| (19) |
 |
|
(11) |
EP 3 154 311 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
11.12.2019 Bulletin 2019/50 |
| (22) |
Date of filing: 13.05.2016 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/CN2016/081996 |
| (87) |
International publication number: |
|
WO 2017/020622 (09.02.2017 Gazette 2017/06) |
|
| (54) |
HEAT DISSIPATION SUBSTRATE AND SEAL TYPE PTC THERMISTOR HEATER
WÄRMEABLEITUNGSSUBSTRAT UND DICHTUNGS-PTC-THERMISTORELEMENT
SUBSTRAT DE DISSIPATION DE CHALEUR ET DISPOSITIF DE CHAUFFAGE À THERMISTANCE À COEFFICIENT
DE TEMPÉRATURE POSITIF DU TYPE À JOINT D'ÉTANCHÉITÉ
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
03.08.2015 CN 201510482014
|
| (43) |
Date of publication of application: |
|
12.04.2017 Bulletin 2017/15 |
| (73) |
Proprietor: Shenzhen Shanyuan Electronic Corporation |
|
Shenzhen, Guangdong 518000 (CN) |
|
| (72) |
Inventors: |
|
- ZHANG, Xiang
Shenzhen, Guangdong 518000 (CN)
- ZHANG, Guangquan
Shenzhen, Guangdong 518000 (CN)
|
| (74) |
Representative: Beetz & Partner mbB |
|
Patentanwälte
Robert-Koch-Str. 1 80538 München 80538 München (DE) |
| (56) |
References cited: :
EP-A1- 2 053 902 CN-A- 101 420 798 CN-U- 202 195 738 CN-Y- 2 917 152 DE-A1-102011 077 922
|
EP-A2- 1 545 157 CN-A- 105 025 596 CN-U- 204 859 578 CN-Y- 2 917 152 US-A1- 2002 040 899
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND
Technical Field
[0001] The present application relates to a thermistor heater, in particular to a radiating
matrix with a sealed PTC (Positive Temperature Coefficient) thermistor heater. A radiating
matrix as described in the preamble portion of patent claim 1 has been known from
DE 10 2011 077 922 A1.
Related Art
[0002] A PTC thermistor heater has unique characteristics of automatic constant temperature,
no open flame, long service life, small influence from power voltage fluctuation,
high electrothermal conversion rate and the like, and has been widely applied to electric
appliance industries of air heater, clothes dryer, water heater, air conditioner,
etc.
[0003] For the existing PTC heater, after a PTC heating element is placed in a receiving
portion of an aluminum tube, the PTC heating element easily approaches to two side
walls of the aluminum tube and is subjected to rigid press when press is applied to
two sides of the aluminum tube to cause the aluminum tube to be deformed, the PTC
heating element is easy to crush, quality hidden danger is caused and a user may worry
about the quality.
[0004] CN 2917152Y discloses a radiating matrix containing a PTC heating component, comprising a cavity
body, wherein the cavity body is provided with: a receiving portion extending along
a length direction of the cavity body, a plurality of radiating fins are fixed in
the middle of the external surface of the top and the external surface of the bottom
of the cavity body, and the length of each radiating fin along a width direction of
the cavity body is smaller than the width of the cavity body; wherein the outer wall
of the left side and the outer wall of the right side of the cavity body are of a
slot-shaped structure extending along the length direction of the cavity body.
SUMMARY
[0005] In order to make up the defects of prior art, the present application provides a
radiating matrix and a sealed PTC thermistor heater, which can work for a long term
without electrical safety hidden danger.
[0006] A radiating matrix containing a PTC heating component, comprises a cavity body, wherein
the cavity body is provided with a receiving portion extending along a length direction
of the cavity body, a plurality of radiating fins are fixed in the middle of the external
surface of the top and the external surface of the bottom of the cavity body, and
the length of each radiating fin along a width direction of the cavity body is smaller
than the width of the cavity body; a first positioning rib extending along a length
direction of the cavity body is arranged at the upper part and the lower part of the
inner wall of the left side of the cavity body in the receiving portion respectively,
correspondingly, a second positioning rib extending along a length direction of the
cavity body is arranged at the upper part and the lower part of the inner wall of
the right side of the cavity body in the receiving portion respectively, the internal
surface of the left side of the receiving portion between the two first positioning
ribs is an outwards convex arc surface, the internal surface of the right side of
the receiving portion between the two second positioning ribs is also an outwards
convex arc surface, and the outer wall of the left side and the outer wall of the
right side of the cavity body are of a slot-shaped structure extending along the length
direction of the cavity body; an interval between the two first positioning ribs and
an interval between the two second positioning ribs are both smaller than the thickness
of the PTC heating component, an interval between the first positioning rib and the
second positioning rib at the upper part and an interval between the first positioning
rib and the second positioning rib at the lower part are both smaller than the length
of the radiating ribs along the width direction of the cavity body, wherein the first
positioning rib arranged at the upper part and the second positioning rib arranged
at the upper part are also arranged on the internal surface of the upper part of the
cavity body, the first positioning rib arranged at the lower part and the second positioning
rib arranged at the lower part are also arranged on the internal surface of the lower
part of the cavity body, and wherein after the PTC heating element has been installed
in the cavity body, the first positioning ribs and the second positioning ribs cause
the PTC heating component to be positioned in the middle of the containing cavity
together, when the cavity body is molded, the left side and the right side of the
cavity body are stressed and outwards deformed, and the slot-shaped structures provide
a deforming space.
[0007] In the above technical solution, the first positioning ribs and the second positioning
ribs cause the PTC heating component to be positioned in the middle of the receiving
portion together, and since the internal surface of the left side of the receiving
portion between the two first positioning ribs is an outwards convex arc surface and
the internal surface of the right side of the receiving portion between the two second
positioning ribs is also an outwards convex arc surface, when the cavity body is molded,
the left side and the right side of the cavity body are stressed and outwards deformed,
the slot-shaped structures provide a deforming space, the lateral sides of the PTC
heating component cannot be subjected to lateral press, so that the PTC heating component
is difficult to crush and working is safer.
[0008] Preferably, the plurality of radiating fins are parallel and are equidistantly arrayed.
[0009] Preferably, each radiating fin is of a convex concave corrugated structure.
[0010] The existing radiating fins are machined in to a slab curve surface, such fins have
bad strength and rigidity and are easy to fall off, the fins are easily attached together,
cause impeded ventilating and generate certain wind resistance, and dust is easily
accumulated on the fins, while in above technical solution, the radiating fins are
designed into the convex concave corrugated structure, that is, the surfaces of the
radiating fins are in convex and concave alternative arrangement, for example, the
radiating fins can be a wavy curve surface, a zigzag curve surface and a trapezoid
curve surface. The convex concave corrugated structure increases a radiating area
and improves radiating efficiency; a reinforcing rib action can also be achieved for
the radiating fins, thereby enhancing the rigidity and strength of the radiating fins;
in a working process, the radiating fins are hard to fall off, thereby solving a series
of problems caused by falling; and the strength and rigidity are good, the fins can
be made thinner under the condition of the same radiating area, therefore material
production cost can be greatly reduced and material can be saved.
[0011] Preferably, the radiating matrix is of an integrally molded structure.
[0012] Preferably, the radiating matrix is made of an aluminum profile.
[0013] Preferably, the cavity body is a rectangle body and the first positioning ribs and
the second positioning ribs are symmetrically arranged.
[0014] Preferably, the internal surface of the top of the cavity body corresponding to the
top surface of the PTC heating component has a low middle part and two high ends,
and the internal surface of the bottom of the cavity body corresponding to the bottom
surface of the PTC heating component has a high middle part and two low ends.
[0015] Due to the above technical solution, when the radiating matrix is molded, the rigid
press to the PTC heating component from an aluminum tube can be reduced, thereby reducing
damage to the PTC heating component.
[0016] A sealed PTC thermistor heater comprises the radiating matrix, a PTC heating component
and waterproof sealing parts, wherein the PTC heating component is positioned between
the first positioning ribs and the second positioning ribs and is pressed in the middle
of the receiving portion, and one waterproof sealing part is arranged at two ends
of the receiving portion of the radiating matrix respectively.
[0017] Preferably, the PTC heating component comprises a PTC thermistor, two electrode terminals
connected with an external power source to be electrified to cause the PTC thermistor
to heat, metal electrode plates and insulation layers, wherein one metal electrode
plate is attached to the upper surface and lower surface of the PTC thermistor respectively,
the two electrode terminals are positioned on the same side of the PTC thermistor
and connected with the metal electrode plates respectively, and the insulation layers
wrap the peripheries of the metal electrode plates, and the two electrode terminals
extend from the waterproof sealing parts.
[0018] Preferably, the waterproof sealing parts are waterproof insulating sealant capable
of effectively blocking water.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019]
FIG. 1 is a perspective view of - a radiating matrix ;
FIG. 2 is a perspective view of a sealed PTC thermistor heater according to the invention;
FIG. 3 is an exploded perspective view of FIG. 2.
DETAILED DESCRIPTION
[0020] The present application provides a radiating matrix, wherein the radiating matrix
contains a PTC heating component and the present application is described in detail
by following preferable embodiments.
[0021] As shown in FIG. 1, the radiating matrix 1 comprises a cavity body 11, wherein the
cavity body 11 is a rectangle body and has a receiving portion 12 extending along
a length direction of the cavity body, a plurality of radiating fins 13 are fixed
in the middle of the external surface of the top and the external surface of the bottom
of the cavity body 11, the length of the radiating fin 13 at the external surface
of the top of cavity body along a width direction of the cavity body 11 is smaller
than the width of the top of the cavity body 11 and the length of the radiating fin
13 at the external surface of the bottom of cavity body along a width direction of
the cavity body 11 is smaller than the width of the bottom of the cavity body 11.
A first positioning rib 14 extending along a length direction of the cavity body is
arranged at the upper part and the lower part of the inner wall of the left side of
the cavity body in the receiving portion 12 respectively, symmetrically, a second
positioning rib 15 extending along a length direction of the cavity body is arranged
at the upper part and the lower part of the inner wall of the right side of the cavity
body in the receiving portion respectively, the internal surface 16 of the left side
of the receiving portion between the two first positioning ribs 14 is an outwards
convex arc surface (that is, an opening of the arc surface is toward the receiving
portion), the internal surface 17 of the right side of the receiving portion between
the two second positioning ribs 15 is also an outwards convex arc surface, and the
outer wall of the left side and the outer wall of the right side of the cavity body
are of a slot-shaped structure 18 extending along the length direction of the cavity
body. An interval between the two first positioning ribs 14 and an interval between
the two second positioning ribs 15 are both smaller than the thickness of the PTC
heating component, an interval between the first positioning rib 14 and the second
positioning rib 15 at the upper part and an interval between the first positioning
rib 14 and the second positioning rib 15 at the lower part are both smaller than the
width of the radiating ribs 13, hence, when the radiating matrix is molded, the influence
on the PTC heating component can be reduced as much as possible.
[0022] The radiating fins 13 at the top and bottom of the cavity body are parallel and equidistantly
arrayed, the shape of each radiating fin 13 is of a convex concave corrugated structure,
and in the present embodiment, the surface of the radiating fins are wavy curve surfaces.
The radiating matrix is of an integrally molded structure and made of an aluminum
profile, and specifically, the cavity body, the radiating fins, the first positioning
ribs and the second positioning ribs are integrally made of the aluminum profile,
and the radiating fins are made from backing-off cutting machining by a machine tool
at the top and bottom of the radiating matrix.
[0023] The internal surface of the top of the cavity body 11 corresponding to the top surface
of the PTC heating component has a low middle part 111 and two high ends 112, and
the internal surface of the bottom of the cavity body corresponding to the bottom
surface of the PTC heating component has a high middle part 113 and two low ends 114.
[0024] As shown in FIGs. 2-3, the present application further provides a sealed PTC thermistor
heater, comprising the radiating matrix 1 disclosed above and illustrated on FIG.
1, the PTC heating component 2 and waterproof sealing parts 3, wherein the PTC heating
component 2 is positioned between the first positioning ribs 14 and the second positioning
ribs 15 and is pressed in the middle of the receiving portion, and one waterproof
sealing part 3 is arranged at two ends of the receiving portion of the radiating matrix
1 respectively; the PTC heating component 2 comprises a PTC thermistor 21, two electrode
terminals 22 connected with an external power source to be electrified to cause the
PTC thermistor to heat, metal electrode plates 23 and insulation layers 24, wherein
one metal electrode plate 23 is attached to the upper surface and lower surface of
the PTC thermistor 21 respectively, the metal electrode plates 23 provide a working
voltage for the PTC thermistor 21, the two electrode terminals 22 are positioned on
the same side of the PTC thermistor, one end of the electrode terminals 22 is connected
with a power source by a lead and the other end of the electrode terminals 22 is connected
with the metal electrode plate 23 (fixed by riveting or welding), hence, the metal
electrode plates 23 can obtain the voltage provided by the power source and constitute
a circuit loop together with the PTC thermistor 21. The insulation layers 24 wrap
the peripheries of the metal electrode plates 23, the two electrode terminals 22 extend
from the waterproof sealing parts 3, and the waterproof sealing parts 3 are waterproof
insulating sealant capable of effectively blocking water to cause the receiving portion
to be fully closed.
[0025] An other example of the radiating matrix differs from the radiating matrix disclosed
above in that the shape of the radiating fins on the radiating matrix is a zigzag
curve surface.
[0026] The above specification merely describes the present application in further detail
in combination with the preferable embodiments, and it should not be considered that
specific implementations of the present application are limited to the description.
Without departing from the inventive concept of the present application, those skilled
in the art of the present application can make a plurality of simple derives or substitutions,
for example, change the fins to be in a trapezoid shape, which should be regarded
as belonging to the patent protective scope determined by claims of the present application.
1. A radiating matrix (1) containing a PTC heating component (2), comprising a cavity
body (11), wherein the cavity body (11) is provided with a receiving portion (12)
extending along a length direction of the cavity body (11), a plurality of radiating
fins (13) are fixed in the middle of the external surface of the top and the external
surface of the bottom of the cavity body (11), and the length of each radiating fin
(13) along a width direction of the cavity body (11) is smaller than the width of
the cavity body (11);
a first positioning rib (14) extending along a length direction of the cavity body
(11) is arranged at the upper part and the lower part of the inner wall of the left
side of the cavity body in the receiving portion (12) respectively, correspondingly,
a second positioning rib (15) extending along a length direction of the cavity body
(11) is arranged at the upper part and the lower part of the inner wall of the right
side of the cavity body (11) in the receiving portion (12) respectively, the internal
surface (16) of the left side of the receiving portion (12) between the two first
positioning ribs (14) is an outwards convex arc surface, the internal surface (17)
of the right side of the receiving portion (12) between the two second positioning
ribs (15) is also an outwards convex arc surface, and
the PTC heating element being installed in the cavity body, an interval between the
two first positioning ribs (14) and an interval between the two second positioning
ribs (15) are both smaller than the thickness of the PTC heating component, an interval
between the first positioning rib (14) and the second positioning rib (15) at the
upper part and an interval between the first positioning rib (14) and the second positioning
rib (15) at the lower part are both smaller than the length of the radiating ribs
(13) along the width direction of the cavity body (11),
characterized in that the first positioning rib arranged at the upper part and the second positioning rib
arranged at the upper part are also arranged on the internal surface of the upper
part of the cavity body, the first positioning rib arranged at the lower part and
the second positioning rib arranged at the lower part are also arranged on the internal
surface of the lower part of the cavity body;
the outer wall of the left side and the outer wall of the right side of the cavity
body are of a slot-shaped structure extending along the length direction of the cavity
body, and after the PTC heating element has been installed in the cavity body, the
first positioning ribs and the second positioning ribs cause the PTC heating component
to be positioned in the middle of the containing cavity together, when the cavity
body is molded, the left side and the right side of the cavity body are stressed and
outwards deformed, and the slot-shaped structures provide a deforming space.
2. The radiating matrix (1) according to claim 1, characterized in that the plurality of radiating fins (13) are parallel and equidistantly arrayed.
3. The radiating matrix (1) according to claim 1, characterized in that each radiating fin (13) is of a convex concave corrugated structure.
4. The radiating matrix (1) according to claim 1, characterized in that the radiating matrix (1) is of an integrally molded structure.
5. The radiating matrix (1) according to claim 1, characterized in that the radiating matrix (1) is made of an aluminum profile.
6. The radiating matrix (1) according to claim 1, characterized in that the cavity body (11) is a rectangle body and the first positioning ribs (14) and
the second positioning ribs (15) are symmetrically arranged.
7. The radiating matrix (1) according to claim 1, characterized in that the internal surface of the top of the cavity body (11) corresponding to the top
surface of the PTC heating component has a low middle part (111) and two high ends
(112), and the internal surface of the bottom of the cavity body (11) corresponding
to the bottom surface of the PTC heating component has a high middle part (113) and
two low ends (114).
8. A sealed PTC thermistor heater, characterized by comprising the radiating matrix (1) according to any one of claims 1-7, a PTC heating
component (2) and waterproof sealing parts (3), wherein the PTC heating component
(2) is positioned between the first positioning ribs (14) and the second positioning
ribs (15) and is pressed in the middle of the receiving portion (12), and one waterproof
sealing part (3) is arranged at two ends of the receiving portion (12) of the radiating
matrix (1) respectively.
9. The sealed PTC thermistor heater according to claim 8, characterized in that the PTC heating component (2) comprises a PTC thermistor (21), two electrode terminals
(22) connected with an external power source to be electrified to cause the PTC thermistor
(21) to heat, metal electrode plates (23) and insulation layers (24), wherein one
metal electrode plate (23) is attached to the upper surface and lower surface of the
PTC thermistor (21) respectively, the two electrode terminals (22) are positioned
on the same side of the PTC thermistor (21) and connected with the metal electrode
plates (23) respectively, and the insulation layers (24) wrap the peripheries of the
metal electrode plates (23), and the two electrode terminals (22) extend from the
waterproof sealing parts (3).
10. The sealed PTC thermistor heater according to claim 8 or 9, characterized in that the waterproof sealing parts (3) are waterproof insulating sealant capable of effectively
blocking water.
1. Wärmeableitungskörper (1) zur Aufnahme einer PTC-Heizkomponente (2), umfassend einen
Hohlraumkörper (11), der einen hohlen Aufnahmeraum (12) aufweist, der sich entlang
einer Längsrichtung des Hohlkörpers (11) erstreckt, wobei mittig an der Außenfläche
sowohl der Oberseite als auch der Unterseite des Hohlkörpers (11) eine Vielzahl von
Wärmeableitungslamellen (13) befestigt sind und die Länge jeder der Wärmeableitungslamellen
(13) entlang der Breitenrichtung des Hohlkörpers (11) geringer als die Breite des
Hohlkörpers (11) ist,
wobei am oberen Teil und am unteren Teil einer innerhalb des Aufnahmeraums (12) befindlichen
linken Innenwand des Hohlkörpers (11) jeweils eine erste Positionierungsrippe (14)
vorgesehen ist, die sich entlang der Längsrichtung des Hohlkörpers (11) erstreckt,
und dementsprechend am oberen Teil und am unteren Teil einer innerhalb des Aufnahmeraums
(12) befindlichen rechten Innenwand des Hohlkörpers (11) jeweils eine zweite Positionierungsrippe
(15), die sich entlang der Längsrichtung des Hohlkörpers (11) erstreckt, vorgesehen
ist, wobei die zwischen den beiden ersten Positionierungsrippen (14) befindliche linke
Innenfläche (16) des Aufnahmeraums (12) als nach außen gewölbte Bogenfläche und die
zwischen den beiden zweiten Positionierungsrippen (15) befindliche rechte Innenfläche
(17) des Aufnahmeraums (12) ebenfalls als nach außen gewölbte Bogenfläche ausgebildet
ist, und
wobei bei in dem Wärmeableitungskörper aufgenommener PTC-Heizkomponente sowohl der
Abstand zwischen den beiden ersten Positionierungsrippen (14) als auch der Abstand
zwischen den beiden zweiten Positionierungsrippen (15) geringer als die Dicke der
PTC-Heizkomponente sind, wobei sowohl der Abstand zwischen der ersten Positionierungsrippe
(14) und der zweiten Positionierungsrippe (15), die am oberen Teil angeordnet sind,
als auch der Abstand zwischen der ersten Positionierungsrippe (14) und der zweiten
Positionierungsrippe (15), die am unteren Teil angeordnet sind, geringer als die Länge
der Wärmeableitungslamellen (13) entlang der Breitenrichtung des Hohlkörpers (11)
sind,
dadurch gekennzeichnet, dass sich die erste Positionierungsrippe und die zweite Positionierungsrippe, die am oberen
Teil angeordnet sind, auch an der Innenfläche des oberen Teils des Hohlkörpers befinden,
während sich die erste Positionierungsrippe und die zweite Positionierungsrippe, die
am unteren Teil angeordnet sind, ebenfalls an der Innenfläche des oberen Teils des
Hohlkörpers befinden,
und dass sowohl die linke Außenwand als auch die rechte Außenwand des Hohlkörpers
eine nutartige Struktur sind, die sich entlang der Längsrichtung des Hohlkörpers erstreckt,
wobei bei in dem Wärmeableitungskörper aufgenommener PTC-Heizkomponente die ersten
Positionierungsrippen und die zweiten Positionierungsrippen gemeinsam eine Positionierung
der PTC-Heizkomponente mittig in dem Aufnahmeraum bewirken, und wobei beim Anpressen
des Hohlkörpers sich die linke Seite und die rechte Seite des Hohlkörpers unter Einwirkung
einer Kraft nach außen verformen, wobei die nutartige Struktur Raum für die Verformung
bereitstellt.
2. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass die mehreren Wärmeableitungslamellen (13) parallel zueinander und in gleichem Abstand
voneinander angeordnet sind.
3. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass jede der Wärmeableitungslamellen (13) die Form einer konvex-konkaven Wellenstruktur
aufweist.
4. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeableitungskörper (1) einteilig ausgeformt ist.
5. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeableitungskörper (1) aus einem Aluminiumprofil hergestellt ist.
6. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlkörper (11) rechteckig ausgebildet ist und die ersten Positionierungsrippen
(14) und die zweiten Positionierungsrippen (15) symmetrisch angeordnet sind.
7. Wärmeableitungskörper (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Innenfläche der Oberseite des Hohlkörpers (11), die der Oberseite der PTC-Heizkomponente
zugeordnet ist, einen niedrigen Mittelabschnitt (111) und zwei hohe Enden (112) aufweist,
während die Innenfläche des Bodens des Hohlkörpers (11), die der Bodenfläche der PTC-Heizkomponente
zugeordnet ist, einen hohen Mittelabschnitt (113) und zwei niedrige Enden (114) aufweist.
8. Abgedichtetes Kaltleiterheizgerät, dadurch gekennzeichnet, dass es einen Wärmeableitungskörper (1) nach einem der Ansprüche 1 bis 7, eine PTC-Heizkomponente
(2) und einen wasserdichten Dichtungsabschnitt (3) umfasst, wobei die PTC-Heizkomponente
(2) zwischen den ersten Positionierungsrippen (14) und den zweiten Positionierungsrippen
(15) angeordnet und mittig in dem Aufnahmeraum (12) fest gedrückt ist, und wobei die
beiden Enden des Aufnahmeraums (12) des Wärmeableitungskörpers (1) jeweils mit dem
wasserdichten Dichtungsabschnitt (3) versehen sind.
9. Abgedichtetes Kaltleiterheizgerät nach Anspruch 8, dadurch gekennzeichnet, dass die PTC-Heizkomponente (2) einen Kaltleiter (21), zwei Elektrodenanschlüsse (22),
die zum Anschließen an eine externe Stromversorgung dienen, um durch Bestromen eine
Erwärmung des Kaltleiters (21) zu bewirken, eine Metallelektrodenplatte (23) und eine
Isolierschicht (24) umfasst, wobei an der oberen Oberfläche und der unteren Oberfläche
des Kaltleiters (21) jeweils die Metallelektrodenplatte (23) daran fest anliegend
angebracht ist, wobei die beiden Elektrodenanschlüsse (22) auf der gleichen Seite
des Kaltleiters (21) angeordnet und mit der Metallelektrodenplatte (23) verbunden
sind, und wobei die Isolierschicht (24) die Metallelektrodenplatte (23) von außen
umhüllt und die beiden Elektrodenanschlüsse (22) aus dem wasserdichten Dichtungsabschnitt
(3) herausragen.
10. Abgedichtetes Kaltleiterheizgerät nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der wasserdichte Dichtungsabschnitt (3) eine wasserdichte isolierende Dichtungsmasse
ist, die Wasser wirksam abweisen kann.
1. Une matrice rayonnante (1), servant à contenir un composant chauffant CTP (2), comprenant
un corps creux (11), ledit corps creux (11) étant doté d'une cavité contenante (12)
s'étirant dans le sens de la longueur dudit corps creux (11), la surface externe de
la partie supérieure et la surface externe de la partie inférieure dudit corps creux
(11) étant dotées respectivement d'une pluralité d'ailettes rayonnantes (13) fixées
en leurs milieux, chacune desdites ailettes rayonnantes (13) étant de longueur inférieure
à la largeur dudit corps creux (11) dans le sens de la largeur dudit corps creux (11)
;
des premières côtes de positionnement (14) sont agencées dans le sens de la longueur
dudit corps creux respectivement à la partie supérieure et la partie inférieure de
la paroi interne gauche dudit corps creux (11) de ladite cavité contenante (12), de
façon correspondante, des deuxièmes côtes de positionnement (15) sont agencées dans
le sens de la largeur dudit corps creux (11) respectivement à la partie supérieure
et la partie inférieure de la paroi interne droite dudit corps creux (11) de ladite
cavité contenante (12), la surface interne (16) du côté gauche de ladite cavité contenante
(12) entre deux desdites premières côtes de positionnement (12) est une surface en
arc convexe orienté vers l'extérieur, la surface interne (17) du côté droit de ladite
cavité contenante (12) entre deux desdites deuxièmes côtes de positionnement (12)
est également une surface en arc convexe orienté vers l'extérieur, et
le composant chauffant CTP est agencé dans ladite matrice rayonnante, l'intervalle
entre deux dites premières côtes de positionnement (14) et l'intervalle entre deux
dites deuxièmes côtes de positionnement (15) étant tous inférieurs à l'épaisseur dudit
composant chauffant CTP, l'intervalle entre ladite première côte de positionnement
(14) et ladite deuxième côte de positionnement (15) agencées à la partie supérieure
et l'intervalle entre ladite première côte de positionnement (14) et ladite deuxième
côte de positionnement (15) agencées à la partie inférieure étant inférieurs à la
longueur desdites ailettes rayonnantes (13) dans le sens de la largeur dudit corps
creux (11) ;
caractérisé en ce que, lesdites premières côtes et lesdites deuxièmes côtes agencées à la partie supérieure
sont simultanément également agencées à la surface interne de la partie supérieure
dudit corps creux, lesdites premières côtes et lesdites deuxièmes côtes agencées à
la partie inférieure sont simultanément également agencées à la surface interne de
la partie supérieure dudit corps creux ;
la paroi externe du côté gauche et la paroi externe du côté droit dudit corps creux
constituent une structure en forme de fente s'étendant dans le sens de la longueur
dudit corps creux, après agencement du composant chauffant CTP dans ladite matrice
rayonnante, lesdites premières côtes de positionnement et lesdites deuxièmes côtes
de positionnement permettent conjointement au composant chauffant CTP d'être fixé
de façon centrale dans ledit corps creux, lors du moulage dudit corps creux, le côté
gauche et le côté droit dudit corps creux sont déformés vers l'extérieur après avoir
subi une pression, ladite structure en forme de fente fournit un espace de déformation.
2. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : la pluralité desdites ailettes rayonnantes (13) sont parallèles et agencées de
façon équidistante.
3. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : la forme de chacune desdites ailettes rayonnantes (13) est une structure ondulée
convexe et concave.
4. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : ladite matrice rayonnante (1) est une structure monobloc.
5. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : ladite matrice rayonnante (1) est un profil d'aluminium.
6. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : ledit corps creux (11) est un corps rectangulaire, lesdites premières côtes de
positionnement (14) et lesdites deuxièmes côtes de positionnement (15) étant agencées
symétriquement.
7. Matrice rayonnante (1) selon la revendication 1, caractérisée en ce que : la surface interne de la partie supérieure dudit corps creux (11) correspondant
à la surface supérieure dudit composant chauffant CTP est dotée d'un milieu (111)
bas et de deux extrémités (112) élevées, la surface interne de la partie inférieure
dudit corps creux (11) correspondant à la surface inférieure dudit composant chauffant
CTP est dotée d'un milieu (113) élevé et de deux extrémités (114) basses.
8. Dispositif chauffant à thermistance CTP hermétique, caractérisé en ce que : il comprend la matrice rayonnante (1) de l'une quelconque des revendications 1-7,
un composant chauffant CTP (2) et une partie hermétique étanche à l'eau (3), ledit
composant chauffant CTP (2) est agencé entre lesdites premières côtes de positionnement
(14) et lesdites deuxièmes côtes de positionnement (15) et est comprimée à la partie
moyenne de ladite cavité contenante (12), les deux extrémités de ladite cavité contenante
(12) de ladite matrice rayonnante (1) sont respectivement dotées desdites parties
hermétiques étanches (3).
9. Dispositif chauffant à thermistance CTP hermétique selon la revendication 8, caractérisé en ce que : ledit composant chauffant CTP (2) comprend une thermistance CTP (21), deux bornes
d'électrodes (22) connectées à une alimentation externe afin d'être électrifiées et
de chauffer la thermistance CTP (21), des plaques d'électrodes (23) et des couches
isolantes (24), la surface supérieure et la surface inférieure de ladite thermistance
CTP (21) sont respectivement accolées à une plaque d'électrodes (23), deux desdites
bornes d'électrodes (22) sont agencées sur un même côté de ladite thermistance CTP
(21) et respectivement connectées à ladite plaque d'électrodes (23), lesdites couches
isolantes (24) enveloppent la périphérie de ladite plaque d'électrodes (23), deux
desdites bornes d'électrodes (22) s'étirent depuis ladite partie hermétique étanche
(3).
10. Dispositif chauffant à thermistance CTP hermétique selon la revendication 8 ou la
revendication 9, caractérisé en ce que : ladite partie hermétique étanche (3) est un enduit isolant étanche à l'eau capable
de bloquer l'eau efficacement.


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description