(11) EP 3 168 944 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

17.05.2017 Patentblatt 2017/20

(21) Anmeldenummer: 16194493.9

(22) Anmeldetag: 19.10.2016

(51) Int Cl.:

H01R 43/12 (2006.01) H01R 39/64 (2006.01) H01R 13/24 (2006.01) H01R 39/24 (2006.01) H01R 13/03 (2006.01) H01R 39/20 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

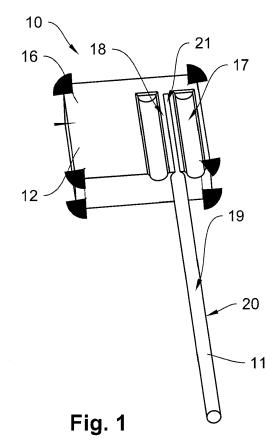
MA MD

(30) Priorität: 11.11.2015 DE 102015222200

(71) Anmelder: Schunk Gerhard Carbon Technology

GmbH

91619 Obernzenn (DE)


(72) Erfinder:

- GERHARD, Andreas 91619 Obernzenn (DE)
- WINTEROTT, Erich 91604 Flachslanden (DE)
- GRAF, Thorsten 57076 Siegen (DE)
- (74) Vertreter: advotec.

Patent- und Rechtsanwälte Georg-Schlosser-Straße 6 35390 Gießen (DE)

(54) **SCHLEIFKONTAKT**

(57) Die Erfindung betrifft einen Schleifkontakt (10), insbesondere Mikroschleifkontakt zur elektrisch leitenden Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, wobei der Schleifkontakt einen Federdraht (11) aufweist, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist, wobei der Schleifkontakt ein Kontaktstück (12) aufweist, das zur Kontaktierung der Schleifbahn dient, wobei das Kontaktstück mit einem freien Ende des Federdrahts verbunden ist, derart, dass der Federdraht das Kontaktstück zur Anlage an einer Schleifbahn haltert, wobei das Kontaktstück einstückig ausgebildet und formschlüssig und/oder kraftschlüssig mit dem Federdraht verbunden ist.

EP 3 168 944 A1

30

Beschreibung

[0001] Die Erfindung betrifft einen Schleifkontakt, insbesondere Mikroschleifkontakt zur elektrisch leitenden Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, wobei der Schleifkontakt einen Federdraht aufweist, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist.

[0002] Sogenannte Mikroschleifkontakte werden regelmäßig durch Federdrähte ausgebildet, die vergoldet sind und in unmittelbarem Kontakt mit einer Schleifbahn stehen. Die Schleifbahn kann ebenfalls vergoldet sein, so dass eine verlässliche elektrische Kontaktierung möglich ist. Die Schleifbahn kann stabförmig, rund, beispielsweise als ein Schleifring ausgebildet sein, oder eine andere beliebige geometrische Form oder Erstreckung aufweisen, die mittels eines Schleifkontakts prinzipiell kontaktierbar ist. Wesentlich ist, dass eine Relativbewegung von Schleifbahn und Schleifkontakt erfolgen kann. Insbesondere bei mit Gold beschichteten Federdrähten ist unter einer galvanisch aufgebrachten Goldschicht eine andere metallische Beschichtung galvanisch aufgebracht, beispielsweise Nickel. Durch eine Relativbewegung des unmittelbar auf der Schleifbahn aufliegenden Federdrahts auf der Schleifbahn erfolgt ein Abrieb der Goldschicht, der in Abhängigkeit einer Bewegungsintensität zu einem mehr oder weniger starken Verschleiß der Goldschicht führt. Wenn die Goldschicht abgenutzt bzw. verschlissen ist, wird die darunter liegende metallische Schicht freigelegt, die dann in unmittelbarem Kontakt mit der Schleifbahn steht. Hieraus ergeben sich jedoch ein schlechterer Leitwert einer so ausgebildeten Schleifkontaktverbindung und eine verminderte Korrosionsbeständigkeit. Ein durch den Verschleiß erhöhter Übergangswiderstand kann zu schlechterer Stromübertragung, falschen Messwerten oder Signalen sowie Kontaktunterbrechungen führen. Es wäre daher erforderlich, derart verschlissene Schleifkontakte zu ersetzen. Mikroschleifkontakte sind jedoch häufig derart in Geräten oder Anwendungen verbaut, dass ein Austausch nicht ohne Weiteres möglich ist. Auch ist ein Verschleiß eines Mikroschleifkontakts nicht augenfällig, d. h. es wird nicht bemerkt, dass ein Mikroschleifkontakt durch Abrieb seiner Goldschicht verschlissen ist, da weiterhin eine wenn auch mangelhafte Stromübertragung erfolgt.

[0003] Es ist daher Aufgabe der Erfindung, einen Schleifkontakt, eine Schleifkontaktanordnung sowie ein Verfahren zur Herstellung eines Schleifkontakts vorzuschlagen, der bzw. die eine verlässliche Kontaktierung ermöglicht.

[0004] Die Aufgabe wird durch einen Schleifkontakt mit den Merkmalen des Anspruchs 1, eine Schleifkontaktanordnung mit den Merkmalen des Anspruchs 16 und ein Verfahren zur Herstellung eines Schleifkontakts mit den Merkmalen des Anspruchs 17 gelöst.

[0005] Der erfindungsgemäße Schleifkontakt, insbesondere Mikroschleifkontakt zur elektrisch leitenden

Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, weist einen Federdraht auf, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist, wobei der Schleifkontakt ein Kontaktstück aufweist, dass zur Kontaktierung der Schleifbahn dient, wobei das Kontaktstück mit einem freien Ende des Federdrahts verbunden ist, derart, dass der Federdraht das Kontaktstück zur Anlage an einer Schleifbahn haltert, wobei das Kontaktstück einstückig ausgebildet und formschlüssig und/oder kraftschlüssig mit dem Federdraht verbunden ist.

[0006] Dadurch, dass nicht alleine der Federdraht des Schleifkontakts mit der Schleifbahn kontaktierbar ist, kann auch kein Abrieb an dem Federdraht erfolgen. Vielmehr ist das Kontaktstück des Schleifkontakts mit der Schleifbahn kontaktierbar, wobei das Kontaktstück leicht so ausgebildet werden kann, dass es während einer Lebensdauer der Schleifbahn oder eines Gerätes, in dem der Schleifkontakt verbaut ist, weniger verschleißt. Der Federdraht dient dann lediglich zur Übertragung elektrischer Energie auf das Kontaktstück und zur Ausbildung einer Federkraft, mit der das Kontaktstück gegen die Schleifbahn gedrückt werden kann. Der Federdraht muss daher auch nicht mehr zwangsläufig mit Gold beschichtet sein, so dass der Schleifkontakt auch besonders kostengünstig ausbildbar wird. Weiter ist das Kontaktstück mit dem der Schleifbahn zugewandten freien Ende des Federdrahts verbunden. Unter einem freien Ende kann hier auch ein Abschnitt des Federdrahts verstanden werden. Durch die unmittelbare Verbindung von Kontaktstück und Federdraht haltert der Federdraht das Kontaktstück, ohne dass das Kontaktstück in einer weiteren Halterung oder Führung aufgenommen werden müsste. Wesentlich für eine kostengünstige Herstellung des Schleifkontakts sind auch die einstückige Ausbildung des Kontaktstücks und dessen unmittelbare, formschlüssige und/oder kraftschlüssige und elektrisch leitende Verbindung mit dem Federdraht.

[0007] Das sich verbrauchende Kontaktstück kann eine Kontaktfläche zur Anlage an einer Schleifbahn ausbilden. Das Kontaktstück kann so ausgebildet sein, dass es durch einen abrasiven Abtrag aufgezehrt wird, wobei das Kontaktstück eine ausreichende Menge an Material für einen abrasiven Abtrag bereitstellen kann, so dass eine Standzeit des Schleifkontaktes wesentlich erhöht wird und der Schleifkontakt während einer gesamten Nutzungszeit eines Gerätes weniger häufig oder nicht ausgewechselt werden muss. Weiter kann an dem Kontaktstück auch die Kontaktfläche ausgebildet sein, die zu einer Anlage an einer Schleifbahn ausgebildet ist. Wenn es sich bei der Schleifbahn um einen Schleifring handelt, bzw. die Schleifbahn von dem Schleifring ausgebildet ist, kann die Kontaktfläche auch an eine Oberflächenkontur des Schleifrings angepasst sein.

[0008] Das Kontaktstück wird besonders einfach herstellbar, wenn der Federdraht mit seinem Ende in eine in dem Kontaktstück ausgebildete Nut eingelegt und mit

dem Kontaktstück verpresst ist. So können zunächst der Federdraht und das Kontaktstück unabhängig voneinander hergestellt werden, wobei in dem Kontaktstück dann eine Nut ausgebildet ist, die an eine Geometrie bzw. einen Durchmesser des Federdrahts angepasst ist, so dass der Federdraht in die Nut eingelegt werden kann. [0009] Nachfolgend kann vorgesehen sein, das Kontaktstück plastisch zu verformen, beispielsweise durch einen Stempel, der das Material des Kontaktstücks im Bereich der Nut verdichtet und den Federdraht in der Nut aufnimmt bzw. das Kontaktstück formschlüssig und/oder kraftschlüssig mit dem Federdraht verbindet. Der Stempel kann beispielsweise eine halbrund ausgebildete Stempelfläche aufweisen, so dass ein den Federdraht umgebender Wulst bei dem Verformen ausgebildet wird. Alternativ kann der Stempel auch eine glatte bzw. ebene Stempelfläche aufweisen, so dass das Kontaktstück im Bereich der Nut eben bzw. gerade verformt wird. Gegenüber beispielsweise einem Einbringen einer Bohrung in das Kontaktstück zur Aufnahme des Federdrahts ist die Ausbildung der Nut dies ein wesentlich einfacheres fertigungstechnisches Verfahren zur Herstellung der Verbindung von Kontaktstück und Federdraht.

[0010] So kann durch das Verpressen das Kontaktstück plastisch verformt sein. Wenn das Verpressen mit einem Stempel erfolgt, wird das Material des Kontaktstücks in einem Bereich der Nut bzw. in einem die Nut umgebenden Bereich verdrängt und fließt in Richtung des Federdrahts, so dass der Federdraht im Wesentlichen in der Nut von dem Material des Kontaktstücks eingebettet ist.

[0011] Optional kann auch durch das Verpressen der Federdraht an seinem freien Ende plastisch verformt sein. Wenn der Federdraht beispielsweise eine runde Querschnittsform aufweist kann durch das Verpressen diese Querschnittsform, beispielsweise oval verformt werden. Somit kann durch das Verpressen nicht nur eine kraftschlüssige Verbindung mit dem Federdraht sondern auch eine formschlüssige Verbindung ausgebildet werden. Auch kann der Federdraht an seinem Ende quer zu seiner Längserstreckung mit einem davon abweichenden Winkel oder Bogen durch das Verpressen verformt werden, so dass der Federdraht auch nicht mehr aus der Nut herausgezogen werden kann. Prinzipiell ist es jedoch auch möglich den Federdraht bereits vor dem Verpressen an seinem Ende zu Verformen, um so eine formschlüssige Verbindung von Kontaktstück und Federdraht zu erhalten.

[0012] Vorteilhaft kann das Material des Kontaktstücks das Ende des Federdrahts überwiegend oder vollständig umgeben. In Abhängigkeit einer Tiefe der Nut oder einer durch das Verpressen verdrängten Menge an Material des Kontaktstücks kann dieses Material das Ende des Federdrahts zumindest soweit umgeben, dass der Federdraht bezogen auf seinen Querschnitt formschlüssig mit dem Kontaktstück verbunden ist. Wenn das Material des Kontaktstücks den Federdraht bezogen auf seinen Querschnitt umgibt, ist das Ende des Federdrahts voll-

ständig in dem Kontaktstück aufgenommen.

[0013] Das Kontaktstück kann auch mit dem Federdraht stoffschlüssig verbunden sein, vorzugsweise mittels Kleben, Schweißen oder Löten. Durch die stoffschlüssige Verbindung des Kontaktstücks mit dem Federdraht kann eine Verbindung von Federdraht und Kontaktstück gesichert werden. Dadurch kann verhindert werden, dass sich das Kontaktstück von dem Federdraht im Laufe seiner Nutzungsdauer löst oder sich gegebenenfalls relativ zum Federdraht verdreht. Beispielsweise kann in die Nut vor einem Verpressen ein Klebermaterial eingefüllt werden. Auch ist es möglich, nach einem Verpressen eine Sicherung mittels Klebermaterial, durch Schweißen oder Löten auszubilden.

[0014] Je nach den Anforderungen an die Schleifkontaktanordnung kann der Schleifkontakt auch eine Mehrzahl von Federdrähten aufweisen. So können an dem Kontaktstück auch zwei oder mehr beispielsweise parallel relativ zueinander angeordnete Federdrähte befestigt sein. Die Federdrähte können jeweils auf die gleiche Art und Weise oder auch unterschiedlich an dem Schleifkontakt befestigt sein. Gegebenenfalls können die Federdrähte jeweils eine unterschiedliche Gestalt aufweisen.

[0015] Besonders vorteilhaft ist es, wenn das Kontaktstück gesintert ist, und wenn ein Vorprodukt des Kontaktstücks durch Pressen eines Pulvergemisches ausgebildet ist. Eine Materialzusammensetzung des Kontaktstücks kann dann durch die Pulvermischung einfach bestimmt werden. Zunächst kann dann das Vorprodukt bzw. ein Grünkörper durch Pressen geformt werden, wobei dann bereits bei der Ausbildung des Vorprodukts beispielsweise eine Nut zum Einlegen des Federdrahts durch die Gestalt einer Pressform besonders einfach ausgebildet werden kann. Das Vorprodukt bzw. der Grünkörper kann nachfolgend durch Hochtemperaturbehandlung gesintert werden. Das gesinterte Kontaktstück weist dann auch besonders vorteilhafte Eigenschaften, die Kontaktierung der Schleifbahn betreffend, auf.

[0016] Das Kontaktstück kann Kohlenstoff und Metall aufweisen, wobei ein Metallanteil mindestens 80, bevorzugt mindestens 90, besonders bevorzugt mindestens 97 bis zu 99 Gew.-% betragen kann. Das Kontaktstück kann daher auch aus einem Pulvergemisch von Kohlenstoff und Metall hergestellt werden. Wenn der Anteil von Metall besonders hoch ist, lässt sich das Kontaktstück auch gut verformen und mit dem Federdraht verbinden. Gleichzeitig kann der Kohlenstoff eine gute Schmierung des Kontaktstücks bei einer Bewegung auf einer Schleifbahn bewirken. Der Kohlenstoff kann vorzugsweise Graphit sein.

[0017] Das Metall kann Kupfer, Silber, versilbertes Kupfer, Gold sowie eine Mischung oder eine Legierung eines dieser Metalle sein. Insbesondere eine Mischung kann einfach ausgebildet werden, wenn die Metalle in Pulverform vorliegen.

[0018] Weiter kann der Federdraht frei von Gold sein. Da der Federdraht nicht mehr unmittelbar mit der Schleif-

40

45

bahn kontaktiert ist, muss eine Oberfläche des Federdrahts nicht mehr zwangsläufig vor Korrosion geschützt werden bzw. vorteilhafte elektrische Eigenschaften aufweisen. Es kann daher auf eine galvanische Beschichtung mit Gold und weiteren Schichten von Metallen, wie beispielsweise Nickel, verzichtet werden. So können erhebliche Kosteneinsparungen bei der Herstellung des Schleifkontakts erzielt werden.

[0019] Ein Querschnitt des Federdrahts kann eine Dicke von 0,1 bis 0,8 mm aufweisen. Unter der Dicke des Querschnitts wird eine maximale Erstreckung des Querschnitts des Federdrahts verstanden. Sofern der Federdraht rund ist, handelt es sich bei der Dicke um einen Durchmesser des Federdrahts. Dadurch, dass vergleichsweise dünne Federdrähte zur Herstellung eines Schleifkontakts verwendet werden, kann der Schleifkontakt besonders klein ausgebildet werden.

[0020] Gleiches betrifft das Kontaktstück, bei dem ein Querschnitt eine Dicke aufweisen kann, die 0,1 bis 0,5 mm größer ist als eine Dicke des Federdrahts. Unter der Dicke des Kontaktstücks wird die kleinste Erstreckung des Kontaktstücks relativ bezogen auf seinen Querschnitt verstanden. Das Kontaktstück kann beispielsweise in Form einer Platte mit einem rechteckigen oder quadratischen Querschnitt ausgebildet sein. Der maßgebliche Querschnitt des Kontaktstücks liegt vorzugsweise in einer Ebene mit dem Querschnitt des Federdrahts. Da dann der Querschnitt des Kontaktstücks stets größer ist als die Dicke bzw. ein Querschnitt des Federdrahts, kann der Federdraht immer in dem Kontaktstück formschlüssig und/oder kraftschlüssig eingebettet sein. Darüber hinaus wird es möglich, das Kontaktstück besonders flach auszubilden, so dass keine konstruktive Veränderung einer Vorrichtung oder eines Geräts durch den Einsatz des Schleifkontakts mit dem Kontaktstück erforderlich ist, da das Kontaktstück nicht wesentlich dicker ist als der Federdraht.

[0021] An dem Ende des Federdrahts kann eine Verbindungszone ausgebildet sein, wobei die Verbindungszone umgeformt, aufgeraut oder beschichtet sein kann. Wenn die Verbindungszone umgeformt ist, d. h. der Federdraht an dem Ende nicht gerade verlaufend ausgebildet ist, kann besonders einfach eine formschlüssige Verbindung von Federdraht und Kontaktstück hergestellt werden. Auch wenn das Ende des Federdrahts aufgeraut ist kann Material des Kontaktstücks, beispielsweise bei einem Verpressen, in eine aufgeraute Oberfläche des Federdrahts eindringen und eine besonders innige Verbindung mit dem Federdraht herstellen.

[0022] Die erfindungsgemäße Schleifkontaktanordnung umfasst eine Schleifbahn oder einen Schleifring, einen Schleifkontakthalter und einen erfindungsgemäßen Schleifkontakt, wobei ein dem Schleifring abgewandtes Ende des Federdrahts mit dem Schleifkontakthalter verbunden ist, und wobei das Kontaktstück mit dem Schleifring kontaktiert ist. Vorteilhafte Ausführungsformen der Schleifkontaktanordnung ergeben sich aus den auf den Vorrichtungsanspruch 1 rückbezogenen Un-

teransprüchen.

[0023] Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Schleifkontakts, insbesondere Mikroschleifkontakt zur elektrisch leitenden Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, weist der Schleifkontakt einen Federdraht auf, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist, wobei der Schleifkontakt ein Kontaktstück aufweist, dass zur Kontaktierung der Schleifbahn dient, wobei das Kontaktstück mit einem freien Ende des Federdrahts verbunden wird, derart, dass der Federdraht das Kontaktstück zur Anlage an einer Schleifbahn haltert, wobei das Kontaktstück einstückig ausgebildet und formschlüssig und/oder kraftschlüssig mit dem Federdraht verbunden wird. Vorteilhafte Ausführungsformen der Verfahrens ergeben sich aus den auf den Vorrichtungsanspruch 1 rückbezogenen Unteransprüchen.

[0024] Nachfolgend wird die Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. [0025] Es zeigen:

- Fig. 1 eine perspektivische Darstellung eines Schleifkontakts;
- Fig. 2 eine Vorderansicht des Schleifkontakts;
- Fig. 3 eine Draufsicht des Schleifkontakts.

Eine Zusammenschau der Fig. 1 bis 3 zeigt ei-[0026] nen Schleifkontakt 10, der zur Kontaktierung einer hier nicht dargestellten Schleifbahn bzw. eines Schleifrings ausgebildet ist. Der Schleifkontakt 10 ist aus einem elektrisch leitendem Federdraht 11 und einem Kontaktstück 12 ausgebildet. Das Kontaktstück 12 ist einstückig ausgebildet, und weist eine Kontaktfläche 13 auf, die mit einer Schleifbahn in Kontakt bringbar ist. Ein dem Kontaktstück 12 abgewandtes Ende 14 des Federdrahts 11 kann an einem hier nicht näher dargestellten Halter befestigt werden, so dass das Kontaktstück 12 unter Vorspannung mit einer Federkraft des Federdrahts 11 gegen die Schleifbahn gedrückt werden kann. Ein freies Ende 15 des Federdrahts 11 ist mit dem Kontaktstück 12 fest verbunden. Dazu wird zunächst bei der Herstellung des Kontaktstücks 12 durch Sintern aus einem Pulvergemisch aus Kohlenstoff und Metall, mit einem überwiegenden Metallanteil, ein Grünkörper gepresst, der eine Nut aufweist, in die der Federdraht 11 eingelegt werden kann. Nach dem Sintern des Grünkörpers wird das Kontaktstück 12 erhalten, wobei dann in die Nut der Federdraht 11 mit dem Ende 15 eingelegt wird. Mittels eines hier nicht näher dargestellten Stempels wird das Kontaktstück 12 und der Federdraht 11 verpresst. Das heißt, der Stempel dringt in eine Oberfläche 16 des Kontaktstücks 12 ein und formt bzw. verdrängt durch bloßes Einpressen des Stempels das Material des Kontaktstücks 12 so weit um, dass das Ende 15 des Federdrahts von Material des Kontaktstücks 12 umschlossen bzw. umge-

20

25

35

40

ben ist. Durch das Eindringen des Stempels in die Oberfläche 16 werden zwei parallele Nuten 17 in dem Kontaktstück 12 ausgebildet und jeweils Wülste 18 mit dem so verdrängten Material des Kontaktstücks 12 geformt, die eine Oberseite 19 des Endes 15 weitestgehend abdecken. Optional kann der Stempel auch eine glatte bzw. ebene Stempelfläche aufweisen, so dass eine hier nicht abgebildete, ebene Oberfläche eines Kontaktstücks erhalten wird. Durch die Verformung mit dem Stempel entsteht eine kraftschlüssige Verbindung zwischen dem Ende 15 und dem Kontaktstück 12. Auch kommt es zu einer nicht näher dargestellten Verformung des Federdrahts 11 bzw. des Endes 15, so dass auch eine formschlüssige Verbindung zwischen dem Federdraht 11 und dem Kontaktstück 12 ausgebildet wird. Ein Umfang 20 des Endes 15 wird im Wesentlichen von dem Material des Kontaktstücks 12 umgeben, wobei lediglich ein Spalt 21 verbleibt, an dem das Ende 15 nicht mit dem Material des Kontaktstücks 12 abgedeckt ist.

Patentansprüche

Schleifkontakt (10), insbesondere Mikroschleifkontakt zur elektrisch leitenden Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, wobei der Schleifkontakt einen Federdraht (11) aufweist, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist,

dadurch gekennzeichnet,

dass der Schleifkontakt ein Kontaktstück (12) aufweist, das zur Kontaktierung der Schleifbahn dient, wobei das Kontaktstück mit einem freien Ende (15) des Federdrahts verbunden ist, derart, dass der Federdraht das Kontaktstück zur Anlage an einer Schleifbahn haltert, wobei das Kontaktstück einstückig ausgebildet und formschlüssig und/oder kraftschlüssig mit dem Federdraht verbunden ist.

2. Schleifkontakt nach Anspruch 1,

dadurch gekennzeichnet,

dass das sich verbrauchende Kontaktstück (12) eine Kontaktfläche (13) zur Anlage an einer Schleifbahn ausbildet.

3. Schleifkontakt nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass der Federdraht (11) mit seinem Ende (15) in eine in dem Kontaktstück (12) ausgebildete Nut eingelegt und mit dem Kontaktstück verpresst ist.

4. Schleifkontakt nach Anspruch 3,

dadurch gekennzeichnet,

dass durch das Verpressen das Kontaktstück (12) plastisch verformt ist.

5. Schleifkontakt nach Anspruch 3 oder 4,

dadurch gekennzeichnet,

dass durch das Verpressen der Federdraht (11) an seinem Ende (15) plastisch verformt ist.

 Schleifkontakt nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet,

dass das Material des Kontaktstücks (12) das Ende (15) des Federdrahts (11) überwiegend oder vollständig umgibt.

7. Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass das Kontaktstück (12) mit dem Federdraht (11) stoffschlüssig verbunden ist, vorzugsweise mittels Kleben, Schweißen oder Löten.

Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass der Schleifkontakt (10) eine Mehrzahl von Federdrähten (11) aufweist.

Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass das Kontaktstück (12) gesintert ist, und dass ein Vorprodukt des Kontaktstücks durch Pressen eines Pulvergemisches ausgebildet ist.

Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass das Kontaktstück (12) Kohlenstoff und Metall aufweist, wobei ein Metallanteil mindestens 80, bevorzugt mindestens 90, besonders bevorzugt mindestens 97 bis zu 99 Gewichts-% beträgt.

11. Schleifkontakt nach Anspruch 10,

dadurch gekennzeichnet,

dass das Metall Kupfer, Silber, versilbertes Kupfer, Gold, eine Mischung oder eine Legierung eines dieser Metalle ist.

45 **12.** Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass der Federdraht (11) frei von Gold ist.

13. Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass ein Querschnitt des Federdrahts (11) eine Dicke von 0,1 bis 0,8 mm aufweist.

14. Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass ein Querschnitt des Kontaktstücks (12) eine Dicke aufweist, die 0,1 bis 0,5 mm größer ist als eine Dicke des Federdrahts.

15. Schleifkontakt nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

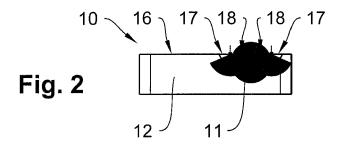
dass an dem Ende (15) des Federdrahts (11) eine Verbindungszone ausgebildet ist, wobei die Verbindungszone umgeformt, aufgeraut oder beschichtet ist.

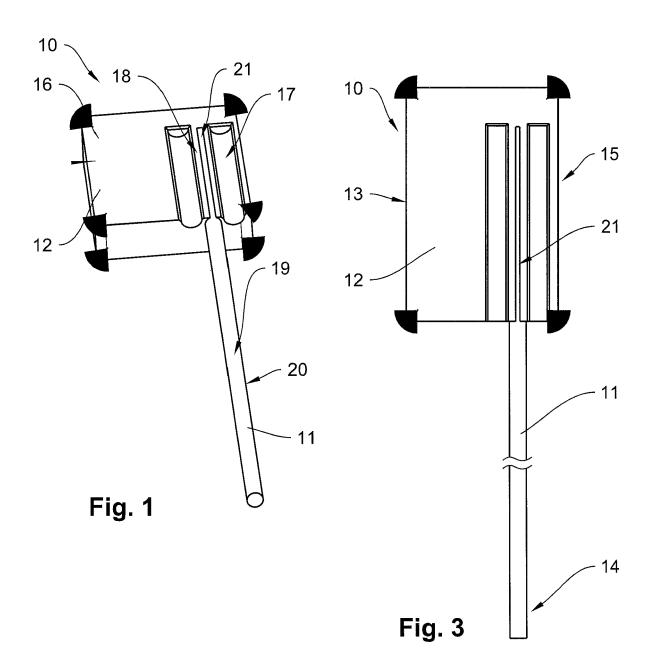
16. Schleifkontaktanordnung, umfassend eine Schleifbahn oder einen Schleifring, einen Schleifkontakthalter und einen Schleifkontakt (10) nach einem der vorangehenden Ansprüche, wobei ein dem Schleifring abgewandtes Ende (14) des Federdrahts (11) mit dem Schleifkontakthalter verbunden ist, und wobei das Kontaktstück (12) mit dem Schleifring kontaktiert ist.

17. Verfahren zur Herstellung eines Schleifkontakts (10), insbesondere Mikroschleifkontakt zur elektrisch leitenden Kontaktierung einer Schleifbahn, eines Schleifrings oder dergleichen, wobei der Schleifkontakt einen Federdraht (11) aufweist, der als elektrischer Leiter dient, wobei mittels des Federdrahts eine Kontaktkraft des Schleifkontakts auf die Schleifbahn ausbildbar ist,

dadurch gekennzeichnet,

dass der Schleifkontakt ein Kontaktstück (12) aufweist, das zur Kontaktierung der Schleifbahn dient, wobei das Kontaktstück mit einem freien Ende (15) des Federdrahts verbunden wird, derart, dass der Federdraht das Kontaktstück zur Anlage an einer Schleifbahn haltert, wobei das Kontaktstück einstückig ausgebildet und formschlüssig und/oder kraftschlüssig mit dem Federdraht verbunden wird.


40


30

20

45

50

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 16 19 4493

	EINSCHLÄGIGI	DOKUMENTE						
Kategorie	Kennzeichnung des Dokur der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)				
X Y	US 5 315 758 A (ALF 31. Mai 1994 (1994- * Abbildungen 1-3, * Spalte 1, Zeile 1 * Spalte 3, Zeile 1 * Spalte 3, Zeile 5	1,2,7,8 10-17 3-6,9	INV. H01R43/12 H01R39/24 H01R39/64 H01R13/03 H01R13/24 H01R39/20					
Y	10. März 1965 (1965 * Abbildungen 1-2	B 985 597 A (LUCAS INDUSTRIES LTD) 9. März 1965 (1965-03-10) Abbildungen 1-2 * Spalte 1, Zeile 9 - Zeile 21 *						
Υ	EP 1 329 993 A2 (CA 23. Juli 2003 (2003 * Anspruch 1 *	RECHERCHIERTE SACHGEBIETE (IPC)						
X	W0 2015/136046 A1 (17. September 2015 * Abbildungen 1, 2, * Seite 18, Zeile 2 * Seite 23, Zeile 2							
Х	EP 1 607 987 A1 (W 21. Dezember 2005 (* Absatz [0008] * * Abbildungen 1-6	(2005-12-21)	1,2,8, 16,17					
Α	GMBH) 28. Mai 2003 * Absatz [0016] - A * Abbildungen 1, 2,	Absatz [0017] * . 4, 6 *	1-17					
Der vo	•	rde für alle Patentansprüche erstellt	<u> </u>	Profes				
	Recherchenort	Abschlußdatum der Recherche 20. März 2017	м.	Prüfer				
X : von Y : von	Den Haag ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kate,	JMENTE T : der Erfindung zu E : älteres Patentdc tet nach dem Anme ı mit einer D : in der Anmeldur	grunde liegende okument, das jed Idedatum veröffe ng angeführtes D	fentlicht worden ist Dokument				
A : tech O : nich	nologischer Hintergrund tschriftliche Offenbarung schenliteratur		-	ie, übereinstimmendes				

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 16 19 4493

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-03-2017

	Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
	US	5315758	A	31-05-1994	JP JP US	3034011 H04167383 5315758	Α	17-04-2000 15-06-1992 31-05-1994
	GB	985597	Α	10-03-1965	KE	NE		
	EP	1329993	A2	23-07-2003	AT DE EP JP JP US US	382969 10201923 1329993 4073319 2003272795 2003135993 2009029184	A1 A2 B2 A A1	15-01-2008 07-08-2003 23-07-2003 09-04-2008 26-09-2003 24-07-2003 29-01-2009
	WO	2015136046	A1	17-09-2015	DE EP WO	202014101130 3117493 2015136046	A1	16-06-2015 18-01-2017 17-09-2015
	EP	1607987	A1	21-12-2005	DE EP JP US	102004028838 1607987 2006004938 2005282446	A1 A	26-01-2006 21-12-2005 05-01-2006 22-12-2005
	EP	1315255	A2	28-05-2003	DE EP ES US	10157320 1315255 2257499 6881105	A2 T3	12-06-2003 28-05-2003 01-08-2006 19-04-2005
EPO FORM P0461								

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82