(11) **EP 3 156 733 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 19.04.2017 Patentblatt 2017/16

(21) Anmeldenummer: 16020402.0

(22) Anmeldetag: 14.10.2016

(51) Int Cl.:

F24B 1/02 (2006.01) F24H 3/02 (2006.01) F28F 3/02 (2006.01) F24H 3/10 (2006.01) F24B 7/00 (2006.01) F28D 21/00 (2006.01) F28F 1/00 (2006.01)

F24B 1/188 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

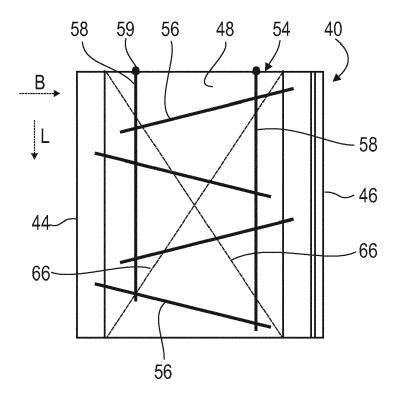
MA MD

(30) Priorität: 14.10.2015 DE 202015105427 U

(71) Anmelder: LASCO Heutechnik GmbH 5221 Lochen (AT)

(72) Erfinder: Landrichinger, Johannes 5221 Lochen (AT)

(74) Vertreter: Heyerhoff Geiger & Partner Patentanwälte PartGmbB Heiligenbreite 52 88662 Überlingen (DE)


(54) MOBILE FESTBRENNSTOFFFEUERUNGSANLAGE

(57) Die Erfindung betrifft eine mobile Festbrennstofffeuerungsanlage (2) mit einer Brennkammer (4) und einem Wärmetauscher (6).

Eine leichte Festbrennstofffeuerungsanlage (2) kann erreicht werden, wenn der Wärmetauscher (6) ein Warmluftplattenwärmetauscher (6) ist mit einem Blechplattenkanal (40) mit zwei aus Blech gebildeten Flach-

seiten (48) und einer Kühlluftführung und einer Heißgasführung (26), wobei die Heißgasführung (26) in Längenrichtung (L) durch den Blechplattenkanal (40) und die Kühlluftführung in Breitenrichtung (B) um den Blechplattenkanal (40) verläuft und die Blechflachseiten (48) einander in Höhenrichtung (H) gegenüberliegen.

EP 3 156 733 A1

40

50

[0001] Die Erfindung betrifft eine mobile Festbrennstofffeuerungsanlage mit einer Brennkammer und einem Warmluftplattenwärmetauscher.

1

[0002] Eine mobile Festbrennstofffeuerungsanlage kann zur Heutrocknung, zur Trocknung eines Gebäudes, zur Beheizung eines Zelts oder eines Gebäudes oder für ähnliche Zwecke verwendet werden. Hierfür wird die Festbrennstofffeuerungsanlage zu ihrem Einsatzort gefahren, dort abgestellt und in Betrieb genommen. Nach Ende des vorgesehenen Betriebs wird die Festbrennstofffeuerungsanlage wieder zurück in ein Lager oder zu einem nächsten Betriebsort gefahren. Zum Betrieb wird Festbrennstoff in der Brennkammer verbrannt, wobei die freigesetzte Wärme mit dem Rauchgas einem Wärmetauscher zugeführt wird. Zur Kühlung des Wärmetauschers kann dieser von einem Kühlluftstrom durchströmt werden, der die Wärme aus dem Wärmetauscher abführt und in einem Luftstrom in das Gebäude, das Zelt, einen Heutrocknungsraum oder dergleichen leitet.

[0003] Zum Betreiben der mobilen Festbrennstofffeuerungsanlage an wechselnden Einsatzorten wird diese auf ein Fahrzeug verladen, zum Einsatzort gefahren und dort wieder abgeladen. Hierbei ist die Anlage hohen mechanischen Belastungen ausgesetzt.

[0004] Es ist eine Aufgabe der vorliegenden Erfindung, eine mobile Festbrennstofffeuerungsanlage anzugeben, die besonders leicht ist.

[0005] Diese Aufgabe wird durch eine mobile Festbrennstofffeuerungsanlage der eingangs genannten Art gelöst, bei der der Warmluftplattenwärmetauscher einen Blechplattenkanal mit zwei aus Blech gebildeten Flachseiten sowie eine Kühlluftführung und einer Heißgasführung aufweist, wobei die Heißgasführung in Längenrichtung durch den Blechplattenkanal und die Kühlluftführung in Breitenrichtung um den Blechplattenkanal verläuft und die Blechflachseiten einander in Höhenrichtung gegenüberliegen. Durch einen Warmluftplattenwärmetauscher können große Volumina an Kühlluft zu deren Erwärmung hindurch und an dünnen Blechwänden entlang geführt werden, sodass der Warmluftplattenwärmetauscher im Verhältnis zum Kühlluftvolumen verhältnismäßig klein und leicht ausgeführt werden kann.

[0006] Der Warmluftplattenwärmetauscher ist zweckmäßigerweise ein Rauchgas-Luft-Wärmetauscher mit einer senkrechten oder waagerechten Heißgasführung und einer horizontalen Kühlluftführung durch den Wärmetauscher. Die Richtungen beziehen sich auf eine Festbrennstofffeuerungsanlage, die auf eine flache, horizontale Ebene abgestellt und betriebsbereit ist.

[0007] Der Blechplattenkanal kanalisiert das Heißgas und schirmt die Kühlluftführung von der Heißgasführung ab. Er verläuft in Längenrichtung, wobei die Durchströmungsrichtung des Heißgases zweckmäßigerweise in Längenrichtung durch den Blechplattenkanal verläuft. Die Umströmungsrichtung der Kühlluft um den Blechplattenkanal ist zumindest im Bereich der Blechflachseiten

in Breitenrichtung, also in Richtung der Breite des Blechplattenkanals. Die Höhenrichtung ist in Richtung der Dicke des Blechplattenkanals und verläuft senkrecht zur Längenrichtung und senkrecht zur Breitenrichtung.

[0008] Die Feuerungsanlage ist eine mobile Feuerungsanlage, die also dafür vorgesehen ist, mithilfe eines Fahrzeugs an ihren Einsatzort transportiert, dort betrieben und später an einem anderen Einsatzort erneut betrieben zu werden. Hierzu umfasst die Feuerungsanlage zweckmäßigerweise eine tragende Konstruktion und ein Anhebeelement, das dazu vorbereitet ist, die gesamte Feuerungsanlage mithilfe eines Hebegeräts am Anhebeelement anzuheben. Das Anhebeelement kann ein Einschub für einen Gabelstapler, eine obere Befestigung für eine Seilaufhängung eines Krans oder dergleichen sein, sodass die Feuerungsanlage angehoben und beispielsweise auf eine Ladefläche abgestellt werden kann. Insbesondere sind Einschübe für standardisierte Gabeln eines Gabelstaplers vorteilhaft. Die tragende Konstruktion umfasst zweckmäßigerweise einen Tragrahmen mit Trägern, an denen Seitenwände gehäuseartig befestigt sind. Ebenfalls ist möglich, dass die Träger durch Abkantungen von Gehäuse bildenden Wandblechen gebildet sind. Um eine leichtere Bewegung der Feuerungsanlage vor Ort zu erreichen, ist es vorteilhaft, wenn die Feuerungsanlage eine eigene Fahreinheit mit Rädern aufweist. Zweckmäßig sind vier Räder. Für einen sicheren Stand während des Betriebs sind Räder nur an einer Anlagenseite, z.B. zwei Räder, ausreichend, verbunden mit einer nicht rollenden Stützeinheit, z.B. einem radlosen Stützfuß. Mit einem oder mehreren Handgriffen, beispielsweise einem Haltebügel an der Umgebungslufteinlassseite, kann die Feuerungsanlage einfach manuell bewegt werden.

[0009] Die Festbrennstofffeuerungsanlage ist zweckmäßigerweise eine für die Verbrennung eines Biobrennstoffs vorbereitete Feuerungsanlage, also eines nicht fossilen Brennstoffs. Besonders vorteilhaft ist eine Holzfeuerungsanlage für den Betrieb mit beispielsweise Hackschnitzeln oder Pellets. Entsprechend ist der Festbrennstoffbrenner zum Verbrennen von Feststoff, insbesondere Holz, hergestellt und umfasst eine Brennstoffzuführung mit einer automatischen Vorschubeinheit zum automatisierten Zuführen von Brennstoff in die Brennkammer, z.B. auf den Brennboden. Ein Vorschubmotor der Vorschubeinheit kann von einer Steuereinheit gesteuert werden, insbesondere in Abhängigkeit eines Verbrennungsparameters, wie der Verbrennungstemperatur, der Abgastemperatur und/oder der Warmlufttemperatur.

[0010] Die Festbrennstofffeuerungsanlage umfasst eine Heißgasführung, in der das heiße Rauchgas von der Brennkammer durch die Heißseite des Warmluftplattenwärmetauschers bis zu einem Gasauslass geführt ist. Weiter ist die Festbrennstofffeuerungsanlage zweckmäßigerweise eine Warmluftanlage zum Erwärmen von Umgebungsluft und umfasst eine Umgebungsluftführung von einem Umgebungslufteinlass im Gehäuse der Feuerungsanlage, durch die Kaltseite des Warmluftplattenwärmetauschers bis zu einem Umgebungsluftauslass. Im Umgebungslufteinlass - oder in einem Abstand bis ein Gebläseradius dazu - ist zweckmäßigerweise das Umgebungsluftgebläse angeordnet, das die Umgebungsluft in das Gehäuse der Feuerungsanlage und wieder aus diesem herausdrückt. Die Umgebungsluftführung verläuft zweckmäßigerweise zumindest seitlich um die Brennkammer herum, um auch diese zu kühlen. Der Umgebungslufteinlass und der Umgebungsluftauslass sind zweckmäßigerweise in einander gegenüberliegenden Seiten eines Gehäuses der Feuerungsanlage angeordnet.

[0011] In einer vorteilhaften Ausführungsform der Erfindung ist im Blechplattenkanal in der Heißgasführung ein Turbulator mit einem Wirbelelement angeordnet, das zwischen den Blechflachseiten angeordnet ist. Dieses Detail der Erfindung ist mit der Überlegung verbunden, dass sich in einem Plattenwärmetauscher mit im Wesentlichen parallelen Blechflachseiten ein laminarer Heißgasstrom ausbilden kann, dessen Innenströmung nur sehr begrenzt mit dem Blechen der beiden Blechflachseiten in Berührung kommt. Durch die laminare Strömung wird der Wärmeübertrag vom Heißgas durch die Blechflachseiten auf die Kühlluft stark begrenzt.

[0012] Dieser Wärmeübertrag kann deutlich erhöht werden, wenn die Laminarität aufgebrochen und das Heißgas mit Wirbeln versehen wird. Dies kann durch das im Blechplattenkanal angeordnete Wirbelelement erreicht werden. Der Wärmeübertrag kann verbessert und somit der Warmluftplattenwärmetauscher in seiner Größe insgesamt verringert werden, sodass weiter Gewicht gespart werden kann.

[0013] Um das Wirbelelement stabil in einer gewünschten Ausrichtung im Heißgasstrom zu halten, ist es vorteilhaft, wenn es an zumindest zwei Stellen gehalten beziehungsweise aufgehängt ist, insbesondere an genau zwei Stellen. Hierdurch kann es mit seiner zumindest überwiegenden Länge, insbesondere mit seiner ganzen Länge, quer zum Heißgasstrom ausgerichtet sein und stabil dort gehalten werden.

[0014] Zweckmäßigerweise erstreckt sich das Wirbelelement zumindest über mehr als die Hälfte der Breitenrichtung des Innenraums eines Blechplattenkanals. Ebenfalls ist es vorteilhaft, wenn es sich über mehr als die Hälfte der Höhenrichtung des Innenraums eines Blechplattenkanals erstreckt.

[0015] In einer besonders einfachen Ausführungsform des Turbulators ist das Wirbelelement als Blechstreifen ausgeführt oder umfasst einen Blechstreifen. Dieser ist zweckmäßigerweise schräg zur Längenrichtung und insbesondere auch schräg zur Breitenrichtung angeordnet. Zur Höhenrichtung kann er parallel liegen. Der Schrägenwinkel liegt vorteilhafterweise zwischen 5° und 30° zur Breitenrichtung und zwischen 60° und 85° zur Längenrichtung. Ganz allgemein kann ein Element mit einer Flachseite verwendet werden, das in der angegebenen Richtung ausgerichtet ist. Die Flächenseite kann eben

sein. Der Heißgasstrom trifft auf das Wirbelelement und wird von diesem schräg zur Längenrichtung abgelenkt. Hierdurch kann in einfacher Weise bereits eine anfängliche Verwirbelung erreicht werden.

[0016] Eine besonders gute Verwirbelung des Heißgases innerhalb des Blechplattenkanals kann erreicht werden, wenn das Wirbelelement von einer der beiden Blechflachseiten und insbesondere von beiden Blechflachseiten jeweils beabstandet angeordnet ist. Es besteht somit ein Spalt zwischen dem Wirbelelement und der beziehungsweise den Blechflachseiten, durch den das Heißgas zwischen Blechflachseite und Wirbelelement hindurchströmen kann. Es entsteht hierdurch am Wirbelelement ein Heißgasstau, der sich in einer Verwirbelung neben und hinter dem Wirbelelement entlädt.

[0017] Bei einer Führung von heißem Rauchgas aus einer Festbrennstoffverbrennung gelangen üblicherweise große Mengen an Flugasche in den Wärmetauscher. Diese setzt sich in Ecken, Kanten und Ritzen fest, sodass ein Wärmeübertrag von der Heißseite zur Kaltseite dort stark verringert oder sogar unterbunden wird. Einem Festsetzen von Flugasche am Wirbelelement kann entgegengewirkt werden, wenn das Wirbelelement von einer Längsinnenkehle des Blechplattenkanals, insbesondere von beiden einander entgegengesetzt angeordneten Längsinnenkehlen des Blechplattenkanals, beabstandet angeordnet ist. Die Längsinnenkehle kann hierbei auf der Innenseite einer Anströmkante oder Abströmkante des Blechplattenkanals angeordnet sein, an den die Kühlluft anströmt beziehungsweise von dem die erwärmte Kühlluft wieder abströmt. Durch den Spalt beziehungsweise Luftraum zwischen Wirbelelement und Längsinnenkehle kann vermieden werden, dass sich die Flugasche in diesem Bereich festsetzt und hierdurch einen Strömungsstau und einen verminderten Wärmeübergang verursacht.

[0018] In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist der Turbulator mehrere Wirbelelemente auf, die in Längenrichtung hintereinander angeordnet sind. Die Verwirbelung kann im Verlauf des Heißgasstroms durch den Blechplattenkanal mehrfach wiederholt werden, sodass eine effektive Verwirbelung erreicht wird. Zweckmäßigerweise sind die Wirbelelemente in Breitenrichtung versetzt zueinander angeordnet, beispielsweise alternierend versetzt zueinander angeordnet. Auf diese Weise wird das Heißgas gezwungen, mal auf der einen und mal auf der anderen Seite an den Wirbelelementen vorbeizuströmen, sodass zumindest für einen Teil des Heißgasstroms eine S-förmige Gasführung erreicht wird. Neben einer Verwirbelung kann hierdurch auch eine Umwälzung des Heißgases erreicht werden, sodass Heißgas vom Innenbereich des Blechplattenkanals an den Außenbereich und somit an die Blechflachseiten gedrückt wird.

[0019] Weiter ist es vorteilhaft, wenn der Turbulator mehrere Wirbelelemente aufweist, die in Längenrichtung hintereinander und zur Breitenrichtung verschieden verkippt zueinander angeordnet sind. Die Verkippung kann

40

35

40

45

beispielsweise alternierend sein, sodass das in Längenrichtung anströmende Heißgas mal in die eine Richtung und mal in die andere Richtung von den Wirbelelementen abgelenkt wird. Auch hierdurch wird eine S-förmige Strömungsführung begünstigt.

[0020] Sehr feine Flugasche hat die Tendenz, sich auch an glatten Flächen festzusetzen, an denen der Heißgasstrom entlang strömt. Auf diese Weise kann ein Wärmeübertrag an diesen Flächen verringert werden. Eine Reinigung einer solchen Fläche ist daher wünschenswert. Dies kann erreicht werden, wenn das Wirbelelement beweglich im Blechplattenkanal gelagert ist. Das Wirbelelement kann durch seine Bewegung Flugasche von einer Fläche oder Innenkante abstreifen oder abschlagen und diese somit rein halten.

[0021] Eine bewegliche Lagerung des Wirbelelements kann in einfacher Weise erreicht werden, wenn das Wirbelelement in Längenrichtung und/oder in Höhenrichtung beweglich im Blechplattenkanal gelagert ist, insbesondere pendelbar. Dies bietet sich insbesondere bei einer vertikalen Längsrichtung, also einem vertikal ausgerichteten Wärmetauscher, an.

[0022] In besonders einfacher Form können mehrere Wirbelelemente mit zumindest zwei Metallstangen zwischen den Blechflachseiten des Blechplattenkanals gehalten werden. Diese können in Längenrichtung angeordnet sein und sind insbesondere parallel zueinander. Mit einer solchen Konstruktion kann auch eine Beweglichkeit der Wirbelelemente einfach erreicht werden, beispielsweise dadurch, dass die Metallstangen über eine Oberkante von zumindest einer der beiden Blechflachseiten eingehängt sind. Zur Montage oder Reinigung können die Wirbelelemente an den Metallstangen in einfacher Weise aus dem Blechplattenkanal nach oben herausgezogen werden.

[0023] Alternativ zu den Metallstangen können die Wirbelelemente an zumindest zwei metallischen Seilen zwischen den Blechflachseiten aufgehängt sein, z.B. Stahlseilen. Metallische Seile haben den Vorteil, dass der Turbulator weniger leicht zwischen den Blechflachseiten eingeklemmt wird. Durch große Temperaturschwankungen zwischen Betriebs- und Ruhezeiten können sich Metallstangen verziehen, sodass der Turbulator zwischen den Blechflachseiten verspannt und nicht mehr beweglich ist. Bei der Aufhängung an Seilen tritt keine Verwindung des Turbulators auf, sodass eine Beweglichkeit der Wirbelelemente erhalten bleibt.

[0024] Eine Reinigungswirkung der Blechflachseiten durch die Wirbelelemente kann weiter verbessert werden, wenn ein Antrieb zum rhythmischen Bewegen eines Elements des Blechplattenkanals vorhanden ist. Eine Möglichkeit besteht in einem Antrieb zum Bewegen des Turbulators, beispielsweise in Längsrichtung. Die Wirbelelemente fahren an den Blechplatten entlang und reinigen diese. Der Antrieb kann ein motorischer Antrieb sein, beispielsweise ein Exzenterantrieb, der den Turbulator rhythmisch anhebt und absenkt. Ebenfalls möglich ist ein Antrieb zum Bewegen einer Blechplatte, beispielsweise

zur Vibration der Blechplatte. Flugasche kann hierdurch von der Blechplatte beziehungsweise dessen Blechflachseite abgeschüttelt werden.

[0025] Eine einfache Montage des Turbulators kann erreicht werden, wenn die Wirbelelemente an einem oder mehreren Trägern hängen, z.B. einer Metallstange oder einem Metallseil, der an einem Querbügel befestigt ist. Der Querbügel kann auf einer Oberkante des Blechplattenkanals aufliegen, sodass der Turbulator von oben in den Blechplattenkanal eingehängt ist. Der Querbügel kann formschlüssig in eine oder beide Blechplatten eingreifen, z.B. in eine Vertiefung oder Ausnehmung, sodass einem unerwünschten Verrutschen entgegengewirkt wird.

[0026] Eine Erhöhung des Strömungswiderstands in der Heißgasführung oder der Kühlluftströmung kann durch ein stärkeres Gebläse in der jeweiligen Strömung ausgeglichen werden, sodass ein zufriedenstellender Gasstrom erreicht wird. Dies ist jedoch mit einem erhöhten Energieverbrauch und auch einer erhöhten Geräuschentwicklung verbunden. Da jedoch der Kühlluftstrom mit erheblich größerem Volumen und schneller durch den Plattenwärmetauscher strömt, ist eine Strömungswiderstandserhöhung dort besonders nachteilig.

[0027] Der Strömungswiderstand kann gering gehalten werden, wenn der Blechplattenkanal in der Kühlluftführung eine Anströmkante für in Breitenrichtung anströmende Kühlluft bildet und sich der Blechplattenkanal im Kühlluftstrom hinter der Anströmkante in Breitenrichtung keilförmig weitet, also in Höhenrichtung immer dicker wird. Der Kühlluftstrom wird durch den Keil aufgetrennt und auseinandergeführt. Durch die keilförmige Auftrennung kann eine kühlluftseitige Verwirbelung und damit ein Strömungswiderstand gering gehalten werden. Ebenfalls strömungsgünstig ist es, wenn der Blechplattenkanal in der Kühlluftführung eine Anströmkante für in Breitenrichtung anströmende Kühlluft bildet und sich im Kühlluftstrom hinter der Anströmkante beidseitig weitet, sodass der Kühlluftstrom beidseitig auseinandergeführt ist, insbesondere symmetrisch beidseitig auseinandergeführt ist.

[0028] Durch die Strömung des Heißgases durch den Blechplattenkanal gibt das Heißgas Wärme ab, sodass das Heißgas abkühlt und sich zusammenzieht. Eine gleichförmige Strömungsgeschwindigkeit und damit ein geringer Strömungswiderstand innerhalb des Blechplattenkanals kann erreicht werden, wenn der Strömungsquerschnitt der Heißgasführung im Blechplattenkanal in Längenrichtung abnimmt. Die Strömungsrichtung des Heißgases verläuft hierbei zweckmäßigerweise in die Längenrichtung. Da die Strömungsgeschwindigkeit des Heißgases durch den Blechplattenkanal bei einem Volllastbetrieb der mobilen Festbrennstofffeuerungsanlage am größten ist, ist es vorteilhaft, wenn die Abnahme des Strömungsquerschnitts gleich der Abnahme der Temperatur des durch den Blechplattenkanal strömenden Heißgases bei Volllastbetrieb ist. Die Temperatur ist hier zweckmäßigerweise in Kelvin zu verstehen.

[0029] Eine Verringerung des Strömungsquerschnitts

30

40

45

kann erzeugt werden durch eine Verengung der Kanalwände, die sich im Kanalverlauf in Strömungsrichtung aneinander annähern. Ebenfalls vorteilhaft ist es, wenn der Strömungsquerschnitt durch ein im Blechplattenkanal angeordnetes Wirbelelement verringert wird. Das Wirbelelement kann ein Element des Turbulators sein. [0030] Bei einem Erwärmen der Kühlluft im Wärmetauscher dehnt diese sich aus. Eine gleichförmige Kühlluftströmung kann insofern erreicht werden, wenn die Kühlluftführung sich im Verlaufe der Erwärmung der Kühlluft in ihrem Querschnitt vergrößert. Hierbei ist es besonders vorteilhaft, wenn die Kühlluftführung zwischen zwei Blechplattenkanälen hindurchgeführt ist und zwischen diesen Blechplattenkanälen einen Strömungsquerschnitt aufweist, der sich in Breitenrichtung, also in Strömungsrichtung des Kühlluftstroms, vergrößert.

[0031] Beide Blechflachseiten des Blechplattenkanals können jeweils durch ein Blech gebildet sein, die an einer Anströmkante und/oder einer Abströmkante miteinander verbunden sind, beispielsweise durch eine Verschweißung. Der Herstellungsaufwand des Plattenwärmetauschers kann verringert werden, wenn der Blechplattenkanal ein beide Blechflachseiten bildendes Blech mit einer Kantung aufweist, die insbesondere eine Anströmkante oder Abströmkante des Blechplattenkanals in der Kühlluftführung für Kühlluft bildet. Auf eine Verschweißung von zwei Blechen an einer Kante kann verzichtet werden.

[0032] Um eine Ansammlung von Flugasche innen in einer sehr spitzen Abkantung zu vermeiden, ist es vorteilhaft, wenn die Anströmkante und deren Umgebung oder die Abströmkante und deren Umgebung mehrere zumindest im Wesentlichen parallele Kantungen aufweist, insbesondere drei solcher Kantungen. Die Kantrichtungen dieser Kantungen sind zweckmäßigerweise gleich, sodass die Kanten parallel zueinander ausgerichtet sind.

[0033] Ebenso, wie eine Intensivierung des Kontakts des Rauchgases beziehungsweise Heißgases von innen mit den Blechplatten erwünscht ist, ist auch eine Intensivierung des Kontakts der Kühlluft von außen mit den Blechplatten vorteilhaft. Dies kann erreicht werden durch eine Kühlluftführung um den Blechplattenkanal zum Lenken von Kühlluft in einer S-Form um den Blechplattenkanal. Der Strömungsweg der Luft entlang der Platten wird vergrößert und es kann zusätzlich eine Verwirbelung der Luft an den Platten erreicht werden. Die Kühlluftführung kann Blechelemente zwischen zwei Blechplattenkanälen aufweisen, die die Luft in S-Form lenken.

[0034] Insbesondere bei einer solchen Kühlluftführung ist der Blechplattenkanal starken mechanischen Belastungen ausgesetzt. Bei der Verbindung der beiden Blechflachseiten beziehungsweise deren Blechkanten aneinander ist daher darauf zu achten, dass diese Verbindung auch bei starken thermischen Ausdehnungen gasdicht bleibt, so dass kein Rauchgas aus der Heißgasseite des Wärmetauschers in die Kaltgasseite übertritt. Eine sol-

che Verbindung kann durch eine Längsschweißung vollständig entlang der Verbindung erreicht werden. Die Herstellung gasdichter Schweißnähte ist jedoch aufwändig. [0035] Dieser Aufwand kann reduziert werden, wenn die beiden Blechflachseiten mit jeweils ihrer Blechkante aneinander liegen und so ineinander gefalzt sind, dass eine erste Blechflachseite um 180° gefalzt ist und die zweite Blechflachseite um 180° um die erste Blechflachseite und noch einmal um 180° in die Nut eingefalzt ist, die durch die Falzung der ersten Blechflachseite gebildet ist. Durch einen solchen fünfschichtigen Aufbau ist die Verbindung so fest und gasdicht, dass Punktschweißungen ausreichen, wie in FIG 6 zu sehen ist, die eine Bewegung der beiden Blechkanten in Längenrichtung unterbinden. Auf eine gasdichte Längenverschweißung kann verzichtet werden.

[0036] Diese Verbindung ist besonders sinnvoll anwendbar bei einer S-förmigen Kühlluftführung, bei der ein Blechplattenkanalende starken Temperaturunterschieden ausgesetzt ist.

[0037] Eine noch festere Verbindung kann erreicht werden, wenn der fünfschichtige Blechplattenaufbau noch einmal umgekantet wird, so dass ein siebenschichtiger Blechplattenaufbau entsteht.

[0038] Bei einem Betriebsbeginn oder einem Betriebsende der mobilen Festbrennstoffanlage heizt sich der Plattenwärmetauscher auf beziehungsweise er kühlt ab. Hierdurch dehnen sich die Blechflachseiten aus beziehungsweise ziehen sich zusammen. Hierbei bewegen sich Blechflächen von einer Ebene in eine gewölbte Fläche beziehungsweise aus einer gewölbten Fläche in eine Ebene beziehungsweise eine Fläche mit zumindest einer geraden Linie. Dies kann zu einem unerwünschten Schlagen oder Knallen des betreffenden Blechs führen. [0039] Eine solche unerwünschte Geräuschentwicklung kann vermieden werden, wenn zumindest eine der Blechflachseiten eine Flächenkantung durch die Blech-

Blechflachseiten eine Flächenkantung durch die Blechflachseite aufweist. Zweckmäßigerweise verläuft die Flächenkantung schräg zur Breitenrichtung und schräg zur Längsrichtung. Besonders vorteilhaft sind zumindest zwei Kantungen in der Blechflachseite, insbesondere zumindest zwei sich kreuzende Flächenkantungen. Der Kantwinkel von solchen Flächenkantungen ist zweckmäßigerweise gering und liegt unter 10°, insbesondere unter 5°.

[0040] Bei Vorhandensein einer Kühlluftführung können ein oder mehrere Elemente der Kühlluftführung einem Schlagen entgegenwirken, indem sie so mit einer Blechplatte verbunden sind, dass sie sie aussteifen.

[0041] Die Erfindung ist außerdem gerichtet auf einen Warmluftplattenwärmetauscher für eine wie oben beschriebene mobile Festbrennstofffeuerungsanlage. Der Warmluftplattenwärmetauscher kann ein oder mehrere Details der Unteransprüche und/oder der vorhergehenden Beschreibung aufweisen.

[0042] Weiter ist die Erfindung gerichtet auf ein Verfahren zum Erwärmen von Umgebungsluft in einem Warmluftplattenwärmetauscher einer mobilen Fest-

20

35

40

brennstofffeuerungsanlage, bei dem aus der Verbrennung von Feststoff in einer Brennkammer der mobilen Festbrennstofffeuerungsanlage entstehendes Rauchgas durch einen die Heißseite des Warmluftplattenwärmetauschers zumindest teilweise bildenden Blechplattenkanal geführt wird. Zur besseren Wärmeausnutzung wird vorgeschlagen, dass das Rauchgas dort ein Wirbelelement eines Turbulators umströmt und von diesem verwirbelt wird.

[0043] Mobile Festbrennstofffeuerungsanlagen werden auf Fahrzeugen von einem Lagerort zu einem Einsatzort gefahren oder von Einsatzort zu Einsatzort. Hierbei werden sie auf dem Fahrzeug bewegt und gerüttelt, sodass Flugasche auf einer Blechplatte im Blechplattenkanal teilweise abgeschüttelt wird. Dieser Effekt kann verstärkt werden, wenn durch die Fahrbewegungen ein Wirbelelement gegen zumindest eine Blechplatte des Blechplattenkanals schlägt und von dieser hierdurch Flugasche herunterschlägt, die sich bei einem vorhergehenden Betrieb an der Blechplatte angelagert hat. Auf diese Weise kann eine ausreichende Reinigung des Blechplattenkanals erreicht werden, sodass eine manuelle Reinigung zwischen zwei Betriebseinsätzen unterbleiben kann.

[0044] Weiter ist es vorteilhaft, wenn ein Wirbelelement während des Betriebs durch vorbeiströmendes Rauchgas in der Weise bewegt wird, dass das Wirbelelement gegen zumindest eine Blechplatte des Blechplattenkanals schlägt und von dieser hierdurch Flugasche herunterschlägt. Besonders zweckmäßig ist hierfür eine Aufhängung des Wirbelelements an einem Metallseil.

[0045] Die bisher gegebene Beschreibung vorteilhafter Ausgestaltungen der Erfindung enthält zahlreiche Merkmale, die in einigen abhängigen Ansprüchen zu mehreren zusammengefasst wiedergegeben sind. Diese Merkmale können jedoch zweckmäßigerweise auch einzeln betrachtet und zu sinnvollen weiteren Kombinationen zusammenfasst werden, insbesondere bei Rückbezügen von Ansprüchen, sodass ein einzelnes Merkmal eines abhängigen Anspruchs mit einem einzelnen, mehreren oder allen Merkmalen eines anderen abhängigen Anspruchs kombinierbar ist. Außerdem sind diese Merkmale jeweils einzeln und in beliebiger geeigneter Kombination mit der erfindungsgemäßen Vorrichtung kombinierbar.

[0046] Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung, sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Die Ausführungsbeispiele dienen der Erläuterung der Erfindung und beschränken die Erfindung nicht auf die darin angegebene Kombination von Merkmalen, auch nicht in Bezug auf funktionale Merkmale. Außerdem können dazu geeignete Merkmale eines jeden Ausführungsbeispiels auch explizit isoliert betrachtet, aus einem Ausführungsbeispiel entfernt, in ein anderes Ausführungsbeispiel

rungsbeispiel zu dessen Ergänzung eingebracht und/oder mit einem beliebigen der Ansprüche kombiniert werden.

[0047] Es zeigen:

- FIG 1 eine mobile Festbrennstofffeuerungsanlage mit einer Brennkammer, einem Wärmetauscher und einer Rauchgasabführung in einer schematischen Darstellungsweise,
- FIG 2 den Wärmetauscher in einer schematischen Schnittdarstellung von der Seite,
- FIG 3 den Wärmetauscher in einer schematischen Schnittdarstellung von oben mit mehreren Blechplattenkanälen,
- FIG 4 einen der Blechplattenkanäle in einer seitlichen Schnittdarstellung mit einem innenliegenden Turbulator,
- FIG 5 den Blechplattenkanal aus FIG 4 von oben mit einer Draufsicht auf den Turbulator und
- FIG 6 einen der Blechplattenkanäle in einer Seitenansicht mit einer Luftführung zum Führen der Kühlluft in einer S-förmigen Bahn.

[0048] FIG 1 zeigt eine schematische Darstellung einer mobilen Festbrennstofffeuerungsanlage 2, die für einen Transport zu mehreren verschiedenen Einsatzorten vorbereitet ist. Die Feuerungsanlage 2 umfasst eine Brennkammer 4 und einen Warmluftplattenwärmetauscher 6, die in einem Rahmen 8 gelagert sind, der an seinem unteren Ende Anhebeelemente 10 in Form von Einschuböffnungen zum Einstecken einer Gabel eines Gabelstaplers aufweist. Seitlich und oben ist der Transportrahmen 8 gebildet durch Abkantungen der seitlichen Seitenbleche beziehungsweise der Anlagendecke geformt, die zusammen mit dem Boden ein transportstabiles und wetterfestes Außengehäuse beziehungsweise Anlagengehäuse 12 bilden.

[0049] Um eine gute Beweglichkeit am Einsatzort zu gewährleisten, ist die Anlage 2 mit einem Rädersystem mit vier Rädern 14 ausgerüstet, von denen die beiden hinteren Räder 14 einen Schwenkmechanismus 16 zum Drehen der Räder 14 um eine vertikale Achse aufweisen. Zum Schieben oder Ziehen der Festbrennstofffeuerungsanlage 2 ist ein Griff 18 über einem Umgebungsluftgebläse 20 vorhanden, der sich vorzugsweise über die gesamte Breite der Hinterwand des Außengehäuses 12 erstreckt.

[0050] FIG 1 zeigt die Festbrennstofffeuerungsanlage 2 in einer stark vereinfachten und schematischen Weise, bei der auf betriebswesentliche Elemente, die jedoch für die Erläuterung der Erfindung unwesentlich sind, der Übersichtlichkeit halber verzichtet wurde. Die mobile Festbrennstofffeuerungsanlage 2 hat in diesem Ausfüh-

rungsbeispiel eine Nennleistung von 150 kW und ist mit Festbrennstoff 22, insbesondere Holz, wie Holzpellets, befeuerbar. Hierzu kann ein nicht dargestelltes Brennstofflager mit der Festbrennstofffeuerungsanlage 2 über einen Festbrennstoffkanal verbunden werden, durch den der Festbrennstoff 22 zu einer Fördereinheit 24 gelangt, die in FIG 1 nur schematisch angedeutet ist. Die Fördereinheit 24 umfasst eine Förderschnecke, durch die der Brennstoff 22 - gesteuert durch eine elektrische Steuereinheit und angetrieben durch einen Motor - automatisiert in die Brennkammer 4 befördert wird.

[0051] Die aus der Verbrennung des Festbrennstoffs 22 entstehenden heißen Rauchgase werden nach oben hin aus der Brennkammer 4 abgeführt und durch eine Heißgasführung 26 einer Heißseite des Warmluftplattenwärmetauschers 6 von oben her zugeführt. Das Heißgas ist Rauchgas aus der Verbrennung und wird von oben nach unten durch die Heißseite des Warmluftplattenwärmetauschers 6 hindurchgeführt und gelangt anschließend zu einem Saugzuggebläse 28. Das im Wärmetauscher 6 abgekühlte Rauchgas wird von diesem durch eine Rauchgasabführung 30 aus der Festbrennstofffeuerungsanlage 2 herausgeblasen. Innerhalb der Heißgasführung 26 - und damit auch innerhalb der Heißgasführung 26 beziehungsweise Heißseite des Warmluftplattenwärmetauschers 6 - besteht also ein Unterdruck relativ zur Umgebung der Feuerungsanlage 2.

[0052] Zum Abtransport der Verbrennungswärme aus dem Heißgasstrom 32 ist ein Kühlluftstrom 34 in einer Kühlluftführung in einer Gegenstromführung zum Heißgasstrom 32 durch die Festbrennstofffeuerungsanlage 2 geführt, er trifft also zunächst kühlere Anlagenteile und dann heißere Anlagenteile, sodass die an den kühleren Anlagenteilen erwärmte Luft an den heißeren Anlagenteilen nacherwärmt wird. Die Kühlluft wird als Außenluft beziehungsweise Umgebungsluft durch das Umgebungsluftgebläse 20 unmittelbar von der Umgebung der Anlage 2 abgesaugt und in das Außengehäuse 12 der Feuerungsanlage 2 eingeblasen. Das Umgebungsluftgebläse 20 ist an einem Umgebungslufteinlass 36 des Außengehäuses 12 angeordnet. Innerhalb des Außengehäuses 12 - und damit auch innerhalb der Kaltseite des Warmluftplattenwärmetauschers 6 - besteht also ein Überdruck relativ zur Umgebung der Feuerungsanlage

[0053] Die Umgebungsluft wird von dem Umgebungslufteinlass 36 in einer Kühlluftführung zur Kaltseite des Wärmetauschers 6 geblasen, durch diesen in einer Kühlluftführung hindurchgeführt und dort erhitzt. Anschließend umströmt sie die Außenhülle der Brennkammer 4 und wird dort weiter erhitzt, bevor sie im weiteren Verlauf der Kühlluftführung durch einen Warmluftauslass 38 die Feuerungsanlage 2 verlässt. Die aus dem Warmluftauslass 38 ausgeblasene erwärmte Umgebungsluft steht mit einer maximalen Nennleistung von 150 kW zur Verfügung, beispielsweise für die Gebäudetrocknung, eine Zeltbeheizung oder für die Heutrocknung. Die Brennkammer 4 wird durch den Kühlluftstrom 34 gekühlt, so-

dass ihre Außentemperatur relativ kühl und für einen mobilen Einsatz geeignet bleibt.

[0054] FIG2 zeigt den Warmluftplattenwärmetauscher 6 in einer schematischen Schnittdarstellung von vorne entlang der Schnittlinie II-II aus FIG 1 und aus FIG 3. Zu sehen sind sechs Blechplattenkanäle 40, wobei der Warmluftplattenwärmetauscher 6 weitere Blechplattenkanäle 40 aufweist, die in den Figuren der Übersicht halber nicht dargestellt sind. Die Blickrichtung in FIG 2 entspricht der Kühlluftströmungsrichtung, wobei die Kühlluft zwischen den Blechplattenkanälen 40 in Kühllüftkanälen 42 durch den Wärmetauscher 6 hindurchströmt. Der Heißgasstrom 32 strömt von oben nach unten durch die Blechplattenkanäle 40, wie durch drei exemplarisch dargestellte gepunktete Pfeile in FIG 2 zu sehen ist. Das Heißgas strömt hierbei in Längsrichtung L und die Kühlluft in Breitenrichtung B durch den Wärmetauscher 6 (siehe FIG 3). Eine Höhenrichtung H steht senkrecht zu der Längenrichtung L und der Breitenrichtung B.

[0055] FIG 3 zeigt den Warmluftplattenwärmetauscher 6 in einer schematischen Draufsicht von oben entlang der Schnittebene III-III aus FIG 2. Zu sehen sind die Blechplattenkanäle 40, die von den Kühlluftkanälen 42 umgeben werden, sodass der Kühlluftstrom 34 die Blechplattenkanäle 40 von außen umströmt. Jeder der Blechplattenkanäle 40 ist durch ein Blech gebildet, das an der vorderen Anströmkante 44 in einem Winkel < 90° Grad umgekantet ist, sodass das Blech von der hinteren Abströmkante 46 zur vorderen Anströmkante 44 und von dort zurück zur Abströmkante 46 verläuft. Die Blechplatte bildet also beide Blechflachseiten 48 ihres Blechplattenkanals 40 in einem Stück.

[0056] Wie in FIG 4 zu erkennen ist, ist das Blech an der hinteren Abströmkante 46 zusammengeführt und zusammengeschweißt, sodass eine gasdichte Abströmkante 46 entsteht. In diesem Ausführungsbeispiel ist das Blech an einer Seite um die andere Seite herumgelegt und mit einer Schweißnaht verschweißt, sodass die drei Blechdicken gasdicht miteinander verbunden sind. Wie aus den feingepunkteten Linien zu sehen ist, wird diese Schweißnaht durch zwei weitere Schweißnähte entlang der Blechenden ergänzt, sodass die Gasdichtigkeit auch bei hohen mechanischen Belastungen den Blechplattenkanal 40 bildenden Blechs gewährleistet ist. Die Schweißnähte sind beispielsweise Rollnähte, die Verschweißung also eine Rollnahtschweißung, wobei auch andere durchgehende Verschweißungen möglich und vorteilhaft sind.

[0057] FIG 5 zeigt eine alternative Verbindung der beiden Blechkanten des Blechs. Beide Kanten sind mit einem Versatz aufeinandergelegt, so dass eine Blechkante weiter innen liegt und eine Blechkante weiter nach außen ragt. Dann wird die weiter nach außen ragende Blechkante um 180° um die andere Kante gefalzt, sodass eine Verbindung entsteht, wie in FIG 3 gezeigt ist. Dann werden beide Blechkanten um 180° in die gleiche Drehrichtung umgefalzt, sodass nun fünf Blechlagen aufeinander liegen, wie in FIG 5 gezeigt ist. Diese werden durch

40

Druck aufeinander gepresst, so dass sie eng aneinander anliegen. Dies ist in FIG 5 nicht gezeigt. Dort sind die Blechkanten beziehungsweise Blechabschnitte an den Blechkanten leicht beabstandet voneinander gezeichnet, um die Mehrschichtaufbau sichtbar zu machen. Zusätzlich kann eine Punktverschweißung mit mehreren Schweißpunkten in die zum Blechplattenkanal 40 weisende Kehle des Blechpakets gesetzt werden.

[0058] Es hat sich in Langzeitversuchen gezeigt, dass diese Verbindung so fest ist, dass auf eine durchgehende, gasdichte Verschweißung verzichtet werden kann. Es hat sich gezeigt, dass beim Anheizen und Abkühlen der Festbrennstofffeuerungsanlage so starke thermische Bewegungen in der Blechplatten an ihren aufeinander liegenden Blechkanten entstehen, dass eine Verbindung mit einem dreischichtigen Aufbau, wie in FIG 3 gezeigt, im Laufe vieler Betriebszyklen durch die thermischen Bewegungen auseinander geht und seine Gasdichtigkeit verliert, so dass eine durchgehende Verschweißung sinnvoll ist. Dies ist beim fünfschichtigen Aufbau aus FIG 5 nicht der Fall. Auch dort finden zwar thermischen Bewegungen statt, insbesondere in Breitenrichtung B, die beiden Blechkanten beziehungsweise Blechplattenabschnitte an den Blechkanten bleiben jedoch durch das gegenseitige ineinander greifen fest ineinander verbunden, so dass eine ausreichende Gasdichtigkeit auch nach langer Lebensdauer erhalten bleibt.

[0059] FIG 2 zeigt die Befestigung der Blechplattenkanäle 40 an einer Kopfplatte 50 und einer Fußplatte 52 des Warmluftplattenwärmetauschers 6. Die Fußplatte 52 ist auch in FIG 3 zu sehen und umgibt die Blechplattenkanäle 40 jeweils vollständig, sodass diese in der Fußplatte 52 wie in einem Rahmen gehalten sind. Dies ist in FIG 2 nur vereinfacht und schematisch dargestellt, da dort nur die Stege der Kopfplatte 50 und der Fußplatte 52 zwischen den Blechplattenkanälen 40 gezeigt sind und auf die weitere Darstellung der beiden Platten 50, 52 der Übersichtlichkeit halber verzichtet wurde.

[0060] Das Blech der Blechplattenkanäle 40 ist an beiden Enden der Blechflachseiten 48 in einer Art Kragen nach außen geführt, der an der Kopfplatte 50 beziehungsweise der Fußplatte 52 anliegt und mit der entsprechenden Platte 50, 52 verschweißt ist. Hierbei liegt die Fußplatte 52 auf den unteren Krägen der Blechplattenkanäle 40, sodass sie mit nach unten auftretendem Kondensat aus den Blechplattenkanälen 40 nicht in Berührung kommt. Auch die Kopfplatte 50 kann um die Blechplattenkanäle 40 gelegt sein, analog zur Fußplatte 52, wobei in FIG 2 die Kopfplatte 50 auf die Krägen der Blechplattenkanäle 40 gelegt und mit diesen verschweißt ist, sodass eine etwas andere Geometrie als bei der Fußplatte 52 gezeigt ist.

[0061] Während des Betriebs der Festbrennstofffeuerungsanlage 2 strömt heißes Rauchgas durch den Wärmetauscher 6 und zwar durch die Blechplattenkanäle 40, in diesem Beispiel von oben nach unten. Es ist auch möglich, den Plattenwärmetauscher 6 um 90° Grad gedreht

zu sehen, sodass das heiße Gas horizontal durch den Wärmetauscher 6 strömt. In jedem Fall ist es vorteilhaft, wenn der Kühlluftstrom 34 horizontal oder zumindest im Wesentlichen horizontal durch den Wärmetauscher 6 geführt wird. Auf diese Weise kann die horizontale Durchströmung der Festbrennstofffeuerungsanlage 2 mit Kühlluft beziehungsweise Umgebungsluft weitgehend ohne große Umlenkungen aufrechterhalten werden, sodass die Durchströmung mit einem geringen Strömungswiderstand vonstattengehen kann.

[0062] Während des Durchströmens der Blechplattenkanäle 40 kühlt sich das Heißgas ab und zieht sich infolge der Temperaturverringerung im Wesentlichen proportional zur Temperaturverringerung - in Kelvin gemessen zusammen. Bei einem gleichförmigen Strömungsquerschnitt der Blechplattenkanäle 40 würde hierbei die Strömungsgeschwindigkeit innerhalb der Blechplattenkanäle 40 verringert werden entsprechend der Temperaturbeziehungsweise Volumenverringerung. Um dieses den Strömungswiderstand vergrößernde Abbremsen des Heißgasstroms 32 zu verringern, ist der Strömungsquerschnitt der Heißgasführung 26 im Blechplattenkanal 40 kontinuierlich verringert, wie aus FIG 2 zu sehen ist. Die Verringerung entspricht hierbei der Temperaturabnahme des Heißgases durch den Blechplattenkanal 40 bei Volllastbetrieb der Festbrennstofffeuerungsanlage 2. Das Heißgas strömt hierdurch im Wesentlichen mit kontinuierlicher Geschwindigkeit durch den Wärmetauscher 6 beziehungsweise durch den entsprechenden Blechplattenkanal 40.

[0063] Mit der gleichen Begründung nimmt der Strömungsquerschnitt der Kühlluftführung zwischen den Blechplattenkanälen 40 in Strömungsrichtung des Kühlluftstroms 34 zu. Dies ist in FIG 3 angedeutet durch den sich in Breitenrichtung kontinuierlich aufweitenden Kühlluftkanal 42 zwischen den Blechflachseiten 48 einander benachbarter Blechplattenkanäle 40. Auch diese Vergrößerung des Strömungsquerschnitts entspricht der Temperaturzunahme der Kühlluft während ihres Strömens entlang der Blechflachseiten 48 der beiden Blechplattenkanäle 40, ebenfalls in Kelvin gemessen.

[0064] Um den Strömungswiderstand des Kühlluftstroms 34 um die Blechplattenkanäle 40 gering zu halten, weitet sich das Blech der Blechplattenkanäle 40 von der Anströmkante 44 keilförmig in Breitenrichtung beziehungsweise Strömungsrichtung des Kühlluftstroms 34, wie aus FIG 3 zu sehen ist. Das einen Blechplattenkanal 40 bildende Blech umfasst mithin die vordere Kantung der Anströmkante 44 um zwei weitere flache Kantungen symmetrisch um die Anströmkante 44 herum, die jeweils mit einem Winkel > 90° Grad ausgeführt sind. Hierdurch entsteht die Keilform des vorderen Abschnitts des Blechplattenkanals 40, der vom Kühlluftstrom 34 angeströmt wird.

[0065] Der hintere Teil eines jeden Blechplattenkanals 40, an dem der Kühlluftstrom 34 den Blechplattenkanal 40 an der Abströmkante 46 verlässt, ist in analoger Weise aufgebaut und umfasst zwei parallele Kantungen, die das

30

Blech in Keilform an der Abströmkante 46 zusammenführen beziehungsweise schon ein Stück vorher zum Ermöglichen der parallel aufeinander liegenden Blechabschnitte zur Verschweißung. Auch hierdurch wird der Strömungswiderstand des Kühlluftstroms 34 bei einem Abströmen von den Blechplattenkanälen 40 verringert. [0066] Im Gegensatz zum Kühlluftstrom 34, der mit relativ hoher Geschwindigkeit durch das kräftige Umgebungsluftgebläse 20 durch den Wärmetauscher 6 geführt ist, strömt das heiße Rauchgas viel langsamer im Heißgasstrom 32 durch die Heißgasführung 26, die innerhalb des Wärmetauschers 6 durch die Blechplattenkanäle 40 gebildet ist. Die Gefahr einer sehr laminaren Strömung des Heißgases innerhalb der Blechplattenkanäle 40 ist damit sehr viel höher als bei der schnelleren Kühlluftströmung 34 um die Blechplattenkanäle 40 herum. Je laminarer die Strömung ist, desto geringer ist jedoch der Wärmeübergang vom Heißgas auf die Kühlluft. [0067] Um die Laminarität des Heißgasstroms 32 im Inneren der Blechplattenkanäle 40 aufzubrechen, ist im Inneren der Blechplattenkanäle 40 jeweils ein Turbulator 54 angeordnet. Ein Turbulator umfasst mehrere, hier vier, Wirbelelemente 56, die jeweils an zwei Trägern 58 befestigt sind. Ein Träger 58 kann eine Metallstange oder ein metallisches Seil sein, z.B. ein Stahlseil. Die beiden Träger 58 sind jeweils an einem Querbügel 59 befestigt, der über den oberen Rand des den Blechplattenkanal 40 bildenden Blechs gehängt ist, wie in FIG 5 in der Draufsicht von oben zu sehen ist. In FIG 4 ist zu erkennen, dass die Einhängung eines Querbügels 59 formschlüssig in eine Vertiefung des Blechs erfolgt, sodass ein Verrutschen in Breitenrichtung B vermieden wird.

[0068] FIG 5 zeigt einen Blechplattenkanal 40 von oben in einer Draufsicht, wobei auf den oberen und unteren Kragen zur Befestigung des Blechplattenkanals an der Kopfplatte 50 beziehungsweise Fußplatte 52 der Übersichtlichkeit halber verzichtet wurde. Zu sehen ist, dass der Träger 58 an seinem oberen Ende einen Querbügel 59 aufweist, der über den oberen Rand des den Blechplattenkanal 40 bildenden Blechs beidseitig gehängt ist. Auf diese Weise sind die beiden Träger 58 zusammen an vier Punkten gelagert, sodass eine stabile Lagerung des Turbulators 54 innerhalb des Blechplattenkanals 40 erfolgt. Der Turbulator 54 kann in einfacher Weise von oben in das Innere des Blechplattenkanals 40 eingefügt und somit dort eingehängt werden.

[0069] Durch die vier Wirbelelemente 56 wird der Heißgasstrom 32 an den Wirbelelementen 56 vorbeigezwungen. Wie aus FIG 4 zu sehen ist, sind die Wirbelelemente 56 relativ zur Breitenrichtung B und zur Längenrichtung L schräg beziehungsweise geneigt angeordnet. Relativ zur Höhenrichtung H, also senkrecht zur Papierebene aus FIG 4, können die Wirbelelemente unverkippt, also parallel zueinander und zur Höhenrichtung H ausgerichtet sein. Durch die Wirbelelemente 56 wird der Heißgasstrom 32 in dreifacher Weise abgelenkt. Durch die Schräge wird der Heißgasstrom aus der Längenrichtung L teilweise in oder entgegen der Breitenrichtung B

abgelenkt. Wie aus FIG 4 zu sehen ist, sind die Wirbelelemente 56 in Längenrichtung L hintereinander angeordnet und zur Breitenrichtung alternierend zueinander verkippt angeordnet. Auf diese Weise wird der Heißgasstrom 32 zunächst entgegen der Breitenrichtung B abgelenkt, dann ein Stück weit in Breitenrichtung B, dann durch das dritte Wirbelelement 56 wieder entgegen der Breitenrichtung B und zum Schluss wieder ein Stück weit in Breitenrichtung B. Es entsteht somit eine leichte mäandernde Strömungsführung des Heißgasstroms 32. Dies wird auch dadurch erreicht, dass die Wirbelelemente 56 in Breitenrichtung jeweils alternierend versetzt zueinander angeordnet sind. So ist jedes zweite Wirbelelement 56 näher zur Abströmkante 46 angeordnet und alternierend hierzu jedes zweite Wirbelelement 56 näher zur Anströmkante 44 angeordnet.

[0070] Eine zweite Ablenkung erfolgt durch die Beabstandung der Wirbelelemente 56 in Höhenrichtung H rechts und links von der Blechflachseite 48. Dies ist in FIG 5 durch den Spalt 60 zwischen der jeweiligen Blechflachseite 48 und den Wirbelelementen 56 dargestellt. Zu sehen ist das oberste Wirbelelement 56 und das darunterliegende Wirbelelement 56, das der Übersichtlichkeit halber sowohl vorne als auch hinten gestrichelt dargestellt ist, obwohl es nach vorne hin, also zur Anströmkante 44 hin, von oben an sich voll sichtbar wäre. Durch diesen Spalt 60 wird der Heißgasstrom 32 beidseitig am Wirbelelement 56 vorbeigeführt und auf diese Weise deutlich verwirbelt, sodass ein guter Wärmeübertrag vom Heißgas auf die Blechflachseite 48 beziehungsweise dessen Blech und damit auf den Kühlluftstrom 34 übertragen wird.

[0071] Eine dritte Umlenkung des Heißgasstroms 32 findet vorne und hinten an den Wirbelelementen 56 statt. Zwischen diesen und dem vorderen und hinteren Ende des Blechplattenkanals 40, also der Innenkehle der Anströmkante 44 und der Innenkehle der Abströmkante 46 innerhalb des Blechplattenkanals 40, besteht ein Abstand und somit ein vom Heißgas durchströmungsfähiger Querschnitt. Auch durch diesen wird das Heißgas hindurchgezwungen, sodass einer Ascheablagerung in den beiden Kehlen entgegengewirkt wird. Außerdem wird auch dort das Heißgas besonders gut verwirbelt.

[0072] Durch den Abstand des Turbulators 54 beziehungsweise dessen Wirbelelemente 56 beidseitig in der entsprechenden Richtung, also beidseitig in Höhenrichtung H durch den Spalt 60 und beidseitig in Breitenrichtung B durch den Abstand zu der jeweiligen Kehle, sind die Wirbelelemente 56 beweglich im Blechplattenkanal 40 gelagert. Durch den Heißgasstrom 32 wird eine Kraft auf die Wirbelelemente 56 ausgeübt, durch den diese an den Trägern 58 leicht schwingen können. Auch hierdurch wird Ascheablagerungen an den Innenwänden des Blechplattenkanals 40 entgegengewirkt. Bei Ausführung der Träger 58 als Seile wird dieses Schwingen begünstigt.

[0073] Einen besonders wirkungsvollen Reinigungseffekt hat ein Transport der Festbrennstofffeuerungsanla-

ge 2 auf oder in einem Fahrzeug. Durch die Beschleunigungen und Ruckelbewegungen beim Fahren werden die Wirbelelemente 56 hin und her bewegt und schlagen an den Innenwänden des Blechplattenkanals 40 an, sodass hierdurch an den Innenwänden angelagerte Flugasche abschlagen wird. Es ist insofern vorteilhaft, wenn die Festbrennstofffeuerungsanlage 2 nach einer Vielzahl von Betriebsstunden, beispielsweise mehr als 200 Betriebsstunden durch ein Fahrzeug zu einem anderen Einsatzort bewegt wird.

[0074] Eine Reinigung kann auch erfolgen, indem die Wirbelelemente 56 durch ein Anheben des Turbulators 54 an den Innenwänden des Blechplattenkanals 40 vorbeigeführt werden, sodass daran angelagerte Flugasche abgeschabt wird. Dies kann entweder von Hand bei einer Wartung oder durch eine mechanische, automatische Einheit geschehen.

[0075] Eine solche Einheit in Form eines Antriebs 62 ist in FIG 6 dargestellt. FIG 6 zeigt den Blechplattenkanal 40 von außen und stellt die Wirbelelemente 56 nicht dar. Der Antrieb 62 kann einen Motor mit einem Exzenterantrieb umfassen, der ein Verbindungselement 64, das die beiden Träger 58 fest miteinander verbindet, rhythmisch bewegt. Die Bewegung kann ein Anheben sein, wie in FIG 6 durch die beiden Pfeile dargestellt ist, wobei das Absenken in gleicher Geschwindigkeit wie das Anheben oder durch ein Herunterfallen geschehen kann.

[0076] Hierfür sind zweckmäßigerweise alle Turbulatoren 54 aller vorhandenen Blechplattenkanäle 40 mechanisch miteinander verbunden, sodass sie an einem Verbundelement gemeinsam angehoben werden können. Das Verbundelement kann eine Verlängerung des Verbindungselements 64 in Höhenrichtung sein. Hierdurch können sämtliche Blechplattenkanäle 40 in einfacher Weise regelmäßig automatisiert oder manuell gereinigt werden.

[0077] Bei einem Aufheizen oder Abkühlen der beiden Blechflachseiten 48 dehnt sich deren Blech aus beziehungsweise zieht sich zusammen. Hierdurch kann ein Schlagen des Blechs und dadurch eine laute und unerwünschte Geräuschentwicklung entstehen. Um dieser Geräuschentwicklung entgegenzuwirken, sind die beiden Blechflachseiten 48 mit einer Flächenkantung 66 versehen, im Ausführungsbeispiels aus FIG 4 sind sogar zwei Flächenkantungen 66 dargestellt, die einander kreuzen. Die beiden Flächenkantungen 66 haben einen Kantwinkel von weniger als 5° Grad und kanten die beiden Blechflachseiten jeweils ein Stück weit nach außen aus, sodass der Spalt 60 im Bereich der Kantkreuzung etwas größer ist als beispielsweise oben und unten an den Blechflachseiten 48. Eine Ausdehnung und ein Zusammenziehen des Blechs erfolgt durch diese Flächenkantungen 66 in die Flächenkantungen 66 hinein, sodass ein Schlagen der Blechfläche bei einem Abkühlen oder Zusammenziehen unterbleibt.

[0078] FIG 6 zeigt eine Kühlluftführung 68 außerhalb des Blechplattenkanals 40, die Kühlluft 70 in einer S-Form um den Blechplattenkanal 40 lenkt. Die Kühlluft-

führung 68 weist zwei Blechelemente 72 auf, die in Breitenrichtung verlaufend zwischen zwei Blechplattenkanälen 40 angeordnet sind und insofern den Kühlluftkanal 42 begrenzen. Ergänzt werden sie durch zwei Außenbleche 74, die den Kühlluftkanal 42 in Breitenrichtung begrenzen. Die Blechelemente 72 können so mit den Blechen des Blechplattenkanals 40 verbunden sein, dass sie als Aussteifung dienen und ein Schlagen des Blechs bei Temperaturänderung, insbesondere in Verbindung mit einer in FIG 4 gezeigten Abkantung, verhin-

Bezugszeichenliste

¹⁵ [0079]

dern.

- 2 Festbrennstofffeuerungsanlage
- 4 Brennkammer
- 6 Warmluftplattenwärmetauscher
- 9 8 Rahmen
 - 10 Anhebeelement
 - 12 Anlagengehäuse
 - 14 Rad
 - 16 Schwenkmechanismus
- 25 18 Griff
 - 20 Umgebungsluftgebläse
 - 22 Festbrennstoff
 - 24 Fördereinheit
 - 26 Heißgasführung
 - 28 Saugzuggebläse
 - 30 Rauchgasabführung
 - 32 Heißgasstrom
 - 34 Kühlluftstrom
 - 36 Umgebungslufteinlass
 - 38 Warmluftauslass
 - 40 Blechplattenkanal
 - 42 Kühlluftkanal
 - 44 Anströmkante
 - 46 Abströmkante
- 40 48 Blechflachseite
 - 50 Kopfplatte
 - 52 Fußplatte
 - 54 Turbulator
 - 56 Wirbelelement
- 45 58 Träger
 - 59 Querbügel
 - 60 Spalt
 - 62 Antrieb
 - 64 Verbindungselement
 - 66 Flächenkantung
 - 68 Kühlluftführung
 - 70 Kühlluft
 - 72 Blechelement
 - 74 Außenblech
- 55 B Breitenrichtung
 - H Höhenrichtung
 - L Längenrichtung

15

20

25

30

35

40

50

55

Patentansprüche

- Mobile Festbrennstofffeuerungsanlage (2) mit einer Brennkammer (4), einem Warmluftplattenwärmetauscher (6) mit einem Blechplattenkanal (40) mit zwei aus Blech gebildeten Flachseiten (48) und einer Kühlluftführung und einer Heißgasführung (26), wobei die Heißgasführung (26) in Längenrichtung (L) durch den Blechplattenkanal (40) und die Kühlluftführung in Breitenrichtung (B) um den Blechplattenkanal (40) verläuft und die Blechflachseiten (48) einander in Höhenrichtung (H) gegenüberliegen.
- 2. Mobile Festbrennstofffeuerungsanlage (2) nach Anspruch 1,

dadurch gekennzeichnet,

dass im Blechplattenkanal (40) in der Heißgasführung (26) ein Turbulator (54) mit einem Wirbelelement (56) angeordnet ist, das zwischen den Blechflachseiten (48) angeordnet ist.

3. Mobile Festbrennstofffeuerungsanlage (2) nach Anspruch 2,

dadurch gekennzeichnet,

dass das Wirbelelement (56) einen Blechstreifen umfasst, der schräg zur Längenrichtung (L) und schräg zur Breitenrichtung (B) angeordnet ist.

4. Mobile Festbrennstofffeuerungsanlage (2) nach Anspruch 2 oder 3,

dadurch gekennzeichnet,

dass das Wirbelelement (56) von beiden Blechflachseiten (48) und von beiden Längsinnenkehlen des Blechplattenkanals (40) beabstandet angeordnet ist.

5. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der Turbulator (54) mehrere Wirbelelemente (56) aufweist, die in Längenrichtung (L) hintereinander und in Breitenrichtung (B) jeweils alternierend versetzt zueinander angeordnet sind.

6. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der Turbulator (54) mehrere Wirbelelemente (56) aufweist, die in Längenrichtung (L) hintereinander und zur Breitenrichtung (B) alternierend zueinander verkippt angeordnet sind.

7. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass das Wirbelelement (56) beweglich im Blechplattenkanal (40) gelagert ist.

8. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass das Wirbelelement (56) in Höhenrichtung (H) pendelbar beweglich im Blechplattenkanal (40) gelagert ist.

Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der Turbulator (54) mehrere Wirbelelemente (56) aufweist, die an zumindest zwei metallischen Seilen zwischen den Blechflachseiten (48) aufgehängt sind.

10. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

gekennzeichnet,

durch einen Antrieb (62) zum rhythmischen Bewegen eines Elements des Blechplattenkanals (40) oder des Turbulators (54).

11. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

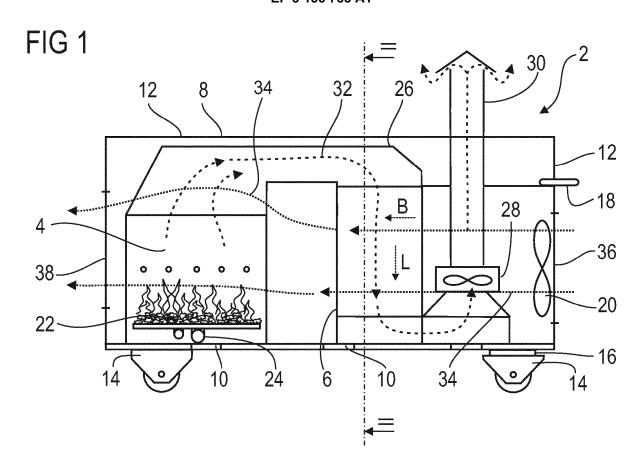
dadurch gekennzeichnet,

dass der Turbulator (54) mehrere Wirbelelemente (56) aufweist, die an einem Träger (58) hängen, der an einem Querbügel (59) befestigt ist, der auf einer Oberkante des Blechplattenkanals (40) aufliegt.

12. Mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche,

gekennzeichnet

durch eine Kühlluftführung (68) um den Blechplattenkanal (40) zum Lenken von Kühlluft (70) in einer S-Form um den Blechplattenkanal (40), wobei die beiden Blechflachseiten (48) mit jeweils ihrer Blechkante aneinander liegen und so ineinander gefalzt sind, dass eine erste Blechflachseite (48) um 180° gefalzt ist und die zweite Blechflachseite (48) um 180° um die erste Blechflachseite (48) und noch einmal um 180° in die Nut eingefalzt ist, die durch die Falzung der ersten Blechflachseite (48) gebildet ist.


- **13.** Warmluftplattenwärmetauscher (6) für eine mobile Festbrennstofffeuerungsanlage (2) nach einem der vorhergehenden Ansprüche.
 - 14. Verfahren zum Erwärmen von Umgebungsluft in einem Warmluftplattenwärmetauscher (6) einer mobilen Festbrennstofffeuerungsanlage (2), bei dem aus der Verbrennung von Feststoff in einer Brennkammer (4) der mobilen Festbrennstofffeuerungsanlage (2) entstehendes Rauchgas durch einen die Heißseite des Warmluftplattenwärmetauschers (6) zumindest teilweise bildenden Blechplattenkanal (40) geführt wird, dort ein Wirbelelement (56) eines Turbulators (54) umströmt und von diesem verwir-

belt wird.

15. Verfahren nach Anspruch 14,

dadurch gekennzeichnet,

dass die mobile Festbrennstofffeuerungsanlage (2) auf einem Fahrzeug transportiert wird und durch deren Bewegungen während der Fahrt ein Wirbelelement (56) gegen zumindest eine Blechplatte des Blechplattenkanals (40) schlägt und von dieser hierdurch Flugasche herunterschlägt, die sich bei einem vorhergehenden Betrieb an der Blechplatte angelagert hat.

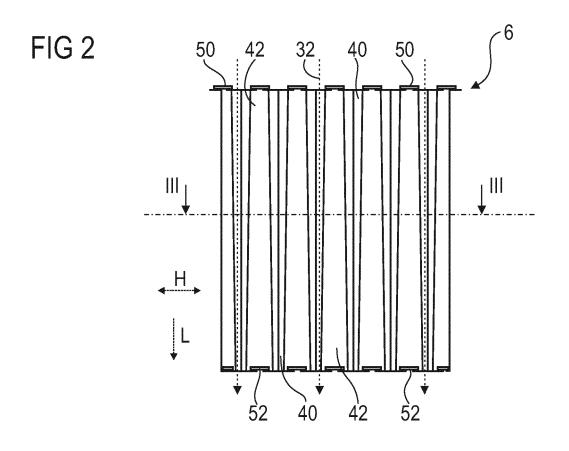


FIG 3

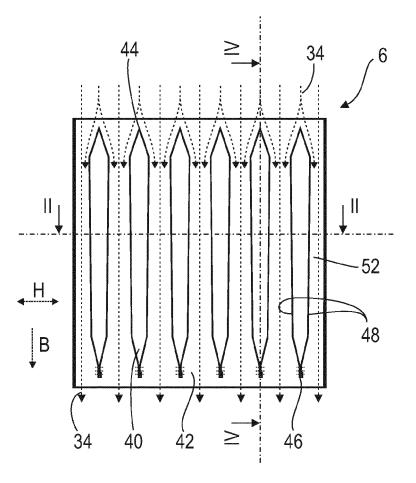
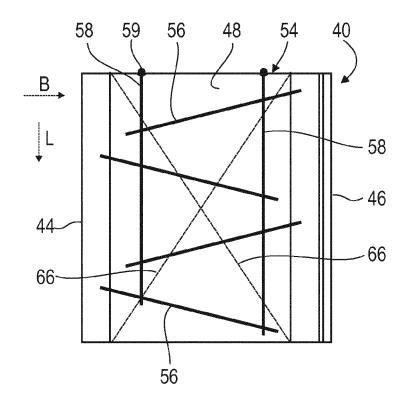
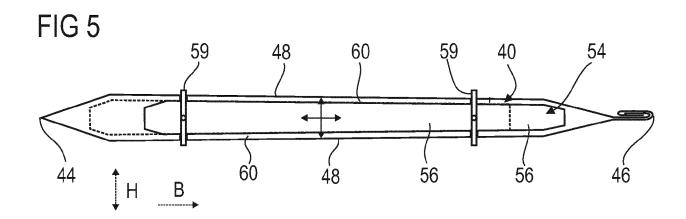
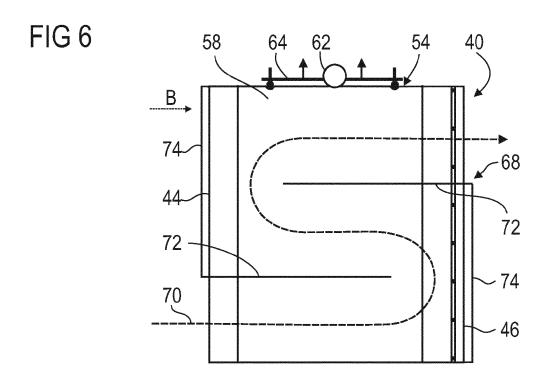





FIG 4

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 16 02 0402

5

J		
10		
15		
20		
25		
30		
35		
40		
45		
50		

2

EPO FORM 1503 03.82 (P04C03)

55

EINSCHLÄGIGE DOKUMENTE						
Kategorie	Kennzeichnung des Dokum der maßgebliche		soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)	
Υ	EP 2 541 141 A2 (LA [AT]) 2. Januar 201 * Anspruch 1; Abbil	.3 (2013-01-	-02)	1,4-7,12	2 INV. F24B1/02 F24H3/02 F28F3/02	
Х	US 4 664 180 A (STE 12. Mai 1987 (1987-	EVENSON ROBERT L [US])	13	F24H3/10 F24B7/00		
Υ	* Abbildung 2 *	03 12)		1,2,4-7 12,14		
Υ	GB 2 087 064 A (EAS JOHN RICHARD) 19. M * Abbildung 1 *			2,14		
A	FR 2 294 403 A1 (LA 9. Juli 1976 (1976- * Abbildungen 1-2 *	07-09)	[FR])	2-15		
					RECHERCHIERTE SACHGEBIETE (IPC)	
					F24B F24H F28D F23B F24F	
	rliegende Recherchenbericht wu	rde für alle Patenta	ansprüche erstellt	<u> </u>		
	Recherchenort I		3datum der Recherche	 	Prüfer	
	Den Haag		Januar 2017	Ada	ant, Vincent	
X : von Y : von	ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Katec	tet mit einer	T : der Erfindung zu E : älteres Patentdob nach dem Anmele D : in der Anmeldun L : aus anderen Grü	kument, das jede dedatum veröffe g angeführtes De	ntlicht worden ist okument	
A : tech O : nich	nel veröffentlichtung dereiben Rateg inologischer Hintergrund itschriftliche Offenbarung schenliteratur	,•			e, übereinstimmendes	

16

EP 3 156 733 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 16 02 0402

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

30-01-2017

Im Recherchenbericht Datum der Mitglied(er) der angeführtes Patentdokument Veröffentlichung Patentfamilie	Datum der Veröffentlichung
EP 2541141 A2 02-01-2013 DE 202011103415 U1 EP 2541141 A2	18-08-2011 02-01-2013
US 4664180 A 12-05-1987 KEINE	
GB 2087064 A 19-05-1982 KEINE	
FR 2294403 A1 09-07-1976 KEINE	
_	
MP P046	
EPO FORM P0461	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82