[0001] This application relates to a window unit designed so as to have a high R-value.
In certain example embodiments, the window unit includes a vacuum IG (VIG) unit as
an inboard lite and a monolithic lite (e.g., with a low-E coating thereon, optionally)
as an outboard lite; where a dead air space separates the two lites which are both
supported by an insulating frame such as a sash. The design may result in a higher
and thus improved R-value for the window unit.
BACKGROUND AND SUMMARY OF THE INVENTION
[0002] It is known in the art that R-value is a measure of the insulating characteristics
of a window. In particular, R-value is the reciprocal of U-value. In other words,
U value = 1/R-value. The term U-value or U-factor (synonymous with thermal transmittance)
is well understood in the art and is used herein according to this well known meaning.
U-value herein is reported in terms of BTU/hr/ft
2/degrees F, and may be determined accorded to the guarded hot box method as reported
in and according to ASTM designation C1199-91 (incorporated herein by reference).
Similarly, R-value is the reciprocal of U-value as explained above.
[0003] The R-value for a monolithic glass sheet (one sheet of glass) is typically around
1.0. Moreover, the R-value for an insulating glass (IG) unit with two sheets of uncoated
glass spaced apart from each other is typically about 2.0 (i.e., U value of about
0.5). When one of the glass sheets of an IG unit is coated with a low-E (low emissivity)
coating, the R value can be increased (e.g., to about 3 or 4). Argon gas between the
glass sheets of an IG unit can also increase R-value (and thus decrease U-value).
[0004] Conventional IG units often use metal spacer(s) as the edge of the units to space
the glass sheets from one another. However, this causes U values to be higher (and
thus R values to be lower) at the edges of such IG units due to the conductivity of
the metal spacer(s). It would be advantageous to avoid the use of metal spacers at
edges of a glass-based window unit, thereby reducing conductivity of the spacing structure.
Plastic spacers have been used previously to address this problem, but have resulted
in gas (e.g., Ar) leakage through the plastic thereby leading to durability and insulating
problems.
[0005] In certain example embodiments of this invention, a window unit may be provided which
does not necessarily need a metal spacer in an IG unit. In certain example embodiments,
a window sash has a spacer function/structure which may be of plastic or the like;
e.g., vinyl or some other polymer based material. Thus, in certain example embodiments,
part of the sash may separate two glass sheets of the window from one another.
[0006] In certain example embodiments of this invention, a window unit may include a vacuum
IG (VIG) unit as an inboard lite and a monolithic lite (e.g., with a low-E coating
thereon) as an outboard lite. A dead air space may separate the inboard and outboard
lites. Moreover, in certain example embodiments, a highly insulated frame may be used
to support the inner and outer lites. The VIG unit may be partially embedded or supported
(e.g., by from about 1-6 inches, more preferably from about 1 to 3 inches, with an
example being about 2 inches) in the insulating frame, so that the insulating frame
separates the VIG unit inboard lite from the outboard lite thereby reducing conductivity
around the edges of the window unit so that R-value can be increased (and U-value
increased). In certain example embodiments, the edges of the inboard and outboard
lites may be vertically offset from one another, to further reduce conductivity at
edges portions. In certain example embodiments, the total R-value of the window unit
is at least about R-8, and more preferably at least about R-10 (compared to the much
lower R-values of conventional IG units).
[0007] In certain example embodiments, there is provided a window unit comprising: an insulating
frame in which a vacuum IG unit and a monolithic lite are provided, the vacuum IG
unit including first and second spaced apart glass sheets that are separated from
one another via a gap that is a pressure less than atmospheric, and the monolithic
lite being spaced apart from the vacuum IG unit; wherein the frame comprises insulating
material that separates the vacuum IG unit from the monolithic lite.
[0008] In other example embodiments of this invention, there is provided a window unit comprising:
an insulating frame in which both an inboard glass lite and an outboard glass lite
are partially embedded, the inboard lite comprising a vacuum IG unit including first
and second spaced apart glass sheets that are separated from one another via a gap
that is a pressure less than atmospheric, and the outboard lite comprising a monolithic
glass sheet spaced apart from the vacuum IG unit; wherein the frame comprises insulating
material that separates the outer surface of the vacuum IG unit from the inner surface
of the monolithic glass sheet; and wherein along at least one of a top edge, a bottom
edge, and/or a side edge of the window unit, the outer edge of the monolithic glass
sheet is vertically offset from the outer edge of the vacuum IG unit so that the outer
edge of the vacuum IG unit is closer to a periphery of the window unit than is the
outer edge of the monolithic glass sheet.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIGURE 1 is a cross sectional view of a window unit according to an example embodiment
of this invention.
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION
[0010] Fig. 1 is a cross sectional view of a window unit according to an example embodiment
of this invention. Fig. 1 illustrates that the window unit includes a vacuum IG (VIG)
unit 1 as an inboard lite and a monolithic lite 3 as an outboard lite. A dead air
space 5 separates the inboard and outboard lites. Space 5 may be at atmospheric pressure
in certain example embodiments, although it may instead be filled with gas and/or
at a pressure lower than atmospheric in different example embodiments. In certain
example embodiments, a low-E coating for reflecting IR radiation may be provided on
the surface of monolithic lite 3 facing the air gap 5, although such a low-E coating
is optional in certain example embodiments of this invention. Example low-E coatings
are described in
U.S. Patent Nos. 6,936,347,
5,688,585,
5,557,462,
5,425,861,
4,413,877 and
3,682,528, the disclosures of which are all hereby incorporated herein by reference.
[0011] The vacuum IG unit 1, which is the inboard lite in Fig. 1, includes an inner glass
substrate 7 and an outer glass substrate 9. Edges of opposing vacuum IG substrates
7 and 9 are hermetically sealed by at least one edge or peripheral seal 4. "Peripheral"
and "edge" seals herein do not mean that the seal(s) are located at the absolute periphery
or edge of the unit, but instead mean that the seal is at least partially located
at or near (e.g., within about two inches of) an edge of at least one substrate of
the VIG unit. In certain example embodiments, a vacuum IG unit includes first and
second opposing glass substrates 7 and 9 (tempered or non-tempered) which are spaced
from one another by spacers or pillars 24 which maintain low pressure space 26 between
the substrates. In certain example embodiments, substrates 7 and 9 are soda-lime-silica
float glass. Hermetic peripheral or edge seal 4, provided between the substrates 7
and 9, seals off low pressure space 26 from surrounding atmospheric pressure. The
peripheral/edge seal 4 may be located entirely between the opposing substrates, as
shown in Figure 1. However, the peripheral/edge seal 4 may instead be located partially
between substrates 7 and 9, and partially in an L-shaped step area (not shown) at
the periphery of the unit in non-illustrated instances where the glass sheets 7 and
9 are of different sizes. The evacuation of space 26 eliminates or reduces heat transport
between glass substrates 7 and 9 due to gaseous conduction and convection. In addition,
radiative heat transport between substrates 7 and 9 can be reduced to a low level
by providing an optional low-E coating(s) on a surface of one or both of sheets 7,
9. High levels of thermal insulation can thus be achieved. Low gaseous thermal conduction
may be achieved when the pressure in space 26 is reduced to a level e.g., equal to
or below about 0.5 x 10
-3 Torr, more preferably below about 0.1 mTorr, or 10
-4 Torr, and most preferably below about 10
-6 Torr of atmospheric pressure. The hermetic sealing system 4, including one or more
edge seals, substantially eliminates any ingress or outgress of gas or air to/from
low pressure space 26. An array of spacers or pillars 24 is provided between substrates
7 and 9 in order to maintain separation of the two approximately parallel glass sheets
7, 9 against atmospheric pressure. In certain embodiments, all spacers 24 are of approximately
the same size and/or material. However, in other embodiments, there may be different
sizes of spacers 24 in the same vacuum IG unit. In certain embodiments, the density
of spacers (i.e., the number of spacers per unit area) may be greater in certain areas
than in other areas, or alternatively, the density of the spacers may be approximately
uniform throughout the entire unit. For purposes of example only, and without limitation,
example VIG units which may be used for VIG unit 1 in the Fig. 1 embodiment are illustrated
and/or described in
U.S. Patents Nos. 6,372,312,
6,365,242,
6,399,169,
6,336,984,
6,497,931, and/or
6,692,600, the disclosures of which are all hereby incorporated herein by reference.
[0012] In certain example embodiments, a highly insulated foam core insulating frame 30
may be used to support the inner and outer lites 1,3. In certain example embodiments,
the foam functions as insulating so as to provide an insulating function and structure
for supporting the lites 1, 3. The insulating frame 30 may be a window sash in certain
example embodiments of this invention, and may have a polymer based cover (e.g., vinyl)
surrounding a foam core in certain example instances. The VIG unit 1 may be partially
embedded or supported (e.g., by from about 1-6 inches, more preferably from about
1 to 3 inches, with an example being about 2 inches) in the foam frame 30, so that
the foam inclusive insulating frame 30 separates the VIG unit inboard lite 1 from
the monolithic outboard lite 3 thereby reducing conductivity around the edges of the
window unit so that R-value can be increased (and U-value increased).
[0013] In certain example embodiments, as shown in Fig. 1, the edges of the inboard and
outboard lites 1 and 3 may be vertically offset from one another, to further reduce
conductivity at edges portions. VIG units tend to have some conductivity between the
two glass sheets thereof at the edge area near seal 4. However, the vertical offset
between the bottom edge (and possible the upper and/or side edges also) of the VIG
unit 1 and that of the monolithic lite 3 helps reduce conductivity between the edges
of lites 1 and 3 for the overall window unit thereby improving the R-value thereof.
The VIG lite 1 is located on the inboard side in certain example embodiments, so as
to avoid temperature swings on the inner side of the window unit and to protect the
VIG unit from potential damage from the exterior of the building on which the window
unit is located. It is also noted that the fairly long bite "B" between the bottom
edge of the VIG unit and the upper edge of the bottom frame portion advantageously
makes it more difficult for heat and/or cold to makes its way around the edge of the
VIG unit 1 thru the possible solder edge seal 4. The distance of bite "B" is from
about 1 to 5 inches, more preferably from about 1-3 inches (e.g., 2 inches) in certain
example embodiments of this invention.
[0014] In certain example embodiments, the total R-value of the window unit is at least
about R-8, and more preferably at least about R-10 (compared to the much lower R-values
of conventional IG units).
[0015] In the Fig. 1 embodiment, the outer monolithic lite 3 may be glued to the sash/frame
30 via adhesive at area 40 which may also function as a seal. Bottom stop 44 upon
which outboard lite 3 rests in first L-shaped channel 46 is optional. L-shaped channel
46 is defined in the frame/sash 30, with the vertical portion of the channel 46 receiving
the lite 3 and the horizontal portion of the channel permitting the optional stop
44 to be inserted and/or removed. Glue may also be put in the channel 46 to hold the
lite 3 in place. A second L-shaped channel 48 is also provided in the sash or frame
30. Second L-shaped channel 48 is also defined in the frame/sash 30, with the vertical
portion of the channel 48 receiving the VIG lite 1 and the horizontal portion of the
channel permitting the optional stop 50 to be inserted and/or removed in the frame.
Glue may also be put in the channel 48 to hold the VIG lite 1 in place. Again, the
VIG lite 1 is held in place via glue at areas 50a in certain example instances.
[0016] In order to achieve a high R-value for the overall window unit, one typically has
good insulating properties in three primary areas of the window; namely the center
of the window (e.g., the daylight opening minus about a 2.5 inches perimeter near
the siteline), the edge of the glass (e.g., the 2.5 inch perimeter of the daylight
opening near the siteline, and the frame (e.g., the opaque structural component surrounding
the glass that holds the glass in place). These three areas act in parallel for heat
flow, and one area with very high thermal conductivity will allow undesirable large
amounts of heat to flow through that channel. Typically, multiple layers of glass
have been used to reduce heat flow through the center of the glass, although low-E
coatings and gas such as Ar have also been used. Low conductivity spacers at the perimeter
are typically used to reduce conductivity at the edge. Framing is typically designed
to hold a glazing unit with an approximately one-half inch bite on the edge of the
unit.
[0017] The VIG unit 1 uses two sheets of glass 7 and 9 with an optional low-E coating on
one of the glass sheets to reach a center-of-glass R-value of about 10 or more. However,
the VIG unit 1 may have a solder glass edge seal 4 at or near the perimeter to seal
the two glass sheets together, which allows for an easy path for heat to flow from
one glass sheet to the other. The window of Fig. 1 however overcomes this problem
with the VIG unit by embedding the edge of the VIG unit 1 in the insulating frame/sash
30 with a fairly long bite B. The combination of the insulating properties of glass
along the path length around the edge of the VIG unit (two times the bite length)
acts as a thermal barrier. The larger bite B results in a larger R-value for the window
unit. In certain example embodiments, the frame 30 has a core of highly insulating
foam such as polyisocyanurate (e.g., R-6.5 per inch) - two inches of this would provide
an R-value of about 13. A protective layer of fiberglass reinforced plastic or wood
veneer could also be used as the covering of the foam core, with the structure L-channels
46 and 48 designed to follow the isothermals of the heat flow in the framing system.
The outside surface of the framing system could be expected to reach temperature extremes
of -50 degrees F to plus 150 degrees F, such that the outer skin of the framing may
be designed to flex to absorb such temperature extremes without causing significant
warping for limited time periods. The outboard monolithic lite 3 helps shield the
VIG unit 1 from certain temperature extremes.
[0018] In certain example embodiments, the overall window unit of example Fig. 1 may be
characterized by the following R-values. First, center of glass: VIG = 10, outboard
low-E lite = 2; total center of glass is about R-12 or more. Second, edge of glass
(2.5" perimeter): 4 inch heat path on 4 mm glass is approximately R-6. Third, frame
of window: R-13 for foam minus thermal bridging losses of structure R-10. Thus, the
combined total thermal resistance of the overall window is approximately R-8 or higher,
more preferably about R-10 or higher. The final R-value of the overall window is dependent
on the height and width of the window, the thickness of the glass, the depth of the
bite "B" on the VIG unit, and the extent of thermal bridging in the frame 30.
[0019] It is noted that large edge bites on a VIG unit can reduce high stresses imposed
on a. glazing due to extreme temperature differences between indoor and outdoor temperatures.
This would reduce the likelihood of glass fracturing in extreme climates. Moreover,
the outboard monolithic lite (3) may be used also to reduce the indoor to outdoor
temperature difference. In addition, large edge bites on a VIG can reduce the relative
area of the very cold glass (outer VIG pane) to the much warmer glass (indoor VIG
pane). Furthermore, the stresses may be distributed more uniformly across the large
edge area of the window unit.
[0020] While the invention has been described in connection with what is presently considered
to be the most practical and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment, but on the contrary, is
intended to cover various modifications and equivalent arrangements included within
the spirit and scope of the appended claims.
[0021] In the following preferred embodiments are described to facilitate a deeper understanding
of the invention:
- 1. A window unit comprising:
an insulating frame in which both an inboard glass lite and an outboard glass lite
are partially embedded, the inboard lite comprising a vacuum IG unit including first
and second spaced apart glass sheets that are separated from one another via a gap
that is a pressure less than atmospheric, and the outboard lite comprising a monolithic
glass sheet spaced apart from the vacuum IG unit;
wherein the frame comprises insulating material that separates the outer surface of
the vacuum IG unit from the inner surface of the monolithic glass sheet; and
wherein along at least one of a top edge, a bottom edge, and/or a side edge of the
window unit, the outer edge of the monolithic glass sheet is vertically offset from
the outer edge of the vacuum IG unit so that the outer edge of the vacuum IG unit
is closer to a periphery of the window unit than is the outer edge of the monolithic
glass sheet.
- 2. The window unit of embodiment 1, wherein a low-E coating is provided on an interior
surface of the monolithic glass sheet.
- 3. The window unit of embodiment 1, wherein the frame comprises an outer portion which
at least partially surrounds an insulating foam core, wherein at least part of the
foam core is located between the vacuum IG unit and the monolithic glass sheet.
- 4. The window unit of embodiment 1, wherein a substantially L-shaped channel is defined
in the frame, wherein a vertical channel portion of the substantially L-shaped channel
receives part of the vacuum IG unit.
- 5. The window unit of embodiment 4, wherein a support member is provided at a bottom
of the vertical channel portion, and a bottom of the vacuum IG unit rests on the support
member.
- 6. The window unit of embodiment 1, wherein a substantially L-shaped channel is defined
in the frame which receives part of the monolithic glass sheet.
- 7. The window unit of embodiment 1, wherein the frame has a bite (B) of from about
one to three inches.
- 8. A window unit comprising:
an insulating frame in which a vacuum IG unit and a monolithic lite are provided,
the vacuum IG unit including first and second spaced apart glass sheets that are separated
from one another via a gap that is a pressure less than atmospheric, and the monolithic
lite being spaced apart from the vacuum IG unit;
wherein the frame comprises insulating material that separates the vacuum IG unit
from the monolithic lite.
- 9. The window unit of embodiment 8, wherein along at least one of a top edge, a bottom
edge, and/or a side edge of the window unit, the outer edge of the monolithic lite
is vertically offset from the outer edge of the vacuum IG unit so that the outer edge
of the vacuum IG unit is closer to a periphery of the window unit than is the outer
edge of the monolithic lite.
- 10. The window unit of embodiment 9, wherein a low-E coating is provided on an interior
surface of the monolithic lite, and wherein the monolithic lite is provided closer
to an exterior of a building in which the window unit is located than is the vacuum
IG unit.
- 11. The window unit of embodiment 8, wherein the frame comprises an outer portion
which at least partially surrounds an insulating foam core, wherein at least part
of the foam core is located between the vacuum IG unit and the monolithic lite.
- 12. The window unit of embodiment 8, wherein a substantially L-shaped channel is defined
in the frame, wherein a vertical channel portion of the substantially L-shaped channel
receives part of the vacuum IG unit.
- 13. The window unit of embodiment 12, wherein a support member is provided at a bottom
of the vertical channel portion, and a bottom of the vacuum IG unit rests on the support
member.
- 14. The window unit of embodiment 8, wherein a substantially L-shaped channel is defined
in the frame which receives part of the monolithic lite.
1. A window unit comprising:
an insulating frame in which a vacuum IG unit and a monolithic lite are provided,
the vacuum IG unit including first and second spaced apart glass sheets that are separated
from one another via a gap that is a pressure less than atmospheric, and the monolithic
lite being spaced apart from the vacuum IG unit;
wherein the frame comprises insulating material that separates the vacuum IG unit
from the monolithic lite.
2. The window unit of claim 1, wherein along at least one of a top edge, a bottom edge,
and/or a side edge of the window unit, the outer edge of the monolithic lite is vertically
offset from the outer edge of the vacuum IG unit so that the outer edge of the vacuum
IG unit is closer to a periphery of the window unit than is the outer edge of the
monolithic lite.
3. The window unit of claim 2, wherein a low-E coating is provided on an interior surface
of the monolithic lite, and wherein the monolithic lite is provided closer to an exterior
of a building in which the window unit is located than is the vacuum IG unit.
4. The window unit of claim 1, wherein the frame comprises an outer portion which at
least partially surrounds an insulating foam core, wherein at least part of the foam
core is located between the vacuum IG unit and the monolithic lite.
5. The window unit of claim 1, wherein a substantially L-shaped channel is defined in
the frame, wherein a vertical channel portion of the substantially L- shaped channel
receives part of the vacuum IG unit.
6. The window unit of claim 5, wherein a support member is provided at a bottom of the
vertical channel portion, and a bottom of the vacuum IG unit rests on the support
member.
7. The window unit of claim 1, wherein a substantially L-shaped channel is defined in
the frame which receives part of the monolithic lite.