

(11)

EP 3 147 523 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.03.2017 Bulletin 2017/13

(51) Int Cl.:
F16D 3/54 (2006.01)
F16D 1/10 (2006.01)

B64C 1/40 (2006.01)

(21) Application number: 16188729.4

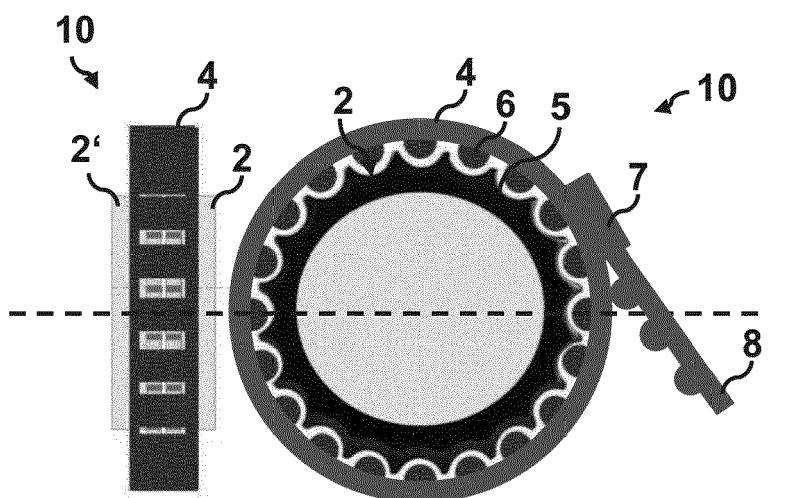
(22) Date of filing: 14.09.2016

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 21.09.2015 DE 102015218074

(71) Applicant: **Airbus Operations GmbH**
21129 Hamburg (DE)

(72) Inventors:


- BENTHIEN, Hermann**
21129 Hamburg (DE)
- POPPE, Andreas**
21129 Hamburg (DE)

(74) Representative: **Isarpatent**
Patent- und Rechtsanwälte Behnisch Barth
Charles
Hassa Peckmann & Partner mbB
Friedrichstrasse 31
80801 München (DE)

(54) CONNECTION SYSTEM, CONNECTION ARRANGEMENT AND METHOD

(57) The present invention provides a connection system (1) comprising two connecting elements (2, 2') having a respective connecting flange (3, 3') on which a plurality of coupling elements (5) are arranged along a peripheral direction and which has a substantially round external profile; and comprising

a coupling belt (4), on which a plurality of opposing coupling elements (6) are arranged which are configured to form a positive-locking connection with the coupling elements (5) of the two connecting elements (2, 2') for the mutual rotation-proof fixing of the two connecting elements (2, 2').

Fig. 2

Description

[0001] The present invention relates to a connection system, to a connection arrangement formed with a connection system of this type and to a method for forming a connection arrangement of this type.

[0002] Although the present invention and the problem which it addresses can be applied to various uses for connecting very different structures, they will be described in detail with regard to the mutual fastening of connection components, as can be used, for example, in aircraft construction or the like.

[0003] In aircraft construction, diverse components are attached to the primary structure or inside an aircraft cabin, for example, by means of bars, rods or struts via connecting joints or connecting brackets, cf. for example DE 10 2010 048 243 A1. Furthermore, lattice constructions consisting of a plurality of connecting struts are used, in which the connecting struts are respectively interconnected at their ends, for example via swivel joints or ball-and-socket joints. Depending on the case of use, there is a particular demand to interconnect individual components such that rotational movements of the components relative to one another are restricted. Occasionally, rotation-proof connections of this type between two components are not configured to withstand high torques. Often, however, the connections are to produce just a basic rotation-proof fixing of the two components relative to one another. Thus, for example, there can be a need for two elongate components to be fixed in their axial position relative to one another. For this purpose, for example a metal bracket or a metallic clamp can jointly clamp a respective end piece of the two components.

[0004] For example, one of the two components can be a connecting strut and the other component can be a housing nut of a joint connection of the connecting strut or a further connecting strut etc. One of the two components can be configured with an external thread and the other component can be configured with a corresponding complementary internal thread, so that the two components can be screwed together to form a primary connection. In addition, a metal bracket as described above can fix the screwed-together components relative to one another. A secondary connection of this type ensures that the threaded engagement of the primary connection is also fixed under external influences, such as jolts or other mechanical stresses.

[0005] In view of the above, the object of the present invention is to find solutions for a positional fixing between two components, which is as lightweight as possible, is easy to assemble and which basically prevents a rotation of the two components relative to one another.

[0006] This object is achieved according to the invention by a connection system having the features of claim 1, by a connection arrangement having the features of claim 11 and by a method having the features of claim 15.

[0007] According thereto, a connection system is provided. The connection system has two connecting ele-

ments with a respective connecting flange on which a plurality of coupling elements are arranged along a peripheral direction and which has a substantially round external profile. The connection system also has a coupling belt, on which a plurality of opposing coupling elements are arranged which are configured to form a positive-locking connection with the coupling elements of the two connecting elements for the mutual rotation-proof fixing of the two connecting elements.

[0008] Furthermore, a connection arrangement is provided which is formed with a connection system according to the invention. Here, the connecting flanges of the connecting elements are aligned coaxially to one another. Furthermore, the coupling belt is placed around the external profiles of the connecting flanges. In addition, the coupling elements of the two connecting elements are connected positively to the opposing coupling elements of the coupling belt.

[0009] Furthermore, a method for the rotation-proof fixing of the two connecting elements is provided, the rotation-proof fixing being performed by means of the coupling belt. The method comprises the coaxial alignment of the connecting flanges of the connecting elements. The method further comprises placing the coupling belt jointly around the external profiles of the connecting flanges. The method further comprises the positive-locking connection of the coupling elements of the two connecting elements to the opposing coupling elements of the coupling belt.

[0010] The fundamental idea of the present invention is to provide a rotation-proof positional fixing between two connecting elements by placing a coupling belt around the two components which are to be connected and thereby forming a plurality of positive-locking connections between the coupling belt and the two connecting elements. A particular advantage of the solution according to the invention is on one hand that a connection of this type can be assembled in a particularly fast and simple manner. The two connecting elements merely

have to be aligned with their connecting flanges against one another. Thereafter, the coupling belt can be placed around the connecting flanges. The coupling belt can be configured, for example, as a flat and light band of metal or plastics material, so that the solution according to the

invention can also be configured to be particularly efficient in terms of weight. At the same time, the solution according to the invention also provides an effective fixing of the two connecting elements against one another, since the connection according to the invention provides

a relatively high shear plane. This also makes it possible, inter alia, to use materials which have a relatively low modulus of elasticity, i.e. soft or flexible materials, particularly plastics materials. In principle, the positive-locking connections can be configured for a single use of the coupling belt. Alternatively however, the coupling elements and the opposing coupling elements can also be configured to be detachable, so that the coupling belt can be re-used.

[0011] Advantageous embodiments and developments are revealed in the further subclaims and in the description with reference to the figures.

[0012] According to one development, the coupling elements or the opposing coupling elements can be configured as pins and correspondingly the opposing coupling elements or the coupling elements can be configured as complementarily formed pin apertures or pin seats. For example, the coupling elements can accordingly be configured as pins and the opposing coupling elements can be configured as complementarily formed pin apertures. Alternatively however, the opposing coupling elements can also be configured as pins and the opposing coupling elements can be configured as complementarily formed pin apertures. In principle, combined configurations of these two examples are also provided, in which for example the coupling elements and the opposing coupling elements are alternately configured as pins and as pin apertures.

[0013] In this development, the coupling belt can be a cable tie, for example. Consequently, in this particularly simple, lightweight and cost-effective development, a conventional cable tie of plastics material or metal can be placed around the connecting flanges of the two connecting elements. Here, the coupling elements of the connecting elements are accordingly configured so that they can form a positive-locking connection with the opposing coupling elements of the cable tie.

[0014] According to one development, the coupling elements or the opposing coupling elements can be configured as barbs and correspondingly the opposing coupling elements or the coupling elements can be configured as loops. In this development, the coupling elements or the opposing coupling elements are accordingly hooked into the loops.

[0015] In this development, during interplay, the coupling elements and the opposing coupling elements can form a hook-and-loop fastening. In accordance with the development described above in which the coupling belt is configured as a cable tie, in this development as well it is therefore possible to have recourse to particularly cost-effective, lightweight and easy to assemble solutions. Pressing the coupling elements and the opposing coupling elements, i.e. the connecting elements and the coupling belt, onto one another can result in a fixed but releasable connection.

[0016] According to one development, the coupling elements and the opposing coupling elements can be configured as pins. Consequently, in this development, the coupling elements are not formed in a complementary manner to the opposing coupling elements. In contrast to the above developments, the coupling elements and the opposing coupling elements can also be configured identically in particular.

[0017] In this development, the coupling elements and the opposing coupling elements can be identical mushroom-shaped pins. In this development, the connecting lock can be achieved analogously to known connection

systems, such as 3MT™ Dual Lock™ or the like, by hooking identically formed mushroom-shaped pins positively into one another. Here, the term "mushroom-shaped pins" is understood as meaning geometric structures which each consist of a short stem on which is configured a semi-spherical head. A fixed but releasable connection can be produced by pressing the coupling elements and the opposing coupling elements together, i.e. the connecting elements and the coupling belt.

[0018] According to one development, the coupling elements can be produced integrally with the respective connecting flange. In addition or alternatively, the opposing coupling elements can also be formed integrally with the coupling belt.

[0019] In this development, the connecting elements can be produced from plastics material or metal by a 3D-printing process. In generative or additive production processes, also generally known as "3D-printing processes", starting from a digitalised geometric model of an

item, one or more starting materials are superimposed in sequential layers and are cured. Thus, for example in fused deposition modelling (FDM), a component is constructed in layers from a modelling material, for example plastics material or metal, in that the modelling material

is liquefied by heating and is extruded through a nozzle. 3D printing provides exceptional design freedom and allows items to be produced at reasonable expense, which items could not be produced or could only be produced at considerable expense by conventional methods. For

this reason, 3D printing methods are currently widely used in industrial design, in the automotive industry, in the aerospace industry or generally in industrial product development in which a resource-efficient process chain is used for the needs-based, small-scale production and

mass production of individualised components. Thus, a significant advantage of this development is that the connecting elements and in principle also the coupling belt can be produced simply and economically using the relatively simple means of a 3D printing process.

[0020] In the context of the present application, 3D printing processes include all generative and additive production processes in which, based on geometric models, items of a predefined form are produced from formless materials, such as liquids and powders, or form-neutral semi-finished products, such as strip-shaped or wire-shaped material, by means of chemical and/or physical processes in a special generative production system. In the context of the present application, 3D printing processes use additive processes in which the starting material is built up sequentially in layers into predetermined forms.

[0021] According to one development, the coupling belt can be configured to vary in length in a peripheral direction. For example, a length adjustment mechanism can be configured analogously to a cable tie, a hose clamp or the like. For example, the coupling belt can be configured as a band which can be provided at one end with an adjusting eye or the like, through which the other

end of the band can be guided and can be latched therein. In this development, one embodiment of the coupling belt can thus be used for different connecting elements, i.e. in particular with different diameters of the connecting flange, so that the connection system can be used irrespective of the diameter of the connecting flanges.

[0022] According to one development, one of the connecting elements can be configured as a connecting strut, a connecting rod or the like of an aircraft or spacecraft and the other connecting element can be configured as a joint, a mounting, a joint housing, a joint connection, or a connection adapter or the like, for attaching the connecting strut in an aircraft or spacecraft.

[0023] According to one development, the connection arrangement can further provide a joint-connecting rod which is provided with an axial external thread. Here, the connecting element configured as a connecting strut can be provided with an axial threaded hole. The axial threaded hole can be configured to receive the axial external thread of the joint-connecting rod. The other connecting element can be configured as an annular connection adapter. The annular connection adapter can be configured with an internal contour, which corresponds to the external contour of the joint-connecting rod, for attachment onto the joint-connecting rod. The connecting element, configured as an annular connection adapter, can be attached onto the joint-connecting rod. The joint-connecting rod can engage in the axial threaded hole in the connecting element, configured as a connecting strut, via the axial external thread.

[0024] Thus, in this development, one connecting element is configured as a connecting strut. The other connecting element is configured as a connection adapter for rotation-proof connection with the connecting strut. In turn, the joint-connecting rod can be mounted in a joint. For example, this can be a rotational joint or a ball-and-socket joint or a joint system related thereto, or the like. Here, one end of the joint-connecting rod can serve as a joint head which, for example, rests on a joint base in a joint housing or in a joint socket. For example, the joint can be configured as a rotational/ball-and-socket joint with clearance, so that the joint-connecting rod can be swivelled in the joint vertically to the axis thereof.

[0025] The joint-connecting rod can be provided with an external longitudinal groove. The internal contour of the connecting element configured as an annular connection adapter can have a sliding knuckle for sliding in the longitudinal groove in the joint-connecting rod. The sliding knuckle can engage in the longitudinal groove. Thus, in this development, the connection adapter is coupled in a rotation-proof manner to the joint-connecting rod by the engagement of the sliding knuckle in the longitudinal groove, so that the joint-connecting rod is effectively also connected in a rotation-proof manner to the connecting strut. The connection of the connection adapter to the connecting strut via the coupling belt can consequently prevent the threaded engagement of the joint-connecting rod in the connecting strut from being

able to loosen due to external influences.

[0026] The threaded engagement can serve to some extent as a "primary connection" between a connecting strut and a joint-connecting rod. In addition, the two components can be interconnected in a rotation-proof manner by means of the connection adapter. Thus, here the connection adapter can serve as a "secondary connection". In this development, the connection arrangement can be assembled in an extremely effective and simple manner and in particular no tools are required. For this purpose, the connection adapter can be placed onto the joint-connecting rod. The joint-connecting rod can then be screwed together with the connecting strut. Finally, the two connecting elements, i.e. the connection adapter and the connecting strut, can be fixed against one another by their connecting flanges in a rotation-proof manner by means of the coupling belt. For this purpose, the coupling belt can be placed around the external profiles of the connecting flanges and form-locking connections between the coupling elements of the two connecting elements and the opposing coupling elements of the coupling belt can be closed.

[0027] The above embodiments and developments can be combined in any desired, sensible manner. Further possible embodiments, developments and implementations of the invention also include combinations, which have not been explicitly mentioned, of features of the invention which have been previously described or will be described in the following with reference to the embodiments. In particular in this respect, a person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the present invention.

[0028] In the following, the present invention will be described in more detail with reference to the embodiments which are presented in the schematic drawings, in which:

Fig. 1 is a schematic side view (left) and a schematic cross-sectional view (right) of two connecting elements, oriented coaxially to one another, of a connection system of the invention according to an embodiment of the invention;

Fig. 2 is a schematic side view (left) and a schematic cross-sectional view (right) of a connection arrangement which is formed with the connecting elements of the connection system from Fig. 1;

Fig. 3 is a schematic flow chart of a method according to the invention for the rotation-proof fixing of the two connecting elements from Fig. 1;

Fig. 4 is a schematic lateral sectional view (left) and a schematic cross-sectional view along a line A-A (right) of an exemplary connection arrangement (above line X-X) and of a connection arrangement according to a further embodiment

of the invention (below line X-X); and

Fig. 5 is a schematic perspective view of a connecting element of the connection arrangement from Fig. 4.

[0029] The accompanying figures are to provide a further understanding of the embodiments of the invention. They illustrate embodiments and, together with the description, they serve to explain principles and concepts of the invention. Other embodiments and many of the mentioned advantages will become apparent with reference to the drawings. The elements of the drawings are not necessarily shown true to scale relative to one another.

[0030] In the figures of the drawings, identical, functionally identical and identically operating elements, features and components have been respectively provided with the same reference numerals, unless indicated otherwise.

[0031] Fig. 1 is a schematic side view (left) and a schematic cross-sectional view (right) of two connecting elements, aligned coaxially to one another, of a connection system of the invention according to an embodiment of the invention.

[0032] In Fig. 1, reference numeral 1 denotes a connection system 1 which comprises a first connecting element 2 and a second connecting element 2'. The two connecting elements 2, 2' are merely shown schematically in Fig. 1 in a greatly simplified view. In general, the connecting elements 2, 2' can be various components which are to be fixed against one another such that they cannot rotate. The connection system 1, described in the following, for connecting two connecting elements 2, 2' by means of a coupling belt 4 can be employed in various uses which relate in particular, for example, to the assembly or connection of constructions in aircraft construction or in general vehicle construction, for example lattice constructions consisting of a plurality of connecting struts. For example, the connecting elements 2, 2' can be connecting rods, struts, bars or the like which are configured for the connection of components to a primary structure or to a cabin of an aircraft. In this case, Fig. 1 would merely show the end regions of two such connecting rods. In another example, the first connecting element 2 could be a connecting strut which is connected to an aircraft structure by a joint. In this case, the second connecting element 2' could be, for example, a joint or a joint housing.

[0033] The first connecting element 2 has a first connecting flange 3. The connecting flange 3 is formed with a substantially round external profile on which a plurality of coupling elements 5 are arranged along a peripheral direction. The connecting flange 3 can have, for example, the basic shape of a hollow or solid circular cylinder. Correspondingly, the second connecting element 2' has a second connecting flange 3'. The second connecting flange 3' is formed with an external profile which is formed

identically to the external profile of the first connecting element 2 and on which a plurality of coupling elements 5 are arranged along the peripheral direction. The first connecting flange 3 of the first connecting element 2 is aligned coaxially (in respect of an axis through the centre of the round external profile of the connecting flange) with the second connecting flange 3' of the second connecting element 2' so that the two connecting flanges 3, 3' are opposite one another. For example, it can be provided that the two connecting elements 2, 2' rest edge-to-edge against one another by their connecting flanges 3, 3'. However, the present connection system 1 also provides uses in which the two connecting flanges 3, 3' do not contact one another, but a gap can be present therebetween. For example, one connecting element 2 can be configured as a connecting strut and the other connecting element 2' can be configured as a joint housing of a joint connection of the connecting strut. In this case, for example, a primary connection can already be present between the connecting strut and the joint connection. The connection according to the present invention can in this case just be used, for example, for a secondary (rotation-proof) positional fixing of the connecting strut on the joint, joint housing and/or joint connection. Notwithstanding the above, other embodiments of the connecting elements 2, 2' and of the connecting flanges 3, 3' are also provided. For example, these components could have more complex shapes, in which case only the respective connecting flange 3, 3' itself accordingly has a substantially round external profile. In particular, the first connecting element 2 can be formed differently from the second connecting element 2'.

[0034] The connection system 1 also has a coupling belt 4 (not shown in Fig. 1, cf. Fig. 2) which is used for the rotation-proof fixing of the two connecting elements 2, 2' against one another. A plurality of opposing coupling elements 6 are arranged on the coupling belt 4. The opposing coupling elements 6 are configured to form a positive-locking connection with the coupling elements 5 of the two connecting elements 2, 2'. A connection arrangement 10 formed by this connection system 1 is described in more detail below with reference to Fig. 2.

[0035] Fig. 2 is a schematic side view (left) and a schematic cross-sectional view (right) of a connection arrangement 10 which is formed with the connecting elements 2, 2' of the connection system 1 from Fig. 1.

[0036] In Fig. 2, a coupling belt 4 has been placed around the external profile of the first connecting flange 3 and around the external profile of the second connecting flange 3'. The coupling elements 5 of the two connecting elements 2, 2' form a positive-locking connection with the opposing coupling elements 6 of the coupling belt 4. For this purpose, the opposing coupling elements 6 of the coupling belt 4 are configured as protruding pins. Correspondingly, the coupling elements 5 of the connecting elements 2, 2' are formed as complementarily formed recesses. The coupling belt 4 can accordingly be adjusted in length relative to a cable tie, in that one end 8 of

the coupling belt 4 is pushed through an adjusting eye 7 so that the end 8 projects downstream of the adjusting eye 7.

[0037] The embodiment of the present invention, shown in Fig. 1 and 2, can be realised in a particularly lightweight form and can be attached in a very fast and convenient manner. For this purpose, the two connecting elements 2, 2' must firstly be oriented relative to one another, thereafter the coupling belt 4 merely has to be placed around the connecting flanges 3, 3' of the connecting elements 2, 2' and a positive locking has to be formed between the coupling elements 5 of the two connecting elements 2, 2' and the opposing coupling elements 6 of the coupling belt 4, for example in that the coupling belt 4 is pressed simultaneously onto the two connecting flanges 3, 3' so that the coupling elements 5 latch into the opposing coupling elements 6. Here, the coupling belt 4 can itself be conveniently adjusted in length by pulling or pushing an end 8 which projects beyond the adjusting eye 7.

[0038] The positive-locking connection 10 of the two connecting elements 2, 2' by the coupling belt 4 fixes said connecting elements in a position relative to one another, so that particularly rotational movements in the axial direction are prevented. A connection arrangement 10 of this type can be used, for example, as a secondary connection between two components, which secondary connection fixes the components together so that they cannot rotate, while an additional primary connection (not shown here) ensures a stable connection in respect of traction or pressure loads.

[0039] Fig. 3 is a schematic flow chart for the rotation-proof fixing of the two connecting elements 2, 2' from Fig. 1.

[0040] The method M comprises under M1 the step of coaxially aligning the first connecting flange 3 of the first connecting element 2 with the second connecting flange 3' of the second connecting element 2'. Furthermore, the method M comprises under M2 the step of placing the coupling belt 4 jointly around the external profile of the first connecting flange 3 and around the external profile of the second connecting flange 3'. The method further comprises under M3 the step of positively connecting the coupling elements 5 of the two connecting elements 2, 2' to the opposing coupling elements 6 of the coupling belt 4.

[0041] Fig. 4 is a schematic lateral sectional view (left) and a schematic cross-sectional view along a line A-A (right) of an exemplary connection arrangement 110 (above line X-X) and of a connection arrangement 10 according to a further embodiment of the invention (below line X-X). For a clearer comparison, the two connection arrangements 10, 110 are presented in a single figure, the lower half of the exemplary connection arrangement 110 not being shown and the upper half of the connection arrangement 10 according to the embodiment of the invention correspondingly not being shown. Line X-X is used here as a transition line between the two views of

the two connection arrangements 10, 110.

[0042] In the exemplary connection arrangement 110 above line X-X in Fig. 4, a connecting strut 101 is connected to a joint 112 by a joint-connecting rod 102 which is connected thereto. The connection arrangement according to Fig. 4 can form, for example, a segment of a relatively complex two- or three-dimensional lattice or the like, in which further identically, similarly or alternatively formed struts, rods or the like are interconnected by joints. For example, the connection arrangement which is shown can be used in a vehicle, for example in an aircraft, to interconnect or mutually support different structures.

[0043] The connecting strut 101 can be formed with an axial threaded hole 108 and the joint-connecting rod 102 can be formed with an axial external thread 107 which is correspondingly formed in a complementary manner thereto. Thus, the connecting strut 101 can be screwed onto the joint-connecting rod 102 by means of the threaded hole 108. For example, a counter nut 105 can also be provided which has a correspondingly formed internal thread. These components can be screwed together, for example using a spanner or a comparable tool.

[0044] In this example, the joint-connecting rod 102 has at one end a joint head 109 which terminates with a spherically curved, concave bearing surface. In this example, a joint base 103, cooperating with a joint housing 104, serves as a joint socket for the joint head 109. Accordingly, the joint base 103 is formed with an also spherically curved, but convex bearing surface, the curvature of this surface corresponding exactly to that of the joint head. Furthermore, the joint base 103 is formed with an external thread which engages in a corresponding internal thread of the joint housing 104. The joint housing has a housing opening 106, the diameter of which is smaller than that of the joint head 109. Consequently, the joint head 109 is held in the axial direction in the joint 112 by the joint base 103 and the joint housing 104. However, the external shape of the joint head 109 is dimensioned such that it can swivel in the housing opening 106 with respect to the joint 112. The joint head 109 slides on the concave bearing surface over the convex bearing surface of the joint base. Consequently, the mode of operation of the joint 112 shown in Fig. 4 is similar in principle to that of a ball-and-socket joint. Joints 112 of this type can be used, for example, to compensate for tolerances in complex lattice structures.

[0045] In the connection arrangement 10 according to the embodiment of the invention below line X-X in Fig. 4, a connecting element 2 which is basically configured similarly to the connecting strut 101 above line X-X is connected to a joint 112 by a joint-connecting rod 102 which is connected thereto. The fundamental joint connection and the threaded engagement between the joint-connecting rod 102 and the connecting element 2 are configured similarly to that of the connection arrangement above line X-X. However, the connection arrangement 10 below line X-X also has a further connecting

element 2' which is configured as an annular connection adapter.

[0046] In this regard, Fig. 5 is a schematic perspective view of the connecting element 2' and of the joint-connecting rod 102 of the connection arrangement 10 from Fig. 4. For the sake of clarity, in Fig. 5 the axial external thread 107 of the joint-connecting rod 102 is not shown. The connecting element 2' has an internal contour 9 which corresponds to an external contour of the joint-connecting rod 102, so that the connecting element 2' can be attached onto the joint-connecting rod 102. For this purpose, the joint-connecting rod 102 is provided with an external longitudinal groove 111 and the connecting element 2' is provided with a corresponding sliding knuckle 9a. The connecting element 2' can be attached onto the joint-connecting rod 102 by aligning the sliding knuckle 9a relative to the longitudinal groove 111. As soon as the sliding knuckle 9a engages in the longitudinal groove 111, the sliding knuckle can slide along the longitudinal groove 111. At the same time, the connecting element 2' is connected to the joint-connecting rod 102 in a rotation-proof manner.

[0047] Furthermore, the connecting element 2' is configured with a connecting flange 3', corresponding to the connecting elements in Fig. 1. The connecting flange 3' has a substantially round external profile. Furthermore, a plurality of coupling elements 5 are arranged on the connecting flange 3' along a peripheral direction. The connecting element 2, configured as a connecting strut 101, also has a connecting flange 3 and coupling elements 5 located thereon (not shown in Fig. 4). Accordingly, the two connecting elements 2, 2' can be mutually fixed in a rotation-proof manner, in that a coupling belt 4, on which a plurality of opposing coupling elements 6 (also not shown in Fig. 4) are arranged, is placed around the connecting flanges 3, 3' of the two connecting elements 2, 2' and the opposing coupling elements 6 are positively connected to the coupling elements 5 of the two connecting elements 2, 2'.

[0048] The connection arrangement 10 in Fig. 4 can be assembled quickly and efficiently in several simple steps without any tools. In the first step, the connecting element 2' can be attached onto the joint-connecting rod 102. Thereafter, the joint-connecting rod 102 can be screwed together with the other connecting element 2'. This "primary connection" can be progressively adjusted by a corresponding rotation of the two components relative to one another. In so doing, the connecting element 2' can slide over the joint-connecting rod 102. As soon as a preferred arrangement is obtained, connecting element 2' can be fixed in a rotation-proof manner with connecting element 2 by means of the coupling belt 4. For this purpose, all that needs to be done is for the coupling belt 4 to be placed around the connecting flanges 3, 3' and to positively connect the coupling elements 5 to the opposing coupling elements 6. A rotation-proof connection between the two connecting elements 2, 2' and thereby also in particular between the joint-connecting rod 102

and the connecting strut 101 is therefore formed. This "secondary connection" can be used, for example, to stabilise the primary connection in respect of external influences. For example, in principle, jolts or other mechanical influences could result in a loosening of the threaded engagement. This is prevented by the secondary connection. Furthermore, the counter nut 105 can be omitted from the exemplary connection arrangement 110.

10 List of reference signs

[0049]

1	connection system	
15	2, 2'	connecting element
	3, 3'	connecting flange
	4	coupling belt
	5	coupling element
	6	opposing coupling element
20	7	adjusting eye
	8	projecting end
	9	internal contour
	9a	sliding knuckle
	10	connection arrangement
25	101	connecting strut
	102	joint-connecting rod
	103	joint base
	104	joint housing
	105	counter nut
30	106	housing opening
	107	external thread
	108	threaded hole
	109	joint head
	110	connection arrangement
35	111	longitudinal groove
	M	method
	M1	method step
	M2	method step
	M3	method step

Claims

1. Connection system (1), comprising:

two connecting elements (2, 2') having a respective connecting flange (3, 3') on which a plurality of coupling elements (5) are arranged along a peripheral direction and which has a substantially round external profile; and
a coupling belt (4), on which a plurality of opposing coupling elements (6) are arranged which are configured to form a positive-locking connection with the coupling elements (5) of the two connecting elements (2, 2') for the mutual rotation-proof fixing of the two connecting elements (2, 2').

2. Connection system (1) according to claim 1, wherein the coupling elements (5) or the opposing coupling elements (6) are configured as pins and correspondingly the opposing coupling elements (6) or the coupling elements (5) are configured as complementary formed pin apertures or pin seats. 5

3. Connection system (1) according to claim 2, wherein the coupling belt (4) is a cable tie. 10

4. Connection system (1) according to claim 1, wherein the coupling elements (5) or the opposing coupling elements (6) are configured as barbs and correspondingly the opposing coupling elements (6) or the coupling elements (5) are configured as loops. 15

5. Connection system (1) according to claim 4, wherein during interplay, the coupling elements (5) and the opposing coupling elements (6) form a hook-and-loop fastening. 20

6. Connection system (1) according to claim 1, wherein the coupling elements (5) and the opposing coupling elements (6) are configured as pins. 25

7. Connection system (1) according to claim 6, wherein the coupling elements (5) and the opposing coupling elements (6) are identically formed mushroom-shaped pins. 30

8. Connection system (1) according to any of the preceding claims, wherein the coupling elements (5) are produced integrally with the respective connecting flange (3, 3'). 35

9. Connection system (1) according to claim 8, wherein the connecting elements (2, 2') are produced from plastics material or metal by a 3D printing process. 40

10. Connection system (1) according to any of the preceding claims, wherein the coupling belt (4) is configured to vary in length in a peripheral direction. 45

11. Connection arrangement (10), comprising two connecting elements (2, 2') having a respective connecting flange (3, 3') on which a plurality of coupling elements (5) are arranged along a peripheral direction and which has a substantially round external profile; and a coupling belt (4) on which a plurality of opposing coupling elements (6) are arranged which are configured to form a positive-locking connection with the coupling elements (5) of the two connecting elements (2, 2') for the mutual rotation-proof fixing of the two connecting elements (2, 2'), wherein the connecting flanges (3, 3') of the connecting elements (2, 2') are oriented coaxially to one another; wherein the coupling belt (4) is placed around the 50

external profiles of the connecting flanges (3, 3'); and wherein the coupling elements (5) of the two connecting elements (2, 2') are connected positively to the opposing coupling elements (6) of the coupling belt (4). 55

12. Connection arrangement according to claim 11, wherein one of the connecting elements (2) is configured as a connecting strut of an aircraft or spacecraft and the other connecting element (2') is configured as a joint, a joint housing, a joint connection, or a connection adapter for attaching the connecting strut in an aircraft or spacecraft. 13. Connection arrangement according to claim 12, further comprising:

a joint-connecting rod (102) which is provided with an axial external thread (107); wherein the connecting element (2) configured as a connecting strut is provided with an axial threaded hole (108) which is configured to receive the axial external thread (107) of the joint-connecting rod (102); wherein the other connecting element (2') is configured as an annular connection adapter which is configured with an internal contour (9) which corresponds to the external contour of the joint-connecting rod (102), for attachment onto the joint-connecting rod (102); wherein the connecting element (2'), configured as an annular connection adapter, is attached onto the joint-connecting rod (102); and wherein the joint-connecting rod (102) engages in the axial threaded hole (108) in the connecting element (2), configured as a connecting strut, via the axial external thread (107). 14. Connection arrangement according to claim 13, wherein the joint-connecting rod (102) is provided with an external longitudinal groove (111), wherein the internal contour (9) of the connecting element (2') configured as an annular connection adapter has a sliding knuckle (9a) for sliding in the longitudinal groove (111) in the joint-connecting rod (102), and wherein the sliding knuckle (9a) engages in the longitudinal groove (111). 15. Method (M) for fixing, in a rotation-proof manner, two connecting elements (2, 2'), wherein each connecting element (2, 2') has a connecting flange (3, 3') on which a plurality of coupling elements (5) are arranged along a peripheral direction and which has a substantially round external profile, wherein the rotation-proof fixing is performed by means of a coupling belt (4), on which a plurality of opposing coupling elements (6) are arranged which are configured

to form a positive-locking connection with the coupling elements (5) of the two connecting elements (2, 2') for the mutual rotation-proof fixing of the two connecting elements (2, 2'), and wherein the method (M) comprises:

5

coaxially aligning (M1) the connecting flanges (3, 3') of the connecting elements (2, 2');
placing (M2) the coupling belt (4) jointly around the external profiles of the connecting flanges (3, 3'); and
positively connecting (M3) the coupling elements (5) of the two connecting elements (2, 2') to the opposing coupling elements (6) of the coupling belt (4).

10

15

20

25

30

35

40

45

50

55

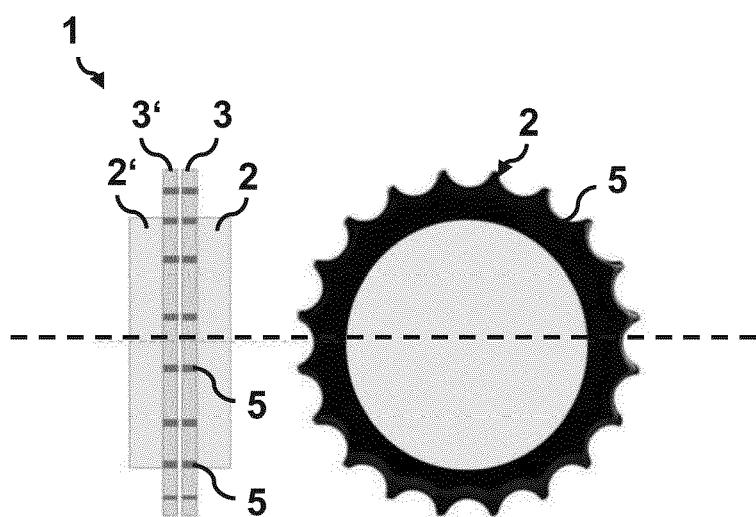


Fig. 1

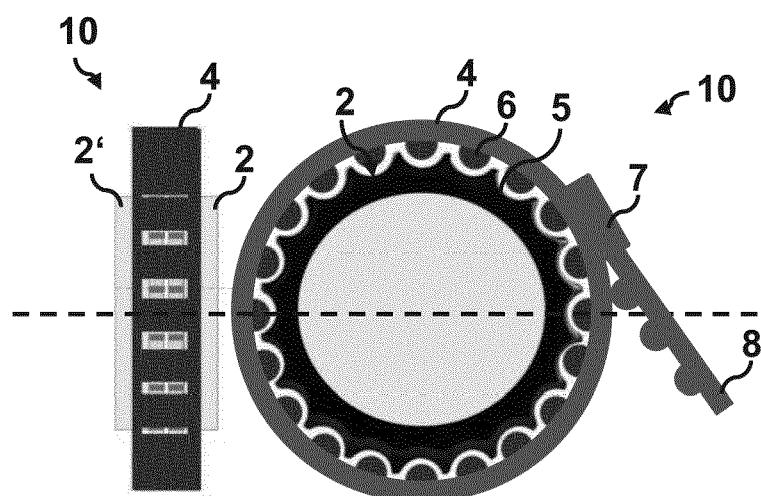


Fig. 2

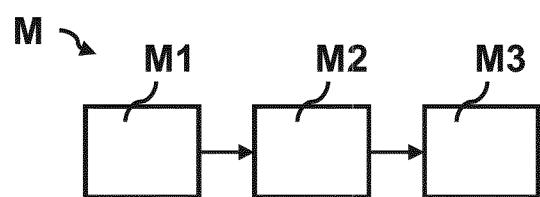
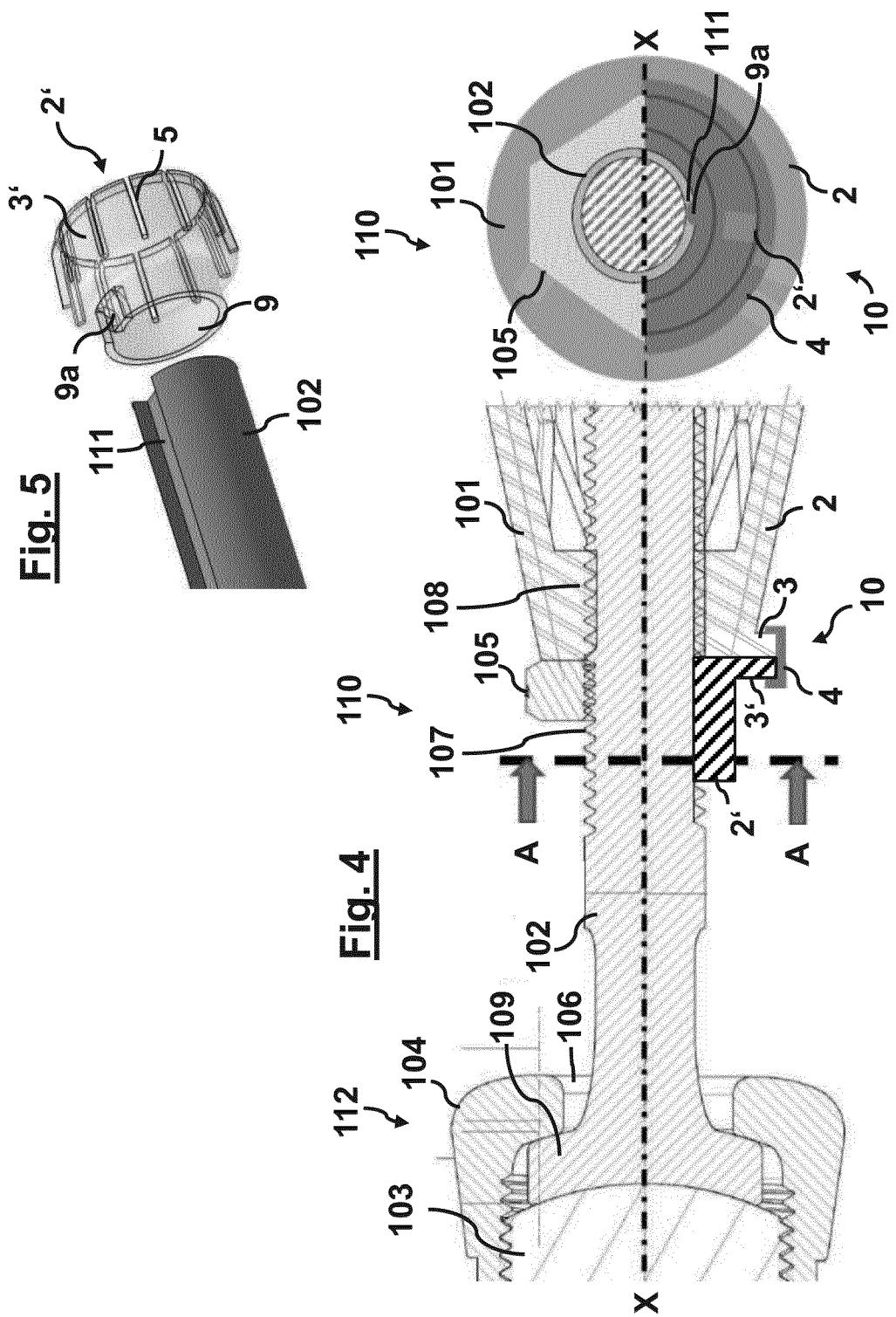



Fig. 3

EUROPEAN SEARCH REPORT

Application Number

EP 16 18 8729

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	X US 2004/166945 A1 (COUNTER LOUIS F [US] ET AL) 26 August 2004 (2004-08-26) * figure 1 *	1-12,15	INV. F16D3/54 B64C1/40
15	X US 1 983 007 A (SIMONS FRANK K) 4 December 1934 (1934-12-04) * figures 1-3 *	1-12,15	ADD. F16D1/10
20	X US 1 356 024 A (SULLIVAN WILLIAM E) 19 October 1920 (1920-10-19) * figures 1,2 *	1-12,15	
25	X GB 110 655 A (CALVERT HENRY) 1 November 1917 (1917-11-01) * figures 1,2 *	1-12,15	
30	X FR 1 223 790 A (FALK CORP) 20 June 1960 (1960-06-20) * figures 1-3 *	1-12,15	
35			TECHNICAL FIELDS SEARCHED (IPC)
40			F16D B64C
45			
50	1 The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 9 February 2017	Examiner Pecquet, Gabriel
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			
EPO FORM 1503 03-82 (P04C01)			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 16 18 8729

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-02-2017

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	US 2004166945 A1	26-08-2004	US 2004166945 A1	26-08-2004
			US 2004204248 A1	14-10-2004
			WO 2004076879 A2	10-09-2004
20	US 1983007 A	04-12-1934	NONE	
	US 1356024 A	19-10-1920	NONE	
25	GB 110655 A	01-11-1917	NONE	
30	FR 1223790 A	20-06-1960	NONE	
35				
40				
45				
50				
55				

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 102010048243 A1 **[0003]**