
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

16
3

43
4

A
1

TEPZZ¥_6¥4¥4A_T
(11) EP 3 163 434 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
03.05.2017 Bulletin 2017/18

(21) Application number: 15810966.0

(22) Date of filing: 25.06.2015

(51) Int Cl.:
G06F 9/44 (2006.01)

(86) International application number:
PCT/CN2015/000454

(87) International publication number:
WO 2015/196783 (30.12.2015 Gazette 2015/52)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA

(30) Priority: 25.06.2014 CN 201410291096

(71) Applicant: Chengdu Puzhong Software Limited
Company
Chengdu, Sichuan 610041 (CN)

(72) Inventors:
• FU, Changming

Chengdu
Sichuan 610057 (CN)

• LONG, Chunsheng
Chengdu
Sichuan 610041 (CN)

• TANG, Hong
Chengdu
Sichuan 610045 (CN)

(74) Representative: Gallego Jiménez, José Fernando
Ingenias Creaciones, Signos e Invenciones
S.L.P.
Avda. Diagonal 421, 2
08008 Barcelona (ES)

(54) SOFTWARE ELEMENT MODEL-BASED UNIVERSAL SOFTWARE MODELLING METHOD FOR
CONSTRUCTING SOFTWARE MODEL

(57) Software element model based univeral soft-
ware modeling method to construct software model. After
determining basic constituents of the software element
model, the present invention constructs software models
through the software hierarchy model, the software in-
terface models, the software interaction models, the soft-
ware algorithm model, the software process model, and
the software transfer model as step features and thereby
provides a specification for software modeling in various
fields; such specification has advantages including gen-
erality and convenience; the software models construct-
ed through the present invention is executable, has a
clear structure, adjustable hierarchies, and controllable
granularities for modeling; this method supports both
top-down analysis and bottom-up integration for mode-
ling in various software systems. The quantity of required
elements for modeling is small and the modeling method
is simple, thereby even those not skilled in any modeling
language nor computer programming language can eas-
ily and independently construct the software model, elim-
inating the tedious and unnecessary communication with
and dependence on professional modelers and applica-
tion developers, greatly reducing modeling time.

EP 3 163 434 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present invention relates to the technical
field of software engineering, and more specifically, a
software element model based univeral software mode-
ling method to construct software model and computer
program products thereof.

TECHNICAL BACKGROUND

[0002] Nowadays, with rapidly developing information
technology, softwares are playing an increasingly impor-
tant role in our living and development. The object-ori-
ented software method has become quite mature and
mainstream after the function-oriented method, process-
oriented method etc. However, many inadequacies for
the object-oriented method has exposed as software sys-
tems become more complex and thus a model-driven
method has become a pursued ideal software designing
method. A core idea of the model-driven software method
is in that software developers focus on constructing soft-
ware models and representing knowledges as the soft-
ware models and computers automatically convert the
software models into executable program codes. Al-
though the idea of the model-driven method has been
proposed long before, in the industry, it is substantially
present in a level of concept, slogan, and exploring even
after last two decades of efforts, so that the object-ori-
ented method still is a mainstream in actual applications.
The most basic reasons for slow developing of the model-
driven method is considered being lack of a method ca-
pable of supporting to simply and effectively construct
software models. In fact, the software modeling is the
core activity for software developing despite software
methods.
[0003] In practical activities for the software modeling,
users found that these software models share many com-
mon constructions where these constructions can be de-
scribed by a model called the software element model.
The software element model is a model describing soft-
ware models; it is an abstraction of the software models
and provides a set of basic elements and rules required
for constructing software models, which is used as a
specification for software modeling and thus plays a de-
cisive role in the quality of the software models and the
efficiency of software modeling.
[0004] Thus, study of the software element model has
been a major focus. The MOF, which is proposed by
OMG and is widely recognized in the industry, is systemic
study on the software modeling. The MOF includes a set
of four layers of model descripting mechanisms of which
layer M1 is the software element model. The UML (Uni-
fied Modeling Language), which belongs to the M1 layer,
is the current mainstream industry standard for object
oriented visual modeling language. In fact, even though
the UML clearly states that it neither is a methodology

nor provide any software modeling method and is only a
graphical descriptive language for descripting modeling
methods to cooperate the software modeling methods,
it is used as the software element model to a large extent.
Unfortunately, the UML has the following drawbacks:
Firstly, it lacks of the executability: although the UML
states that it provides a great deal of flexibility for con-
structing models, the UML is substantially lacks a rigor-
ous theoretical support for modeling, which results in that
it cannot be assured that integral and consistency models
are obtained by using the UML. The software model con-
structed by using UML is lack of executability, i.e., lack
of sufficiency and consistency information by which the
software model constructed by using UML is automati-
cally converted into a software executable by computers,
and thus the yielded software must be manually edited
through codes in order to be executable by computers.
This drawback further makes the UML only be a supple-
mentary expression tool for software models rather than
a true software element model. Secondly, it is code- ori-
ented: although the UML states it is a model descripting
language independent of specific languages and plat-
forms, it is substantially oriented towards to expression
tools by which the programmers employ object-oriented
programming languages in analyzing and designing pro-
grams. Such a programmer-oriented code directing
makes "paying great attention to the realization, and pay-
ing little attention to the service" have become an industry
ill in the software developing. Thirdly, it is difficult to use:
the UML creates a lot of concepts, relations and dia-
grams. Relationships among these concepts, relations,
and diagrams are loose and numerous. The UML is orig-
inally designed for programmers. However, the UML’s
complication and disorder are not only hard for program-
mers to grasp, but also even more difficult for industry
experts to understand, far from satisfying the needs of
software modeling.
[0005] With a gradual rise of knowledge engineering,
ontology element model recently is becoming a hot topic
of research. Ontology is defined as an explicit specifica-
tion of a conceptual model. The ontology element model
effectively determines concepts commonly recognized
in an industry with concepts as core elements, formal
language as means of description, and formal logic as
reasoning mechanisms, and gives clear definitions of the
relations among these concepts. The ontology element
model focuses on establishment and application of con-
cept system and on classification, expression, and rea-
soning of information. The modeling primitive for the the-
ory of the ontology element models includes concepts,
relations, functions, axioms, and instances, providing a
theoretical framework from the view of knowledge man-
agement: the international standard ISO /IEC19763 (in-
teroperable element model framework MFI) provides a
management specification with concept ontology and
process ontology as core knowledge and information
sharing specification with an ontology registration ele-
ment model and a process registration element model

1 2

EP 3 163 434 A1

3

5

10

15

20

25

30

35

40

45

50

55

as cores; Chinese patent filing 200610125050.8 provides
an application method for WEB service oriented industry
requirement modeling based on ISO/IEC 19763’s ontol-
ogy registration element model, process registration el-
ement model and ontology description tool Protege.
From the software modeling perspective, first, the ontol-
ogy element model focuses on knowledge management
and information sharing rather than universal software
modeling; second, ontology element model employs in-
explicable formal language, which is difficult for person-
nel.
[0006] In all, though the model-driven method has
been generally recognized as an ideal software devel-
oping method, the software element model that is easy
for ordinary industry personnel to grasp, provides a uni-
versal software modeling norm, supports software mod-
eling in all fields, and constructs executable models so
that the software models are automatically converted into
the executable software of the computer by an automatic
code generating technology to implement the model-driv-
en software method, currently is still lacking and in de-
mand.

SUMMARY OF THE INVENTION

[0007] In view of the above drawbacks of the prior art,
the objective of the present invention is to provide a soft-
ware element model based univeral software modeling
method to construct software model, by which the con-
structing of the software model is accomplished with a
software hierarchy model, software interface models,
software interaction models, software algorithm models,
software process models, and software transfer models
as step elements, after determining basic constituents of
the software element model; the software models in var-
ious specific fields are constructed by using basic molds
in interdisciplinary fields; and a universal software mod-
eling specification easily understood and grasped by
those skilled in this art is provided for modeling activities
in various fields.
[0008] The objective of the present invention is
achieved by the following means.
[0009] A software element model based univeral soft-
ware modeling method to construct software model, by
means of a computer readable storage medium having
a computer readable program code stored therein, the
computer readable program code containing instructions
executable by a processor of a computer software to im-
plement a method of constructing software model by
processing data conforming to the software element
model and describing the software model, the software
model describing a software system, the software ele-
ment model comprising:

a software hierarchy mold which describes the soft-
ware hierarchy model of the software model in a tree
structure whose nodes are software component
classes and which is used as a template to be con-

figured in an actual software modeling environment
to form the software hierarchy model of the software
model, wherein the software hierarchy model refers
to the hierarchy relationships constituted by the soft-
ware component classes as the nodes in the soft-
ware model, wherein the software component class
refers to a set of software component instances with
the same external features, and wherein the tree
structure, whose nodes are the software component
classes, is referred as a hierarchy tree;
a software interface mold which describes software
interface models by an optional structure of an at-
tribute set, a function set, and an event set, the soft-
ware interface mold is used as a template in the ac-
tual software modeling environment to be configured
to form the software interface models, wherein the
software interface models refer to external features
of the software component classes, wherein the
functions in the function set include software inter-
action functions, software algorithm functions, and
software process functions, wherein the software in-
teraction function is implemented by a software in-
teraction model, wherein the software algorithm
function is implemented by a software algorithm
model, and wherein the software process function is
implemented by a combination of software process
models and software transfer models;
a software interaction module which describes the
software interaction models by a tree structure
whose nodes are interaction elements and which is
used as a template in the actual software modeling
environment to be configured to form the software
interaction models, wherein the software interaction
model refers to a description of a way for implement-
ing the software interaction function with a combina-
tion of the interaction elements and the interaction
element refers to a functional element for interacting
information with the actual software modeling envi-
ronment;
a software algorithm mold which describes software
algorithm models by a tree structure whose nodes
are operators and which is used as a template in the
actual software modeling environment to be config-
ured to form the software algorithm model, wherein
the software algorithm model refers to a description
of the algorithm which implements the software al-
gorithm function by using the combination of opera-
tors, and wherein the operator refers to a component
with a previously realized specific function;
a software process mold which describes software
process models by combining actions as nodes and
which is used as a template in the actual software
modeling environment to configure the software
process models, wherein the software process mod-
el refers to a description of a way of the software
process function which is implemented using a com-
bination of the actions and wherein the action refers
to an execution of a function;

3 4

EP 3 163 434 A1

4

5

10

15

20

25

30

35

40

45

50

55

a software transfer mold which describes software
transfer models by a transfer set and which is used
as a template in the actual software modeling envi-
ronment to be configured to form the software trans-
fer models, wherein the software transfer model re-
fers to transfer relationships of the data of involved
actions and a transfer in the transfer set is a transfer
relationship of the data between one attribute and
another attribute;
specific steps to construct the software model de-
scribed by the six molds are as follows:

1) constructing the software hierarchy model:
the software hierarchy mold reading in software
hierarchy model commands from the actual soft-
ware modeling environment, wherein the soft-
ware hierarchy model command refers to com-
mand such as creating a software component
class, adding a software component class, se-
lecting a software component class, naming a
software component class, or deleting a soft-
ware component class for the hierarchy tree and
wherein the software hierarchy mold performs
corresponding operations on the software com-
ponent class nodes in response to the software
hierarchy model commands to obtain the soft-
ware hierarchy model;
2) constructing the software interface models:
constructing the software interface model for
each software component class of the software
hierarchy model obtained in the step 1), the
steps for constructing each software interface
model including: the software interface mold
reading in software interface model commands
from the actual software modeling environment,
wherein the software interface model command
refers to command such as creating, naming, or
deleting the attributes, the functions, and the
events, wherein the software interface mold per-
forms corresponding operations in response to
the software interface model commands to ob-
tain the software interface model, and wherein
the software interaction models for implement-
ing software interaction functions are construct-
ed by step 3), wherein the software algorithm
models for implementing software algorithm
functions are constructed by step 4), and where-
in the software process models for implementing
software process functions are constructed by
the step 5);
3) constructing the software interactive models:
constructing the software interaction model for
each software interaction function obtained in
the step 2), steps for constructing each software
interaction model including: the software inter-
action mold reading in software interaction mod-
el commands from the actual software modeling
environment;

4) constructing the software algorithm models:
constructing the software algorithm model for
each software algorithm function obtained in the
step 2), the steps for constructing each software
algorithm model including: the softweare algo-
rithm mold reading in software algorithm model
commands from the actual software modeling
environment;
5) constructing the software process models:
constructing the software process model for
each software process function obtained in the
step 2), the steps for constructing each software
process model including: the software process
mold reading in software process model com-
mands from the actual software modeling envi-
ronment; and
6) constructing the software transfer models:
constructing the software transfer model for
each action in the software process models ob-
tained in the step 5), the steps for constructing
each software transfer model including: the soft-
ware transfer mold reading in software transfer
model commands from the actual software mod-
eling environment, wherein the software transfer
model command refers to the command such
as adding a transfer, adding a transfer, or delet-
ing a transfer and wherein the software transfer
mold performs corresponding operations in re-
sponse to the software transfer model com-
mands to obtain the software transfer model.

[0010] Thereby, the software model constructed by the
software hierarchy model, the software interface models,
the software algorithm models, the software process
models, and the software transfer models is accom-
plished.
[0011] The software element model applies the follow-
ing modeling rules:

a combination of the software process mold and the
software transfer mold provide a universal means to
describe and configure functions; the software inter-
action mold provides a simplified alternative for re-
placing the combination of the software process
mold and the software transfer mold if only interac-
tion elements are used to implement the functions;
a combination of the software process mold and the
software transfer mold provide a universal means to
describe and configure functions; the software algo-
rithm mold provides a simplified alternative for re-
placing the combination of the software process
mold and the software transfer mold if only operators
are used to implement the functions;
the software element model employs a parent-child
structure as a base recursive unit to recursively de-
scribe the software model; the parent-child structure
refers to a structure of parent-child relationships in
a hierarchy tree, constituted by an involved software

5 6

EP 3 163 434 A1

5

5

10

15

20

25

30

35

40

45

50

55

component class and all child software component
classes thereof;
the specific function of the step 2) can only be any
one of the software interaction function, the software
algorithm function, and software process function;
the software interaction model commands for con-
structing the software interaction model in the step
3) refer to commands, such as adding an interaction
element, selecting an interaction element, naming
an interaction element, and deleting an interaction
element, and the software interaction mold performs
corresponding operations in response to the soft-
ware interaction model commands to obtain the soft-
ware interaction model; the interaction elements in-
clude operator interaction elements and component
interaction elements; the operator interaction ele-
ment refers to a component with a previously real-
ized specific function and the component interaction
element refers to one execution of the interaction
function in a set of the interaction functions in the
parent-child structure, the set of the interaction func-
tions in the parent-child structure refers to a collec-
tion constituted by all interaction functions of the in-
volved component class and all interaction functions
of all child component classes thereof in the parent-
child structure, the tree structure of which the nodes
are the interaction elements is referred to as an in-
teraction tree, the software interaction molds include
specific forms of, for example, interface molds, file
molds, database molds, and communicating molds;
and the software interaction models include specific
forms of interface models, file models, database
models, and communicating models;
the software algorithm model commands for con-
structing the software algorithm model in the step 4)
refer to commands, such as adding an operator, se-
lecting an operator, naming an operator, and deleting
an operator, as well as adding an assignment, se-
lecting an assignment, and deleting an assignment,
and the software algorithm mold performs corre-
sponding operations in response to the software al-
gorithm model commands to obtain the software al-
gorithm model; the operators include logic operators
with logic functions and computation operators with
calculation functions; the tree structure whose nodes
are operators is referred to as an algorithm tree; the
assignment refers to an assignment relationship be-
tween two attributes in a set of the algorithm at-
tributes; and the set of the algorithm attributes refers
to a collection constituted by a set of attributes of the
involved software component classes, a set of at-
tributes of all operators, and a set of attributes of all
interaction elements in the software interaction mod-
el;
the software process model commands for con-
structing the software process model in step 5) refer
to commands such as adding an action, selecting an
action, naming an action, and deleting an action and

the software process mold performs a corresponding
operation in response to the software process model
commands to obtain the software process model;
the actions include both component actions and op-
erator actions; the component action refers to one
execution of the functions in the function set in the
parent-child structure, the function set in the parent-
child structure refers to a collection constituted by
the function set of the involved software component
class and function sets of all child software compo-
nent classes in the parent-child structure; the oper-
ator action refers to one execution of operator’s func-
tion; the software process models include attribute
process models and event process models, the soft-
ware process mold includes attribute process mold
and event process mold, and the attribute process
mold describes an attribute process model through
a process tree as the structure, which is a tree struc-
ture constituted by actions as nodes; the event proc-
ess mold describes an event process model by a set
of event associations as the structure; the event as-
sociation in the set of event associations is an asso-
ciation relationship between an event in a set of
events in a parent-child structure and an operator
action or a component action; the event set in the
parent-child structure is a collection constituted by
the event set of the involved software component
class and the event sets of all interaction elements
in the interaction model thereof and the event sets
of all child software component classes and the
event sets of all interaction elements in the interac-
tion model thereof, in the parent-child structure.

[0012] Besides action attributes which refers to the at-
tribute of the component class where the action is, the
attributes relevant to transfers are limited to the parent-
child attribute set, which refers to a collection constituted
by the attribute set of the involved software component
classes and attribute sets of all child software component
classes thereof in the parent-child structure.
[0013] Alternatively, the attribute sets in the parent-
child structure may include the attribute sets of all inter-
action elements in the interaction models of the involved
software component class and the attribute sets of all
interaction elements in the interaction models of all child
software component classes in the parent-child struc-
ture.
[0014] Thus, after determining basic constituents of
the software element model, the present invention con-
structs software models through the software hierarchy
model, the software interface models, software interac-
tion models, the software algorithm models, the software
process models, and the software transfer models as
step features and thereby provides a specification for
software modeling in various fields; such specification
has advantages including generality and convenience;
the software models constructed through the present in-
vention are executable, have clear structures, adjustable

7 8

EP 3 163 434 A1

6

5

10

15

20

25

30

35

40

45

50

55

hierarchies, and controllable granularities; this modeling
method supports both top-down analysis and bottom-up
integration for modeling in various software system mod-
eling; the quantity of required elements for modeling is
small and the modeling method is simple, thereby even
those not skilled in any modeling language nor computer
programming language can easily and independently
construct the software model, eliminating the tedious and
unnecessary communication with and dependence on
professional modelers and application developers, great-
ly reducing modeling time.
[0015] In summary, the present invention has obvious
advantages over the prior art as follows:

(1) executability: the software model constructed ac-
cording to the present invention is executable, that
is, has an integrity and a full consistency in which
the software model can be mapped to a program
executable by a computer;
(2) generality: the software model constructed ac-
cording to the present invention has a clear structure,
adjustable hierarchies, controllable granularities,
and generality suitable for all types of systems. That
is, not only suitable for software algorithm modeling
but also rapid prototyping of the system and even
more suitable for large, complex software modeling;
not only convenient for top-down analysis but also
bottom up integration; not only suitable for software
integration based on prefabricated units and soft-
ware expansion based on customized units, but also
suitable for distributed software interconnection and
communication; not only suitable for practical engi-
neering software modeling, but also suitable for var-
ious information software modeling; not only suitable
for equipment information software simulation mod-
eling, but also suitable for MIS (management infor-
mation software) modeling; not only suitable for
desktop software modeling, embedded device soft-
ware modeling, mobile terminal software modeling,
but also suitable for LAN software modeling, WAN
software modeling, and cloud computation environ-
mental software modeling; not only suitable for ap-
plied software modeling, but also suitable for soft-
ware development environment modeling; and
(3) ease of use: the elements of the present invention
are concise, rules thereof are simple, and methods
thereof are universal. Even those not skilled in any
complex modeling language nor any computer pro-
gramming language can easily take advantage of
the present invention to construct the software model
with executability in a relatively short period of time,
eliminating the tedious and unnecessary communi-
cation with and dependence on professional model-
ers and application developers, enabling the result-
ant software model to be more fitted to the expecta-
tions of those skilled in this art, and eliminating pos-
sible understanding errors of the professional mod-
elers or the application developers; at the same time,

because communication time is saved, modeling
time is greatly reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

Fig. 1 is molds of the software element model.
Fig. 2 is construction steps of a software model.
Fig. 3 is a software interaction model.
Fig. 4 is assignment rules in a software algorithm
model.
Fig. 5 is actions and function sets in a parent-child
structure.
Fig. 6 is transfers and attribute sets in a parent-child
structure.
Fig. 7 is a block diagram of a computer for imple-
menting software element model based univeral
software modeling method to construct software
model.
Fig. 8 is the business management YWGL hierarchy
model.
Fig. 9 is the business management YWGL interface
model.
Fig. 10 is the sales management XSGL interface
model.
Fig. 11 is the production management SCGL inter-
face model.
Fig. 12 is the purchase management CGGL interface
model.
Fig. 13 is the business assistant YWZS interface
model.
Fig. 14 is the distributed sales product FXP interface
model.
Fig. 15 is the direct sales product ZXP interface mod-
el.
Fig. 16 is the main parts ZJ interface model.
Fig. 17 is the auxiliary parts LJ interface model.
Fig. 18 is the finished product CP interface model.
Fig. 19 is the business display interaction model.
Fig. 20 is the sales display interaction model.
Fig. 21 is the production display interaction model.
Fig. 22 is the purchase display interaction model.
Fig. 23 is the distributed sales display interaction
model.
Fig. 24 is the direct sales display interaction model.
Fig. 25 is the main parts display interaction model.
Fig. 26 is the auxiliary parts display interaction mod-
el.
Fig. 27 is the finished product display interaction
model.
Fig. 28 is the product type configuration algorithm
model.
Fig. 29 is the sales update algorithm model.
Fig. 30 is the production delivery algorithm model.
Fig. 31 is the production update algorithm model.
Fig. 32 is the purchase implementation algorithm
model.

9 10

EP 3 163 434 A1

7

5

10

15

20

25

30

35

40

45

50

55

Fig. 33 is the purchase update algorithm model.
Fig. 34 is the distributed sales update algorithm mod-
el.
Fig. 35 is the direct sales update algorithm model.
Fig. 36 is the main parts update algorithm model.
Fig. 37 is the auxiliary parts update algorithm model.
Fig. 38 is the finished product update algorithm mod-
el.
Fig. 39 is the main parts processing algorithm model.
Fig. 40 is the main parts delivery algorithm model.
Fig. 41 is the auxiliary parts processing algorithm
model.
Fig. 42 is the auxiliary parts delivery algorithm model.
Fig. 43 is the auxiliary parts receipt algorithm model.
Fig. 44 is the finished product assembly algorithm
model.
Fig. 45 is the main business procedure process mod-
el.
Fig. 46 is the configuration display and control proc-
ess model.
Fig. 47 is the business configuration process model.
Fig. 48 is the business instance creation process
model.
Fig. 49 is the business instance configuration proc-
ess model.
Fig. 50 is the business operation process model.
Fig. 51 is the operation display and control process
model.
Fig. 52 is the sales display and control process mod-
el.
Fig. 53 is the sales operation process model.
Fig. 54 is the production display and control process
model.
Fig. 55 is the production operation process model.
Fig. 56 is the production planning process model.
Fig. 57 is the production implementation process
model.
Fig. 58 is the purchase display and control process
model.
Fig. 59 is the purchase operation process model.
Fig. 60 is the distributed sales display and control
process model.
Fig. 61 is the direct sales display and control process
model.
Fig. 62 is the main procedure frame loop transfer
model.
Fig. 63 is the main procedure condition transfer mod-
el.
Fig. 64 is the business operation state negation
transfer model.
Fig. 65 is the sales instance creation transfer model.
Fig. 66 is the production instance creation transfer
model.
Fig. 67 is the purchase instance creation transfer
model.
Fig. 68 is the production configuration traversal
transfer model.
Fig. 69 is the production serial number increment

transfer model.
Fig. 70 is the production serial number assignment
transfer model.
Fig. 71 is the purchase configuration traversal trans-
fer model.
Fig. 72 is the purchase serial number assignment
transfer model.
Fig. 73 is the sales serial number reset transfer mod-
el.
Fig. 74 is the sales configuration traversal transfer
model.
Fig. 75 is the sales serial number assignment trans-
fer model.
Fig. 76 is the sales-production configuration com-
parison transfer model.
Fig. 77 is the sales-production configuration condi-
tion transfer model.
Fig. 78 is the sales-production product name assign-
ment transfer model.
Fig. 79 is the sales-purchase configuration compar-
ison transfer model.
Fig. 80 is the sales-purchase configuration condition
transfer model.
Fig. 81 is the sales-purchase product name assign-
ment transfer model.
Fig. 82 is the sales-production operation transfer
model.
Fig. 83 is the sales-purchase operation transfer mod-
el.
Fig. 84 is the sales receipt transfer model.
Fig. 85 is the shipment quantity summary transfer
model.
Fig. 86 is the total shipment quantity summary trans-
fer model.
Fig. 87 is the inventory quantity summary transfer
model.
Fig. 88 is the contract quantity summary transfer
model.
Fig. 89 is the demand quantity summary transfer
model.
Fig. 90 is the order quantity summary transfer model.
Fig. 91 is the main-parts pending processing quantity
summary transfer model.
Fig. 92 is the auxiliary parts pending processing
quantity summary transfer model.
Fig. 93 is the parts receipt transfer model.
Fig. 94 is the finished product assembly transfer
model.

[0017] In the drawings listed above, the figure showing
transfer model emphasized the involved action’s transfer
model using boldface font. Meanwhile, for the conven-
ience of describing reading, the non-boldface figures in
the drawings represent information regarding involved
actions.

11 12

EP 3 163 434 A1

8

5

10

15

20

25

30

35

40

45

50

55

DETAILED DESCRIPTION OF THE INVENTION

[0018] Generally, a computer comprises a central
processor, a memory, an Input and Output (I/O) interface,
and a bus; and furthermore, the computer is connected
with an input and output device and a storage medium.
The central processor takes charge of functions of com-
puting and controlling the computer. The central proces-
sor may only include one central processing unit, or may
include a plurality of central processing units distributed
at one or more positions.
[0019] The memory medium may be formed by any
known computer readable storage medium. For exam-
ple, a buffer memory may temporarily store some pro-
gram codes so as to reduce time for extracting codes
from a large-capacity memory when the program is run.
In the meantime, the memory may reside at a certain
physical position, and may be stored in one or more types
of data, or may be distributed in different physical sys-
tems in different forms. Moreover, the memory may also
be distributed in a Local Area Network (LAN) or a Wide
Area Network (WAN). The memory may contain program
codes for implementing a general modeling method to
establish a system view based on a system element view,
or may contain other codes not shown in the diagram,
such as an operating system.
[0020] The input and output interface allows the com-
puter to exchange information with the storage medium
or another computer. The input and output device con-
tains any known external device type, such as a display
device, a keyboard, a mouse, a printer, a sound box, a
handheld device, and a facial mask, etc. The bus pro-
vides communication connection among respective com-
ponent parts inside the computer, including a variety of
transmission connection forms such as electrical, optical,
wireless and other forms. The storage medium includes
any known computer readable storage medium, such as
a magnetic disc, an optical disc, etc. The storage medium
may contain one or more examples of a general system
view established by the system element view.
[0021] A person skilled in the art can know that the
present invention can be implemented as an all hardware
product, an all software product, or a combination of hard-
ware and software, which is commonly referred to as a
module. Moreover, the present invention can be imple-
mented by a computer program product stored in the
computer readable medium. The computer readable me-
dium may be, for example, but not limited to an electrical,
a magnetic, an optical, an electromagnetic, an infrared
or a semiconductor system, apparatus, or device or any
combination of the above, and more particularly, the com-
puter readable medium includes, but not limited to, the
following: a random access memory (RAM), a read-only
memory (ROM), an erasable and programmable read-
only memory (EPROM or flash memory), a CD-ROM, an
optical storage device, a magnetic storage device, and
any combination of the above.
[0022] The computer program codes for implementing

the method of the present invention can be programmed
by one or more programming languages, including, for
example, Java, Small, C++, C# and so on, and other
process-oriented programming languages such as C.
The program codes can be run on a personal computer,
a handheld device, or an LAN or WAN.
[0023] A person skilled in the art surely knows that the
method of the present invention may also be expressed
by graphical representations, and such graphical repre-
sentations all can be implemented as computer program
codes, which can be processed by a general-purpose
computer, a special-purpose computer and other pro-
grammable data processing apparatuses, to achieve the
functions indicated by these graphical representations.
[0024] In the following embodiments, in order to main-
tain the completeness of description of a software model,
the transfer models for all actions are listed. Among
these, some of the actions do not require transfers of the
data, and thereby the content of such a transfer model
is null which will be expressed as the word "null".
[0025] Below, a further detailed description of the
present invention will be given in conjunction with a spe-
cific embodiment in which constructing a business man-
agement YWGL software model by using the present in-
vention is demonstrated. It should be known by those
skilled in this art that the technical scope of the present
invention is not limited to the following demonstrated con-
tents of this embodiment.

Embodiment: constructing the business manage-
ment YWGL software model

[0026] The present embodiment supposes that the
firm’s business mode is to profit from selling its own prod-
ucts and outsourcing products and models the business
management software for achieving the following busi-
ness management intentions:

(1) clearly distinguishing three modules: production
management, purchase management, and sales
management;
(2) configuration: configuring produced product type
quantities and purchased product type quantities by
an interface and configuring sales product type
quantities from the produced product type quantities
and the purchased product type quantities; and
(3) execution function: the sales management mod-
ule real-time interacts with an actual application en-
vironment for contract order quantities and shipment
quantities of the direct sales and distributed sales of
each type of products, receives delivery information
from the production management module and the
purchase management module, and issues order in-
formation to the production management module
and the purchase management module based on
the sales status; the production management mod-
ule and the purchase management module receive
order information from the sales management mod-

13 14

EP 3 163 434 A1

9

5

10

15

20

25

30

35

40

45

50

55

ule, receive response order information after com-
pleted information from the actual application envi-
ronment, start an internal process, and submit the
delivery information to the sales management mod-
ule. Each module real-time displays information by
an interface.

[0027] The detailed procedure for constructing this em-
bodiment’s software model is given below.

Constructing the software hierarchy model

[0028] Firstly, for the convenience of describing under-
standing, Fig. 8 shows a completed software hierarchy
model of the business management YWGL software
model.
[0029] At the initial state before start of modeling, the
software hierarchy mold creates a root node for a hier-
archy tree, wherein the software component class of the
root node is referred to as a root software component
class;
the software hierarchy mold receives the command to
select root software component class from the actual
software modeling environment and sets the root soft-
ware component class to the involved software compo-
nent class in response to the foregoing command; the
software hierarchy mold receives the command to modify
software component class’ name to "business manage-
ment YWGL" from the actual software modeling environ-
ment and modifies the name of the root software com-
ponent class to "business management YWGL" in re-
sponse to the foregoing command; the involved software
component class is referred to as a business manage-
ment YWGL software component class in accordance
with the name of the root software component class and
name for the other software component classes may be
deduced by analogy, which will not be repeated below;
the software hierarchy mold receives the command to
set the component instance quantity to 1 from the actual
software modeling environment and sets the component
instance quantity of the business management YWGL
software component class to 1 in response to the fore-
going command;
the software hierarchy mold receives the command to
add a child software component class from the actual
software modeling environment and adds a child soft-
ware component class for business management YWGL
software component class in response to the foregoing
command; the software hierarchy mold sets the forego-
ing child software component class to the involved soft-
ware component class; the software hierarchy mold re-
ceives commands, from the actual software modeling en-
vironment, to modify the name of the involved software
component class to "sales management XSGL" and
modifies the name of the involved software component
class to "sales management XSGL" in response to the
foregoing commands;
in the foregoing steps, the software hierarchy mold re-

ceives the command from the actual software modeling
environment to select the business management YWGL
software component class and adds, in response to the
foregoing command, three child software component
classes, i.e., a production management SCGL software
component class whose software component instance
quantity is 0, a purchase management CGGL software
component class whose software component instance
quantity is 0, and a business assistant YWZS software
component class whose software component instance
quantity is 1, to the business management YWGL soft-
ware component class:

in the foregoing steps, the software hierarchy mold
receives the command to select the sales manage-
ment XSGL software component class from the ac-
tual software modeling environment and add, in re-
sponse to the foregoing command, two child soft-
ware component classes, i.e., distributed sales prod-
uct FXP software component class and direct sales
product ZXP software component class, whose soft-
ware component instance quantities are 1, to the
sales management XSGL software component
class; and
in the foregoing steps, the software hierarchy mold
receives the command to select the production man-
agement SCGL software component class from the
actual software modeling environment and adds, in
response to the foregoing command, three child soft-
ware component classes, i.e., main parts ZJ soft-
ware component class whose instance quantity is 1,
auxiliary parts LJ software component class whose
instance quantity is 1, and finished product CP soft-
ware component class whose instance quantity is 1,
to the production management SCGL software com-
ponent class.

[0030] So far, the software hierarchy model of the busi-
ness management YWGL software model is accom-
plished.

Constructing the software interface models

[0031] Next, the procedure for constructing the soft-
ware interface model for each of the software component
classes in the software hierarchy model as described
above will be given. The software interaction in this em-
bodiment is demonstrated with interface displays as ex-
amples and thus it should be appreciated by those skilled
in this art that the software interactions in other forms
can be similarly handled by taking advantage of the
present invention.

Business management YWGL software interface
model

[0032] Fig. 9 shows a completed software interface
model for business management YWGL software com-

15 16

EP 3 163 434 A1

10

5

10

15

20

25

30

35

40

45

50

55

ponent class, which is shortly referred to as the business
management YWGL software interface model, names of
other software interface models of the software compo-
nent classes may be deduced by analogy; the procedure
for constructing business management YWGL software
interface model is as follows:

the software hierarchy mold receives the command
to select the business management YWGL software
component class from the actual software modeling
environment and sets the business management
YWGL software component class to the involved
software component class in response to the fore-
going command;
the software interface mold receives the command
to add an attribute from the actual software modeling
environment and adds a new attribute to the busi-
ness management YWGL software component
class in response to the foregoing command; the
software interface mold sets the foregoing new at-
tribute to the involved attribute; the software interface
mold receives the command to modify the data type
of the involved attribute as "bool" from the actual
software modeling environment and modifies the da-
ta type of the involved attribute to "bool"; the software
interface mold receives the command to modify the
attribute name of the involved attribute to the word
"main loop state" from the actual software modeling
environment and modifies the attribute name of the
involved attribute to the main loop state in response
to the foregoing command; the attribute whose at-
tribute name is the main loop state is shortly referred
to as the main loop state attribute, and names for
the subsequent attributes may be deduced by anal-
ogy, which will not be repeated below; and the soft-
ware interface mold receives the command to set
the attribute value of the involved attribute to "true"
from the actual software modeling environment and
sets the attribute value of the main loop state attribute
to "true" in response to the foregoing command;
in the foregoing steps, the software interface mold
adds the following attributes to the business man-
agement YWGL interface model: a business opera-
tion state attribute whose data type is the "bool" type
and the attribute value is the "true"; a production
product type quantity attribute whose data type is
the integer and the attribute value is 3; a purchase
product type quantity attribute whose data type is
the integer and the attribute value is 2; a sales prod-
uct type quantity attribute whose data type is the in-
teger and the attribute value is 0;
the software interface mold receives the command
to add a function from the actual software modeling
environment and adds a software interaction func-
tion to the business management YWGL software
component class in response to the foregoing com-
mand; the software interface mold sets the newly
added software interaction function to the involved

function; the software interface mold receives the
command to modify the function name of the in-
volved function to the word "business display" from
the actual software modeling environment and mod-
ifies the function name of the involved function to the
business display in response to the foregoing com-
mand, wherein such a function whose function name
is referred to as a business display is shortly referred
to as the business display interaction function, short
names for the subsequent functions may be deduced
by analogy, which will not be repeated below; and
in the foregoing steps, the software interface mold
adds the following software process functions to the
business management YWGL interface model: an
operation display and control process function, a
main business procedure (which is the entry function
of the software model) process, a business config-
uration process function, a business operation proc-
ess function, an instance creation process function,
an instance configuration process function, a config-
uration display and control process function, and a
product type configuration process function.

[0033] So far, the business management YWGL inter-
face model is accomplished.

Sales management XSGL interface model

[0034] Fig. 10 shows a completed sales management
XSGL interface model whose construction process is
similar to that of the "business management YWGL in-
terface model" and the content thereof is as follows:

the attribute set contains: a product name attribute
whose data type is "string" and attribute value is
"sales product"; a product serial number attribute
whose data type is "int" and attribute value is "1"; an
inventory quantity attribute whose data type is "int"
and attribute value is "0"; a minimum inventory quan-
tity attribute whose data type is "int" and attribute
value is "0"; a contract order quantity attribute whose
data type is "int" and attribute value is "0"; a receipt
quantity attribute whose data type is "int" and at-
tribute value is "0"; an order quantity attribute whose
data type is "int" and attribute value is "0"; a shipment
quantity attribute whose data type is "int" and at-
tribute value is "0"; a total shipment quantity attribute
whose data type is "int" and attribute value is "0";
and a demand quantity attribute whose data type is
"int" and attribute value is "0"; and
the function set contains three process functions: an
internal order process function, a sales shipment
process function, and a sales order process function.

Production management SCGL interface model

[0035] Fig. 11 shows a completed production manage-
ment SCGL interface model whose construction process

17 18

EP 3 163 434 A1

11

5

10

15

20

25

30

35

40

45

50

55

is similar to that of "business management YWGL inter-
face model" and the content thereof is as follows:

the attribute set contains: a product name attribute
whose data type is "string" and attribute value is "self-
developed product"; a product serial number at-
tribute whose data type is "int" and attribute value is
"1"; an order quantity attribute whose data type is
"int" and attribute value is "0"; a processed quantity
attribute whose data type is "int" and attribute value
is "0"; a delivery quantity attribute whose data type
is "int" and attribute value is "0"; and a total delivery
quantity attribute whose data type is "int"and at-
tribute value is "0"; and
the function set contains three process functions: a
production planning process function, a production
implementation process function, and a production
delivery process function.

Purchase management CGGL interface model

[0036] Fig. 12 shows a completed purchase manage-
ment CGGL interface model whose construction process
is similar to that of "business management YWGL inter-
face model" and the content thereof is as follows:

the attribute set contains: a product name attribute
whose data type is "string" and attribute value is "pur-
chased product"; a product serial number attribute
whose data type is "int" and attribute value is "1"; a
pending purchase quantity attribute whose data type
is "int" and attribute value is "0"; a purchased quantity
attribute whose data type is "int" and attribute value
is "0"; a delivery quantity attribute whose data type
is "int" and attribute value is 0; and a total delivery
quantity attribute whose data type is "int" and at-
tribute value is "0" the; and
the function set contains two algorithm functions, i.e.,
a purchase implementation algorithm function and a
purchase delivery algorithm function.

Business assistant YWZS interface model

[0037] Fig. 13 is the accomplished business assistant
YWZS interface model whose construction procedure is
similar to that of the "business management YWGL in-
terface model" and the content thereof is as follows:

the attribute set contains: a product serial number
attribute whose data type is the integer and the at-
tribute value is 0; a constant zero attribute whose
data type is the integer and the attribute value is 0;
and a comparison result attribute whose data type
is the "bool" type and the attribute value is "true".

Distributed sales product FXP interface model

[0038] Fig. 14 shows a completed distributed sales

product FXP interface model whose construction proce-
dure is similar to that of "business management YWGL
interface model" and the content thereof is as follows:

the attribute set contains: a minimum inventory quan-
tity attribute whose data type is "int" and attribute
value is "5"; a contract order quantity attribute whose
data type is "int" and attribute value is "12"; and a
shipment quantity attribute whose data type is "int"
and attribute value is "8".

Direct sales product ZXP interface model

[0039] Fig. 15 shows a completed direct sales product
ZXP interface model whose construction procedure is
similar to that of "business management YWGL interface
model" and the content thereof is as follows:

the attribute set contains: a minimum inventory quan-
tity attribute whose data type is "int" and attribute
value is "6"; a contract order quantity attribute whose
data type is "int" and attribute value is "3"; and a
shipment quantity attribute whose data type is "int"
and attribute value is "4".

Main parts ZJ interface model

[0040] Fig. 16 shows a completed main parts ZJ inter-
face model whose construction procedure is similar to
that of "business management YWGL interface model"
and the content thereof is as follows:

the attribute set contains: a main parts name attribute
whose data type is "string" and attribute value is
"main parts"; a pending processing quantity attribute
whose data type is "int"and attribute value is "0"; a
processed quantity attribute whose data type is
"int"and attribute value is "0"; a delivery quantity at-
tribute whose data type is "int"and attribute value is
"0"; and a total delivery quantity attribute whose data
type is "int" and attribute value is "0"; and
the function set contains two algorithm functions: a
main parts processing algorithm function and a main
parts delivery algorithm function.

auxiliary parts LJ interface model

[0041] Fig. 17 shows a completed auxiliary parts LJ
interface model whose construction procedure is similar
to that of "business management YWGL interface model"
and the content thereof is as follows:

the attribute set contains: an auxiliary parts name
attribute whose data type is "string" and attribute val-
ue is "auxiliary parts"; a pending processing quantity
attribute whose data type is "int"and attribute value
is "0"; a processed quantity whose data type is "int"
and attribute value is "0"; a delivery quantity attribute

19 20

EP 3 163 434 A1

12

5

10

15

20

25

30

35

40

45

50

55

whose data type is "int" and attribute value is "0";
and a total delivery quantity attribute whose data type
is "int" and attribute value is "0"; and
the function set contains a software interaction func-
tion, i.e., an auxiliary parts display algorithm function,
and three algorithm functions: an auxiliary parts
processing function, an auxiliary parts delivery algo-
rithm function, and an auxiliary parts update algo-
rithm function.

Finished product CP interface model

[0042] Fig. 18 shows a completed finished product CP
interface model whose construction procedure is similar
that of "business management YWGL interface model"
and the content thereof is as follows:

the attribute set contains: a finished product name
attribute whose data type is "string" and attribute val-
ue is "finished product"; a pending processing quan-
tity attribute whose data type is "int" and attribute
value is "0", a processed quantity attribute whose
data type is "int"and attribute value is "0"; a single
set main parts quantity attribute whose data type is
"int" and attribute value is "2"; a single set auxiliary
parts quantity attribute whose data type is "int"and
attribute value is "6"; a main parts inventory quantity
attribute whose data type is "int" and attribute value
is "0"; a main parts receipt quantity attribute whose
data type is "int" and attribute value is "0"; a parts
inventory quantity attribute whose data type is "int"
and attribute value is "0"; and a parts receipt quantity
attribute whose data type is "int" and attribute value
is "0"; and
the function set contains a product display software
interaction function and three algorithm functions: a
parts receipt algorithm function, a finished product
assembly algorithm function, and a finished product
update algorithm function.

Constructing the software interaction models

[0043] Next, the construction procedure of each of the
software interaction models will be described in detail.

Business display software interaction model

[0044] Fig. 19 shows the accomplished software inter-
action model for implementing the business display func-
tions in the business management YWGL interface mod-
el, which is shortly referred to as the business display
interaction model. Short names of the software interac-
tion models in the other interface models may be deduced
by analogy, which will not be repeated below. The con-
struction procedure of the business display interaction
model is as follows:

the software interface mold receives and responds

to the command from the actual software modeling
environment to set the business display interaction
function of the business management YWGL soft-
ware component class to the involved function;
the software interaction mold receives and responds
to the command from the actual software modeling
environment to successively accomplish the follow-
ing operations: creating a window element shortly
referred to as a business management window ele-
ment and a free layout element as a root interaction
element of the business management window ele-
ment, which is referred to as a root layout element
of the business management;
in the foregoing steps, adding a tag element as a
child interaction element for the root layout element
of the business management and setting a text con-
tent attribute of the involved tag element as the word
"business management interface", wherein the tag
element is referred to as a business management
interface tag element for the convenience for the de-
scription and names for other elements may be de-
duced by analogy, which will not be repeated below;
the software interaction mold receives and responds
to the command from the actual software modeling
environment to add a stack layout element, shortly
referred to as a business configuration stack layout
element, for the business management root layout
element; the software interaction mold receives and
responds to the command from the actual software
modeling environment to add the following operator
interaction elements as child interaction elements
thereof: adding a tag element whose background
color is set to gray and the text is "production product
type quantity "; adding a textbox element whose text
content is set to 3, shortly referred to as a production
product type quantity textbox element; adding a tag
element whose background color is set to gray and
the text is "purchase product type quantity "; add a
textbox element whose text is set to 2, shortly re-
ferred to as a purchase product type quantity textbox
element; adding a stack layout element whose width
value is set to 50; adding a button element whose
text content attribute is set to "business configura-
tion", shortly referred to as a business configuration
button element;
the software interaction mold receives and responds
to the command from the actual software modeling
environment to add a card element composed of
three card pages for the business management root
layout element;
in the foregoing steps, selecting from the card ele-
ments a first card page shortly referred to as a pro-
duction management card page, whose page name
is changed into "production management"; adding,
as a root interaction element of the production man-
agement card page, a free layout element which is
shortly referred to as the production management
card page root interaction element; adding a com-

21 22

EP 3 163 434 A1

13

5

10

15

20

25

30

35

40

45

50

55

ponent interaction element based on the production
display interaction function of the production man-
agement SCGL software component class as a child
interaction element of the production management
card page root interaction element;
in the foregoing steps, selecting from the card ele-
ments a second card page shortly referred to as a
production management card page for the conven-
ience for the description, whose page name is
changed into "purchase management"; adding, as a
root interaction element of the purchase manage-
ment card page, a free layout element which is short-
ly referred to as the purchase management card
page root interaction element for the convenience
for the description; adding a component interaction
element based on the purchase display function of
the purchase management CGGL software compo-
nent class as a child interaction element of the pur-
chase management card page root interaction ele-
ment;
in the foregoing steps, selecting from the card ele-
ment a third card page shortly referred to as a sales
management card page for the convenience for the
description, whose page name is changed into
"sales management"; adding, as a root interaction
element of the sales management card page, a free
layout element which is shortly referred to as the
sales management card page root interaction ele-
ment the convenience for the description; adding a
component interaction element based on the sales
display interaction function of the sales management
XSGL software component class as a child interac-
tion element of the sales management card page
root interaction element.

[0045] So far, the business display interaction model
is accomplished.

Sales display interaction model

[0046] As shown in Fig. 20, , the construction proce-
dure of the sales display interaction model is similar to
that of "business display interaction model" and the con-
tent thereof is as follows:

creating, as a template of the sales display interac-
tion model, a type template which is shortly referred
to as the sales type template and contains an in-
stance group layout element and an instance tem-
plate, wherein the instance template is a display tem-
plate, referred to as a sales instance template, for
an instance of the sales management XSGL soft-
ware component class and the instance group layout
element as a container is a stack layout element,
referred to as a sales instance group layout element,
responsible for the display layout between all in-
stances of the sales management XSGL software
component class, where the stack direction of the

sales instance group layout element is set to the lon-
gitudinal direction as a default;
adding, in the sales instance template, a stack layout
element which is referred to as a sales instance stack
layout element whose layout direction is set to the
horizontal direction;
adding, in the sales instance stack layout element,
a stack layout element which is referred to as a sales
product name stack layout element; the software in-
teraction mold receives and responds to the com-
mand from the actual software modeling environ-
ment to successively accomplish the following oper-
ations: setting the layout direction of the sales prod-
uct name stack layout element to the horizontal di-
rection; adding, in the sales product name stack lay-
out element, a tag element whose text content is set
to "sales products" and which is shortly referred to
as the sales product name tag element; adding, in
the sales product name stack layout element, a tag
element whose text content is set to "1" and which
is shortly referred to as the sales serial number tag
element;
adding, in the sales instance stack layout element,
a stack layout element which is referred to as a sales
data stack layout element whose layout direction is
set to the longitudinal direction as a default;
adding, in the sales data stack layout element, a
stack layout element which is shortly referred to as
the sales contract quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the sales contract quantity stack lay-
out element, a tag element whose text content is
"contract quantity" and the background color is set
to gray; adding, in the sales contract quantity stack
layout element, a tag element whose text content
attribute is set to "0" and which is shortly referred to
as the sales contract quantity display tag element;
adding, in the sales data stack layout element, a
stack layout element which is referred to as a sales
receipt quantity stack layout element whose layout
direction is set to the horizontal direction; adding, in
the sales receipt quantity stack layout element, a tag
element whose text content is "receipt quantity" and
the background color is set to gray; adding, in the
sales receipt quantity stack layout element, a tag el-
ement whose text content attribute is set to "0" and
which is shortly referred to as the sales receipt quan-
tity display tag element;
adding,, in the sales data stack layout element, a
stack layout element which is referred to as a sales
shipment quantity stack layout element whose layout
direction is set to the horizontal direction; adding, in
the sales shipment quantity stack layout element, a
tag element whose text content is "shipment quan-
tity" and the background color is set to gray; adding,
in the sales shipment quantity stack layout element,
a tag element whose text content attribute is set to
"0" and which is shortly referred to as the sales ship-

23 24

EP 3 163 434 A1

14

5

10

15

20

25

30

35

40

45

50

55

ment quantity display tag element;
adding, in the sales data stack layout element, a
stack layout element which is referred to as a total
sales shipment quantity stack layout element whose
layout direction is set to the horizontal direction; add-
ing, in the total sales shipment quantity stack layout
element, a tag element whose text content is "total
shipment quantity" and the background color is set
to gray; adding, in the total sales shipment quantity
stack layout element, a tag element whose text con-
tent attribute is set to "0" and which is shortly referred
to as the total sales shipment quantity display tag
element; and
adding, in the sales instance stack layout element,
a component interaction element based on the sales
display function of the distributed sales product FXP
software component class and adding, in the sales
instance stack layout element, a component interac-
tion element based on the sales display function of
the direct sales product FXP software component
class.

Production display interaction model

[0047] As shown in Fig. 21, , the construction proce-
dure of the production display interaction model is similar
to that of "business display interaction model" and the
content thereof is as follows:

creating, as a template of the production display in-
teraction model, a type template which is shortly re-
ferred to as the production type template and con-
tains an instance group layout element and an in-
stance template, wherein the instance template is a
display template, referred to as a production instance
template, for an instance of the production manage-
ment SCGL software component class and the in-
stance group layout element as a container is a stack
layout element, referred to as a production instance
group layout element, responsible for the display lay-
out between all instances of the production manage-
ment SCGL software component class, where the
stack direction of the production instance group lay-
out element is set to the longitudinal direction as a
default;
adding, in the production instance template, a stack
layout element which is referred to as a production
instance stack layout element whose layout direction
is set to the horizontal direction;
adding, in the production instance stack layout ele-
ment, a stack layout element which is referred to as
a produced product name stack layout element; the
software interaction mold receives and responds to
the command from the actual software modeling en-
vironment to successively accomplish the following
operations: setting the layout direction of the pro-
duced product name stack layout element to the hor-
izontal direction; adding, in the produced product

name stack layout element, a tag element whose
text content is set to "produced products" and which
is shortly referred to as the produced product name
tag element; adding, in the produced product name
stack layout element, a tag element whose text con-
tent is set to "1" and which is shortly referred to as
the produced product serial number tag element;
adding, in the production instance stack layout ele-
ment, a stack layout element which is referred to as
a production data stack layout element whose layout
direction is set to the longitudinal direction as a de-
fault;
adding, in the production data stack layout element,
a stack layout element which is shortly referred to
as the production order quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the production order quantity stack
layout element, a tag element whose text content is
"order quantity" and the background color is set to
gray; adding, in the production order quantity stack
layout element, a tag element whose text content
attribute is set to "0" and which is shortly referred to
as the production order quantity display tag element;
adding, in the production data stack layout element,
a stack layout element which is referred to as a pro-
duction completion quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the production completion quantity
stack layout element, a tag element whose text con-
tent is "processed quantity" and the background
color is set to gray; adding, in the production com-
pletion quantity stack layout element, a tag element
whose text content attribute is set to "0" and which
is referred to as a production completion quantity
display tag element;
adding, in the production data stack layout element,
a stack layout element which is referred to as a pro-
duction delivery quantity stack layout element whose
layout direction is set to the horizontal direction; add-
ing, in the production delivery quantity stack layout
element, a tag element whose text content is "deliv-
ery quantity" and the background color is set to gray;
adding, in the production delivery quantity stack lay-
out element, a tag element whose text content at-
tribute is set to "0" and which is referred to as a pro-
duction delivery quantity display tag element for the
convenience for the description;
adding, in the production data stack layout element,
a stack layout element which is referred to as a pro-
duction total delivery quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the production total delivery quantity
stack layout element, a tag element whose text con-
tent is "total delivery quantity" and the background
color is set to gray; adding, in the production total
delivery quantity stack layout element, a tag element
whose text content attribute is set to "0" and which
is referred to as a production total delivery quantity

25 26

EP 3 163 434 A1

15

5

10

15

20

25

30

35

40

45

50

55

display tag element for the convenience for the de-
scription;
adding, in the production instance layout element, a
button element which is shortly referred to as the
production completion button element whose con-
tent attribute is set to "production completion";
adding, in the production instance stack layout ele-
ment, a component interaction element based on the
main parts display function of the main parts ZJ soft-
ware component class; adding, in the production in-
stance stack layout element, a component interac-
tion element based on the auxiliary parts display
function of the auxiliary parts LJ software component
class; and adding, in the production instance stack
layout element, a component interaction element
based on the finished product display function of the
finished product CP software component class.

Purchase display interaction model

[0048] As shown in Fig. 22, , the construction proce-
dure of the purchase display interaction model is similar
to that of "business display interaction model" and the
content thereof is as follows:

creating, as a template of the purchase display in-
teraction model, a type template which is shortly re-
ferred to as the purchase type template and contains
an instance group layout element and an instance
template, wherein the instance template is a display
template, referred to as a purchase instance tem-
plate, for an instance of the purchase management
CGGL software component class and the instance
group layout element as a container is a stack layout
element, referred to as a purchase instance group
layout element, responsible for the display layout be-
tween all instances of the purchase management
CGGL software component class, where the stack
direction of the purchase instance group layout ele-
ment is set to the longitudinal direction as a default;
adding, in the purchase instance template, a stack
layout element which is referred to as a purchase
instance stack layout element whose layout direction
is set to the horizontal direction;
adding, in the purchase instance stack layout ele-
ment, a stack layout element which is referred to as
a purchase product name stack layout element; the
software interaction mold receives and responds to
the command from the actual software modeling en-
vironment to successively accomplish the following
operations: setting the layout direction of the pur-
chase product name stack layout element to the hor-
izontal direction; adding, in the purchase product
name stack layout element, a tag element whose
text content is set to "purchase products" and which
is shortly referred to as the purchase product name
tag element; adding, in the purchase product name
stack layout element, a tag element whose text con-

tent is set to "1" and which is shortly referred to as
the purchase product serial number tag element;
adding, in the purchase instance stack layout ele-
ment, a stack layout element which is referred to as
a purchase data stack layout element whose layout
direction is set to the longitudinal direction as a de-
fault;
adding, in the purchase data stack layout element,
a stack layout element which is shortly referred to
as the pending purchasing quantity stack layout el-
ement; adding, in the pending purchasing quantity
stack layout element, a tag element whose text con-
tent is "pending purchase quantity" and the back-
ground color is set to gray; adding, in the pending
purchasing quantity stack layout element, a tag ele-
ment whose text content attribute is set to "0" and
which is shortly referred to as the pending purchas-
ing quantity display tag element;
adding, in the purchase data stack layout element,
a stack layout element which is referred to as a pur-
chased quantity stack layout element; adding, in the
purchased quantity layout element, a tag element
whose text content is "purchased quantity" and the
background color is set to gray; adding, in the pur-
chased quantity stack layout element, a tag element
whose text content attribute is set to "0" and which
is referred to as a purchased quantity display tag
element;
adding, in the purchase data stack layout element,
a stack layout element which is referred to as a pur-
chase delivery quantity stack layout element; add-
ing, in the purchase delivery quantity layout element,
a tag element whose text content is "delivery quan-
tity" and the background color is set to gray; adding,
in the purchase delivery quantity stack layout ele-
ment, a tag element whose text content attribute is
set to "0" and which is referred to as a purchase
delivery quantity display tag element for the conven-
ience for the description;
adding, in the purchase data stack layout element,
a stack layout element which is referred to as a pur-
chase total delivery quantity stack layout element;
adding, in the purchase total delivery quantity layout
element, a tag element whose text content is "total
delivery quantity" and the background color is set to
gray; adding, in the purchase total delivery quantity
stack layout element, a tag element whose text con-
tent attribute is set to "0" and which is referred to as
a purchase total delivery quantity display tag element
for the convenience for the description;
adding, in the purchase instance layout element, a
button element which is shortly referred to as the
purchase completion button element whose content
attribute is set to "purchase completion".

Distributed sales display interaction model

[0049] As shown in Fig. 23, , the construction proce-

27 28

EP 3 163 434 A1

16

5

10

15

20

25

30

35

40

45

50

55

dure of the distributed sales display interaction model is
similar to that of "business display interaction model" and
the content thereof is as follows:

creating, as a root element, a stack layout element
referred to as a distributed sales product root layout
element; the software interaction mold setting the
distributed sales product root layout element to the
involved interaction element;
adding, in the distributed sales product root layout
element, a tag element as a child interaction ele-
ment; and setting the text content attribute of the
involved tag element to the word "information on the
distributed sales";
adding, in the distributed sales product root layout
element, a stack layout element which is shortly re-
ferred to as the distributed sales contract quantity
stack layout element whose layout direction is set to
the horizontal direction; adding, in the distributed
sales contract quantity stack layout element, a tag
element whose text content is "contract quantity" and
the background color is set to gray; adding, in the
distributed sales contract quantity stack layout ele-
ment, a textbox element whose text content attribute
is set to "0" and which is shortly referred to as the
distributed sales contract quantity textbox element;
adding, in the distributed sales product root layout
element, a stack layout element which is shortly re-
ferred to as the distributed sales shipment quantity
stack layout element whose layout direction is set to
the horizontal direction; adding, in the distributed
sales shipment quantity stack layout element, a tag
element whose text content is "shipment quantity"
and the background color is set to gray; adding, in
the distributed sales shipment quantity stack layout
element, a textbox element whose text content at-
tribute is set to "0" and which is shortly referred to
as the distributed sales contract quantity textbox el-
ement; adding, in the distributed sales shipment
quantity stack layout element, a button element
whose text content attribute is set to "distributed
sales completion" and which is shortly referred to as
the distributed sales completion button element.

Direct sales display interaction model

[0050] As shown in Fig. 24, , the construction proce-
dure of the direct sales display interaction model is similar
to that of "business display interaction model" and the
content thereof is as follows:

creating, as a root element, a stack layout element
referred to as a direct sales product root layout ele-
ment; the software interaction mold setting the direct
sales product root layout element to the involved in-
teraction element;
adding, in the direct sales product root layout ele-
ment, a tag element as a child interaction element;

and setting the text content attribute of the involved
tag element to the word "information on the direct
sales";
adding, in the direct sales product root layout ele-
ment, a stack layout element which is shortly referred
to as the direct sales contract quantity stack layout
element whose layout direction is set to the horizon-
tal direction; adding, in the direct sales contract
quantity stack layout element, a tag element whose
text content is "contract quantity" and the back-
ground color is set to gray; adding, in the direct sales
contract quantity stack layout element, a textbox el-
ement whose text content attribute is set to "0" and
which is shortly referred to as the direct sales con-
tract quantity textbox element;
adding, in the direct sales product root layout ele-
ment, a stack layout element which is shortly referred
to as the direct sales shipment quantity stack layout
element whose layout direction is set to the horizon-
tal direction; adding, in the direct sales shipment
quantity stack layout element, a tag element whose
text content is "shipment quantity" and the back-
ground color is set to gray; adding, in the direct sales
shipment quantity stack layout element, a textbox
element whose text content attribute is set to "0" and
which is shortly referred to as the direct sales ship-
ment quantity textbox element; adding, in the direct
sales shipment quantity stack layout element, a but-
ton element whose text content attribute is set to
"direct sales completion" and which is shortly re-
ferred to as the direct sales completion button ele-
ment.

Main parts display interaction model

[0051] As shown in Fig. 25, , the construction proce-
dure of the main parts display interaction models similar
to that of "business display interaction model" and the
content thereof is as follows:

creating, as a root element, a stack layout element
referred to as a main parts root layout element; the
software interaction mold setting the main parts root
layout element to the involved interaction element;
adding, the main parts root layout element, a tag
element as a child interaction element; and setting
a text content attribute of the involved tag element
to the word "information on the main parts";
adding, in the main parts root layout element, a stack
layout element which is shortly referred to as the
main parts pending processing quantity stack layout
element whose layout direction is set to the horizon-
tal direction; adding, in the main parts pending
processing quantity stack layout element, a tag ele-
ment whose text content is "main parts pending
processing quantity" and the background color is set
to gray; adding, in the main parts pending processing
quantity stack layout element, a tag element whose

29 30

EP 3 163 434 A1

17

5

10

15

20

25

30

35

40

45

50

55

text content attribute is set to "0" and which is shortly
referred to as the main parts pending processing
quantity display tag element;
adding, in the main parts root layout element, a stack
layout element which is shortly referred to as the
main parts processed quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the main parts processed quantity
stack layout element, a tag element whose text con-
tent is "processed quantity" and the background
color is set to gray; adding, in the main parts proc-
essed quantity stack layout element, a tag element
whose text content attribute is set to "0" and which
is shortly referred to as the main parts processed
quantity display tag element;
adding, in the main parts root layout element, a stack
layout element which is shortly referred to as the
main parts delivery quantity stack layout element
whose layout direction is set to the horizontal direc-
tion; adding, in the main parts delivery quantity stack
layout element, a tag element whose text content is
"delivery quantity" and the background color is set
to gray; adding, in the main parts delivery quantity
stack layout element, a tag element whose text con-
tent attribute is set to "0" and which is shortly referred
to as the main parts delivery quantity display tag el-
ement.

Auxiliary parts display interaction model

[0052] As shown in Fig. 26, , the construction proce-
dure of the auxiliary parts display interaction model is
similar to that of "business display interaction model" and
the content thereof is as follows:

creating, as a root element, a stack layout element
referred to as an auxiliary parts root layout element;
the software interaction mold setting the auxiliary
parts root layout element as an involved interaction
element;
adding, in the auxiliary parts root layout element, a
tag element as a child interaction element; and set-
ting a text content attribute of the involved tag ele-
ment as the word "information on the auxiliary parts";
adding, in the auxiliary parts root layout element, a
stack layout element which is shortly referred to as
the auxiliary parts pending processing quantity stack
layout element whose layout direction is set to the
horizontal direction; adding, in the auxiliary parts
pending processing quantity stack layout element, a
tag element whose text content is "main parts pend-
ing processing quantity" and the background color
is set to gray; adding, in the auxiliary parts pending
processing quantity stack layout element, a tag ele-
ment whose text content attribute is set to "0" and
which is shortly referred to as the auxiliary parts
pending processing quantity display tag element;
adding, in the auxiliary parts root layout element, a

stack layout element which is shortly referred to as
the auxiliary parts processed quantity stack layout
element whose layout direction is set to the horizon-
tal direction; adding, in the auxiliary parts processed
quantity stack layout element, a tag element whose
text content is "processed quantity" and the back-
ground color is set to gray; adding, in the auxiliary
parts processed quantity stack layout element, a tag
element whose text content attribute is set to "0" and
which is shortly referred to as the auxiliary parts proc-
essed quantity display tag element;
adding, in the auxiliary parts root layout element, a
stack layout element which is shortly referred to as
the auxiliary parts delivery quantity stack layout el-
ement whose layout direction is set to the horizontal
direction; adding, in the auxiliary parts delivery quan-
tity stack layout element, a tag element whose text
content is "delivery quantity" and the background
color is set to gray; adding, in the auxiliary parts de-
livery quantity stack layout element, a tag element
whose text content attribute is set to "0" and which
is shortly referred to as the auxiliary parts delivery
quantity display tag element.

Finished product display interaction model

[0053] As shown in Fig. 27, , the construction proce-
dure of the finished product display interaction model is
similar to that of "business display interaction model" and
the content thereof is as follows:

creating, as a root element, a stack layout element
referred to as a finished product root layout element;
and the software interaction mold setting the finished
product root layout element to the involved interac-
tion element;
adding, in the finished product root layout element,
a tag element as a child interaction element; setting
a text content attribute of the involved tag element
to the word "information on the finished product";
adding, in the finished product root layout element,
a stack layout element which is shortly referred to
as the finished product pending processing quantity
stack layout element whose layout direction is set to
the horizontal direction; adding, in the finished prod-
uct pending processing quantity stack layout ele-
ment, a tag element whose text content is "finished
product pending processing quantity" and the back-
ground color is set to gray; adding, in the finished
product pending processing quantity stack layout el-
ement, a tag element whose text content attribute is
set to "0" and which is shortly referred to as the fin-
ished product pending processing quantity display
tag element;
adding, in the finished product root layout element,
a stack layout element which is shortly referred to
as the finished product processed quantity stack lay-
out element whose layout direction is set to the hor-

31 32

EP 3 163 434 A1

18

5

10

15

20

25

30

35

40

45

50

55

izontal direction; adding, in the finished product proc-
essed quantity stack layout element, a tag element
whose text content is "processed quantity" and the
background color is set to gray; adding, in the fin-
ished product processed quantity stack layout ele-
ment, a tag element whose text content attribute is
set to "0" and which is shortly referred to as the fin-
ished product processed quantity display tag ele-
ment.

Constructing the software algorithm models

[0054] Next, the construction procedure of each soft-
ware algorithm model will be described in detail.

Product type configuration algorithm model

[0055] Fig. 28 schematically is the accomplished soft-
ware algorithm model of the product type configuration
function of the business management YWGL software
component class whose construction procedure is as fol-
lows:

the software hierarchy mold receives and responds
to the command from the actual software modeling
environment to set the business management
YWGL software component class to the involved
software component class; the software interface
mold receives and responds to the command from
the actual software modeling environment to set the
product type configuration function to the involved
function, wherein the software algorithm model for
implementing the product type configuration function
is shortly referred to as the product type configuration
algorithm model in accordance with the function
name and software algorithm models for the subse-
quent other functions may be deduced by analogy,
which will not be repeated below;
in the foregoing steps, adding an assignment oper-
ator shortly referred to as a produced product type
configuration operator which has an input attribute
and an output attribute; creating an assignment from
the text content attribute of the production product
type quantity textbox element in the business display
interaction model to the input attribute of produced
product type configuration operator; creating an as-
signment from the output attribute of produced prod-
uct type configuration operator to the production
product type quantity attribute of the business man-
agement YWGL software component class;
in the foregoing steps, adding an assignment oper-
ator shortly referred to as a purchase product type
configuration operator which has an input attribute
and an output attribute; creating an assignment from
the text content attribute of the purchase product
type quantity textbox element in the business display
interaction model to the input attribute of the pur-
chase product type configuration operator; creating

an assignment from the output attribute of the pur-
chase product type configuration operator to the pur-
chase product type quantity attribute of the business
management YWGL software component class;
in the foregoing steps, adding an addition operator
shortly referred to as a sales product type configu-
ration operator; creating an assignment from the text
content attribute of the production product type quan-
tity textbox element to the augend attribute of the
sales product type configuration operator; creating
an assignment from the text content attribute of the
purchase product type quantity textbox element to
the addend attribute of the sales product type con-
figuration operator; creating an assignment from the
summation attribute of the sales product type con-
figuration operator to the sales product type quantity
attribute of the business management YWGL soft-
ware component class;

[0056] So far, the product type configuration algorithm
model is accomplished.

Sales update algorithm model

[0057] As shown in Fig. 29, , the construction proce-
dure of the sales update algorithm model is similar to that
of "product type configuration algorithm model" and the
content thereof is as follows:

an assignment operator which is shortly referred to
as the sales contract quantity update operator which
has the following assignments: from the contract
quantity attribute of the sales management XSGL
software component class to the sales contract
quantity update operator; and from the output at-
tribute of the sales contract quantity update operator
to the text content attribute of the sales contract
quantity display tag element in the sales display in-
teraction model;
an assignment operator which is shortly referred to
as the sales receipt quantity update operator which
has the following assignments: from the receipt
quantity attribute of the sales management XSGL
software component class to the input attribute of
the sales receipt quantity update operator; and from
the output attribute of the sales receipt quantity up-
date operator to the text content attribute of the sales
receipt quantity display tag element in the sales dis-
play interaction model;
an assignment operator which is shortly referred to
as the sales shipment quantity update operator
which has the following assignments: from the ship-
ment quantity attribute of the sales management XS-
GL software component class to the input attribute
of the sales shipment quantity update operator; and
from the output attribute of the sales shipment quan-
tity update operator to the text content attribute of
the sales shipment quantity display tag element in

33 34

EP 3 163 434 A1

19

5

10

15

20

25

30

35

40

45

50

55

the sales display interaction model;
an assignment operator which is shortly referred to
as the sales total shipment quantity update operator
which has the following assignments: from the total
shipment quantity attribute of the sales management
XSGL software component class to the input at-
tribute of the sales total shipment quantity update
operator; and from the output attribute of the sales
total shipment quantity update operator to the text
content attribute of the sales total shipment quantity
display tag element in the sales display interaction
model.

Production delivery algorithm model

[0058] As shown in Fig. 30, the construction procedure
of the production delivery algorithm model is similar to
that of "product type configuration algorithm model" and
the content thereof is as follows:

an assignment operator which is shortly referred to
as the production completion delivery assignment
operator which has the following assignments: from
the processed quantity attribute of the production
management SCGL software component class to
the input attribute of the production completion de-
livery assignment operator; and from the output at-
tribute of the production completion delivery assign-
ment operator to the delivery quantity attribute of the
production management SCGL software component
class;
an addition operator which is shortly referred to as
the production total delivery quantity operator which
has the following assignments: from the processed
quantity attribute of the production management
SCGL software component class to the augend at-
tribute of the production total delivery quantity oper-
ator; from the total delivery quantity attribute of the
production management SCGL software component
class to the addend attribute of the production total
delivery quantity operator; and from the summation
attribute of the production total delivery quantity op-
erator to the total delivery quantity attribute of the
production management SCGL software component
class;
an subtraction operator which is shortly referred to
as the production completion reset operator which
has the following assignments: from the processed
quantity attribute of the production management
SCGL software component class to the minuend at-
tribute of the production completion reset operator;
from the processed quantity attribute of the produc-
tion management SCGL software component class
to the subtrahend attribute of the production com-
pletion reset operator; and from the margin attribute
of the production completion reset operator to the
processed quantity attribute of the production man-
agement SCGL software component class;

Production update algorithm model

[0059] As shown in Fig. 31, the construction procedure
of the production update algorithm model is similar to that
of "product type configuration algorithm model" and the
content thereof is as follows:

an assignment operator which is shortly referred to
as the production order quantity update operator
which has the following assignments: from the order
quantity attribute of the production management
SCGL software component class to the input at-
tribute of the production order quantity update oper-
ator; and from the output attribute of the production
order quantity update operator to the text content
attribute of the production order quantity display tag
element in the production display interaction model;
an assignment operator which is shortly referred to
as the production completion quantity update oper-
ator which has the following assignments: from the
processed quantity attribute of the production man-
agement SCGL software component class to the in-
put attribute of the production completion quantity
update operator; and from the output attribute of the
production completion quantity update operator to
the text content attribute of the production comple-
tion quantity display tag element in the production
display interaction model;
an assignment operator which is shortly referred to
as the production delivery quantity update operator
which has the following assignments: from the de-
livery quantity attribute of the production manage-
ment SCGL software component class to the input
attribute of the production delivery quantity update
operator; and from the output attribute of the produc-
tion delivery quantity update operator to the text con-
tent attribute of the production delivery quantity dis-
play tag element in the production display interaction
model;
an assignment operator which is shortly referred to
as the production total delivery quantity update op-
erator which has the following assignments: from the
total delivery quantity attribute of the production
management SCGL software component class to
the input attribute of the production total delivery
quantity update operator; and from the output at-
tribute of the production total delivery quantity update
operator to the text content attribute of the production
total delivery quantity display tag element in the pro-
duction display interaction model.

Purchase implementation algorithm model

[0060] As shown in Fig. 32, the construction procedure
of the purchase implementation algorithm model is sim-
ilar to that of "product type configuration algorithm model"
and the content thereof is as follows:

35 36

EP 3 163 434 A1

20

5

10

15

20

25

30

35

40

45

50

55

an assignment operator which is shortly referred to
as the purchased quantity assignment operator
which has the following assignments: from the pend-
ing purchase quantity attribute of the purchase man-
agement CGGL software component class to the in-
put attribute of the purchased quantity assignment
operator; and from the output attribute of the pur-
chased quantity assignment operator to the pur-
chased quantity attribute of the purchase manage-
ment CGGL software component class;
an assignment operator which is shortly referred to
as the purchase delivery quantity assignment oper-
ator which has the following assignments: from the
pending purchase quantity attribute of the purchase
management CGGL software component class to
the input attribute of the purchase delivery quantity
assignment operator; and from the output attribute
of the purchase delivery quantity assignment oper-
ator to the delivery quantity attribute of the purchase
management CGGL software component class;
an addition operator which is shortly referred to as
the purchase total delivery quantity summary oper-
ator which has the following assignments: from the
pending purchase quantity attribute of the purchase
management CGGL software component class to
the augend attribute of the purchase total delivery
quantity summary operator; from the total delivery
quantity attribute of the purchase management CG-
GL software component class to the addend attribute
of the purchase total delivery quantity summary op-
erator; and from the summation attribute of the pur-
chase total delivery quantity summary operator to
the total delivery quantity of the purchase manage-
ment CGGL software component class;
an subtraction operator which is shortly referred to
as the pending purchasing quantity reset operator
which has the following assignments: from the pend-
ing purchase quantity attribute of the purchase man-
agement CGGL software component class to the
minuend attribute of the pending purchasing quantity
reset operator; from the pending purchase quantity
attribute of the purchase management CGGL soft-
ware component class to the subtrahend attribute of
the pending purchasing quantity reset operator; and
from the output attribute of the pending purchasing
quantity reset operator to the pending purchase
quantity attribute of the purchase management CG-
GL software component class.

Purchase update algorithm model

[0061] As shown in Fig. 33, the construction procedure
of the purchase update algorithm model is similar to that
of "product type configuration algorithm model" and the
content thereof is as follows:

an assignment operator which is shortly referred to
as the pending purchasing quantity update operator

which has the following assignments: from the pend-
ing purchase quantity attribute of the purchase man-
agement CGGL software component class to the in-
put attribute of the pending purchasing quantity up-
date operator; and from the output attribute of the
pending purchase quantity update operator to the
text content attribute of the pending purchasing
quantity display tag element in the purchase display
interaction model;
an assignment operator which is shortly referred to
as the purchased quantity update operator which has
the following assignments: from the purchased
quantity attribute of the purchase management CG-
GL software component class to the input attribute
of the purchased quantity update operator; and from
the output attribute of the purchased quantity update
operator to the text content attribute of the purchased
quantity display tag element in the purchase display
interaction model;
an assignment operator which is shortly referred to
as the purchase delivery quantity update operator
which has the following assignments: from the de-
livery quantity attribute of the purchase management
CGGL software component class to the input at-
tribute of the purchase delivery quantity update op-
erator; and from the output attribute of the purchase
delivery quantity update operator to the text content
attribute of the purchase delivery quantity display tag
element in the purchase display interaction model;
an assignment operator which is shortly referred to
as the purchase total delivery quantity update oper-
ator which has the following assignments: from the
total delivery quantity attribute of the purchase man-
agement CGGL software component class to the in-
put attribute of the purchase total delivery quantity
update operator; and from the output attribute of the
purchase total delivery quantity update operator to
the text content attribute of the purchase total deliv-
ery quantity display tag element in the purchase dis-
play interaction model;

Distributed sales update algorithm model

[0062] As shown in Fig. 34, the construction procedure
of the distributed sales update algorithm model is similar
to that of "product type configuration algorithm model"
and the content thereof is as follows:

an assignment operator which is shortly referred to
as the distributed sales contract quantity recording
operator which has the following assignments: from
the text content attribute of the distributed sales con-
tract quantity textbox element in the distributed sales
display interaction model to the input attribute of the
distributed sales contract quantity recording opera-
tor; and from the output attribute of the distributed
sales contract quantity recording operator to the con-
tract quantity attribute of the distributed sales product

37 38

EP 3 163 434 A1

21

5

10

15

20

25

30

35

40

45

50

55

FXP software component class;
an assignment operator which is shortly referred to
as the distributed sales shipment quantity recording
operator which has the following assignments: from
the text content attribute of the distributed sales ship-
ment quantity textbox element in the distributed
sales display interaction model to the input attribute
of the distributed sales shipment quantity recording
operator; and from the output attribute of the distrib-
uted sales shipment quantity recording operator to
the shipment quantity attribute of the distributed
sales product FXP software component class.

Direct sales update algorithm model

[0063] As shown in Fig. 35, the construction procedure
of the direct sales update algorithm model is similar to
that of "product type configuration algorithm model" and
the content thereof is as follows:

an assignment operator which is shortly referred to
as the direct sales contract quantity recording oper-
ator which has the following assignments: from the
text content attribute of the direct sales contract
quantity textbox element in the direct sales display
interaction model to the input attribute of the direct
sales contract quantity recording operator; and from
the output attribute of the direct sales contract quan-
tity recording operator to the contract quantity at-
tribute of direct sales product ZXP software compo-
nent class;
an assignment operator which is shortly referred to
as the direct sales shipment quantity recording op-
erator which has the following assignments: from the
text content attribute of the direct sales shipment
quantity textbox element in the direct sales display
interaction model to the input attribute of the direct
sales shipment quantity recording operator; and
from the output attribute of the direct sales shipment
quantity recording operator to the shipment quantity
attribute of the direct sales product ZXP software
component class.

Main parts update algorithm model

[0064] As shown in Fig. 36, the construction procedure
of the main parts update algorithm model is similar to that
of "product type configuration algorithm model" and the
content thereof is as follows:

an assignment operator which is shortly referred to
as the main parts pending processing quantity up-
date operator which has the following assignments:
from the main parts pending processing quantity at-
tribute of the main parts ZJ software component
class to the input attribute of the main parts pending
processing quantity update operator; and from the
output attribute of the main parts pending processing

quantity update operator to the text content attribute
of the main parts pending processing quantity dis-
play tag element in the main parts display interaction
model;
an assignment operator which is shortly referred to
as the main parts processed quantity update oper-
ator which has the following assignments: from the
processed quantity attribute of the main parts ZJ soft-
ware component class to the input attribute of the
main parts processed quantity update operator; and
from the output attribute of the main parts processed
quantity update operator to the text content attribute
of the main parts processed quantity display tag el-
ement in the main parts display interaction model;
an assignment operator which is shortly referred to
as the main parts delivery quantity update operator
which has the following assignments: from the de-
livery quantity attribute of the main parts ZJ software
component class to the input attribute of the main
parts delivery quantity update operator; and from the
output attribute of the main parts delivery quantity
update operator to the text content attribute of the
main parts delivery quantity display tag element in
the main parts display interaction model.

Auxiliary parts update algorithm model

[0065] As shown in Fig. 37, the construction procedure
of the auxiliary parts update algorithm model is similar to
that of "product type configuration algorithm model" and
the content thereof is as follows:

an assignment operator which is shortly referred to
as the auxiliary parts pending processing quantity
update operator which has the following assign-
ments: from the auxiliary parts pending processing
quantity attribute of the auxiliary parts LJ software
component class to the input attribute of the auxiliary
parts pending processing quantity update operator;
and from the output attribute of the auxiliary parts
pending processing quantity update operator to the
text content attribute of the auxiliary parts pending
processing quantity display tag element in the aux-
iliary parts display interaction model;
an assignment operator which is shortly referred to
as the auxiliary parts processed quantity update op-
erator which has the following assignments: from the
processed quantity attribute of the auxiliary parts LJ
software component class to the input attribute of
the auxiliary parts processed quantity update oper-
ator; and from the output attribute of the auxiliary
parts processed quantity update operator to the text
content attribute of the auxiliary parts processed
quantity display tag element in the auxiliary parts dis-
play interaction model;
an assignment operator which is shortly referred to
as the auxiliary parts delivery quantity update oper-
ator which has the following assignments: from the

39 40

EP 3 163 434 A1

22

5

10

15

20

25

30

35

40

45

50

55

delivery quantity attribute of the auxiliary parts LJ
software component class to the input attribute of
the auxiliary parts delivery quantity update operator;
and from the output attribute of the auxiliary parts
delivery quantity update operator to the text content
attribute of the auxiliary parts delivery quantity dis-
play tag element in the auxiliary parts display inter-
action model.

Finished product update algorithm model

[0066] As shown in Fig. 38, the construction procedure
of the finished product update algorithm model is similar
to that of "product type configuration algorithm model"
and the content thereof is as follows:

an assignment operator which is shortly referred to
as the finished product pending processing quantity
update operator which has the following assign-
ments: from the finished product pending processing
quantity attribute of the finished product CP software
component class to the input attribute of the finished
product pending processing quantity update opera-
tor; and from the output attribute of the finished prod-
uct pending processing quantity update operator to
the text content attribute of the finished product
pending processing quantity display tag element in
the finished product display interaction model;
an assignment operator which is shortly referred to
as the finished product processed quantity update
operator which has the following assignments: from
the processed quantity attribute of the finished prod-
uct CP software component class to the input at-
tribute of the finished product processed quantity up-
date operator; and from the output attribute of the
finished product processed quantity update operator
to the text content attribute of the finished product
processed quantity display tag element in the fin-
ished product display interaction model;

Main parts processing algorithm model

[0067] As shown in Fig. 39, the construction procedure
of the main parts processing algorithm model is similar
to that of "product type configuration algorithm model"
and the content thereof is as follows:

an assignment operator which is shortly referred to
as the main parts pending processing / processed
assignment operator which has the following assign-
ments: from the main parts pending processing
quantity attribute of the main parts ZJ software com-
ponent class to the input attribute of the main parts
pending processing / processed assignment opera-
tor; and from the output attribute of the main parts
pending processing / processed assignment opera-
tor to the processed quantity attribute of the main
parts ZJ software component class;

a subtraction operator which is shortly referred to as
the main parts pending processing reset operator
which has the following assignments: from the main
parts pending processing quantity attribute of the
main parts ZJ software component class to the min-
uend attribute of the main parts pending processing
reset operator; from the main parts pending process-
ing quantity attribute of the main parts ZJ software
component class to the subtrahend attribute of the
main parts pending processing reset operator; and
from the margin attribute of the main parts pending
processing reset operator to the pending processing
quantity attribute of the main parts ZJ software com-
ponent class.

Main parts delivery algorithm model

[0068] As shown in Fig. 40, the construction procedure
of the main parts delivery algorithm model is similar to
that of "product type configuration algorithm model" and
the content thereof is as follows:

an addition operator which is shortly referred to as
the main parts processed delivery operator which
has the following assignments: from the processed
quantity attribute of the main parts ZJ software com-
ponent class to the input attribute of the main parts
processed delivery operator; and from the output at-
tribute of the main parts processed delivery operator
to the delivery quantity attribute of the main parts ZJ
software component class;
an addition operator which is shortly referred to as
the main parts total delivery quantity operator which
has the following assignments: from the processed
quantity attribute of the main parts ZJ software com-
ponent class to the augend attribute of the main parts
total delivery quantity operator; from the total delivery
quantity attribute of the main parts ZJ software com-
ponent class to the addend attribute of the main parts
total delivery quantity operator; and from the sum-
mation attribute of the main parts total delivery quan-
tity operator to the total delivery quantity attribute of
the main parts ZJ software component class;
a subtraction operator which is shortly referred to as
the main parts processed reset operator which has
the following assignments: from the processed
quantity attribute of the main parts ZJ software com-
ponent class to the minuend attribute of the main
parts processed reset operator; from the processed
quantity attribute of the main parts ZJ software com-
ponent class to the subtrahend attribute of the main
parts processed reset operator; and from the margin
attribute of the main parts processed reset operator
to the processed quantity attribute of the main parts
ZJ software component class.

41 42

EP 3 163 434 A1

23

5

10

15

20

25

30

35

40

45

50

55

Auxiliary parts processing algorithm model

[0069] As shown in Fig. 41, the construction procedure
of the auxiliary parts processing algorithm model is sim-
ilar to that of "product type configuration algorithm model"
and the content thereof is as follows:

an assignment operator which is shortly referred to
as the auxiliary parts pending processing / proc-
essed assignment operator which has the following
assignments: from the auxiliary parts pending
processing quantity attribute of the auxiliary parts LJ
software component class to the input attribute of
the auxiliary parts pending processing / processed
assignment operator; and from the output attribute
of the auxiliary parts pending processing / processed
assignment operator to the processed quantity at-
tribute of the auxiliary parts ZJ software component
class;
a subtraction operator which is shortly referred to as
the auxiliary parts pending processing reset operator
which has the following assignments: from the aux-
iliary parts pending processing quantity attribute of
the auxiliary parts LJ software component class to
the minuend attribute of the auxiliary parts pending
processing reset operator; from the auxiliary parts
pending processing quantity attribute of the auxiliary
parts LJ software component class to the subtrahend
attribute of the auxiliary parts pending processing
reset operator; and from the margin attribute of the
auxiliary parts pending processing reset operator to
the auxiliary parts pending processing quantity at-
tribute of the auxiliary parts LJ software component
class.

Auxiliary parts delivery algorithm model

[0070] As shown in Fig. 42, the construction procedure
of the auxiliary parts delivery algorithm model is similar
to that of "product type configuration algorithm model"
and the content thereof is as follows:

an addition operator which is shortly referred to as
the auxiliary parts processed delivery operator which
has the following assignments: from the processed
quantity attribute of the auxiliary parts LJ software
component class to the input attribute of the auxiliary
parts processed delivery operator; and from the out-
put attribute of the auxiliary parts processed delivery
operator to the delivery quantity attribute of the aux-
iliary parts LJ software component class;
an addition operator which is shortly referred to as
the auxiliary parts total delivery quantity operator
which has the following assignments: from the proc-
essed quantity attribute of the auxiliary parts LJ soft-
ware component class to the augend attribute of the
auxiliary parts total delivery quantity operator; from
the total delivery quantity attribute of the auxiliary

parts LJ software component class to the addend
attribute of the auxiliary parts total delivery quantity
operator; and from the summation attribute of the
auxiliary parts total delivery quantity operator to the
total delivery quantity attribute of the auxiliary parts
LJ software component class;
a subtraction operator which is shortly referred to as
the auxiliary parts processed reset operator which
has the following assignments: from the processed
quantity attribute of the auxiliary parts LJ software
component class to the minuend attribute of the aux-
iliary parts processed reset operator; from the proc-
essed quantity attribute of the auxiliary parts LJ soft-
ware component class to the subtrahend attribute of
the auxiliary parts processed reset operator; and
from the margin attribute of the auxiliary parts proc-
essed reset operator to the processed quantity at-
tribute of the auxiliary parts LJ software component
class.

Auxiliary parts receipt algorithm model

[0071] As shown in Fig. 43, the construction procedure
of the auxiliary parts receipt algorithm model is similar to
that of "product type configuration algorithm model" and
the content thereof is as follows:

an addition operator which is shortly referred to as
the main parts receipt operator has the following as-
signments: from the main parts inventory quantity
attribute of the involved software component class
to the augend attribute of the main parts receipt op-
erator; from the main parts receipt quantity attribute
of the involved software component class to the ad-
dend attribute of the main parts receipt operator; and
from the summation attribute of the main parts re-
ceipt operator to the main parts inventory quantity
attribute of the finished product CP software compo-
nent class;
an addition operator which is shortly referred to as
the auxiliary parts receipt operator has the following
assignments: from the auxiliary parts inventory
quantity attribute of the involved software compo-
nent class to the augend attribute of the auxiliary
parts receipt operator; from the auxiliary parts receipt
quantity attribute of the involved software compo-
nent class to the addend attribute of the auxiliary
parts receipt operator; and from the summation at-
tribute of the auxiliary parts receipt operator to the
auxiliary parts inventory quantity attribute of the fin-
ished product CP software component class.

Finished product assembly algorithm model

[0072] As shown in Fig. 44, the construction procedure
of the finished product assembly algorithm model is sim-
ilar to that of the "product type configuration algorithm
model" and the content thereof is as follows:

43 44

EP 3 163 434 A1

24

5

10

15

20

25

30

35

40

45

50

55

a multiplication operator which is shortly referred to
as the main parts assembly operator has the follow-
ing assignments: from the pending processing quan-
tity attribute of the involved software component
class to the multiplicand input attribute of the main
parts assembly operator; and from the single set
main parts quantity attribute of the involved software
component class to the multiplier input attribute of
the main parts assembly operator;
a subtraction operator which is shortly referred to as
the main parts assembly inventory operator has the
following assignments: from the main parts inventory
quantity attribute of the finished product CP software
component class to the minuend attribute of the main
parts assembly inventory operator; from the product
attribute of the main parts assembly inventory oper-
ator to the subtrahend attribute of the main parts as-
sembly inventory operator; and from the margin at-
tribute of the main parts assembly inventory operator
to the main parts inventory quantity attribute of the
finished product CP software component class;
a multiplication operator which is shortly referred to
as the an auxiliary-parts assembly operator has the
following assignments: from the pending processing
quantity attribute of the involved software compo-
nent class to the multiplicand input attribute of the
auxiliary parts assembly operator; and the single set
auxiliary parts quantity attribute of the involved soft-
ware component class to the multiplier input attribute
of the auxiliary parts assembly operator;
a subtraction operator which is shortly referred to as
the auxiliary parts assembly inventory operator has
the following assignments: from the auxiliary parts
inventory quantity attribute of the finished product
CP software component class to the minuend at-
tribute of the auxiliary parts assembly inventory op-
erator; and from the product attribute of the auxiliary-
parts assembly inventory operator to the subtrahend
attribute of the auxiliary parts assembly inventory op-
erator; and from the margin attribute of the auxiliary
parts assembly inventory operator to the auxiliary
parts inventory quantity attribute of the finished prod-
uct CP software component class;
an assignment operator which is shortly referred to
as the finished product processed operator has the
following assignments: from the pending processing
quantity attribute of the finished product CP software
component class to the input attribute of the finished
product processed operator; and from the output at-
tribute of the finished product processed operator to
the finished product CP software component class’
processed quantity attribute;
a subtraction operator which is shortly referred to as
the finished product pending processing reset oper-
ator has the following assignments: from the finished
product CP software component class’ pending
processing quantity attribute to the minuend attribute
of the finished product pending processing operator;

from the pending processing quantity attribute of the
involved software component class to the subtra-
hend attribute of the finished product pending
processing operator; and from the margin attribute
of the finished product pending processing operator
to the pending processing quantity attribute of the
finished product CP software component class.

Constructing the software process models

[0073] Next, the construction procedure of each soft-
ware process model will be described in detail.

Main business procedure process model

[0074] Fig. 45 shows a completed main business pro-
cedure process model for the business management
YWGL software component class. It is constructed as
follows:

the software hierarchy mold receives and responds
to the command from the actual software modeling
environment to set the business management
YWGL software component class as the involved
software component classes;
the software interface mold receives and responds
to the command from the actual software modeling
environment to set the main business procedure
function as the involved function, wherein, for the
convenience of describing the description, the soft-
ware process model of the main business procedure
function is shortly referred to as the main business
procedure process model in accordance with the
function name and names of process models for the
other functions may be deduced by analogy, which
will not be repeated below; and wherein the software
process mold constructs the main business proce-
dure process model with an attribute process model
as a default;
the software process mold first creates a sequential
action as the root action for the main business pro-
cedure process model, wherein the sequential action
is an operator action with sequential execution inter-
nal action function, has a start node and an end node,
and may sequentially add other actions between the
start node and the end node, and wherein, for the
convenience of describing the description, the root
action is referred to as a main business procedure
root action in accordance with the name of the soft-
ware process model; it should be noted that the soft-
ware process mold creates a root action for each
software process model as a default, of which the
name of the root action may be deduced by analogy
and will not be repeated below;
the software process mold receives the command
from the actual software modeling environment to
add an action based on a business display function
of the involved software component class; for the

45 46

EP 3 163 434 A1

25

5

10

15

20

25

30

35

40

45

50

55

convenience of describing the description, based on
the name of function on which the action depends,
the action is shortly referred to as the business dis-
play action and names for subsequent actions may
be deduced by analogy, which will not be repeated
below; and the software process mold adds a busi-
ness display action in the main business procedure
root action in response to the foregoing command;
the software process mold receives the command
from the actual software modeling environment to
add a frame loop action; and the software process
mold adds a frame loop action in the main business
procedure root action, wherein the frame loop action
is an operator action with a frame loop function, there
is a sequence of nodes inside the frame loop action,
and each node may accommodates another action;
and for the convenience of describing the descrip-
tion, the sequence of the nodes of the frame loop
action is referred to as a frame loop sequence and
the frame loop action is shortly referred to as a main
procedure frame loop action;
the software process mold receives and responds
to the command from the actual software modeling
environment to add a condition action in the frame
loop sequence of the main procedure frame loop ac-
tion, wherein the condition action is shortly referred
to as a main procedure condition action and is an
operator action with a condition logic function which
has two branch action sequences corresponding to
the "true" condition and the "false" condition, respec-
tively;
in the foregoing steps, adding a component action,
shortly referred to as a business operation action,
based on the business operation function of the in-
volved software component class in the branch ac-
tion sequence of the main procedure condition action
corresponding to the "true" condition, and then suc-
cessionally adding an action, shortly referred to as
an operation display and control action, based on
the operation display and control function of the in-
volved software component class in the branch ac-
tion sequence of the main procedure condition action
corresponding to the "true" condition, and adding a
component action, shortly referred to as a configu-
ration display and control action, based on the con-
figuration display and control function of the involved
software component class in the branch action se-
quence of the main procedure condition action cor-
responding to the "false" condition.

[0075] So far, the main business procedure process
model is accomplished.

Configuration display and control process model

[0076] As shown in Fig. 46, the construction procedure
of the configuration display and control process model is
similar to that of "main business procedure process mod-

el" and the content thereof is as follows:

adding an action for the business configuration func-
tion; and establishing an event association between
the mouse click event of the business configuration
button element in the business display interaction
model and the business configuration action.

Business configuration process model

[0077] As shown in Fig. 47, the construction procedure
of the business configuration process model is similar to
that for the "main business procedure process model"
and the content thereof is as follows:

adding, in the business configuration root action, the
command based on the component action for the
product type configuration function of the involved
software component class and adding, in the busi-
ness configuration root action, a product type con-
figuration action which is shortly referred to as the
business product type configuration action; adding,
in the business configuration root action, the com-
mand based on the component action for the in-
stance creation function of the involved software
component class and adding, in the business con-
figuration root action, an instance creation action
which is shortly referred to as the business instance
creation action; adding, in the business configuration
root action, the command based on the component
action for the instance configuration function of the
involved software component class and adding, in
the business configuration root action, an instance
configuration action which is shortly referred to as
the business instance configuration action; adding,
in the business configuration root action, a negating
operator action which is shortly referred to as the
business operation state negating action.

Business instance creation process model

[0078] As shown in Fig. 48, the construction procedure
of the business instance creation process model is similar
to that of "main business procedure process model" and
the content thereof is as follows:

adding, in the instance creation root action, an in-
stance creation operator action which is shortly re-
ferred to as the sales instance creation action,
wherein the instance creation operator action is an
operator action with a function for creating the soft-
ware component instance and has a component
class attribute and an instance quantity attribute;
adding, in the instance creation root action, an in-
stance creation operator action which is shortly re-
ferred to as the production instance creation action;
adding, in the instance creation root action, an in-
stance creation operator action which is shortly re-

47 48

EP 3 163 434 A1

26

5

10

15

20

25

30

35

40

45

50

55

ferred to as the purchase instance creation action.

Business instance configuration process model

[0079] As shown in Fig. 49, the construction procedure
of the business instance configuration process model is
similar to that of "main business procedure process mod-
el" and the content thereof is as follows:

adding, in the business configuration root action, a
traversal action is shortly referred to as a production
configuration traversal action for the convenience of
describing the description, wherein the traversal ac-
tion is an operator action which is traversally per-
formed on all instances of a specified software com-
ponent class, and wherein, inside the traversal ac-
tion, there is a sequence of nodes each of which
accommodates an action;
adding, in the sequence of nodes inside the produc-
tion configuration traversal action, an increment ac-
tion which is shortly referred to as the production
serial number increment action for the convenience
of describing the description, wherein the increment
action is a prefabricated operator action with a func-
tion for allowing an integer to increase by one; add-
ing, in the sequence of nodes inside the production
configuration traversal action, an assignment action
which is shortly referred to as the production serial
number assignment action;
adding, in the business configuration root action, a
traversal action which is shortly referred to as the
purchase configuration traversal action;
adding, in the sequence of nodes inside the pur-
chase configuration traversal action, an increment
action which is shortly referred to as the purchase
serial number increment action; adding, in the se-
quence of nodes inside the purchase configuration
traversal action, an assignment action which is short-
ly referred to as the purchase serial number assign-
ment action;
adding, in the business configuration root action, an
assignment action which is shortly referred to as the
sales serial number reset action; adding, in the busi-
ness configuration root action, a traversal action
which is shortly referred to as the sales configuration
traversal action;
adding, in the sequence of nodes inside the sales
configuration traversal action, an increment action
which is shortly referred to as the sales serial number
increment action; adding, in the sequence of nodes
inside the sales configuration traversal action, an as-
signment action which is shortly referred to as the
sales serial number assignment action; adding, in
the sequence of nodes inside the sales configuration
traversal action, a traversal action which is shortly
referred to as the sales-production configuration
traversal action;
adding, in the sequence of nodes inside the sales-

production configuration traversal action, a consist-
ency comparison action which is shortly referred to
as the sales-production configuration comparison
action and which is an operator action with a decision
function for comparing whether or not two inputs are
consistent; adding, in the sequence of nodes inside
the sales-production configuration traversal action,
a condition action which is shortly referred to as the
sales-production configuration condition action,
which is an operator action with a condition logic
function;
adding, in the "true" branch of the sales-production
configuration condition action, an assignment action
which is shortly referred to as the sales-production
product name assignment action;
adding, in the sequence of nodes inside the sales
configuration traversal action, a traversal action
which is shortly referred to as the sales-purchase
configuration traversal action;
adding, in the sequence of nodes inside the sales-
purchase configuration traversal action, a consist-
ency comparison action which is shortly referred to
as the sales-purchase configuration comparison ac-
tion; adding, in the sequence of nodes inside the
sales-purchase configuration traversal action, a con-
dition action which is shortly referred to as the sales-
purchase configuration condition action;
adding, in the "true" branch of the sales-purchase
configuration condition action, an assignment action
which is shortly referred to as the sales-purchase
product name assignment action.

Business operation process model

[0080] As shown in Fig. 50, the construction procedure
of the business operation process model is similar to that
of "main business procedure process model" and the
content thereof is as follows:

adding, in the business operation root action, a
traversal action which is shortly referred to as the
sales operation traversal action;
adding, in the sequence of nodes inside the sales
operation traversal action, a traversal action which
is shortly referred to as the sales-production opera-
tion traversal action;
adding, in the sequence of nodes inside the sales-
production operation traversal action, a consistency
comparison action which is shortly referred to as the
sales-production operation comparison action; add-
ing, in the sequence of nodes inside the sales-pro-
duction operation traversal action, a condition action
which is shortly referred to as the sales-production
operation condition action;
adding, in the "true" branch of the sales-production
operation traversal action, an action based on the
sales operation function of the sales management
XSGL software component class, shortly referred to

49 50

EP 3 163 434 A1

27

5

10

15

20

25

30

35

40

45

50

55

as a sales-production operation action;
adding, in the sequence of nodes inside the sales
operation traversal action, a traversal action which
is shortly referred to as the sales-purchase operation
traversal action;
adding, in the sequence of nodes inside the sales-
purchase operation traversal action, a consistency
comparison action which is shortly referred to as the
sales-purchase operation comparison action; add-
ing, in the sequence of nodes inside the sales-pur-
chase operation traversal action, a condition action
which is shortly referred to as the sales-purchase
operation condition action;
adding, in the "true" branch of the sales-purchase
operation traversal action, an action based on the
sales operation function of the sales management
XSGL software component class, shortly referred to
as a sales-purchase operation action.

Operation display and control process model

[0081] As shown in Fig. 51, the construction procedure
of the operation display and control process model is
similar to that of "main business procedure process mod-
el" and the content thereof is as follows:

adding, in the operation display and control root ac-
tion, a traversal action which is shortly referred to as
the sales display and control traversal action;
adding, in the sequence of nodes in the sales display
and control traversal action, an action based on the
sales display and control function of the sales man-
agement XSGL software component class, shortly
referred to as a sales display and control action;
adding, in the operation display and control root ac-
tion, a traversal action which is shortly referred to as
the production display and control traversal action;
adding, in the sequence of nodes in the production
display and control traversal action, an action based
on the production display and control function of the
production management SCGL software component
class, shortly referred to as a production display and
control action;
adding, in the operation display and control root ac-
tion, a traversal action which is shortly referred to as
the purchase display and control traversal action;
adding, in the sequence of nodes in the purchase
display and control traversal action, a component
action based on the purchase display and control
function of the purchase management CGGL soft-
ware component class, shortly referred to as a pur-
chase display and control action.

Sales display and control process model

[0082] As shown in Fig. 52, the construction procedure
of the sales display and control process model is similar
to that of "main business procedure process model" and

the content thereof is as follows:

adding, in the sales display and control root action,
a component action based on the distributed sales
display and control function of the distributed sales
product FXP software component class, shortly re-
ferred to as a distributed sales display and control
action; adding, in the sales display and control root
action, a component action based on the direct sales
display and control function of the direct sales prod-
uct ZXP software component class, shortly referred
to as a direct sales display and control action; adding,
in the sales display and control root action, a com-
ponent action based on the sales update function of
the involved software component class, shortly re-
ferred to as a sales update action.

Sales operation process model

[0083] As shown in Fig. 53, the construction procedure
of the sales operation process model is similar to that of
"main business procedure process model" and the con-
tent thereof is as follows:

adding, in the sales operation root action, an addition
action which is shortly referred to as the sales receipt
action and which is an operator action with an addi-
tion function; adding, in the sales operation root ac-
tion, an addition action which is shortly referred to
as the shipment quantity summary action; adding, in
the sales operation root action, an addition action
which is shortly referred to as the total shipment
quantity summary action; adding, in the sales oper-
ation root action, a subtraction action which is shortly
referred to as the inventory quantity summary action;
adding, in the sales operation root action, an addition
action which is shortly referred to as the contract
quantity summary action; adding, in the sales oper-
ation root action, an addition action which is shortly
referred to as the demand quantity summary action;
adding, in the sales operation root action, a subtrac-
tion action which is shortly referred to as the order
quantity summary action.

Production display and control process model

[0084] As shown in Fig. 54, the construction procedure
of the production display and control process model is
similar to that of "main business procedure process mod-
el" and the content thereof is as follows:

adding an action based on the production operation
function of the involved software component class,
shortly referred to as a production operation action;
establishing an event association between the
mouse click event of the production completion but-
ton element in the production display interaction
model and the production operation action.

51 52

EP 3 163 434 A1

28

5

10

15

20

25

30

35

40

45

50

55

production operation process model

[0085] As shown in Fig. 55, the construction procedure
of the production operation process model is similar to
that of "main business procedure process model" and
the content thereof is as follows:

adding, in the production operation root action, an
action based on the production planning function of
the involved software component class, shortly re-
ferred to as a production planning action; adding, in
the production operation root action, an action based
on the production implementation function of the in-
volved software component class, shortly referred
to as a production implementation action; adding, in
the production operation root action, an action based
on the production delivery function of the involved
software component class, shortly referred to as a
production delivery action; adding, in the production
operation root action, an action based on the pro-
duction update function of the involved software
component class, shortly referred to as a production
update action; adding, in the production operation
root action, an action based on the main parts update
function of the main parts ZJ software component
class, shortly referred to as a main parts update ac-
tion; adding, in the production operation root action,
an action based on the auxiliary parts update func-
tion of the auxiliary parts LJ software component
class, shortly referred to as an auxiliary parts update
action; adding, in the production operation root ac-
tion, an action based on the finished product update
function of the finished product CP software compo-
nent class, shortly referred to as a finished product
update action.

Production planning process model

[0086] As shown in Fig. 56, the construction procedure
of the production planning process model is similar to
that of "main business procedure process model" and
the content thereof is as follows:

adding, in the production planning root action, a mul-
tiplication action which is shortly referred to as the
main parts pending processing quantity summary
action and which is an operator action based on the
multiplication function of the multiplication operator;
adding, in the production planning root action, an-
other multiplication action which is shortly referred
to as the auxiliary parts pending processing quantity
summary action.

Production implementation process model

[0087] As shown in Fig. 57, the construction procedure
of the production implementation process model is sim-
ilar to that of "main business procedure process model"

and the content thereof is as follows:

adding, in the production implementation root action,
an action based on the main parts processing func-
tion of the main parts ZJ software component class,
shortly referred to as a main parts processing action;
adding, in the production implementation root action,
an action based on the main parts delivery function
of the main parts ZJ software component class,
shortly referred to as a main parts delivery action;
adding, in the production implementation root action,
an action based on the auxiliary parts processing
function of the auxiliary parts LJ software component
class, shortly referred to as an auxiliary parts
processing action; adding, in the production imple-
mentation root action, an action based on the auxil-
iary parts delivery function of the auxiliary parts LJ
software component class, shortly referred to as an
auxiliary parts delivery action; adding, in the produc-
tion implementation root action, an action based on
the auxiliary parts receipt function of the finished
product CP software component class, shortly re-
ferred to as an auxiliary parts receipt action; adding,
in the production implementation root action, an ac-
tion based on the finished product assembly function
of the finished product CP software component
class, shortly referred to as a finished product as-
sembly action.

Purchase display and control process model

[0088] As shown in Fig. 58, the construction procedure
of the purchase display and control process model is sim-
ilar to that of "main business procedure process model"
and the content thereof is as follows:

adding an action based on the purchase operation
function of the involved software component class,
shortly referred to as a purchase operation action;
establishing an event association between the
mouse click event of the purchase completion button
element in the purchase display interaction model
and the purchase operation action.

Purchase operation process model

[0089] As shown in Fig. 59, the construction procedure
of the purchase operation process model is similar to that
of "main business procedure process model" and the
content thereof is as follows:

adding, in the purchase operation root action, an ac-
tion based on the purchase implementation function
of the purchase management CGGL software com-
ponent class, shortly referred to as a purchase im-
plementation action; adding, in the purchase opera-
tion root action, an action based on the purchase
update function of the purchase management CGGL

53 54

EP 3 163 434 A1

29

5

10

15

20

25

30

35

40

45

50

55

software component class, shortly referred to as a
purchase update action.

Distributed sales display and control process model

[0090] As shown in Fig. 60, the construction procedure
of the distributed sales display and control process model
is similar to that of "main business procedure process
model" and the content thereof is as follows:

adding an action based on the distributed sales up-
date function of the involved software component
class, shortly referred to as a distributed sales up-
date action; establishing an event association be-
tween the mouse click event of the distributed sales
completion button element in the distributed sales
display interaction model and the distributed sales
update action.

Direct sales display and control process model

[0091] As shown in Fig. 61, the construction procedure
of the direct sales display and control process model is
similar to that of "main business procedure process mod-
el" and the content thereof is as follows:

adding an action based on the direct sales update
function of the involved software component class,
shortly referred to as a direct sales update action;
establishing an event association between the
mouse click event of the direct sales completion but-
ton element in the direct sales display interaction
model and the direct sales update action.

Constructing the software transfer models

[0092] Next, the construction procedure of the soft-
ware transfer model for each action will be described in
detail.

Business display transfer model

[0093] (null)

Main procedure frame loop transfer model

[0094] Fig. 62 shows a completed main procedure
frame loop transfer model whose construction procedure
is as follows:

the software hierarchy mold receives and responds
to the command from the actual software modeling
environment to set the business management
YWGL software component class as the involved
software component class;
the software interface mold receives and responds
to the command from the actual software modeling
environment to set the main business procedure

function as the involved function;
the software process mold receives command from
the actual software modeling environment to set the
main procedure frame loop action as the involved
action; the software transfer mold constructs a soft-
ware transfer model for the involved action; for sim-
plicity, the software transfer model for main proce-
dure frame loop action is shortly referred to as the
main procedure frame loop transfer model in accord-
ance with name of the involved action; names of soft-
ware transfer models for other actions may be de-
duced by analogy, which will not be repeated; and
the software transfer mold receives the command
from the actual software modeling environment to
establish an input transfer from the main loop state
attribute of the involved software component class
to the state attribute of the involved action; the soft-
ware transfer mold establishes an input transfer from
the main loop state attribute of the business man-
agement YWGL software component class to the
state attribute of the main procedure frame loop ac-
tion in response to the foregoing command, wherein
the state attribute of the main procedure frame loop
action, as a Boolean variable, refers to an abbrevi-
ation of a state attribute for the business loop oper-
ation action to control whether or not operates; and
names of the subsequent action’s attributes may be
deduced by analogy, which will not be repeated.

[0095] So far, the main procedure frame loop transfer
model is accomplished.

Main procedure condition transfer model

[0096] Fig. 63 is a completed main procedure condition
transfer model whose construction procedure is similar
to that of the "main procedure frame loop transfer model"
and the content thereof contains the following transfer:

from the business operation state attribute of the
business management YWGL software component
class to the state attribute of the main procedure con-
dition action.

Configuration display and control transfer model

[0097] (null)

Business operation transfer model

[0098] (null)

Operation display and control transfer model

[0099] (null)

55 56

EP 3 163 434 A1

30

5

10

15

20

25

30

35

40

45

50

55

Business configuration transfer model

[0100] (null)

Business type configuration transfer model

[0101] (null)

Business instances creation transfer model

[0102] (null)

Business instance configuration transfer model

[0103] (null)

Business operation state negating transfer model

[0104] Fig. 64 is a completed business operation state
negating transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfers:

from the business operation state attribute of the in-
volved software component class to the input of the
operation state negating action; and from the output
of the operation state negating action to the business
operation state attribute of the involved software
component class.

Sales instance creation transfer model

[0105] Fig. 65 is a completed sales instance creation
transfer model whose construction procedure is similar
to that of the "main procedure frame loop transfer model"
and the content thereof contains the following transfers:

from the name of the sales management XSGL soft-
ware component class to the type attribute of the
sales instance creation action; and from the sales
product type quantity attribute of the involved soft-
ware component class to the instance quantity at-
tribute of the sales instance creation action.

Production instance creation transfer model

[0106] Fig. 66 is a completed production instance cre-
ation transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the name of the production management SCGL
software component class to the Component class
attribute of the production instance creation action;
and from the production product type quantity at-
tribute of the involved software component class to

the instance quantity attribute of the production in-
stance creation action.

Purchase instance creation transfer model

[0107] Fig. 67 is a completed purchase instance cre-
ation transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the name of the purchase management CGGL
software component class to the Component class
attribute of the purchase instance creation action;
and from the purchase product type quantity attribute
of the involved software component class to the in-
stance quantity attribute of the purchase instance
creation action.

Production configuration traversal transfer model

[0108] Fig. 68 is a completed production configuration
traversal transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfer:

from the name of the production management SCGL
software component class to the type attribute of the
production configuration traversal action.

Production serial number increment transfer model

[0109] Fig. 69 is a completed production serial number
increment transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfers:

from the product serial number attribute of the busi-
ness assistant YWZS software component class to
the input attribute of the production serial number
increment action; and from the output attribute of the
production serial number increment action to the
product serial number attribute of the business as-
sistant YWZS software component class.

Production serial number assignment transfer mod-
el

[0110] Fig. 70 is a completed production serial number
assignment transfer model whose construction proce-
dure is similar to that of the "main procedure frame loop
transfer model" and the content thereof contains the fol-
lowing transfers:

from the product serial number attribute of the busi-
ness assistant YWZS software component class to

57 58

EP 3 163 434 A1

31

5

10

15

20

25

30

35

40

45

50

55

the input attribute of the production serial number
assignment action; and from the output attribute of
the production serial number assignment action to
the product serial number attribute of the production
management SCGL software component class.

Purchase configuration traversal transfer model

[0111] Fig. 71 is a completed purchase configuration
traversal transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfer:

from the name of the purchase management CGGL
software component class to the type attribute of the
purchase configuration traversal action.

Purchase serial number increment transfer model

[0112] It is similar to the production serial number in-
crement transfer model.

Purchase serial number assignment transfer model

[0113] Fig. 72 is a completed purchase serial number
assignment transfer model whose construction proce-
dure is similar to that of the "main procedure frame loop
transfer model" and the content thereof contains the fol-
lowing transfers:

from the product serial number attribute of the busi-
ness assistant YWZS software component class to
the input attribute of the purchase serial number as-
signment action; and from the output attribute of the
purchase serial number assignment action to the
product serial number attribute of the purchase man-
agement SCGL software component class.

Sales serial number reset transfer model

[0114] Fig. 73 is a completed sales serial number reset
transfer model whose construction procedure is similar
to that of the "main procedure frame loop transfer model"
and the content thereof contains the following transfer:

from the constant zero attribute of the business as-
sistant YWZS software component class to the input
attribute of the sales serial number reset action; and
from the output attribute of the sales serial number
reset action to the product serial number attribute of
the business assistant YWZS software component
class.

Sales configuration traversal transfer model

[0115] Fig. 74 is a completed sales configuration
traversal transfer model whose construction procedure

is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfer:

from the name of the sales management XSGL soft-
ware component class to the type attribute of the
sales configuration traversal action.

Sales serial number increment transfer model

[0116] It is similar to the production serial number in-
crement transfer model.

Sales serial number assignment transfer model

[0117] Fig. 75 is a completed sales serial number as-
signment transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfers:

from the product serial number attribute of the busi-
ness assistant YWZS software component class to
the input attribute of the sales serial number assign-
ment action; and from the output attribute of the sales
serial number assignment action to the product serial
number attribute of the sales management XSGL
software component class.

Sales-production configuration traversal transfer
model

[0118] It is similar to the production configuration
traversal transfer model.

Sales-production configuration comparison transfer
model

[0119] Fig. 76 shows a completed sales-production
configuration comparison transfer model whose con-
struction procedure is similar to that of the "main proce-
dure frame loop transfer model" and the content thereof
contains the following transfers:

from the sales management XSGL software compo-
nent class’ product serial number attribute to sales-
production configuration comparison action’s com-
parison attribute; from the production management
SCGL software component class’ product serial
number attribute to sales-production configuration
comparison action’s comparison attribute; and from
the sales-production configuration comparison ac-
tion’s result attribute to the business assistant YWZS
software component class’ comparison result at-
tribute.

59 60

EP 3 163 434 A1

32

5

10

15

20

25

30

35

40

45

50

55

Sales-production configuration condition transfer
model

[0120] Fig. 77 shows a completed sales-production
configuration condition transfer model whose construc-
tion procedure is similar to that of the "main procedure
frame loop transfer model" and the content thereof con-
tains the following transfer:

from the business assistant YWZS software compo-
nent class’ comparison result attribute to sales-pro-
duction configuration condition action’s state at-
tribute.

Sales-production product name assignment transfer
model

[0121] Fig. 78 shows a completed sales-production
product name assignment transfer model whose con-
struction procedure is similar to that of the "main proce-
dure frame loop transfer model" and the content thereof
contains the following transfers:

from the production management SCGL software
component class’ product name attribute to sales-
production product name assignment action’s input
attribute; and from the sales-production product
name assignment action’s output attribute to sales
management XSGL software component class’
product name attribute.

Sales-purchase configuration traversal transfer
model

[0122] It is similar to the purchase configuration traver-
sal transfer model.

Sales-purchase configuration comparison transfer
model

[0123] Fig. 79 shows a completed sales-purchase con-
figuration comparison transfer model whose construction
procedure is similar to that of the "main procedure frame
loop transfer model" and the content thereof contains the
following transfers:

from the sales management XSGL software compo-
nent class’ product serial number attribute to the
sales-purchase configuration comparison action’s
comparison attribute; from the purchase manage-
ment CGGL software component class’ product se-
rial number attribute to sales-purchase configuration
comparison action’s comparison attribute; and from
the sales-purchase configuration comparison ac-
tion’s result attribute to business assistant YWZS
software component class’ comparison result at-
tribute.

Sales-purchase configuration condition transfer
model

[0124] Fig. 80 shows a completed sales-purchase con-
figuration condition transfer model whose construction
procedure is similar to that of the "main procedure frame
loop transfer model" and the content thereof contains the
following transfers:

from the business assistant YWZS software compo-
nent class’ comparison result attribute to the sales-
purchase configuration condition action’s state at-
tribute.

Sales-purchase product name assignment transfer
model

[0125] Fig. 81 shows a completed sales-purchase
product name assignment transfer model whose con-
struction procedure is similar to that of the "main proce-
dure frame loop transfer model" and the content thereof
contains the following transfers:

from the purchase management CGGL software
component class’ product name attribute to sales-
purchase product name assignment action’s input
attribute; and from sales-purchase product name as-
signment action’s output attribute to sales manage-
ment XSGL software component class’ product
name attribute.

Sales operation traversal transfer model

[0126] It is similar to the sales configuration traversal
transfer model.

Sales-production operation traversal transfer model

[0127] It is similar to the sales-production configuration
traversal transfer model.

Sales-production operation comparison transfer
model

[0128] It is similar to the sales-production configuration
comparison transfer model.

Sales-production operation condition transfer mod-
el

[0129] It is similar to the sales-production configuration
condition transfer model.

Sales-production operation transfer model

[0130] Fig. 82 shows a completed sales-production op-
eration transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer

61 62

EP 3 163 434 A1

33

5

10

15

20

25

30

35

40

45

50

55

model" and the content thereof contains the following
transfers:

from the production management SCGL software
component class’ delivery quantity attribute to sales-
production operation action’s receipt quantity at-
tribute; and from the sales-production operation ac-
tion’s order quantity attribute to production manage-
ment SCGL software component class’ order quan-
tity attribute.

Sales-purchase operation traversal transfer model

[0131] It is similar to the sales-purchase configuration
traversal transfer model.

Sales-purchase operation comparison transfer mod-
el

[0132] It is similar to the sales-purchase configuration
comparison transfer model.

Sales-purchase operation condition transfer model

[0133] It is similar to the sales-purchase configuration
condition transfer model.

Sales-purchase operation transfer model

[0134] Fig. 83 shows a completed sales-purchase op-
eration transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the purchase management CGGL software
component class’ delivery quantity attribute to the
sales-purchase operation action’s receipt quantity
attribute; and from the sales-purchase operation ac-
tion’s order quantity attribute to sales management
XSGL software component class’ pending purchase
quantity attribute.

Sales receipt transfer model

[0135] Fig. 84 shows a completed sales receipt trans-
fer model whose construction procedure is similar to that
of the "main procedure frame loop transfer model" and
the content thereof contains the following transfers:

from the inventory quantity attribute of the sales man-
agement XSGL software component class to the au-
gend attribute of the sales receipt action; from the
receipt quantity attribute of the sales management
XSGL software component class to the addend at-
tribute of the sales receipt action, and from the sum-
mation attribute of the sales receipt action to the in-
ventory quantity attribute of the sales management

XSGL software component class.

Shipment quantity summary transfer model

[0136] Fig. 85 is a completed shipment quantity sum-
mary transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the shipment quantity attribute of the distributed
sales product FXP software component class to the
augend attribute of the shipment quantity summary
action; from the shipment quantity attribute of the
direct sales product ZXP software component class
to the addend attribute of the shipment quantity sum-
mary action; and from the summation attribute of the
shipment quantity summary action to the shipment
quantity attribute of the sales management XSGL
software component class.

Total shipment quantity summary transfer model

[0137] Fig. 86 is a completed total shipment quantity
summary transfer model whose construction procedure
is similar to that of the "main procedure frame loop trans-
fer model" and the content thereof contains the following
transfers:

from the shipment quantity attribute of the sales man-
agement XSGL component class to the augend at-
tribute of the total shipment quantity summary action;
from the total shipment quantity attribute of the sales
management XSGL software component class to
the addend attribute of the total shipment quantity
summary action; and from the summation attribute
of the total shipment quantity summary action to the
total shipment quantity attribute of the sales man-
agement XSGL software component class.

Inventory quantity summary transfer model

[0138] Fig. 87 is a completed inventory quantity sum-
mary transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the inventory quantity attribute of the sales man-
agement XSGL component class to the minuend at-
tribute of the inventory quantity summary action;
from the shipment quantity attribute of the sales man-
agement XSGL software component class to the
subtrahend attribute of the inventory quantity sum-
mary action, and from the margin attribute of the in-
ventory quantity summary action to the inventory
quantity attribute of the sales management XSGL
software component class.

63 64

EP 3 163 434 A1

34

5

10

15

20

25

30

35

40

45

50

55

Contract quantity summary transfer model

[0139] Fig. 88 is a completed contract quantity sum-
mary transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the contract quantity attribute of the distributed
sales product FXP software component class to the
augend attribute of the contract quantity summary
action; from the contract quantity attribute of the di-
rect sales product ZXP software component class to
the addend attribute of the contract quantity summa-
ry action, and from the summation attribute of the
contract quantity summary action to the contract
quantity attribute of the sales management XSGL
software component class.

Demand quantity summary transfer model

[0140] Fig. 89 is a completed demand quantity sum-
mary transfer model whose construction procedure is
similar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfers:

from the contract quantity attribute of the sales man-
agement XSGL component class to the augend at-
tribute of the demand quantity summary action; from
the minimum inventory attribute of the sales man-
agement XSGL software component class to the ad-
dend attribute of the demand quantity summary ac-
tion, and from the summation attribute of the demand
quantity summary action to the demand quantity at-
tribute of the sales management XSGL software
component class.

Order quantity summary transfer model

[0141] Fig. 90 is a completed order quantity summary
transfer model whose construction procedure is similar
to that of the "main procedure frame loop transfer model"
and the content thereof contains the following transfers:

from the demand quantity attribute of the sales man-
agement XSGL component class to the minuend at-
tribute of the order quantity summary action; from
the inventory quantity attribute of the sales manage-
ment XSGL software component class to the sub-
trahend attribute of the order quantity summary ac-
tion, and from the margin attribute of the order quan-
tity summary action to the order quantity attribute of
the sales management XSGL software component
class.

Sales display and control transfer model

[0142] (null)

Distributed sales display and control transfer model

[0143] (null)

Direct sales display and control transfer model

[0144] (null)

Sales update transfer model

[0145] (null)

Production display and control traversal transfer
model

[0146] It is similar to the production configuration
traversal transfer model.

Production display and control transfer model

[0147] (null)

Production operation transfer model

[0148] (null)

Production planning transfer model

[0149] (null)

Production implementation transfer model

[0150] (null)

Production delivery transfer model

[0151] (null)

Production update transfer model

[0152] (null)

Main parts pending processing quantity summary
transfer model

[0153] Fig. 91 is a completed main parts pending
processing quantity summary transfer model whose con-
struction procedure is similar to that of the "main proce-
dure frame loop transfer model" and the content thereof
contains the following transfers:

from the order quantity attribute of the production
management SCGL software component class to
the multiplicand attribute of the main parts pending

65 66

EP 3 163 434 A1

35

5

10

15

20

25

30

35

40

45

50

55

processing quantity summary action; from the single
set main parts quantity attribute of the finished prod-
uct CP software component class to the multiplier
attribute of the main parts pending processing quan-
tity summary action; and from the product attribute
of the main parts pending processing quantity sum-
mary action to the pending processing quantity at-
tribute of the main parts ZJ software component
class.

Auxiliary parts pending processing quantity summa-
ry transfer model

[0154] Fig. 92 is a completed auxiliary parts pending
processing quantity summary transfer model whose con-
struction procedure is similar to that of the "main proce-
dure frame loop transfer model" and the content thereof
contains the following transfers:

from the order quantity attribute of the production
management SCGL software component class to
the multiplicand attribute of the auxiliary parts pend-
ing processing quantity summary action; from the
single set auxiliary parts quantity attribute of the fin-
ished product CP software component class to the
multiplier attribute of the auxiliary parts pending
processing quantity summary action; and from the
product attribute of the auxiliary parts pending
processing quantity summary action to the pending
processing quantity attribute of the auxiliary parts LJ
software component class.

Main parts processing transfer model

[0155] (null)

Main parts delivery transfer model

[0156] (null)

Auxiliary parts processing transfer model

[0157] (null)

Auxiliary parts delivery transfer model

[0158] (null)

Parts receipt transfer model

[0159] Fig. 93 is a completed parts receipt transfer
model whose construction procedure is similar to that of
the "main procedure frame loop transfer model" and the
content thereof contains the following transfers:

from the delivery quantity attribute of the main parts
ZJ software component class to the main parts re-
ceipt quantity attribute of the parts receipt action; and

from the delivery quantity attribute of the auxiliary
parts LJ software component class to the auxiliary
parts receipt quantity attribute of the parts receipt
action.

Finished product assembly transfer model

[0160] Fig. 94 is a completed finished product assem-
bly transfer model whose construction procedure is sim-
ilar to that of the "main procedure frame loop transfer
model" and the content thereof contains the following
transfer:

from the processed quantity attribute of the finished
product assembly action to the processed quantity
attribute of the production management SCGL soft-
ware component class.

Main parts update transfer model

[0161] (null)

auxiliary parts update transfer model

[0162] (null)

Finished product update transfer model

[0163] (null)

Purchase display and control transfer model

[0164] (null)

Purchase operation transfer model

[0165] (null)

Purchase implementation transfer model

[0166] (null)

Purchase update transfer model

[0167] (null)
[0168] Thereby, the business management YWGL
software model constituted by a software hierarchy mod-
el, software interaction models, software interface mod-
els, software algorithm models, software process mod-
els, and software transfer models in this embodiment has
been accomplished.
[0169] This embodiment demonstrates how a regular
management personnel, without knowledge of any ex-
isting complex software modeling languages, without
knowledge of any computer programming language, and
without dependence on any professional modeler nor any
application developer, by using the present invention, in-
dependently constructs an executable business man-

67 68

EP 3 163 434 A1

36

5

10

15

20

25

30

35

40

45

50

55

agement software model based on his vision in business
management within a relatively short period of time. The
constructed software model is not only clear and simple
but also the quality of the constructed software model is
significantly higher and the time spent is significantly
shorter.
[0170] Compared with developing a business manage-
ment software model with the cooperation of professional
modelers and/or application developers, the present in-
vention by which the same manager independently de-
velops the business management software model,
achieves remarkable results as follows:

(1) higher quality: the completed software model
meets the minds of the managers and avoids the
possible bias in understanding of the business man-
agement software model between the managers and
professional modelers or application developers;
(2) shorter time spent: the entire period of time spent
to model is shortened to 1/5 of the original time period
because the complex and frequent communications
between the managers and the professional model-
ers or the application developers are eliminated,
thereby greatly saving energy and money.

Claims

1. Software element model based univeral software
modeling method to construct software model, by
means of a computer readable storage medium hav-
ing a computer readable program code stored there-
in, the computer readable program code containing
instructions executable by a processor of a computer
software to implement a method of constructing soft-
ware model by processing data conforming to the
software element model and describing the software
model, the software model describing a software
system, the software element model comprising:

a software hierarchy mold which describes the
software hierarchy model of the software model
in a tree structure whose nodes are software
component classes and which is used as a tem-
plate to be configured in an actual software mod-
eling environment to form the software hierarchy
model of the software model, wherein the soft-
ware hierarchy model refers to the hierarchy re-
lationships constituted by the software compo-
nent classes as the nodes in the software model,
wherein the software component class refers to
a set of software component instances with the
same external features, and wherein the tree
structure, whose nodes are the software com-
ponent classes, is referred as a hierarchy tree;
a software interface mold which describes soft-
ware interface models by an optional structure
of an attribute set, a function set, and an event

set, the software interface mold is used as a tem-
plate in the actual software modeling environ-
ment to be configured to form the software in-
terface models, wherein the software interface
models refer to external features of the software
component classes, wherein the functions in the
function set include software interaction func-
tions, software algorithm functions, and soft-
ware process functions, wherein the software
interaction function is implemented by a soft-
ware interaction model, wherein the software al-
gorithm function is implemented by a software
algorithm model, and wherein the software proc-
ess function is implemented by a combination
of software process models and software trans-
fer models;
a software interaction module which describes
the software interaction models by a tree struc-
ture whose nodes are interaction elements and
which is used as a template in the actual soft-
ware modeling environment to be configured to
form the software interaction models, wherein
the software interaction model refers to a de-
scription of a way for implementing the software
interaction function with a combination of the in-
teraction elements and the interaction element
refers to a functional element for interacting in-
formation with the actual software modeling en-
vironment;
a software algorithm mold which describes soft-
ware algorithm models by a tree structure whose
nodes are operators and which is used as a tem-
plate in the actual software modeling environ-
ment to be configured to form the software al-
gorithm model, wherein the software algorithm
model refers to a description of the algorithm
which implements the software algorithm func-
tion by using the combination of operators, and
wherein the operator refers to a component with
a previously realized specific function;
a software process mold which describes soft-
ware process models by combining actions as
nodes and which is used as a template in the
actual software modeling environment to con-
figure the software process models, wherein the
software process model refers to a description
of a way of the software process function which
is implemented using a combination of the ac-
tions and wherein the action refers to an execu-
tion of a function;
a software transfer mold which describes soft-
ware transfer models by a transfer set and which
is used as a template in the actual software mod-
eling environment to be configured to form the
software transfer models, wherein the software
transfer model refers to transfer relationships of
the data of involved actions and a transfer in the
transfer set is a transfer relationship of the data

69 70

EP 3 163 434 A1

37

5

10

15

20

25

30

35

40

45

50

55

between one attribute and another attribute;
specific steps to construct the software model
described by the six molds being as follows:

1) constructing the software hierarchy mod-
el: the software hierarchy mold reading in
software hierarchy model commands from
the actual software modeling environment,
wherein the software hierarchy model com-
mand refers to command such as creating
a software component class, adding a soft-
ware component class, selecting a software
component class, naming a software com-
ponent class, or deleting a software com-
ponent class for the hierarchy tree and
wherein the software hierarchy mold per-
forms corresponding operations on the soft-
ware component class nodes in response
to the software hierarchy model commands
to obtain the software hierarchy model;
2) constructing the software interface mod-
els: constructing the software interface
model for each software component class
of the software hierarchy model obtained in
the step 1), the steps for constructing each
software interface model including: the soft-
ware interface mold reading in software in-
terface model commands from the actual
software modeling environment, wherein
the software interface model command re-
fers to command such as creating, naming,
or deleting the attributes, the functions, and
the events, wherein the software interface
mold performs corresponding operations in
response to the software interface model
commands to obtain the software interface
model, and wherein the software interaction
models for implementing software interac-
tion functions are constructed by step 3),
wherein the software algorithm models for
implementing software algorithm functions
are constructed by step 4), and wherein the
software process models for implementing
software process functions are constructed
by the step 5);
3) constructing the software interactive
models: constructing the software interac-
tion model for each software interaction
function obtained in the step 2), steps for
constructing each software interaction
model including: the software interaction
mold reading in software interaction model
commands from the actual software mode-
ling environment;
4) constructing the software algorithm mod-
els: constructing the software algorithm
model for each software algorithm function
obtained in the step 2), the steps for con-

structing each software algorithm model in-
cluding: the software algorithm mold read-
ing in software algorithm model commands
from the actual software modeling environ-
ment;
5) constructing the software process mod-
els: constructing the software process mod-
el for each software process function ob-
tained in the step 2), the steps for construct-
ing each software process model including:
the software process mold reading in soft-
ware process model commands from the
actual software modeling environment; and
6) constructing the software transfer mod-
els: constructing the software transfer mod-
el for each action in the software process
models obtained in the step 5), the steps for
constructing each software transfer model
including: the software transfer mold read-
ing in software transfer model commands
from the actual software modeling environ-
ment, wherein the software transfer model
command refers to the command such as
adding a transfer, adding a transfer, or de-
leting a transfer and wherein the software
transfer mold performs corresponding op-
erations in response to the software transfer
model commands to obtain the software
transfer model,
thereby the software model constructed by
the software hierarchy model, the software
interface models, the software algorithm
models, the software process models, and
the software transfer models is accom-
plished.

2. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein a combination of the software proc-
ess mold and the software transfer mold provide a
universal means to describe and configure functions;
the software interaction mold provides a simplified
alternative for replacing the combination of the soft-
ware process mold and the software transfer mold
if only interaction elements are used to implement
the functions.

3. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein a combination of the software proc-
ess mold and the software transfer mold provide a
universal means to describe and configure functions;
the software algorithm mold provides a simplified al-
ternative for replacing the combination of the soft-
ware process mold and the software transfer mold
if only operators are used to implement the functions.

4. Software element model based univeral software

71 72

EP 3 163 434 A1

38

5

10

15

20

25

30

35

40

45

50

55

modeling method to construct software model in
claim 1, wherein the software element model em-
ploys a parent-child structure as a base recursive
unit to recursively describe the software model; the
parent-child structure refers to a structure of parent-
child relationships in a hierarchy tree, constituted by
an involved software component class and all child
software component classes thereof.

5. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein the specific function of the step 2)
can only be any one of the software interaction func-
tion, the software algorithm function, and software
process function.

6. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein the software interaction model com-
mands for constructing the software interaction mod-
el in the step 3) refer to commands, such as adding
an interaction element, selecting an interaction ele-
ment, naming an interaction element, and deleting
an interaction element, and the software interaction
mold performs corresponding operations in re-
sponse to the software interaction model commands
to obtain the software interaction model; the interac-
tion elements include operator interaction elements
and component interaction elements; the operator
interaction element refers to a component with a pre-
viously realized specific function and the component
interaction element refers to one execution of the
interaction function in a set of the interaction func-
tions in the parent-child structure, the set of the in-
teraction functions in the parent-child structure refers
to a collection constituted by all interaction functions
of the involved component class and all interaction
functions of all child component classes thereof in
the parent-child structure, the tree structure of which
the nodes are the interaction elements is referred to
as an interaction tree.

7. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein the software algorithm model com-
mands for constructing the software algorithm model
in the step 4) refer to commands, such as adding an
operator, selecting an operator, naming an operator,
and deleting an operator, as well as adding an as-
signment, selecting an assignment, and deleting an
assignment, and the software algorithm mold per-
forms corresponding operations in response to the
software algorithm model commands to obtain the
software algorithm model; the operators include log-
ic operators with logic functions and computation op-
erators with calculation functions; the tree structure
whose nodes are operators is referred to as an al-
gorithm tree; the assignment refers to an assignment

relationship between two attributes in a set of the
algorithm attributes; and the set of the algorithm at-
tributes refers to a collection constituted by a set of
attributes of the involved software component class-
es, a set of attributes of all operators, and a set of
attributes of all interaction elements in the software
interaction model.

8. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein the software process model com-
mands for constructing the software process model
in step 5) refer to commands such as adding an ac-
tion, selecting an action, naming an action, and de-
leting an action and the software process mold per-
forms a corresponding operation in response to the
software process model commands to obtain the
software process model; the actions include both
component actions and operator actions; the com-
ponent action refers to one execution of the functions
in the function set in the parent-child structure, the
function set in the parent-child structure refers to a
collection constituted by the function set of the in-
volved software component class and function sets
of all child software component classes in the parent-
child structure; the operator action refers to one ex-
ecution of operator’s function; the software process
models include attribute process models and event
process model, the software process mold includes
attribute process molds and event process mold, and
the attribute process mold describes an attribute
process model through a process tree as the struc-
ture, which is a tree structure constituted by actions
as nodes; the event process mold describes an event
process model by a set of event associations as the
structure; the event association in the set of event
associations is an association relationship between
an event in a set of events in a parent-child structure
and an operator action or a component action; the
event set in the parent-child structure is a collection
constituted by the event set of the involved software
component class and the event sets of all interaction
elements in the interaction model thereof and the
event sets of all child software component classes
and the event sets of all interaction elements in the
interaction model thereof, in the parent-child struc-
ture.

9. Software element model based univeral software
modeling method to construct software model in
claim 1, wherein, besides action attributes which re-
fers to the attribute of the component class where
the action is, the attributes relevant to transfers are
limited to the parent-child attribute set, which refers
to a collection constituted by the attribute set of the
involved software component classes and attribute
sets of all child software component classes thereof
in the parent-child structure.

73 74

EP 3 163 434 A1

39

EP 3 163 434 A1

40

EP 3 163 434 A1

41

EP 3 163 434 A1

42

EP 3 163 434 A1

43

EP 3 163 434 A1

44

EP 3 163 434 A1

45

EP 3 163 434 A1

46

EP 3 163 434 A1

47

EP 3 163 434 A1

48

EP 3 163 434 A1

49

EP 3 163 434 A1

50

EP 3 163 434 A1

51

EP 3 163 434 A1

52

EP 3 163 434 A1

53

EP 3 163 434 A1

54

EP 3 163 434 A1

55

EP 3 163 434 A1

56

EP 3 163 434 A1

57

EP 3 163 434 A1

58

EP 3 163 434 A1

59

EP 3 163 434 A1

60

EP 3 163 434 A1

61

EP 3 163 434 A1

62

5

10

15

20

25

30

35

40

45

50

55

EP 3 163 434 A1

63

5

10

15

20

25

30

35

40

45

50

55

EP 3 163 434 A1

64

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 200610125050 [0005]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

