiving at a receiver a persistent or a semi-persistent uplink resource allocation
that also comprises an indication to send channel quality reports;
determining by a processor a format for a channel quality report; and
in at least first transmissions of user data for instances of the persistently or
semi-persistently allocated uplink resource, sending from a transmitter user data
and a channel quality report according to the determined format.
- 2. The method according to claim 1, wherein for the case that a negative acknowledgement
is received in reply to one of the sent user data with channel quality report; responding
to the negative acknowledgement by re-sending in a next instance of the persistently
or semi-persistently allocated uplink resource the negatively acknowledged user data
with either the negatively acknowledged channel quality report or a new channel quality
report.
- 3. The method according to claim 1, wherein for the case that a negative acknowledgement
is received in reply to one of the sent user data with the channel quality report;
responding to the negative acknowledgement by re-sending in a next instance of the
persistently or semi-persistently allocated uplink resource the negatively acknowledged
user data without any channel quality report.
- 4. The method according to claim 1, wherein for the case that a negative acknowledgement
is received in reply to one of the sent user data with the channel quality report;
responding to the negative acknowledgement by re-sending on a dynamically scheduled
uplink resource the negatively acknowledged user data with either the negatively acknowledged
channel quality report or a new channel quality report.
- 5. The method according to claim 1, wherein for the case that a negative acknowledgement
is received in reply to one of the sent user data with the channel quality report;
responding to the negative acknowledgement by re-sending on a dynamically scheduled
uplink resource the negatively acknowledged user data without any channel quality
report.
- 6. The method according to any one of claims 1 through 5, wherein the indication to
send channel quality reports comprises a single bit.
- 7. The method according to any one of claims 1 through 5, wherein the format for the
channel quality report is determined by mapping from a transmission mode to one of
several channel quality report formats, wherein a user equipment that is executing
the method is configured to receive a downlink shared channel according to the transmission
mode used for the mapping.
- 8. An apparatus comprising:
a receiver configured to receive a persistent or a semi-persistent uplink resource
allocation that also comprises an indication to send channel quality reports;
a processor configured to determine a format for a channel quality report; and
a transmitter configured to send, in at least first transmissions of user data for
instances of the persistently or semi-persistently allocated uplink resource, user
data and a channel quality report according to the determined format.
- 9. The apparatus according to claim 8, wherein for the case that the receiver receives
a negative acknowledgement in reply to one of the sent user data with channel quality
report; the transmitter is configured to respond to the negative acknowledgement by
re-sending in a next instance of the persistently or semi-persistently allocated uplink
resource the negatively acknowledged user data with either the negatively acknowledged
channel quality report or a new channel quality report.
- 10. The apparatus according to claim 8, wherein for the case that the receiver receives
a negative acknowledgement in reply to one of the sent user data with channel quality
report; the transmitter is configured to respond to the negative acknowledgement by
re-sending in a next instance of the persistently or semi-persistently allocated uplink
resource the negatively acknowledged user data without any channel quality report.
- 11. The apparatus according to claim 8, wherein for the case that the receiver receives
a negative acknowledgement in reply to one of the sent user data with channel quality
report; the transmitter is configured to respond to the negative acknowledgement by
re-sending on a dynamically scheduled uplink resource the negatively acknowledged
user data with either the negatively acknowledged channel quality report or a new
channel quality report.
- 12. The apparatus according to claim 8, wherein for the case that the receiver receives
a negative acknowledgement in reply to one of the sent user data with channel quality
report; the transmitter is configured to respond to the negative acknowledgement by
re-sending on a dynamically scheduled uplink resource the negatively acknowledged
user data without any channel quality report.
- 13. A method comprising:
sending from a transmitter to a user equipment a persistent or a semi-persistent uplink
resource allocation that also comprises an indication to send channel quality reports;
and
in at least first transmissions of user data for instances of the persistently or
semi-persistently allocated uplink resource, receiving at a receiver from the user
equipment user data and a channel quality report.
- 14. The method according to claim 13, further comprising sending from the transmitter
a negative acknowledgement for one of the instances of the persistently or semi-persistently
allocated uplink resource for which the user data and/or the channel quality report
was not properly received; and
in response to sending the negative acknowledgement, receiving at the receiver from
the user equipment in a next instance of the persistently or semi-persistently allocated
uplink resource one of:
the negatively acknowledged user data with the negatively acknowledged channel quality
report; or
the negatively acknowledged user data with a new channel quality report; or
the negatively acknowledged user data without any channel quality report.
- 15. The method according to claim 13, further comprising sending from the transmitter
a negative acknowledgement for one of the instances of the persistently or semi-persistently
allocated uplink resource for which the user data and/or the channel quality report
was not properly received;
sending from the transmitter to the user equipment a dynamically scheduled uplink
resource allocation; and
receiving at the receiver from the user equipment on the dynamically scheduled uplink
resource one of:
the negatively acknowledged user data with the negatively acknowledged channel quality
report; or
the negatively acknowledged user data with a new channel quality report; or
the negatively acknowledged user data without any channel quality report.
- 16. The method according to any one of claims 13-15, further comprising:
configuring the user equipment to receive a downlink shared channel according to one
of a plurality of transmission modes; and
mapping from the configured transmission mode to one of a plurality of channel quality
report formats, wherein the received channel quality report is according to the mapped
one channel quality report format.
- 17. An apparatus comprising:
a transmitter configured to send to a user equipment a persistent or a semi-persistent
uplink resource allocation that also comprises an indication to send channel quality
reports; and
a receiver configured, in at least first transmissions of user data for instances
of the persistently or semi-persistently allocated uplink resource, to receive from
the user equipment user data and a channel quality report.
- 18. The apparatus according to claim 17, wherein the transmitter is further configured
to send a negative acknowledgement for one of the instances of the persistently or
semi-persistently allocated uplink resource for which the user data and/or the channel
quality report was not properly received; and
in response to the transmitter sending the negative acknowledgement, the receiver
is configured to receive from the user equipment in a next instance of the persistently
or semi-persistently allocated uplink resource one of:
the negatively acknowledged user data with the negatively acknowledged channel quality
report; or
the negatively acknowledged user data with a new channel quality report; or
the negatively acknowledged user data without any channel quality report.
- 19. The apparatus according to claim 13, wherein the transmitter is further configured
to send a negative acknowledgement for one of the instances of the persistently or
semi-persistently allocated uplink resource for which the user data and/or the channel
quality report was not properly received;
the transmitter is configured to send to the user equipment a dynamically scheduled
uplink resource allocation; and
the receiver is configured to receive from the user equipment on the dynamically scheduled
uplink resource one of:
the negatively acknowledged user data with the negatively acknowledged channel quality
report; or
the negatively acknowledged user data with a new channel quality report; or
the negatively acknowledged user data without any channel quality report.
- 20. The apparatus according to any one of claims 17-19 further comprising a processor
configured to generate higher layer signaling to configure the user equipment to receive
a downlink shared channel according to one of a plurality of transmission modes; and
[0054] The processor is configured to map from the one transmission mode to one of a plurality
of channel quality report formats, wherein the received channel quality report is
according to the mapped one channel quality report format.
1. A wireless communication network, comprising:
a gateway (14);
a base station (12) operable to communicate with the gateway (14) over a data link
(1C), the base station (12) comprising a BS transceiver (12D) operable to transmit,
on a downlink wireless link (15), a semi-persistent uplink resource allocation including
an indication to send an aperiodic format channel quality indicator; and
the BS transceiver (12D) being further operable to receive, on an uplink wireless
link (15) associated with the semi-persistent uplink resource allocation, a first
transmission including both user data and an aperiodic format channel quality indicator.
2. The wireless communication network of claim 1, further comprising:
a user equipment (10) comprising a UE wireless transceiver (10D) operable to receive,
on the downlink wireless link (15), the semi-persistent uplink resource allocation
including the indication to send an aperiodic format channel quality indicator.
3. The wireless communication network of claim 2, wherein: the UE transceiver (10D) is
further operable to transmit, on the uplink wireless link (15), the aperiodic format
channel quality indicator with at least the first transmission of user data, according
to the semi-persistently allocated uplink resource.
4. The wireless communication network of claim 1, wherein the downlink wireless link
(15) includes a physical downlink control channel (PDCCH), and the semi-persistent
uplink resource allocation is communicated via the PDCCH.
5. The wireless communication network of claim 1, wherein the uplink wireless link (15)
includes a physical uplink shared channel (PUSCH), and the first transmission of user
data and an aperiodic format channel quality indicator is communicated via the PUSCH.
6. The wireless communication network of claim 1, wherein the gateway is a mobility management
entity (MME).
7. The wireless communication network of claim 6, further comprising:
a second base station, wherein the base station (12) is operable to communicate with
the MME during handover of a user equipment (10) from the base station (12) to the
second base station.
8. The wireless communication network of claim 1, wherein the aperiodic format channel
quality indicator is a format for transmission via a physical uplink shared channel
(PUSCH).
9. A method of operating a wireless communication network, the method comprising:
signalling between a gateway (14) and a base station (12);
transmitting, from the base station (12), a semi-persistent uplink resource allocation
including an indication to send an aperiodic format channel quality indicator; and
receiving, at the base station (12), a first transmission including both user data
and an aperiodic format channel quality indicator.
10. The method of operating a wireless communication network of claim 9, further comprising:
receiving, at a user equipment (10), the semi-persistent uplink resource allocation
including the indication to send an aperiodic format channel quality indicator.
11. A base station (12), comprising:
a BS transceiver (12D) operable to transmit, on a downlink wireless link (15), a semi-persistent
uplink resource allocation including an indication to send an aperiodic format channel
quality indicator; and
the BS transceiver (12D) being further operable to receive, on an uplink wireless
link (15) associated with the semi-persistent uplink resource allocation, a first
transmission including both user data and an aperiodic format channel quality indicator.
12. A user equipment (10), comprising:
a UE wireless transceiver (10D) operable to receive, on a downlink wireless link (15),
a semi-persistent uplink resource allocation including an indication to send an aperiodic
format channel quality indicator; and
the UE transceiver (10D) being further operable to transmit, on an uplink wireless
link (15), the aperiodic format channel quality indicator with at least a first transmission
of user data, according to the semi-persistently allocated uplink resource.
13. A method of operating a base station (12), said method comprising:
transmitting, from the base station (12), a semi-persistent uplink resource allocation
including an indication to send an aperiodic format channel quality indicator; and
receiving, at the base station (12), a first transmission including both user data
and an aperiodic format channel quality indicator.
14. A method of operating a user equipment, said method comprising:
receiving, at the user equipment (10), a semi-persistent uplink resource allocation
including an indication to send an aperiodic format channel quality indicator; and
transmitting, from the user equipment (10), the aperiodic format channel quality indicator
with at least a first transmission of user data, according to the semi-persistently
allocated uplink resource.