(19) |
 |
|
(11) |
EP 3 165 104 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
27.02.2019 Bulletin 2019/09 |
(22) |
Date of filing: 06.11.2015 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
PROTECTIVE GLOVE WITH SERVICE LIFE INDICATOR LAYER
SCHUTZHANDSCHUH MIT LEBENSDAUERANZEIGESCHICHT
GANT DE PROTECTION AVEC COUCHE INDICATRICE DE DURÉE DE VIE
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(43) |
Date of publication of application: |
|
10.05.2017 Bulletin 2017/19 |
(73) |
Proprietor: Honeywell International Inc. |
|
Morris Plains, NJ 07950 (US) |
|
(72) |
Inventors: |
|
- COBIANU, Cornel P.
Morris Plains, NJ New Jersey 07950 (US)
- SERBAN, Bogdan-Catalin
Morris Plains, NJ New Jersey 07950 (US)
- BUIU, Octavian
Morris Plains, NJ New Jersey 07950 (US)
- DIACONU, Cristian
Morris Plains, NJ New Jersey 07950 (US)
- DUMITRU, Viorel Georgel
Morris Plains, NJ New Jersey 07950 (US)
- GOLOGANU, Mihai
Morris Plains, NJ New Jersey 07950 (US)
- FARIN, Eric
Morris Plains, NJ New Jersey 07950 (US)
- SAUNIER, Christiane
Morris Plains, NJ New Jersey 07950 (US)
- STRATULAT, Alisa
Morris Plains, NJ New Jersey 07950 (US)
|
(74) |
Representative: Houghton, Mark Phillip |
|
Patent Outsourcing Limited
1 King Street Bakewell, Derbyshire DE45 1DZ Bakewell, Derbyshire DE45 1DZ (GB) |
(56) |
References cited: :
EP-A2- 1 637 046 US-A- 5 017 427 US-A- 5 650 329
|
GB-A- 2 433 227 US-A- 5 133 087
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Background
[0001] The protective gloves for process industries (petrochemical, chemical, food, beverage,
and pharmaceutical) are constructed to assure people safety under harsh chemical,
mechanical and electrical conditions. The glove suppliers provide a big product catalog,
where different types of gloves are recommended for different type of chemicals to
be handled. Depending on the application and chemical products to which they are exposed,
the gloves may have a different type of material and a different thickness of the
layers from which they are made of.
[0002] In many countries, such as European countries, the gloves have to pass mechanical
(EN 388), thermal (EN511), and chemical standards, such as a European standards (EN
374-2, EN 374-3) before they are sent to the market. In addition to these standards,
the gloves should comply with the standard EN 420, which specifies general criteria
for comfort, size, dexterity, labeling, and heavy metal content and pH content. Each
standard defines exact test and acceptance conditions for the gloves exposed to critical
mechanical, thermal, chemical agents. There may be various levels of performance specified
by the different standards. For instance a first level may specify the test and acceptance
conditions for the least aggressive value of the externally applied agent and the
highest level may be associated with the most aggressive value of the externally applied
agent.
[0003] For example, the standard EN-374-2 characterizes the permeability features of the
gloves and it specifies a method for testing the protective gloves resistance to permeation
of chemical products (penetration). In the same idea, the standard EN374-3 includes
the standard EN 374-2 requirements, and in addition, it requires that the protective
glove to pass the performance level 2 of chemical resistance for at least three chemical
products (like, methanol, sulfuric acid 96%, 40% sodium hydroxide, tetrahydrofuran,
acetone, carbon disulfide, ethyl acetate, etc.) This performance level 2 for chemical
resistance means that the permeation time (test made according to the standard) should
be higher than or equal to 30 minutes, when the glove is exposed continuously to that
chemical.
[0004] A catalog of gloves for chemical protection during handling of acids and alkalis,
for example, would include as suitable the latex gloves which can be used in harsh
applications for food and beverage industry where cleaning with high concentrated
cleaning agents are the most used. Such latex gloves meet the above standard and they
are also accompanied by a wide list of permeation data. Related to the protective
gloves described above, we need to mention that their use in the field is made most
of the time without keeping a clear evidence of the time of use during their lifetime,
and so in many cases they can be used for a much shorter time with respect to their
designed lifetime. On the other hand, the suppliers themselves may be conservative
in specifying the level of performance, which means that even if the real level of
performance may be 4, the supplier would specify 3, which is lower than 4.
[0005] US5133087 and
US5017427 disclose a laminate structure for gloves in which a color indicator layer is provided
as an under layer to a transparent outer layer to indicate any breakage in the outer
layer by a color change of the indication layer.
[0006] EP1637046 discloses gloves having a color change label by adding an ink to the glove material
so that the color change can be seen after a period of time.
[0007] GB2433227 discloses a multilayered material suitable for use in gloves for indicating punctures.
Summary
[0008] The present invention in its various aspects is as defined in the appended claims.
Brief Description of the Drawings
[0009]
FIG. 1 is a block diagram of multiple layers of a protective glove having an embedded
indicator layer according to an example.
FIG. 2 is a representation of a glove illustrating indicator text appearing with a
selected lifetime of the glove remaining according to an example.
FIG. 3 is a block diagram of multiple layers of a protective glove having multiple
embedded indicator layers according to an example.
Detailed Description
[0010] In the following description, reference is made to the accompanying drawings that
form a part hereof, and in which is shown by way of illustration specific embodiments
which do not always make part of the scope of the invention which is defined by the
claims. which may be practiced. These embodiments are described in sufficient detail
to enable those skilled in the art to practice the invention, and it is to be understood
that other embodiments may be utilized and that structural, logical and electrical
changes may be made without departing from the scope of the present invention. The
following description of example embodiments is, therefore, not to be taken in a limited
sense, and the scope of the present invention is defined by the appended claims.
[0011] Suppliers of protective gloves may be conservative in specifying the level of performance
of the gloves that they sell. Even if the real level of performance may be 4, the
supplier would specify 3, representing a shorter period of time than the actual performance
of the glove prior to failure. In various embodiments, a near-end of service life
indication (NESLI) is provided for a smart protective glove. The smart protective
glove may indicate a remaining operation time of the glove by means of colorimetric
principle based on the use of embedded pH indicators in a stack of layers forming
the glove. After a certain period of time of use in harsh chemicals, the harsh chemicals
will penetrate an outer protective layer of the glove and contact the pH indicators,
changing the color of the pH indicator. The pH indicator diffuses back to the outer
surface of the glove and result in the glove showing a color change with respect to
its background color. Such an event may signify for example that the remaining lifetime
left for operation is equal to about 10% of its entire life. An existing process for
making gloves may be minimally adjusted to provide the colorimetric indication.
[0012] FIG. 1 illustrates layers of a glove generally at 100. A first layer 110 is a protective
layer, and may be formed of latex or other protective material, like nitrile, chloroprene
(e.g. Neoprene, butyl, polyvinyl chloride (PVC), PU, CSM, Fluoro elastomer (e.g. Viton).
The first protective layer 110 comprises about 90% of the total of two or more protective
layers of the glove. A second embedded pH indicator layer 115 is formed of Bromophenol
blue. The second layer 115 may be thin, in the thickness range of 30-60 µm, but provide
enough pH indicator material to provide color change to a visible portion of the first
protective layer as the glove reaches 90% of its useful life.A third layer 120 comprises
a second protective layer with thickness equal to (the remaining) 10% of the total
protective layer thickness, which is then optionally followed by a fourth layer 125
which may be a glue layer, and fifth layer 130 which may be a liner.Note that the
fourth and fifth layers may be optional.
[0013] In a standard process for NESLI gloves fabrication a dip coating process can be used
for making the two protective layers, the color change layer and the glue layer.In
order to obtain a smart NESLI protective glove with color indication when about 10%
of the lifetime of the glove is left due toits previous immersion in a solution containing
harsh chemicals like acid, base, solvents, the second layer is an embedded solid state
layer containing a universal pH indicator like bromophenol blue that may be included
in the fabrication process of protective gloves. Bromophenol blue provides color changes
over a broad range of pH, from basic to acidic. Other pH indicators may also be used
in further embodiments, but may have color changes that occur when exposed to solutions
over a narrow range of pH, such as only acidic or only basic solutions. When such
pH indicators are used, the gloves should be labeled for use in the corresponding
solutions.
[0014] In further embodiments, a direct printing process may be used for selectively printing
the color change indicator layer 115. Direct printing, such as by inkjet printer allows
the color changing layer to be masklessly deposited so that alphanumeric characters
to be printed with a text like" 10% LEFT" as indicated in FIG. 2 on a glove 200 at
210. Note that the second protective layer 120 may be thicker than that described
to provide a longer service life than that specified by the characters in some embodiments.
The thickness may depend on how conservative a manufacture desires to be in providing
indications of remaining useful life of a glove.
[0015] To obtain a smart glove with color service life indication (SLI) at more different
remaining lifetimes (75%, 50%, 25%, 10% for example) direct printing may be performed
at different depths as indicated in block form in FIG. 3 at 300 (25%, 50%, 75%, 90%)
as a protective layer 310 is formed. Each indicator layer represented at 315, 320,
325, 330 respectivelycan be patterned or shaped to display its ownalphanumeric characters
as indicated in FIG. 3 as (75%, 50%, 25%, 10%)"LIFETIME LEFT" corresponding to the
depth in the protective layer 310 in which they are printed. The patternedindication
layers in one embodiment should be non-overlapping such that as each layer becomes
visible, it does not overlap and potentially be obscured by indications provided from
a previously layer. Such indications may be sized and located to be easily read by
the user. One location is on the glove corresponding to a back of the hand. Fingers
may also be exposed to solutions longer, and may also contain indicators. In further
embodiments, the last indicator layer may be a full layer that colors most of the
surface of the glove indicating little life remaining.
[0016] The activation mechanism causing the indicator layer to produce a visible indication
at an external surface of the glove occurs by exposure of the smart glove to vapors
and liquid state of the chemicals mentioned, referred to as a solution. In the body
of the protective layers of the gloves there are always nanopores which are filled
with air, and these nanopores are at the origin of the liquid permeation process.
This means that the liquid molecules can diffuse inside the protective layer via those
pores and after a certain time they can penetrate the entire thickness of the protective
layer. This time is called the breakdown time of the protective layer in a certain
solution. The breakdown time of a protective layer will depend on its thickness, the
magnitude of the permeating liquid molecule and the size of the nanopores. Exposure
of the glove to the solution results in nanopores filling with liquid molecules, and
thus the liquid is gradually penetrating in the first protective layer. After the
nanopores are filled with the solution along the entire thickness of the firstprotective
layer, the solution from the nanopores will start to dissolve the color changing indicator
layer containing bromophenol blue in one embodiment, acting as a pHindicator or dye.
This dye will start diffusing back along the nanopores via concentration gradient
and capillary forces, through the first protective layer to the outer surface of the
glove.
[0017] When the dye arrives at the outer surface of glove through a multitude of nanopores,
a change in the background color of glovewill be easily visible to a user. A background
color of white for the glove may provide for maximum contrast of the indication color.
The color will be changed according to the overall pH of the liquid in the pores after
gloveexposure to both acids and bases, and solvents, i.e., the solution.
[0018] According to the color change of the bromophenol blue exposed to the solution from
the nanopores, yellow color is obtained for pH<3, multiple colors for pH between 3
and 4.6 (real pH indicator in this pH range)and blue color for pH >4.6. For a solution
having pH of between 3<pH<4.6 a multitude of colors can appear depending the value
of the pH in that range. For example, in a solution of pH 3.6 (near the middle of
the transition range of this pH indicator) obtained by dissolution in water without
any pH adjustment, bromophenol blue has a characteristic green red color. For an NESLI
glove immersed in different solutions with different pH values, the pH of the final
solution from pores will dictate the color appearing on the outer surface of the glove.
One advantage of bromophenol blue is that it has the largest change in color hue when
the concentration of the observed sample increases or decreases. The change occurs
over all ranges of pH.
[0019] This concept of smart colorimetric NESLI/SLI glove can be applied to all types of
chemically protective gloves.
[0020] Generic technology for the dip coating fabrication process of the protective glove
consists of full immersion of a previously cleaned hand-shaped former (HSF) in multiple
baths where the liquid state of the future layers are present. After each dip coating,
a thermal treatment may be made for the solid state consolidation of the film. Such
processes are well known for the formation of a protective layer such as a latex protective
layer as described below. Similar processes may be used for formation of protective
layers comprised of other materials.At the end of the process, the gloves may be peeled
off from the HSF, and thus the last deposited layer on the glove will be the layer
in contact with the skin. Three alternative methods for forming protective gloves
are now described.
- I. An example of a "standard" all-dip-coating fabrication process of a smart latex
glove containing a single color change layerindicating 10% lifetime left before removal
(NESLI indicator) could be as follows:
- 1. Dip coating of the previously cleaned hand-shape former (HSF) into the "latex"
mix (containing a vulcanization system: sulfur, ZnO and accelerators) for getting
a latex film of thickness equal to 90% from thetotal desired thickness of latex film.
- 2. Thermal treatment of the dip-coated HSF for obtaining a solid state of the first
latex film (vulcanization at temperatures in the range 120-140°C).
- 3. Dip-coating of the HSF from operation 2 into a bath containing bromophenol blue
slurry at the right viscosity (10-30 mPa).
- 4. Thermal treatment at about 120-140°C for about 8-10 min of the HSF from the operation
3.
- 5. Dip coating of the HSF from operation 4 into the "latex" bath for getting a latex
film of thicknessequal to 10% of thickness of the total desired thickness of latex
film. Note that 90% and 10% are just example thicknesses. Other thicknesses may be
used. For gloves intended for mildly acidic or basic solutions, 5% for the second
latex layer may suffice. A higher percentage than 10% may be desired for gloves intended
for harsher solutions.
- 6. Thermal treatment of the hand-shape former from operation 5.
- 7. Dip coating of the HSF from operation 6 into a glue bath.
- 8. Glue drying at a mild thermal treatment of the HSF from operation 7.
- 9. Adding the liner to the HSF from operation 8.
- 10. Final treatment of HSF from operation 9 for robust gluing the liner to the HSF.
- 11. Removing the glove from the HSF such that the liner is on an inside of the glove.
- II. An example of the original hybrid fabrication process of NESLI gloves based on
direct printing and dip-coating may be asfollows:
- 1. Dip coating of the hand-shape former (HSF) into the "latex" bath for getting a
latex film of thickness equal to 90% from thetotal desired thickness of latex film.
- 2. Thermal treatment of the dip-coated HSF from operation 1 for obtaining a solid
state of the first latex film.
- 3. Direct printing on selective areas of the HSF from operation 2 of the color changing
layer creating the text "10% LEFT"
- 4. Thermal treatment of the HSF from operation 3 which was direct printed for getting
a solid color changing layer.
- 5. Dip coating of the HSF from operation 4 into the "latex" bath for getting a latex
film of thickness equal to 10% of thickness of thetotal desired thickness of latex
film.
- 6. Thermal treatment of the HSF from operation 5.
- 7. Dip coating of the HSF from operation 6 into the glue bath.
- 8. Glue drying at a mild thermal treatment of the HSF from operation 7.
- 9. Adding the liner to the HSF from operation 8.
- 10. Final treatment of HSF from operation 9 for robust gluing the liner to the HSF.
- III. Finally, an example of original all-printed NESLI glove can be also envisioned,
where all the dip-coating processes fromabove were replaced by direct printing.
[0021] The fabrication process of the smart gloves with multiple colorimetric service life
indicators SLI (75%, 50%, 25%, 10%) may bemade utilizing a hybrid or printed technologies
from above. The process for getting these multiple service life indicationsderives
from the examples from above. The multiple service life indications may avoid overlapping
such that indications showing a longer service life remaining do not obscure indications
of less service life remaining. Note that the last indicator layer may be dip coated
causing the entire glove to change color with a selected percentage of the protective
life of the glove remaining.
[0022] An example of process for making the viscous bromophenol blue slurry that can be
used for dip coating or inkjet printing can be as shown below:
- 1. Dissolve the bromphenol blue powder in a mixture of water and small amount of alcohol.
- 2. Add surfactants like dimethyl sulfonamide, dimethylsulfoxide, polyhydric alcohol.
- 3. Add viscosity intensifying agent resin (for example: shellac, guaiac gum methyl
cellulose and ethyl cellulose). The viscosity of the final solution may be in the
range 10-30 mPa, while the final thickness may be in the range 30-60 µm.
- 4. Obtain a homogeneous and viscous solution of the color changing agent based on
bromphenol blue.
[0023] An automated factory for fabrication of printed NESLI/SLI protective gloves may involve
moving the HSF on a line from one location to another for receiving the right process.
The same or separate dip coating vats of latex may be utilized.
Examples:
[0024]
- 1. A protective glove formed of multiple layers comprising:
a first protective layer having a top surface and a bottom surface;
an indicator layer embedded in the glove at the bottom surface of the first protective
layer and formed of a material that changes color of a solution when exposed to the
solution penetrating the first protective layer, wherein the change in color of the
solution becomes visible from the top surface of the first protective layer; and
a second protective layer formed such that the indicator layer is between the second
protective layer and the first protective layer.
- 2. The protective glove of example 1 wherein the first protective layer provides approximately
90% of the protective life of the glove.
- 3. The protective glove of any of examples 1-2 wherein the indicator layer is patterned
in a shape indicating the percentage of a protective lifetime of the glove remaining.
- 4. The protective glove of any of examples 1-3 wherein the indicator layer comprises
a pH indicator generating a color corresponding to a pH of the solution.
- 5. The protective glove of example 4 wherein the pH indicator comprises bromophenol
blue.
- 6. The protective glove of any of examples 1-5 wherein the protective layers comprise
natural or synthetic lattices.
- 7. The protective glove of any of examples 1-6 wherein the indicator layer is a continuous
layer.
- 8. The protective glove of any of examples 1-7 and further comprising multiple patterned
indicator layers embedded at different depths of the first protective layer, the patterned
indicator layers patterned to provide an indication at the top surface of the first
protective layer representative of the remaining useful life of the protective glove.
- 9. The protective glove of any of examples 1-8 wherein the first protective layer
comprises latex and the indicator layer comprises bromophenol blue.
- 10. A protective glove formed of multiple layers comprising:
a first protective layer formed in the shape of a protective glove and having a top
surface and a bottom surface;
a bromophenol blue pH indicator layer embedded in the glove at the bottom surface
of the first protective layer that changes color when exposed to a solution penetrating
the first protective layer, wherein the change in color becomes visible from the top
surface of the first protective latex layer; and
a second protective layer formed such that the indicator layer is between the second
protective layer and the first protective layer.
- 11. The protective glove of example 10 wherein the first protective layer provides
approximately 90% of the protective life of the glove.
- 12. The protective glove of any of examples 10-11 wherein the indicator layer is patterned
in a shape indicating the percentage of a protective lifetime of the glove remaining.
- 13. The protective glove of any of examples 10-12 and further comprising multiple
patterned indicator layers embedded at different depths of the first protective layer,
the patterned indicator layers patterned to provide an indication at the top surface
of the first protective layer representative of the remaining useful life of the protective
glove.
- 14. A method of forming a protective glove, the method comprising:
dip coating a hand shaped former into a bath to form a first protectivelayer having
a first thickness;
forming an indicator layer on the first protective layer; and
dip coating the hand shaped former into a bath to form a second protective layer having
a second thickness.
- 15. The method of example 14 wherein forming an indicator layer on the first protective
layer comprises dip coating the hand shaped former having the first protective layer
into a bath containing a bromophenol blue slurry to form the indicator layer comprising
bromophenol blue.
- 16. The method of example 15 wherein the bromophenol blue slurry comprises bromophenol
blue powder, alcohol, a surfactant, and a viscosity intensifying agent resin.
- 17. The method of any of examples 14-16 wherein forming an indicator layer on the
first protective layer comprises printing the indicator layer in a pattern.
- 18. The method of example 17 wherein the pattern comprises text indicating a remaining
protective lifetime of the protective glove.
- 19. The method of any of examples 17-18 wherein the text comprises a percentage proportional
to the thickness of the second protective layer relative to the thickness of the first
protective layer.
- 20. The method of any of examples 14-19 and further comprising:
dip coating the hand shaped former with the second protective layer into a glue bath
to form a layer of glue; and
adding a liner to the layer of glue.
[0025] Although a few embodiments have been described in detail above, other modifications
are possible. For example, the logic flows depicted in the figures do not require
the particular order shown, or sequential order, to achieve desirable results. Other
steps may be provided, or steps may be eliminated, from the described flows, and other
components may be added to, or removed from, the described systems.
1. A protective glove (100, 200, 300) formed of multiple layers to protect a wearer against
harsh chemicals, the protective glove comprising:
a first protective layer (110, 310) having a top surface and a bottom surface and
having nanopores filled with air;
an indicator layer (115, 315, 320, 325, 330) embedded in the glove at the bottom surface
of the first protective layer (110, 310) and formed of an indictor material that changes
color of a harsh chemical solution when exposed to the harsh chemical solution penetrating
through the nanopores of the first protective layer (110, 310), wherein the indicator
layer (115, 315, 320, 325, 330) comprises a pH indicator bromophenol blue generating
a color corresponding to a pH of the solution, wherein the nanopores in the first
protective layer and the indicator material are adapted to allow the change in color
of the harsh chemical solution to become visible from the top surface of the first
protective layer (110, 310) by the diffusion of the indicator material through the
nanopores via concentration gradient and capillary forces to the top surface of the
first protective layers; and
a second protective layer (120, 310) formed such that the indicator layer (115, 315,
320, 325, 330) is between the second protective layer (120, 310) and the first protective
layer (110, 310).
2. The protective glove (100, 200, 300) of claim 1, wherein the first protective layer
(110, 310) provides approximately 90% of the total of the first and second protective
layers of the glove (100, 200, 300).
3. The protective glove (100, 200, 300) of claim 1 or claim 2, wherein the protective
layers (110, 310, 120) comprise natural or synthetic lattices.
4. The protective glove (100, 200, 300) of any one of claims 1 to 3, wherein the indicator
layer (115, 315, 320, 325, 330) is a continuous layer.
5. The protective glove (100, 200, 300) of any one of claims 1 to 4, and further comprising
multiple patterned indicator layers (315, 320, 325, 330) embedded at different depths
of the first protective layer (110, 310).
6. The protective glove (100, 200, 300) of any one of claims 1 to 5, wherein the first
protective layer (110, 310) comprises latex.
7. A method of forming the protective glove (100, 200, 300) of claim 1, the method comprising:
dip coating a hand shaped former into a bath to form the first protective layer (110,
310) having a first thickness;
forming the indicator layer (115, 315, 320, 325, 330) on the first protective layer
(110, 310); and
dip coating the hand shaped former into a bath to form the second protective layer
(120, 310) having a second thickness.
8. The method of claim 7, wherein forming the indicator layer (115, 315, 320, 325, 330)
on the first protective layer (110, 310) comprises dip coating the hand shaped former
having the first protective layer into a bath containing a bromophenol blue slurry
to form the indicator layer (115, 315, 320, 325, 330) comprising bromophenol blue.
9. The method of claim 8, wherein the bromophenol blue slurry comprises bromophenol blue
powder, alcohol, a surfactant, and a viscosity intensifying agent resin.
10. The method of any one of claims 7-9 wherein forming the indicator layer (115, 315,
320, 325, 330) on the first protective layer (110, 310) comprises printing the indicator
layer (115, 315, 320, 325, 330) in a pattern.
11. The method of any one of claims 7-10 and further comprising:
dip coating the hand shaped former with the second protective layer (120, 310) into
a glue bath to form a layer of glue (125); and
adding a liner (130) to the layer of glue (125).
1. Schutzhandschuh (100, 200, 300), gebildet aus mehreren Schichten, zum Schutz eines
Trägers gegen aggressive Chemikalien, wobei der Schutzhandschuh umfasst:
eine erste Schutzschicht (110, 310) mit einer oberen Oberfläche und einer unteren
Oberfläche und mit luftgefüllten Nanoporen;
eine Indikatorschicht (115, 315, 320, 325, 330), die an der unteren Oberfläche der
ersten Schutzschicht (110, 310) in dem Handschuh eingebettet ist und aus einem Indikatormaterial
besteht, das die Farbe einer aggressiven chemischen Lösung verändert, wenn es gegenüber
der aggressiven chemischen Lösung exponiert wird, die durch die Nanoporen der ersten
Schutzschicht (110, 310) dringt, wobei die Indikatorschicht (115, 315, 320, 325, 330)
den pH-Indikator Bromphenolblau umfasst, der eine Farbe erzeugt, die dem pH-Wert der
Lösung entspricht, wobei die Nanoporen in der ersten Schutzschicht und das Indikatormaterial
dafür ausgelegt sind, zu erlauben, dass die Farbveränderung der aggressiven chemischen
Lösung durch Diffusion des Indikatormaterials durch die Nanoporen über den Konzentrationsgradienten
und Kapillarkräfte zu der oberen Oberfläche der ersten Schutzschichten an der oberen
Oberfläche der ersten Schutzschicht (110, 310) sichtbar wird; und
eine zweite Schutzschicht (120, 310), die so gestaltet ist, dass die Indikatorschicht
(115, 315, 320, 325, 330) zwischen der zweiten Schutzschicht (120, 310) und der ersten
Schutzschicht (110, 310) angeordnet ist.
2. Schutzhandschuh (100, 200, 300) gemäß Anspruch 1, wobei die erste Schutzschicht (110,
310) etwa 90 % der Summe der ersten und der zweiten Schutzschicht des Handschuhs (100,
200, 300) bereitstellt.
3. Schutzhandschuh (100, 200, 300) gemäß Anspruch 1 oder Anspruch 2, wobei die Schutzschichten
(110, 310, 120) natürliche oder synthetische Gitter umfassen.
4. Schutzhandschuh (100, 200, 300) gemäß einem der Ansprüche 1 bis 3, wobei die Indikatorschicht
(115, 315, 320, 325, 330) eine kontinuierliche Schicht ist.
5. Schutzhandschuh (100, 200, 300) gemäß einem der Ansprüche 1 bis 4, ferner umfassend
mehrere strukturierte Indikatorschichten (315, 320, 325, 330), die in verschiedenen
Tiefen der ersten Schutzschicht (110, 310) eingebettet sind.
6. Schutzhandschuh (100, 200, 300) gemäß einem der Ansprüche 1 bis 5, wobei die erste
Schutzschicht (110, 310) Latex umfasst.
7. Verfahren zur Herstellung des Schutzhandschuhs (100, 200, 300) gemäß Anspruch 1, wobei
das Verfahren umfasst:
Tauchbeschichten einer handförmigen Formvorrichtung in einem Bad, um die erste Schutzschicht
(110, 310) mit einer ersten Dicke zu bilden;
Bilden der Indikatorschicht (115, 315, 320, 325, 330) auf der ersten Schutzschicht
(110, 310); und
Tauchbeschichten der handförmigen Formvorrichtung in einem Bad, um die zweite Schutzschicht
(120, 310) mit einer zweiten Dicke zu bilden.
8. Verfahren gemäß Anspruch 7, wobei das Bilden der Indikatorschicht (115, 315, 320,
325, 330) auf der ersten Schutzschicht (110, 310) Tauchbeschichten der handförmigen
Formvorrichtung, die die erste Schutzbeschichtung aufweist, in einem Bad, das eine
Bromphenolblau-Aufschlämmung enthält, umfasst, um die Indikatorschicht (115, 315,
320, 325, 330), die Bromphenolblau umfasst, zu bilden.
9. Verfahren gemäß Anspruch 8, wobei die Bromphenolblau-Aufschlämmung Bromphenolblau-Pulver,
Alkohol, ein grenzflächenaktives Mittel und ein viskositätserhöhendes Harzmittel umfasst.
10. Verfahren gemäß einem der Ansprüche 7-9, wobei das Bilden der Indikatorschicht (115,
315, 320, 325, 330) auf der ersten Schutzschicht (110, 310) Drucken der Indikatorschicht
(115, 315, 320, 325, 330) in einer Struktur umfasst.
11. Verfahren gemäß einem der Ansprüche 7-10, ferner umfassend:
Tauchbeschichten der handförmigen Formvorrichtung mit der zweiten Schutzschicht (120,
310) in einem Klebstoffbad, um eine Klebstoffschicht (125) zu bilden; und
Anfügen einer Auskleidung (130) an die Klebstoffschicht (125).
1. Gant de protection (100, 200, 300) formé de multiples couches pour protéger un utilisateur
contre des produits chimiques agressifs, le gant de protection comprenant :
une première couche de protection (110, 310) possédant une surface supérieure et une
surface inférieure et possédant des nanopores remplis d'air ;
une couche indicatrice (115, 315, 320, 325, 330) incluse dans le gant au niveau de
la surface inférieure de la première couche de protection (110, 310) et formée d'un
matériau indicateur qui change la couleur d'une solution de produit chimique agressif
lorsqu'il est exposé à la solution de produit chimique agressif pénétrant par les
nanopores de la première couche de protection (110, 310), la couche indicatrice (115,
315, 320, 325, 330) comprenant un indicateur de pH, le bleu de bromophénol, générant
une couleur correspondant à un pH de la solution, les nanopores de la première couche
de protection et le matériau indicateur étant conçus pour permettre que le changement
de couleur de la solution de produit chimique agressif devienne visible depuis la
surface supérieure de la première couche de protection (110, 310) par la diffusion
du matériau indicateur à travers les nanopores par le biais du gradient de concentration
et des forces capillaires vers la surface supérieure des premières couches de protection
; et
une seconde couche de protection (120, 310) formée de sorte que la couche indicatrice
(115, 315, 320, 325, 330) soit entre la seconde couche de protection (120, 310) et
la première couche de protection (110, 310).
2. Gant de protection (100, 200, 300) selon la revendication 1, dans lequel la première
couche de protection (110, 310) constitue approximativement 90% du total des première
et seconde couches de protection du gant (100, 200, 300).
3. Gant de protection (100, 200, 300) selon la revendication 1 ou la revendication 2,
dans lequel les couches de protection (110, 310, 120) comprennent des réseaux naturels
ou synthétiques.
4. Gant de protection (100, 200, 300) selon l'une quelconque des revendications 1 à 3,
dans lequel la couche indicatrice (115, 315, 320, 325, 330) est une couche continue.
5. Gant de protection (100, 200, 300) selon l'une quelconque des revendications 1 à 4,
et comprenant en outre de multiples couches indicatrices à motifs (315, 320, 325,
330) incluses à différentes profondeurs de la première couche de protection (110,
310).
6. Gant de protection (100, 200, 300) selon l'une quelconque des revendications 1 à 5,
dans lequel la première couche de protection (110, 310) comprend du latex.
7. Procédé de formation du gant de protection (100, 200, 300) selon la revendication
1, le procédé consistant à :
revêtir par trempage un gabarit en forme de main dans un bain afin de former la première
couche de protection (110, 310) ayant une première épaisseur ;
former la couche indicatrice (115, 315, 320, 325, 330) sur la première couche de protection
(110, 310) ; et
revêtir par trempage le gabarit en forme de main dans un bain afin de former la seconde
couche de protection (120, 310) ayant une seconde épaisseur.
8. Procédé selon la revendication 7, dans lequel la formation de la couche indicatrice
(115, 315, 320, 325, 330) sur la première couche de protection (110, 310) consiste
à revêtir par trempage le gabarit en forme de main comportant la première couche de
protection dans un bain contenant une bouillie de bleu de bromophénol afin de former
la couche indicatrice (115, 315, 320, 325, 330) comprenant le bleu de bromophénol.
9. Procédé selon la revendication 8, dans lequel la bouillie de bleu de bromophénol comprend
une poudre de bleu de bromophénol, un alcool, un agent tensioactif et une résine d'agent
d'intensification de viscosité.
10. Procédé selon l'une quelconque des revendications 7 à 9 dans lequel la formation de
la couche indicatrice (115, 315, 320, 325, 330) sur la première couche de protection
(110, 310) consiste à imprimer la couche indicatrice (115, 315, 320, 325, 330) selon
un motif.
11. Procédé selon l'une quelconque des revendications 7 à 10 et consistant en outre à
:
revêtir par trempage le gabarit en forme de main avec la seconde couche de protection
(120, 310) dans un bain de colle pour former une couche de colle (125) ; et
ajouter une doublure (130) à la couche de colle (125).


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description