BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to an isostatic breaking strength tester and an isostatic
breaking strength test method. To be more specific, the invention relates to an isostatic
breaking strength tester and an isostatic breaking strength test method that pressurize
a part of a ceramic honeycomb structure up to pressure test strength and enable a
total inspection of isostatic breaking strength in a process of manufacturing the
ceramic honeycomb structure.
Description of the Related Art
[0002] Conventionally, measurement has been performed regarding isostatic breaking strength
(hereinafter, referred to simply as the "breaking strength") which indicates strength
against isotropic external pressure of a ceramic honeycomb structure (hereinafter,
referred to simply as the "honeycomb structure") which includes partition walls defining
a plurality of cells extending from one end face and the other end face and a circumferential
wall provided around the partition walls. The breaking strength is measured to guarantee
whether the honeycomb structure has sufficient strength for practical use when it
is used in various applications such as a filter member and a heat exchange member,
and the breaking strength is employed as one of quality determination criteria to
ship the honeycomb structure as a product with breaking strength (a pressure test
strength or a guarantee strength) equal to or greater than a reference value.
[0003] The breaking strength of the honeycomb structure is measured mainly on the basis
of a breaking strength test method stipulated in car standard (JASO M505-87) issued
by the Society of Automotive Engineers of Japan. The breaking strength test method
is described in detail. A honeycomb structure is clamped with aluminum plates to cover
the both end faces, and further wrapped with elastic material such as rubber around
a circumferential wall. The honeycomb structure is then submerged and set in a pressure
container (a submersion isostatic breaking strength tester) filled with water, and
subject to isotropic pressure as water pressure inside the container gradually increases.
As the water pressure inside the container gradually increases, the pressure is applied
from the periphery of the submerged honeycomb structure, and eventually, a breakage
occurs on the partition wall or the circumferential wall of the honeycomb structure.
A value of pressure at which the breakage occurs (breaking strength) is measured.
[0004] In the above-described breaking strength test method, the preparation before setting
the honeycomb structure inside the pressure container is complicated, and those operations
take a lot of time in some cases. In addition, since the honeycomb structure is submerged
inside the container and is subjected to the pressurization until it breaks, it is
difficult for the honeycomb structure used for the measurement to be shipped as a
product. Thus, inspections are usually carried out by visually observing the external
appearance of the honeycomb structure and the above-described breaking strength test
is carried out if it is necessary. Therefore, it is difficult to perform a total inspection
of the breaking strength in the process of manufacturing the honeycomb structure.
[0005] Meanwhile, the inventors of the present application or the like have been already
proposed a compression tester in which a honeycomb structure is pressurized up to
predetermined pressure test strength, maintained at the pressure test strength for
a certain period of time, and then inspected whether a breakage occurs on a partition
wall or a circumferential wall of the honeycomb structure. Accordingly, it is unnecessary
to pressurize the honeycomb structure until it breaks, and thus it is possible to
perform a total inspection of the breaking strength in a process of manufacturing
the honeycomb structure.
[0006] Examples of the above-described compression tester have been proposed such as a tester
having a configuration in which "a compression test of a measurement sample is performed
by arranging an elastic sleeve around an outer circumferential surface of a ceramic
measurement sample (corresponding to the honeycomb structure), installing the sample
inside a tubular container with an elastic sheet interposed between the elastic sleeve
and the tubular container, and injecting a hydrostatic-pressure pressurization medium
between the tubular container and the elastic sheet to pressurize" (see Patent Document
1). Another tester have been proposed in which a configuration of "using rubbery material
such that an elastic sheet has a thickness of equal to or less than 5 mm and a hardness
of 30 to 50 degree" is further added to the compression tester of Patent Document
1 (see Patent Document 2).
[0007] Further, a "strength inspection method and a strength inspection device of a honeycomb
structure", which are capable of easily and suitably inspecting whether the honeycomb
structure satisfies a predetermined guarantee strength, have been proposed (see Patent
Document 3). According to the strength inspection method and the strength inspection
device, there are two or more peaks of inspection pressure distribution in an axial
direction on an outer surface of a skin layer of the honeycomb structure, and inspection
pressure is loaded on the honeycomb structure such that each inspection capability
of valley portions of the peaks becomes equal to or greater than a guarantee strength
(guarantee pressure). Patent document 4 describes an isostatic test system for testing
honeycomb structures using a pressurised fluid. The system further comprises a rigid
container, a pressure-expansible fluid impermeable means for receiving the pressurized
fluid and adapted for insertion within said container to encompass or surround the
structure for isostatic testing therein, and fluid pressure measuring means communicating
with said pressure-expansible fluid impermeable means for measuring fluid pressure
therein.
[0008] The compression tester, the strength inspection device, and the like described above
can keep the pressurization up to a predetermined pressure test strength (guarantee
strength), and thus, it is possible to perform the total inspection of the honeycomb
structure in any case. Further, it is unnecessary to submerge the honeycomb structure
inside the container of the pressure container as in the related art, thus it is possible
to simplify the preparation and operations before measurement.
SUMMARY OF THE INVENTION
[0010] However, there are problems listed as follows in the measurement of the breaking
strength of the honeycomb structure using the above-described compression tester.
That is, the compression tester described in Patent Document 1 or 2 has the structure
in which the honeycomb structure is pressurized by pressing the elastic sleeve against
the entire circumference of the circumferential wall of the honeycomb structure with
an elastic sheet interposed therebetween. Thus, it is necessary to apply uniform pressure
to the entire outer circumferential surface of the honeycomb structure, and measurement
time for one honeycomb structure tends to still increase.
[0011] In addition, time is also required for conveying the honeycomb structure to a predetermined
position of the compression tester and moving the honeycomb structure from a measurement
position after completion of the measurement. As a result, it takes about 10 seconds
for the above-described cycle to measure the breaking strength of one honeycomb structure.
Thus in a total inspection, the measurement process of the pressure test strength
becomes a bottleneck causing retention or the like of a lot of the honeycomb structures
waiting for measurement, results in a possibility of decreasing the production efficiency
of the honeycomb structure.
[0012] Further, in the above-described compression tester or the conventional breaking strength
test method according to the car standard, the breakage of the honeycomb structure
is often detected based on detection of breaking sound generated when the partition
wall is broken or detection of pressure change (pressure drop) during the pressurization.
However, there is a risk of missing the breaking sound due to the operating sound
of the compression tester or the surrounding noise, thus prompt and accurate detection
of the partition wall breakage is difficult in many cases.
[0013] On the other hand, in the detection of pressure change, it is sufficiently possible
to detect the breakage of the honeycomb structure when a rapid pressure change is
detected. However, it is difficult to detect the breakage accurately when the breakage
of the partition wall or the like slowly progresses causing a gradual pressure change.
Thus, there has been a demand for a method which is capable of accurately detecting
the breakage of the honeycomb structure other than or together with the breakage detection
methods by the breaking sound or the pressure change.
[0014] In addition, "strength inspection method and the strength inspection device" illustrated
in Patent Document 3 require to load the inspection pressure so that a peak of the
inspection pressure distribution in the axial direction becomes two or more, which
makes the strength inspection device complicated as well as makes the inspection complicated
since the pressure in the valley portion between the peaks has to be measured.
[0015] Thus, the present invention has been made in view of the above-described circumstances,
and an object thereof is to provide an isostatic breaking strength tester and an isostatic
breaking strength test method which enable a total inspection of breaking strength
of a honeycomb structure while preventing a decrease of production efficiency of the
honeycomb structure without requiring complicated work at the time of measurement
of the breaking strength and are capable of accurately detecting a breakage in a circumferential
wall or a partition wall of the honeycomb structure generated by pressurization.
[0016] According to the present invention, there are provided an isostatic breaking strength
tester (hereinafter, referred to simply as the "breaking strength tester"), and an
isostatic breaking strength test method (hereinafter, referred to simply as the "breaking
strength test method") in which the above-described problems are solved.
[0017] The present invention provides an isostatic breaking strength tester comprising:
a tubular pressure container in which a part of a pillar-shaped ceramic honeycomb
structure including lattice-shaped partition walls to define a plurality of cells
extending from one end face to another end face and a circumferential wall is housed,
the tubular pressure container having at least a part of both ends being opened; a
tubular pressurization elastic body disposed inside the pressure container so as to
surround an entire circumference of a pressurized portion ; a partial pressurization
unit for elastically deforming the pressurization elastic body toward the circumferential
wall and applying uniform pressure to the entire circumference of the circumferential
wall of the pressurized portion of the ceramic honeycomb structure housed in the pressure
container up to a pressure test strength; and a pressure measurement unit for measuring
a value of the uniform pressure applied to the circumferential wall by the pressurization
elastic body, characterized by the tubular pressurization elastic body having a length
equal to or less than 1/2 of a length in an axial direction of the circumferential
wall of the ceramic honeycomb structure.
[0018] Preferably the breaking strength tester further comprises a breakage pressure determination
unit for detecting a pressure drop equal to or greater than a reference value of the
pressure during pressurization and determining the pressure drop as occurrence of
a breakage in the ceramic honeycomb structure.
[0019] Preferably the breaking strength tester further includes: a photographing unit for
photographing at least one broken piece of the partition wall and the circumferential
wall, the broken piece falling from the ceramic honeycomb structure when a breakage
occurs in the ceramic honeycomb structure; and an breakage image determination unit
for determining that the breakage occurs in the ceramic honeycomb structure when the
broken piece is detected from the photographed image photographed by the photographing
unit.
[0020] Preferably there is provided the breaking strength tester wherein the pressure container
is provided with a circumference support portion that supports the ceramic honeycomb
structure from below, the breaking strength tester further including: a photographing
unit for photographing the container interior space of the pressure container from
above after the ceramic honeycomb structure pressurized up to the pressure test strength
by the partial pressurization unit is conveyed from the pressure container; and a
breakage image determination unit for determining that a breakage occurs in the ceramic
honeycomb structure when at least one broken piece of the partition wall and the circumferential
wall of the ceramic honeycomb structure is detected from the photographed image photographed
by the photographing unit.
[0021] Preferably there is provided the breaking strength tester wherein the partial pressurization
unit includes a position of the circumferential wall clamped from both sides to support
by a clamping device being used to convey the ceramic honeycomb structure to the pressure
container, and a region including any one side of the one end face and the other end
face of the ceramic honeycomb structure in the pressurized portion.
[0022] Preferably there is provided the breaking strength tester wherein the pressurization
elastic body is elastically deformed using any one of water and air.
[0023] Preferably there is provided an isotatic breaking strength test method comprising:
a ceramic honeycomb structure housing process of housing a part of a pillar-shaped
ceramic honeycomb structure including lattice-shaped partition walls to define a plurality
of cells extending from one end face to another end face and a circumferential wall
in a tubular pressure container, the tubular pressure container having at least a
part of both ends being opened; a partial pressurization process of elastically deforming
a tubular pressurization elastic body disposed inside the pressure container so as
to surround an entire circumference of a pressurized portion and applying a uniform
pressure to the entire circumference of the circumferential wall of the pressurized
portion of the ceramic honeycomb structure housed in the pressure container up to
pressure test strength; and a pressure measurement process of measuring a value of
the uniform pressure applied to the circumferential wall by the pressurization elastic
body, characterized by the tubular pressurization elastic body having a length equal
to or less than 1/2 of a length in an axial direction of the circumferential wall
of the ceramic honeycomb structure.
[0024] More preferably the breaking strength test method further includes a breakage pressure
determination process of detecting a pressure drop equal to or greater than a reference
value of the pressure during pressurization and determining the pressure drop as occurrence
of a breakage in the ceramic honeycomb structure.
[0025] More preferably the breaking strength test method further includes: a photographing
process of photographing at least one broken piece of the partition wall and the circumferential
wall, the broken piece falling from the ceramic honeycomb structure when a breakage
occurs in the ceramic honeycomb structure; and a breakage image determination process
of determining that the breakage occurs in the ceramic honeycomb structure when the
broken piece is detected from the photographed image photographed in the photographing
process.
[0026] More preferably there is provided the breaking strength test method wherein the pressure
container is provided with a circumference support portion that supports the ceramic
honeycomb structure from below, the breaking strength test method further including:
a photographing process of photographing the container bottom face), that is the upper
face of the outer circumference support portion, of the container bottom portion of
the pressure container from above after the ceramic honeycomb structure pressurized
up to the pressure test strength in the partial pressurization process is conveyed
from the pressure container; and a breakage image determination process of determining
that a breakage occurs in the ceramic honeycomb structure when at least one broken
piece of the partition wall and the circumferential wall of the ceramic honeycomb
structure is detected from the photographed image photographed in the photographing
process.
[0027] Preferably the breaking strength test method further includes a ceramic honeycomb
structure inversion process of inverting upper and lower positions of the one end
face and the other end face of the ceramic honeycomb structure, wherein each value
of the pressure on the one end face side and the other end face side of the ceramic
honeycomb structure is measured.
[0028] Preferably the breaking strength test method further includes: a submersion breakage
process of introducing the ceramic honeycomb structure which is not broken at the
predetermined pressure test strength into a submersion isostatic breaking strength
tester, and applying water pressure to the ceramic honeycomb structure being completely
submerged to break the ceramic honeycomb structure; a submersion breaking strength
measurement process of measuring a value of a submersion breaking strength at a point
in time when the ceramic honeycomb structure is broken; and a target test strength
calculation process of calculating a target test strength in the partial pressurization
process based on correlation between the measured submersion breaking strength value
and a value of the pressure test strength pressurized in the partial pressurization
process.
[0029] According to the breaking strength tester and the breaking strength test method of
the present invention, it is possible to significantly reduce measurement time of
the breaking strength by applying pressure to a part of the circumferential wall of
the honeycomb structure (equal to or less than 1/2 of the length in the axial direction)
up to the pressure test strength using the pressurization elastic body. As a result,
it is possible to perform a total inspection for the breaking strength of the honeycomb
structure, and there is no risk of reducing productive efficiency of the honeycomb
structure.
[0030] Further, it is possible to detect the breakage of the honeycomb structure based on
the pressure change by detecting the pressure drop equal to or greater than the predetermined
reference value and to detect and determine the breakage of the honeycomb structure
by detecting the broken piece of the circumferential wall or the partition wall, generated
by the breakage of the honeycomb structure, based on the photographed image.
BRIEF DESCRIPTION OF THE DRAWINGS
[0031]
FIG. 1 is a perspective view schematically showing a schematic configuration of a
pressure container and a honeycomb structure as a measurement target of a breaking
strength of a breaking strength tester according to a first embodiment;
FIG. 2 is an explanatory diagram schematically showing a schematic configuration and
a functional configuration of the breaking strength tester according to the first
embodiment and an example of detection of a broken piece on the basis of a photographed
image;
FIG. 3 is an explanatory diagram schematically showing an example in which one end
face and the other end face of the honeycomb structure are vertically inverted;
FIG. 4 is an explanatory diagram schematically showing a schematic configuration of
a breaking strength tester according to a second embodiment;
FIG. 5 is an explanatory diagram schematically showing an example of detection of
a broken piece on the basis of a photographed image according to the breaking strength
tester of the second embodiment;
FIG. 6 is a graph showing relation between elapse of time from start of pressurization
and pressure which shows an example of detection of breakage of the honeycomb structure
using detection of pressure drop; and
FIG. 7 is a graph showing correlation between pressure test strength and submersion
breaking strength.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0032] Hereinafter, embodiments of a breaking strength tester (isostatic breaking strength
tester) and a breaking strength test method (isostatic breaking strength test method)
will be described with reference to the drawings. Incidentally, the breaking strength
tester and the breaking strength test method of the present invention are not particularly
limited to the following embodiments, and various types of alteration, correction
and improvement in design can be added as long as not departing from a gist of the
present invention.
(1) Breaking Strength Tester of First Embodiment:
[0033] As shown mainly in FIG. 1 to 3, a breaking strength tester 1 according to a first
embodiment of the present invention is mainly provided with: a cylindrical pressure
container 10 which is capable of housing a part of a round pillar-shaped honeycomb
structure 100 whose breaking strength is a target of measurement and has both opened
ends; a pressurization elastic body 20 disposed inside the pressure container 10 so
as to surround entire circumference of a pressurized portion 105 having a length L2
equal to or less than 1/2 of a length L1 (see FIG. 2 regarding the respective lengths)
in an axial direction of a circumferential wall 101 of the honeycomb structure 100;
a partial pressurization unit 30 which elastically deforms the pressurization elastic
body 20 toward the circumferential wall 101 of the honeycomb structure 100 and applies
uniform pressure to the pressurized portion 105 of the honeycomb structure 100 housed
in a container interior space 14 (to be described later in detail) of the pressure
container 10 over the entire circumference of the circumferential wall 101 up to a
pressure test strength; and a pressure measurement unit 40 which measures a value
of the uniform pressure applied to the circumferential wall 101 by the pressurization
elastic body 20.
[0034] Further, to be specific, the honeycomb structure 100 whose breaking strength is measured
by the breaking strength tester 1 of the first embodiment is mainly configured to
include a quadrangular lattice-shaped partition walls 104 that defines each of a plurality
of cells 103 extending from one end face 102a (corresponding to a lower side in FIG.
2) to another end face 102b (corresponding to an upper side in FIG. 2), each end face
having a circular shape, and the circumferential wall 101 provided around the partition
walls 104, and the honeycomb structure has substantially a round pillar-shaped form
and structure as a whole. Further, the above-described pressurized portion 105 is
set by a width of the length L2 equal to or less than 1/2 of the length L1 in the
axial direction of the circumferential wall 101. Incidentally, both the partition
walls 104 and the circumferential wall 101 forming the honeycomb structure 100 are
formed using a material containing ceramic as a main component. Incidentally, a cross
section of the honeycomb structure 100 is shown by hatching and details of a cell
103 and the partition walls 104 are not shown in FIG. 2 to simplify the illustration
(similarly shown in FIGS. 3 and 4).
[0035] The pressure container 10 forming the breaking strength tester 1 applies isotropic
external pressure partially to the pressurized portion 105 on the circumferential
wall 101 either on the one end face 102a side or the other end face 102b side of the
honeycomb structure 100, and the pressure container 10 is configured to include an
annular (donut-shaped) container upper portion 11 having a top open end 11a opened
upward, an annular container bottom portion 12 having substantially the same shape
as the container upper portion 11 and having a bottom open end 12a which spaced apart
from the container upper portion 11 and opened downward at a position opposing the
top open end 11a, and a cylindrical-shaped container cylindrical portion 13 connecting
respective outer peripheral edges 11b and 12b of the container upper portion 11 and
the container bottom portion 12.
[0036] Each size of an opening diameter of the top open end 11a of the container upper portion
11 and an opening diameter D2 (to be described later in detail) of the pressurization
elastic body 20 is formed to be slightly greater than a honeycomb diameter D1 (see
FIG. 3) of the circular one end face 102a (or the other end face 102b) which is perpendicular
to the axial direction (corresponding to the vertical direction in FIG. 2) of the
honeycomb structure 100. Thus, it is possible to insert the honeycomb structure 100
from the top open end 11a by moving the honeycomb structure 100 having the one end
face 102a directed downward from a top of the pressure container 10.
[0037] A part of the honeycomb structure 100 (herein, the one end face 102a side, see FIG.
2) is housed in the container interior space 14 of the inner side of the pressure
container 10 in the state of maintaining a predetermined clearance C from the opening
diameter of the top open end 11a. Incidentally, the opening diameter of the bottom
open end 12a of the container bottom portion 12 is not particularly limited, and may
be the same as the opening diameter of the top open end 11a or different from the
opening diameter of the top open end 11a.
[0038] Meanwhile, the pressurization elastic body 20 forms a cylindrical shape and is disposed
to face the container interior space 14 on the inner side of the pressure container
10 so as to connect respective inner peripheral edges 11c and 12c of the top open
end 11a and the bottom open end 12a. Thus, a top end and a bottom end of the pressurization
elastic body 20 are open. In addition, the opening diameter D2 of the cylindrical
pressurization elastic body 20 and the opening diameter of the top open end 11a of
the pressure container 10 are substantially coincide with each other in the breaking
strength tester 1 of the first embodiment.
[0039] Therefore, the predetermined clearance C is formed between the elastic body surface
21 of the pressurization elastic body 20 and the pressurized portion 105 (the circumferential
wall 101) and the respective surfaces of the elastic body surface 21 and the pressurized
portion 105 are in parallel with each other in a state in which the pressurized portion
105 of the honeycomb structure 100 is housed in the pressure container 10. The pressurization
elastic body 20 is made of a rubber material, which is elastically deformable depending
on stress, and has a hardness of 30 to 50 degree for example.
[0040] The elastic body surface 21 of the pressurization elastic body 20 is elastically
deformed by expansion to contact with the pressurized portion 105 of the honeycomb
structure 100 through uniform pressure, whereby the honeycomb structure 100 can be
pressurized. Herein, the pressurization elastic body 20 and the pressure container
10 are adhered such that the joining portion has a watertight structure. Accordingly,
the pressurization space 15, which is surrounded by the container upper portion 11,
the container bottom portion 12, and the container cylindrical portion 13 of the pressure
container 10 and the pressurization elastic body 20, is formed as a hermetically sealed
space to prevent leakage of a pressurization medium 31 (water, air or the like) from
the pressurization space 15.
[0041] Meanwhile, a partial pressurization unit 30 is configured to introduce the pressurization
medium 31 into the pressurization space 15 to expand the pressurization elastic body
20 disposed in the pressure container 10 toward a pressurization direction F which
is directed to the container interior space 14. That is, the pressurization makes
it possible to elastically deform the elastic body surface 21 of the pressurization
elastic body 20, which is positioned to be substantially coincide the inner peripheral
edges 11c and 12c of the top open end 11a and the bottom open end 12a of the pressure
container 10 in a non-pressurization state (for example, see FIG. 3), toward the container
interior space 14.
[0042] As shown in FIG. 2, the part of the honeycomb structure 100 on the one end face 102a
side is inserted into the pressure container 10 and is set in the housed state. Thus,
isotropically uniform pressure can be applied to the entire circumference of the pressurized
portion 105 by strongly pressing the elastic body surface 21 against the pressurized
portion 105 of the honeycomb structure 100 through the expansion of the pressurization
elastic body 20.
[0043] The partial pressurization unit 30 for expanding the pressurization elastic body
20 is provided with an medium introduction tube 32 communicating with the pressurization
space 15 of the pressure container 10 to introduce the pressurization medium 31 into
the pressurization space 15, a pressurization pump 33 to feed the pressurization medium
31 into the pressurization space 15 through the medium introduction tube 32 to change
the pressure of the pressurization space 15, and a pressurization control unit 34
serving as a functional configuration to control pressurization by the pressurization
pump 33.
[0044] It is possible to increase the pressure inside the pressurization space 15 to be
higher than the atmospheric pressure using the pressurization medium 31 fed to the
pressurization space 15 by controlling the pressurization pump 33 with the pressurization
control unit 34. As a result, the pressurization elastic body 20 can be expanded toward
the container interior space 14. Incidentally, the breaking strength tester 1 of the
first embodiment exemplifies that the pressurization elastic body 20 is elastically
deformed by water pressure using "water" as the pressurization medium 31. Incidentally,
in the breaking strength tester of the present invention, the pressurization medium
31 is not limited to water, and various gases such as air or liquids other than water
can be suitably used.
[0045] Meanwhile, a pressure measurement unit 40 is configured to measure a uniform pressure
value applied to the pressurized portion 105 of the honeycomb structure 100 pressurized
by the partial pressurization unit 30, and for example, may be a unit that measures
the pressure inside the pressurization space 15 by receiving a sensor signal from
a known pressure measurement sensor (not shown) installed in the pressurization space
15 or the medium introduction tube 32, or a unit that measures the pressure value
based on value measured by a pressure gauge (not shown) installed in the pressurization
pump 33 of the partial pressurization unit 30. The pressure value is measured at a
predetermined time interval (for example, an interval of 1/100 s) to be linked with
a breakage pressure determination unit 51 described later, whereby a real time measurement
of a pressure value change can be achieved. Further, the pressure values bring pressure
distribution having one peak along the axial length L1 of the honeycomb structure
100.
[0046] Further, the breaking strength tester 1 of the first embodiment is provided with
a breakage pressure determination unit 51, a photographing unit 52 and a breakage
image determination unit 53 as other configurations and functional configurations.
The breakage pressure determination unit 51 detects a pressure drop equal to or greater
than a predetermined reference value based on the pressure values measured by the
pressure measurement unit 40 during the pressurization, and when the breakage pressure
determination unit detects the pressure drop, detects a breakage of the honeycomb
structure 100 and determines that the breakage occurred. The photographing unit 52
photographs a broken piece B of at least one of the partition walls 104 and the circumferential
wall 101 falling from the honeycomb structure 100 through the bottom open end 12a
when the breakage occurs in the honeycomb structure 100 during the pressurization.
The lower side of the bottom open end 12a of the pressure container 10 is set to be
a photographing region R. The breakage image determination unit 53 analyzes an image
photographed by the photographing unit 52, and when the broken piece B is detected
in the photographed image, detects the breakage of the honeycomb structure 100 and
determines that the breakage occurred. Incidentally, each of the pressurization control
unit 34 as a part of the partial pressurization unit 30, the pressure measurement
unit 40, the breakage pressure determination unit 51, and the breakage image determination
unit 53 is stored in a test control unit 50 which is configured to perform various
types of control and analysis.
[0047] The test control unit 50 can use, for example, a function of a commercially available
personal computer, and can exhibit various functions by installing various types of
software. Meanwhile, the photographing unit 52 connected to the test control unit
50 can use, for example, a known CCD camera and the like, and is capable of capturing
a moving image with respect to the specified photographing region R when the honeycomb
structure 100 is pressurized.
[0048] Incidentally, the image photographed by the photographing unit 52 is sent to a storage
medium (not shown) such as an HDD of the test control unit 50, and can be archived
and stored. Thus a real time detection as well as a follow-up detection of the broken
piece B can be achieved based on the photographed image to verify presence or absence
of the breakage of the honeycomb structure 100.
[0049] Further, the breaking strength tester 1 of the first embodiment is controlled to
be inter-connected with a conveyance mechanism (not shown) that conveys the honeycomb
structure 100 sent from the previous step to the vicinity of the pressure container
10, sets a part of the honeycomb structure 100 to be housed in the pressure container
10 in a state in which the breaking strength thereof is measurable, and after the
measurement from the pressure container 10, takes out the honeycomb structure 100
and sends the honeycomb structure 100 to the subsequent step.
[0050] The conveyance mechanism is provided with a pair of chucks 54a and 54b that clamp
the circumferential wall 101 of the honeycomb structure 100 from both sides and can
execute various motions such as movement of the honeycomb structure 100 in the vertical
direction, the horizontal direction, and vertical inversion (to be described later
in detail), and the chunks 54a and 54b can convey the honeycomb structure 100 to a
desired position. Herein, the chucks 54a and 54b correspond to clamping devices according
to the present invention.
(2) Breaking Strength Test Method:
[0051] The breaking strength test method is implemented for the honeycomb structure 100
using the above-described breaking strength tester 1. First, the honeycomb structure
100 serving as a measurement target for the breaking strength test is housed in the
pressure container 10 using the chucks 54a and 54b (the ceramic honeycomb structure
housing process). To be specific, the vicinity of the upper side (the other end face
102b side) of the honeycomb structure 100 is clamped from both the sides of the circumferential
wall 101 by the pair of chucks 54a and 54b, and the honeycomb structure is conveyed
to above the top open end 11a of the pressure container 10 with the clamped state.
Thereafter, the one end face 102a of the honeycomb structure 100 is inserted into
the top open end 11a from above.
[0052] The opening diameter of the top open end 11a and the opening diameter D2 of the pressurization
elastic body 20 connected to the inner peripheral edge 11c of the top open end 11a
are formed to be slightly greater than the honeycomb diameter D1 of the honeycomb
structure 100. Thus, a part of the honeycomb structure 100 is promptly housed in the
container interior space 14 of the pressure container 10 by the motion of inserting
the one end face 102a of the honeycomb structure 100 into the top open end 11a. At
this time, each length of the pressure container 10 and the pressurization elastic
body 20 in the axial direction is defined such that the part housed in the pressure
container 10 (the pressurized portion 105) has the axial length L2 equal to or less
than 1/2 of the axial length L1 of the honeycomb structure 100. Accordingly, the expending
part of the pressurization elastic body 20 can be shortened compared to that of the
related art by defining the length of the pressurization elastic body 20 to be in
contact with the circumferential wall 101 of the honeycomb structure 100 within the
above-described range. As a result, the pressurization elastic body 20 allows prompt
expansion and contraction, which achieves a stable pressurization against the circumferential
wall 101, as well as a shortening of time required for pressurization.
[0053] The pressurization control unit 34 of the test control unit 50 is controlled with
the honeycomb structure in a housed state in the pressure container 10 to operate
the pressurization pump 33 and feed the pressurization medium 31 into the pressurization
space 15 of the pressure container 10. As a result, the pressurization space 15 is
filled with the pressurization medium 31 introduced through the medium introduction
tube 32, and the internal pressure gradually increases. As the internal pressure of
the pressurization space 15 becomes higher than the atmospheric pressure, the pressurization
elastic body 20, which partitions the pressurization space 15 and the container interior
space 14, elastically deforms and expands toward the container interior space 14.
The uniform pressure is partially applied to the pressurized portion 105 of the honeycomb
structure 100 having the part housed in the pressure container 10 over the entire
circumference of the pressurized portion 105 (a partial pressurization process).
[0054] At this time, the pressure toward the honeycomb structure 100 pressurized by the
pressurization pump is controlled up to predetermined pressure test strength. Further,
the time required for each step of starting the pressurization, maintaining the pressure
test strength, and restoring to the atmospheric pressure is defined in advance. The
breaking strength tester 1 of the first embodiment can significantly reduce the time
required from the start of pressurization up to the pressure test strength as compared
to that of the existing compression tester, and shorten the breaking strength measurement
time since only the length L2, which is equal to or less than 1/2 of the axial length
L1 of the honeycomb structure 100, is pressurized up to the pressure test strength.
To be more specific, the introduction amount of the pressurization medium 31 such
as water introduced into the pressurization space 15 to elastically deform the pressurization
elastic body 20 is reduced, whereby the pressurization time of the honeycomb structure
100 can be reduced. In addition, by defining the length L2 to be equal to or less
than 1/2 of the length L1 in the axial direction, it is possible to use the honeycomb
structures which have the same cross-sectional shape but only the axial lengths L1
(honeycomb length) are different. That is, it is unnecessary to replace the pressure
container 10 of the breaking strength tester 1. As a result, the breaking strength
tester 1 of the first embodiment has an advantage of reducing time which is required
for various settings to measure breaking strength of a plurality of different types
of honeycomb structures. A specific example of reduction in time of the measurement
of the breaking strength is given. The breaking strength tester 1 of the first embodiment
takes about two seconds for one-time pressurization and allows to measure breaking
strength of the two honeycomb structures 100 for about five seconds in single inspection
tact. In contrast, an existing compressor requires about 10 seconds for one-time pressurization,
thus requires 15 seconds to measure breaking strength of the two honeycomb structures
in single inspection tact.
[0055] In the partial pressurization process, a value of the pressure applied to the honeycomb
structure 100 is measured at the predetermined time interval (for example, the interval
of 1/100 s) in real time (a pressure measurement process). At this time, when a pressure
drop of the measured pressure value equal to or greater than the predetermined reference
value is detected, the breakage pressure determination unit 51 determines that a breakage
occurs in the partition wall 104 or the circumferential wall 101 of the honeycomb
structure 100 (a breakage pressure determination process). Herein, the pressure drop
equal to or greater than the reference value is set by a case where a pressure drop
equal to or greater than, for example, 100 kPa is detected per unit time or the like
(see inside the two-dot chain line circle in FIG. 6). Incidentally, when the pressure
drop is detected through the breakage pressure determination process, the pressurization
control unit 34 is controlled and the supply of the pressurization medium 31 through
the pressurization pump 33 is stopped.
[0056] The breaking strength test method of the first embodiment further includes photographing
the lower side of the pressure container 10 as the photographing region R during the
partial pressurization process (a photographing process). When the breakage occurs
in the partition wall 104 or the circumferential wall 101 corresponding to the length
L2 of the pressurized portion 105 of the honeycomb structure 100 during the pressurization,
a broken piece B falls from the honeycomb structure 100 due to a breakage and passes
through the photographing region R through the bottom open end 12a of the container
bottom portion 12 of the pressure container 10. The photographing unit can capture
the broken piece B in a photographed image. The photographed image is sent from the
photographing unit 52 to the breakage image determination unit 53 of the test control
unit 50 in real time, and analysis thereof is performed using a known image analysis
processing technique. As a result, when the broken piece B is detected in the photographed
image, it is determined that the breakage occurs in the honeycomb structure 100 (a
breakage image determination process).
[0057] That is, the breaking strength tester 1 of the first embodiment can detect the breakage
of the honeycomb structure 100 not only by the detection of the pressure change based
on the rapid pressure drop, but also by the detection of broken piece B in the photographed
image. Thus, even when it is difficult to detect the breakage of the honeycomb structure
100 only through the conventional detection of the pressure change based on the pressure
drop, it is possible to reliably detect the breakage of the honeycomb structure 100
through combination with detection of the breakage using the photographed image. This
prevents the inappropriate honeycomb structure 100 which does not satisfy a product
quality criterion from being sent to the subsequent step, particularly in the total
inspection. In the case of the breaking strength tester 1 of the first embodiment,
the broken piece B falling from the honeycomb structure 100 due to the breakage does
not remain in the pressure container 10. Thus, it is unnecessary to perform removal
and clean-up operation of the broken piece B as in the related art.
[0058] Meanwhile, when it is determined that the breakage does not occur in the honeycomb
structure 100 in any of the breakage pressure determination process and the breakage
image determination process even after being pressurized up to the pressure test strength
and held for a predetermined time at the pressure test strength, the honeycomb structure
100 is once lifted up above the pressure container 10 in the state of being clamped
by the pair of chucks 54a and 54b and thereafter, upper and lower positions of the
honeycomb structure 100 are inverted (a ceramic honeycomb structure inversion process,
see the two-dot chain line arrow in FIG. 3). That is, the one end face 102a side after
the breaking strength measurement is inverted from the lower position to the upper
position. In this state, the other end face 102b side is inserted from the top open
end 11a to be housed in the pressure container 10. Thereafter, the respective steps
according to the above-described partial pressurization process are repeated to measure
a breaking strength of the other end face 102b side. Accordingly, the breaking strength
is measured twice by changing measurement points with respect to the single honeycomb
structure 100.
[0059] In each breaking strength measurement, it is configured that the clamped position
definitely receives pressurization by the pressurization elastic body 20 even when
the upper and lower positions clamped by the pair of chucks 54a and 54b are inverted.
That is, the above-described clamped position is included in the pressurized portion
105. This allows confirmation that even the portion clamped by the pair of chucks
54a and 54b and received a predetermined chucking pressure has a strength equal to
or greater than the pressure test strength.
[0060] As described above, it is possible to perform the total inspection regarding the
breaking strength of the honeycomb structure 100 during the manufacturing process
according to the breaking strength tester 1 of the first embodiment and the breaking
strength test method. In particular, more reliable detection can be achieved regarding
the defective honeycomb structure 100 with strength poverty and the like in the internal
partition wall 104 compared to the conventional external appearance inspection by
visual observation. Also, it is possible to previously prevent the inappropriate honeycomb
structure 100 from being sent to the subsequent step and shipped as a product. Further,
limiting the pressurized part by the pressurization elastic body 20 to a part of the
honeycomb structure 100 dramatically reduces the measurement time from the start to
the end of pressurization compared to the related art, and this eliminates retention
of the honeycomb structures 100 waiting for measurement prior to the breaking strength
measurement process. As a result, the production efficiency of the honeycomb structure
100 improves.
[0061] In addition, it is possible to implement the detection of the breakage with respect
to the honeycomb structure 100 in combination with the conventional detection of the
pressure change using the pressure drop and the detection of the breakage using the
photographed image. As a result, more reliable breakage detection of the honeycomb
structure 100 is achieved, and the breakage detection accuracy can be improved.
(3) Breaking Strength Tester of Second Embodiment
[0062] Next, a breaking strength tester 60 of a second embodiment, which is another exemplary
configuration of the present invention, will be described with reference mainly to
FIGS. 4 and 5. As shown mainly in FIGS. 4 and 5, a breaking strength tester 60 according
to the second embodiment of the present invention is mainly provided with: a cylindrical
pressure container 70 which is opened upward and capable of housing a part of a round
pillar-shaped honeycomb structure 100 whose breaking strength is a target of measurement
and has a bottom open end 72c positioned at the center of a container bottom portion
72 and an outer circumference support portion 76 provided around the bottom open end
72c; a cylindrical pressurization elastic body 20 disposed inside the pressure container
10 so as to surround an entire circumference of a length L2 equal to or less than
1/2 of a length L1 (see FIG. 2) in an axial direction of a circumferential wall 101
of the honeycomb structure 100; a partial pressurization unit 30 which elastically
deforms the pressurization elastic body 20 toward the circumferential wall 101 of
the honeycomb structure 100 and applies uniform pressure to a pressurized portion
105, which is a part of the circumferential wall 101 of the honeycomb structure 100
housed in a container interior space 14 of the pressure container 10, over the entire
circumference of the pressurized portion 105 up to pressure test strength; and a pressure
measurement unit 40 which measures a value of the pressure applied to the pressurized
portion 105 by the pressurization elastic body 20. Herein, the same honeycomb structure
100 serving as the measurement target of the breaking strength is used as that of
the breaking strength tester 1 of the first embodiment, and the detailed description
thereof will be omitted.
[0063] The pressure container 70 is configured to include; an annular container upper portion
71 having a top open end 71a opened upward; an outer circumference support portion
76 which is positioned to face to the container upper portion 71 and is capable of
supporting the vicinity of an outer circumference of the honeycomb structure 100 from
below; a container bottom portion 72 in which the center of a bottom portion of the
pressure container 70 is opened; and a cylindrical-shaped container cylindrical portion
73 connecting respective outer peripheral edges 71b and 72b of the container upper
portion 71 and the container bottom portion 72. That is, a difference from the pressure
container 10 of the breaking strength tester 1 of the first embodiment is that the
container bottom portion 72 includes the outer circumference support portion 76 and
the bottom open end 72c. Incidentally, the outer circumference support portion 76
includes a cushion member (not shown) such as rubber provided at a contact portion
with the honeycomb structure 100 in order to mitigate impact caused by the contact
with the vicinity of the outer circumference of the honeycomb structure 100 to be
housed therein. The outer circumference support portion 76 provided in the container
bottom portion 72 makes it easy for the honeycomb structure 100 to be positioned and
housed in the pressure container 70.
[0064] Further, since the container bottom portion 72 includes the outer circumference support
portion 76 in the breaking strength tester 60 of the second embodiment, it is difficult
to detect a broken piece B when a photographing unit 80 is installed at a lower side
of the container bottom portion 72, which is a photographing region, as in the breaking
strength tester 1 of the first embodiment. Herein, when the honeycomb structure 100
is pressurized, it is known that the broken piece B, which is generated by pressurization,
appears mainly from the vicinity of the outer circumference of the honeycomb structure
100. The broken piece B hardly appears at the center of the honeycomb structure 100
due to crack or the like even when the bottom open end 72c is provided at the center
of the container bottom portion 72. Thus, the photographing unit 80 is arranged at
an upper position of the top open end 71a of the container upper portion 71 of the
pressure container 70 so as to be capable of photographing a container interior space
74 from top in the breaking strength tester 60 of the second embodiment (see FIG.
5). That is, the installation position of the photographing unit 80 is different from
the photographing unit 52 of the breaking strength tester 1 of the first embodiment.
[0065] Other configurations and operational effects of the breaking strength tester 60 of
the second embodiment are the same or substantially the same as those of the breaking
strength tester 1 of the first embodiment, and thus, the detailed description thereof
will be omitted in order to simplify the description. Further, the same configurations
as those of the breaking strength tester 1 described above are denoted by the same
reference numerals, and the description thereof will be omitted. Further, some configurations
such as a test control unit are not illustrated in order to simplify the illustration.
(4) Breaking Strength Test Method Using Breaking Strength Tester of Second Embodiment:
[0066] The breaking strength test method is implemented for the honeycomb structure 100
using the above-described breaking strength tester 60. Incidentally, the honeycomb
structure 100 serving as a measurement target for the breaking strength test is housed
in the pressure container 70 (a ceramic honeycomb structure housing process). Herein,
the ceramic honeycomb structure housing process is the substantially the same as in
the case of using the breaking strength tester 1 of the first embodiment described
above, and thus, the detailed description thereof will be omitted.
[0067] A pressurization control unit (not shown) of the test control unit (not shown) is
controlled after the honeycomb structure 100 is housed in the pressure container 70,
a pressurization pump (not shown) is operated, and a pressurization medium 31 is introduced
into a pressurization space 75 of the pressure container 70. As a result, the pressurization
space 15 is filled with the pressurization medium 31 introduced through a medium introduction
tube, and the internal pressure thereof gradually increases. As the internal pressure
of the pressurization space 75 becomes higher than the atmospheric pressure, the pressurization
elastic body 20, which partitions the pressurization space 75 and the container interior
space 74, elastically deforms and expands toward the container interior space 74.
The uniform pressure is partially applied to the entire circumference of the pressurized
portion 105 of the honeycomb structure 100 having the part housed in the pressure
container 10 (a partial pressurization process). The details of the partial pressurization
process have been described already, and thus, will not be described herein.
[0068] When the honeycomb structure 100 is pressurized through the partial pressurization
process up to the pressure test strength and determined that there is no breakage
in a breakage pressure determination process, the honeycomb structure 100 is once
lifted up above the pressure container 70 in a state in which the circumferential
wall 101 is clamped between a pair of chucks (not shown), and thereafter, the honeycomb
structure is conveyed to a position apart from an upper side of the top open end 71a
of the pressure container 70.
[0069] Further, a container bottom face 72a (upper face of the outer circumference support
portion 76) of the container bottom portion 72 of the pressure container 70 after
the honeycomb structure 100 is conveyed from the pressure container 70 is photographed
from above using the photographing unit 80 (a photographing process). Herein, a region
passing through the top open end 71a of the pressure container 70 to the container
bottom face 72a is defined as a photographing region R. When a breakage occurred in
a partition wall 104 or the circumferential wall 101 of the honeycomb structure 100
during the pressurization and the broken piece B remains in the container bottom face
72a due to the breakage, the broken piece B can be found on the upper face of the
outer circumference support portion 76 around the bottom open end 72c opened at the
center in the photographed image. The photographed image is sent from the photographing
unit 80 to a breakage image determination unit (not shown) of the test control unit,
and analysis is performed using a known image analysis processing technique. As a
result, when the broken piece B is detected in the photographed image, it is determined
that the breakage occurred in the honeycomb structure 100 (a breakage image determination
process).
[0070] That is, the breaking strength test method of the second embodiment allows detection
of the breakage of the honeycomb structure 100 by a pressure change based on a rapid
pressure drop as well as by detecting the broken piece B from the photographed image,
which is photographed from the upper side of the pressure container 70. In particular,
the broken piece B generated in the vicinity of the outer circumference of the honeycomb
structure 100 due to the breakage remains on the upper face of the outer circumference
support portion 76 since the outer circumference support portion 76 is provided in
the container bottom portion 72 of the pressure container 70, and thus, it is possible
to reliably detect the broken piece B using the photographed image. Thus, even when
it is difficult to detect the breakage of the honeycomb structure 100 only through
the conventional detection of the pressure change based on the pressure drop, it is
possible to reliably detect the breakage of the honeycomb structure 100 through combination
with detection of the breakage using the photographed image. As a result, the inappropriate
honeycomb structure 100 hardly flows to the subsequent step particularly in the case
of the total inspection. Incidentally, it is possible to remove and drop the broken
piece B on the upper face of the outer circumference support portion 76 through the
bottom open end 72c opened at the center after acquiring the photographed image of
the broken piece B. As a result, it is possible to promptly remove and clean up the
broken piece B. For example, it takes about 80 seconds to remove the broken piece
B in the case of the pressure container of the conventional compression tester having
a closed container bottom portion, but the breaking strength tester 60 of the second
embodiment achieves to reduce the time to about 15 to 20 seconds. In addition, the
outer circumference support portion 76 achieves easy positioning of the honeycomb
structure 100.
[0071] Meanwhile, the honeycomb structure 100, which is pressurized to the pressure test
strength and held for a predetermined time at the pressure test strength and determined
that no breakage occurred in the honeycomb structure 100 in any of the breakage pressure
determination process and the breakage image determination process, upper and lower
positions of the honeycomb structure 100 are inverted (a ceramic honeycomb structure
inversion process), and one end face 102a side after the breaking strength measurement
is inverted from the lower position to the upper position. In this state, the other
end face 102b side is inserted from the top open end 71a to be housed in the pressure
container 10. Thereafter, the respective steps according to the above-described partial
pressurization process are repeated to measure a breaking strength of the other end
face 102b side. Accordingly, the breaking strength is measured twice by changing measurement
points for the single honeycomb structure 100.
[0072] As described above, it is possible to perform the total inspection regarding the
breaking strength of the honeycomb structure 100 during the manufacturing process
according to the breaking strength tester 60 and the breaking strength test method
of the second embodiment. Also, it is possible to previously prevent the inappropriate
honeycomb structure 100 from being sent to the subsequent step and shipped as a product
similar to the breaking strength tester 1 of the first embodiment. In particular,
additional detection of the breakage using the photographed image can be implemented
to detect the breakage of the honeycomb structure 100 together with the conventional
detection of the pressure change using the pressure drop. As a result, more reliable
breakage detection of the honeycomb structure 100 can be achieved.
(5) Calculation of Target Test Strength
[0073] The breaking strength test method according to the present invention is capable of
calculating target test strength in the partial pressurization process. To be specific,
the method further including: a submersion breakage process of extracting one honeycomb
structure 100 from honeycomb structures which are pressurized up to the pressure test
strength by the breaking strength tester 1 or 60 of the first embodiment or the second
embodiment but no breakage was confirmed, introducing the honeycomb structure 100
into a submersion isostatic breaking strength tester (corresponding to the pressure
container described in the Background), and applying water pressure to the entirely
submerged honeycomb structure 100 until the partition wall 104 or the circumferential
wall 101 thereof breaks; a submersion breaking strength measurement process of measuring
a value of the submersion breaking strength at a point in time when the breakage occurs
in the honeycomb structure 100; and a target test strength calculation process of
calculating the target test strength in the partial pressurization process based on
correlation between the value of measured submersion breaking strength and the value
of the pressure test strength pressurized in the partial pressurization process. Accordingly,
the correlation between the submersion breaking strength and the pressure test strength
is established, and it is possible to specify the target test strength which is an
indication to what extent the honeycomb structure 100 can be pressurized in the total
inspection in the breaking strength testers 1 and 60 of the first embodiment and the
second embodiment.
[0074] FIG. 7 is a graph showing correlation between a pressure test strength indicated
by the horizontal axis and a submersion breaking strength indicated by the vertical
axis. Herein, a linear correlation expression E having a predetermined gradient (see
FIG. 7) is obtained by connecting a plurality of plots indicating lowest submersion
breaking strengths in the respective pressure test strengths with a straight line,
Accordingly, the target test strength can be obtained in accordance with the correlation
expression E, and by setting the target test strength as the pressure test strength,
the breaking strength testers 1 and 60 of the present invention can be applied in
the total inspection of the honeycomb structure 100.
[0075] A breaking strength tester and a breaking strength test method of the present invention
can be used for measurement of a breaking strength of a honeycomb structure, and particularly,
can be suitably used for in-line measurement of a breaking strength during a process
of manufacturing the honeycomb structure.
Description of Reference Numerals
[0076] 1, 60: breaking strength tester (isostatic breaking strength tester), 10 and 70:
pressure container, 11 and 71: container upper portion, 11a and 71a: top open end,
11b, 12b, 71b and 72b: outer peripheral edge, 11c and 12c: inner peripheral edge,
12 and 72: container bottom portion, 12a and 72c: bottom open end, 13 and 73: container
cylindrical portion, 14 and 74: container interior space, 15 and 75: pressurization
space, 20: pressurization elastic body, 21: elastic body surface, 30: partial pressurization
unit, 31: pressurization medium, 32: medium introduction tube, 33: pressurization
pump, 34 pressurization control unit, 40: pressure measurement unit, 50: test control
unit, 51: breakage pressure determination unit, 52 and 80: photographing unit, 53:
breakage image determination unit, 54a and 54b: chuck (clamping device), 72a: container
bottom face, 76: outer circumference support portion, 100: honeycomb structure, 101:
circumferential wall, 102a: one end face, 102b: other end face, 103: cell, 104: partition
wall, 105: pressurized portion, B: broken piece, C: clearance, D1: honeycomb diameter,
D2: opening diameter, E: correlation expression, F: pressurization direction, L1:
length in axial direction, L2: length that is 1/2 of length in axial direction, R:
photographing region
1. An isostatic breaking strength tester (1, 60) comprising:
a tubular pressure container (10, 70) in which a part of a pillar-shaped ceramic honeycomb
structure (100) including lattice-shaped partition walls (104) to define a plurality
of cells (103) extending from one end face (102a) to another end face (102b) and a
circumferential wall (101) is housed, the tubular pressure container (10, 70) having
at least a part of both ends being opened (11a, 71a, 12a, 72c);
a tubular pressurization elastic body (20) disposed inside the pressure container
(10, 70) so as to surround an entire circumference of a pressurized portion (105);
a partial pressurization unit (30) for elastically deforming the pressurization elastic
body (20) toward the circumferential wall (101) and applying uniform pressure to the
entire circumference of the circumferential wall (101) of the pressurized portion
(105) of the ceramic honeycomb structure (100) housed in the pressure container (10)
up to a pressure test strength; and
a pressure measurement unit (40) for measuring a value of the uniform pressure applied
to the circumferential wall (101) by the pressurization elastic body (20) characterized by the tubular pressurization elastic body (20) having a length equal to or less than
1/2 of a length in an axial direction of the circumferential wall (101) of the ceramic
honeycomb structure (100).
2. The isostatic breaking strength tester (1, 60) according to claim 1, further comprising
a breakage pressure determination unit (51) for detecting a pressure drop equal to
or greater than a reference value of the pressure during pressurization and determining
the pressure drop as occurrence of a breakage in the ceramic honeycomb structure (100).
3. The isostatic breaking strength tester (1) according to claim 1 or 2, further comprising:
a photographing unit (52) for photographing at least one broken piece of the partition
wall (104) and the circumferential wall (101), the broken piece falling from the ceramic
honeycomb structure (100) when a breakage occurs in the ceramic honeycomb structure
(100); and
a breakage image determination unit (53) for determining that the breakage occurs
in the ceramic honeycomb structure (100) when the broken piece is detected from the
photographed image photographed by the photographing unit (52).
4. The isostatic breaking strength tester (60) according to claim 1 or 2, wherein
the pressure container (70) is provided with an outer circumference support portion
(76) that supports the ceramic honeycomb structure (100) from below,
the isostatic breaking strength tester (60) further comprising:
a photographing unit (80) for photographing the container interior space (74) of the
pressure container (70) from above after the ceramic honeycomb structure (100) pressurized
up to the pressure test strength by the partial pressurization unit (30) is conveyed
from the pressure container (70); and
a breakage image determination unit (53) for determining that a breakage occurs in
the ceramic honeycomb structure (100) when at least one broken piece of the partition
wall (104) and the circumferential wall (101) of the ceramic honeycomb structure (100)
is detected from the photographed image photographed by the photographing unit (80).
5. The isostatic breaking strength tester (1, 60) according to any one of claims 1 to
4, wherein
the partial pressurization unit (30) includes a position of the circumferential wall
(101) clamped from both sides to support by a clamping device (54a, 54b) being used
to convey the ceramic honeycomb structure (100) to the pressure container (10), and
a region including any one side of the one end face (102a) and the other end face
(102b) of the ceramic honeycomb structure (100) in the pressurized portion (105).
6. The isostatic breaking strength tester (1, 60) according to any one of claims 1 to
5, wherein
the pressurization elastic body (20) is elastically deformed using any one of water
and air.
7. An isostatic breaking strength test method comprising:
a ceramic honeycomb structure housing process of housing a part of a pillar-shaped
ceramic honeycomb structure (100) including lattice-shaped partition walls (104) to
define a plurality of cells (103) extending from one end face (102a) to another end
face (102b) and a circumferential wall (101) in a tubular pressure container (10,
70), the tubular pressure container (10, 70) having at least a part of both ends being
opened;
a partial pressurization process of elastically deforming a tubular pressurization
elastic body (20) disposed inside the pressure container (10, 70) so as to surround
an entire circumference of a pressurized portion (105), and applying uniform pressure
to the entire circumference of the circumferential wall (101) of the pressurized portion
(105) of the ceramic honeycomb structure (100) housed in the pressure container (10,
70) up to a pressure test strength; and
a pressure measurement process of measuring a value of the uniform pressure applied
to the circumferential wall by the pressurization elastic body (20),
characterized by the tubular pressurization elastic body having a length equal to or less than 1/2
of a length in an axial direction of the circumferential wall (101) of the ceramic
honeycomb structure (100).
8. The isostatic breaking strength test method according to claim 7, further comprising
a breakage pressure determination process of detecting a pressure drop equal to or
greater than a reference value of the pressure during pressurization and determining
the pressure drop as occurrence of a breakage in the ceramic honeycomb structure (100).
9. The isostatic breaking strength test method according to claim 7 or 8, further comprising:
a photographing process of photographing at least one broken piece of the partition
wall (104) and the circumferential wall (101), the broken piece falling from the ceramic
honeycomb structure (100) when a breakage occurs in the ceramic honeycomb structure
(100); and
a breakage image determination process of determining that the breakage occurs in
the ceramic honeycomb structure (100) when the broken piece is detected from the photographed
image photographed in the photographing process.
10. The isostatic breaking strength test method according to claim 7 or 8, wherein
the pressure container (10) is provided with an outer circumference support portion
(76) that supports the ceramic honeycomb structure (100) from below,
the isostatic breaking strength test method further comprising:
a photographing process of photographing the container bottom face (72a), that is
the upper face of the outer circumference support portion, of the container bottom
portion (72) of the pressure container (70) from above after the ceramic honeycomb
structure (100) pressurized up to the pressure test strength in the partial pressurization
process is conveyed from the pressure container (70); and
a breakage image determination process of determining that a breakage occurs in the
ceramic honeycomb structure (100) when at least one broken piece of the partition
wall (104) and the circumferential wall (101) of the ceramic honeycomb structure (100)
is detected from the photographed image photographed in the photographing process.
11. The isostatic breaking strength test method according to any one of claims 7 to 10,
further comprising
a ceramic honeycomb structure inversion process of inverting upper and lower positions
of the one end face (102a) and the other end face (102b) of the ceramic honeycomb
structure (100),
wherein each value of the pressure on the one end face side and the other end face
side of the ceramic honeycomb structure (100) is measured.
12. The isostatic breaking strength test method according to any one of claims 7 to 11,
further comprising:
a submersion breakage process of introducing the ceramic honeycomb structure (100)
which is not broken at the predetermined pressure test strength into a submersion
isostatic breaking strength tester, and applying water pressure to the ceramic honeycomb
structure (100) being completely submerged to break the ceramic honeycomb structure
(100);
a submersion breaking strength measurement process of measuring a value of a submersion
breaking strength at a point in time when the ceramic honeycomb structure (100) is
broken; and
a target test strength calculation process of calculating target test strength in
the partial pressurization process based on correlation between the measured value
of the submersion breaking strength and a value of the pressure test strength pressurized
in the partial pressurization process.
1. Isostatische Bruchfestigkeits-Testvorrichtung (1, 60), die Folgendes umfasst:
einen rohrförmigen Druckbehälter (10, 70), in dem ein Teil einer säulenförmigen keramischen
Wabenstruktur (100) einschließlich gitterförmiger Trennwände (104) zur Definition
einer Vielzahl von Zellen (103), die sich von einer Endfläche (102a) zu einer anderen
Endfläche (102b) erstrecken, sowie einer Umfangswand (101) eingehaust ist, wobei der
rohrförmige Druckbehälter (10, 70) zumindest einen Teil beider Enden geöffnet (11a,
71a, 12a, 72c) aufweist;
einen rohrförmigen elastischen Druckbeaufschlagungskörper (20), der in dem Druckbehälter
(10, 70) angeordnet ist, um einen gesamten Umfang eines druckbeaufschlagten Abschnitts
(105) zu umgeben;
eine Teildruckbeaufschlagungseinheit (30), um den elastischen Druckbeaufschlagungskörper
(20) in Richtung der Umfangswand (101) elastisch zu verformen und einheitlichen Druck
auf den gesamten Umfang der Umfangswand (101) des druckbeaufschlagten Abschnitts (105)
der keramischen Wabenstruktur (100), die in dem Druckbehälter (10) eingehaust ist,
bis zu einer Testdruckfestigkeit aufzubringen; und
eine Druckmessungseinheit (40) zum Messen eines Werts des einheitlichen Drucks, der
durch den elastischen Druckbeaufschlagungskörper (20) auf die Umfangswand (101) aufgebracht
wird, dadurch gekennzeichnet, dass der rohrförmige elastische Druckbeaufschlagungskörper (20) eine Länge aufweist, die
gleich oder kleiner 1/2 einer Länge in Achsenrichtung der Umfangswand (101) der keramischen
Wabenstruktur (100) ist.
2. Isostatische Bruchfestigkeits-Testvorrichtung (1, 60) nach Anspruch 1, die ferner
Folgendes umfasst:
eine Bruchdruckbestimmungseinheit (51) zur Detektion eines Druckabfalls, der gleich
oder größer als ein Referenzwert des Drucks während der Druckbeaufschlagung ist, und
Bestimmung des Druckabfalls als Auftreten eines Bruchs in der keramischen Wabenstruktur
(100).
3. Isostatische Bruchfestigkeits-Testvorrichtung (1) nach Anspruch 1 oder 2, die ferner
Folgendes umfasst:
eine Fotografieeinheit (52) zum Fotografieren von zumindest einem gebrochenen Abschnitt
der Trennwand (104) und der Umfangswand (101), wobei der gebrochene Abschnitt aus
der keramischen Wabenstruktur (100) fällt, wenn ein Bruch in der keramischen Wabenstruktur
(100) auftritt; und
eine Bruchbildbestimmungseinheit (53) zur Bestimmung, dass der Bruch in der keramischen
Wabenstruktur (100) auftritt, wenn der gebrochene Abschnitt auf der Fotografie detektiert
wird, die von der Fotografieeinheit (52) fotografiert wurde.
4. Isostatische Bruchfestigkeits-Testvorrichtung (60) nach Anspruch 1 oder 2, wobei
an dem Druckbehälter (70) ein Außenumfangsstützabschnitt (76) bereitgestellt ist,
der die keramische Wabenstruktur (100) von unten stützt,
die isostatische Bruchfestigkeits-Testvorrichtung (60) ferner Folgendes umfasst:
eine Fotografieeinheit (80) zum Fotografieren des Behälterinnenraums (74) des Druckbehälters
(70) von oben, nachdem die keramische Wabenstruktur (100), auf die von der Teildruckbeaufschlagungseinheit
(30) ein Druck bis zur Testdruckfestigkeit aufgebracht wurde, von dem Druckbehälter
(70) wegbefördert wird; und
eine Bruchbildbestimmungseinheit (53) zur Bestimmung, dass ein Bruch in der keramischen
Wabenstruktur (100) auftritt, wenn zumindest ein gebrochener Abschnitt der Trennwand
(104) und der Umfangswand (101) der keramischen Wabenstruktur (100) auf der Fotografie
entdeckt wird, die von der Fotografieeinheit (80) fotografiert wurde.
5. Isostatische Bruchfestigkeits-Testvorrichtung (1, 60) nach einem der Ansprüche 1 bis
4, wobei die Teildruckbeaufschlagungseinheit (30) eine Position der Umfangswand (101)
umfasst, die von beiden Seiten zur Unterstützung von einer Klemmvorrichtung (54a,
54b) eingeklemmt ist, die verwendet wird, um die keramische Wabenstruktur (100) zum
Druckbehälter (10) zu befördern, und eine Region umfasst, die eine beliebige Seite
aus der einen Endfläche (102a) und der anderen Endfläche (102b) der keramischen Wabenstruktur
(100) in dem druckbeaufschlagten Abschnitt (105) umfasst.
6. Isostatische Bruchfestigkeits-Testvorrichtung (1, 60) nach einem der Ansprüche 1 bis
5, wobei der elastische Druckbeaufschlagungskörper (20) unter Verwendung von einem
beliebigen aus Wasser und Luft elastisch verformt wird.
7. Isostatisches Bruchfestigkeits-Testverfahren, das Folgendes umfasst:
einen Keramische-Wabenstruktur-Einhausungsvorgang des Einhausens eines Teils einer
säulenförmigen keramischen Wabenstruktur (100) einschließlich gitterförmiger Trennwände
(104) zur Definition einer Vielzahl von Zellen (103), die sich von einer Endfläche
(102a) zur einer anderen Endfläche (102b) erstrecken, sowie einer Umfangswand (101)
in einem rohrförmigen Druckbehälter (10, 70), wobei der rohrförmige Druckbehälter
(10, 70) zumindest einen Teil beider Enden geöffnet aufweist;
einen Teildruckbeaufschlagungsvorgang zum elastischen Verformen eines rohrförmigen
elastischen Druckbeaufschlagungskörpers (20), der in dem Druckbehälter (10, 70) angeordnet
ist, um einen gesamten Umfang eines druckbeaufschlagten Abschnitts (105) zu umgeben,
und das Aufbringen von einheitlichem Druck auf den gesamten Umfang der Umfangswand
(101) des druckbeaufschlagten Abschnitts (105) der keramischen Wabenstruktur (100),
die in dem Druckbehälter (10, 70) eingehaust ist, bis zu einer Testdruckfestigkeit;
und
einen Druckmessungsvorgang zum Messen eines Werts des einheitlichen Drucks, der durch
den elastischen Druckbeaufschlagungskörper (20) auf die Umfangswand aufgebracht wird,
dadurch gekennzeichnet, dass der rohrförmige elastische Druckbeaufschlagungskörper eine Länge aufweist, die gleich
oder kleiner 1/2 einer Länge in Achsenrichtung der Umfangswand (101) der keramischen
Wabenstruktur (100) ist.
8. Isostatisches Bruchfestigkeits-Testverfahren nach Anspruch 7, das ferner Folgendes
umfasst:
einen Bruchdruckbestimmungsvorgang zur Detektion eines Druckabfalls, der gleich oder
größer als ein Referenzwert des Drucks während der Druckbeaufschlagung ist, und Bestimmung
des Druckabfalls als Auftreten eines Bruchs in der keramischen Wabenstruktur (100).
9. Isostatisches Bruchfestigkeits-Testverfahren nach Anspruch 7 oder 8, das ferner Folgendes
umfasst:
einen Fotografievorgang zum Fotografieren von zumindest einem gebrochenen Abschnitt
der Trennwand (104) und der Umfangswand (101), wobei der gebrochene Abschnitt aus
der keramischen Wabenstruktur (100) fällt, wenn ein Bruch in der keramischen Wabenstruktur
(100) auftritt; und
einen Bruchbildbestimmungsvorgang zur Bestimmung, dass der Bruch in der keramischen
Wabenstruktur (100) auftritt, wenn der gebrochene Abschnitt auf der Fotografie entdeckt
wird, die im Fotografievorgang fotografiert wurde.
10. Isostatisches Bruchfestigkeits-Testverfahren nach Anspruch 7 oder 8, wobei
an dem Druckbehälter (10) ein Außenumfangsstützabschnitt (76) bereitgestellt ist,
der die keramische Wabenstruktur (100) von unten stützt,
das isostatische Bruchfestigkeits-Testverfahren ferner Folgendes umfasst:
einen Fotografievorgang zum Fotografieren der Behälterunterseite (72a), die die Oberseite
des Außenumfangsstützabschnitts ist, der Behälterunterseite (72) des Druckbehälters
(70) von oben, nachdem die keramische Wabenstruktur (100), auf die in dem Teildruckbeaufschlagungsvorgang
ein Druck bis zur Testdruckfestigkeit aufgebracht wurde, von dem Druckbehälter (70)
wegbefördert wird; und
einen Bruchbildbestimmungsvorgang zur Bestimmung, dass ein Bruch in der keramischen
Wabenstruktur (100) auftritt, wenn zumindest ein gebrochener Abschnitt der Trennwand
(104) und der Umfangswand (101) der keramischen Wabenstruktur (100) auf der Fotografie
detektiert wird, die im Fotografievorgang fotografiert wurde.
11. Isostatisches Bruchfestigkeits-Testverfahren nach einem der Ansprüche 7 bis 10, das
ferner Folgendes umfasst:
einen Keramische-Wabenstruktur-Inversionsvorgang zur Inversion von oberen und unteren
Positionen der einen Endfläche (102a) und der anderen Endfläche (102b) der keramischen
Wabenstruktur (100),
wobei jeder Druckwert auf der einen Endflächenseite und der anderen Endflächenseite
der keramischen Wabenstruktur (100) gemessen wird.
12. Isostatisches Bruchfestigkeits-Testverfahren nach einem der Ansprüche 7 bis 11, das
ferner Folgendes umfasst:
einen Eintauchbruchvorgang des Einführens der keramischen Wabenstruktur (100), die
nicht gebrochen ist, bei vorbestimmter Testdruckfestigkeit in eine isostatische Eintauchbruchfestigkeits-Testvorrichtung,
und des Ausübens von Wasserdruck auf die keramische Wabenstruktur (100), die vollständig
eingetaucht ist, um die keramische Wabenstruktur (100) zu brechen;
einen Eintauchbruchfestigkeitsmessungsvorgang zum Messen eines Werts einer Eintauchbruchfestigkeit
zu einem Zeitpunkt, an dem die keramische Wabenstruktur (100) gebrochen ist; und
einen Zieltestfestigkeitsberechnungsvorgang zur Berechnung von Zieltestfestigkeit
in dem Teildruckbeaufschlagungsvorgang auf Basis einer Korrelation zwischen dem gemessenen
Wert der Eintauchbruchfestigkeit und einem Wert der Testdruckfestigkeit, die in dem
Teildruckbeaufschlagungsvorgang mit Druck beaufschlagt wurde.
1. Testeur de résistance à la rupture isostatique (1, 60) comprenant :
un récipient sous pression tubulaire (10, 70) dans lequel est logée une partie d'une
structure céramique en nid d'abeille en forme de pilier (100) incluant des parois
de séparation en forme de treillis (104) pour définir une pluralité de cellules (103)
s'étendant d'une première face d'extrémité (102a) vers une autre face d'extrémité
(102b) et une paroi circonférentielle (101), le récipient sous pression tubulaire
(10, 70) ayant au moins une partie des deux extrémités ouvertes (11a, 71a, 12a, 72c)
;
un corps élastique de mise sous pression tubulaire (20) disposé à l'intérieur du récipient
sous pression (10, 70) de sorte à entourer une circonférence entière d'une partie
sous pression (105) ;
une unité de mise sous pression partielle (30) destinée à déformer élastiquement le
corps élastique de mise sous pression (20) vers la paroi circonférentielle (101) et
à appliquer une pression uniforme sur la circonférence entière de la paroi circonférentielle
(101) de la partie sous pression (105) de la structure céramique en nid d'abeille
(100) logée dans le récipient sous pression (10) jusqu'à une résistance au test de
pression ; et
une unité de mesure de pression (40) destinée à mesurer une valeur de la pression
uniforme appliquée à la paroi circonférentielle (101) par le corps élastique de mise
sous pression (20), caractérisé en ce que le corps élastique de mise sous pression tubulaire (20) a une longueur inférieure
ou égale à la moitié d'une longueur dans une direction axiale de la paroi circonférentielle
(101) de la structure céramique en nid d'abeille (100).
2. Testeur de résistance à la rupture isostatique (1, 60) selon la revendication 1, comprenant
en outre
une unité de détermination de pression de rupture (51) pour détecter une chute de
pression supérieure ou égale à une valeur de référence de la pression lors de la mise
sous pression et déterminer la chute de pression en tant que survenance d'une rupture
de la structure céramique en nid d'abeille (100).
3. Testeur de résistance à la rupture isostatique (1) selon la revendication 1 ou 2,
comprenant en outre :
une unité photographique (52) destinée à photographier au moins un morceau brisé de
la paroi de séparation (104) et de la paroi circonférentielle (101), le morceau brisé
se détachant de la structure céramique en nid d'abeille (100) lorsqu'une rupture survient
dans la structure céramique en nid d'abeille (100) ; et
une unité de détermination d'image de rupture (53) pour déterminer que la rupture
survient dans la structure céramique en nid d'abeille (100) lorsque le morceau brisé
est détecté à partir de l'image photographiée photographiée par l'unité photographique
(52).
4. Testeur de résistance à la rupture isostatique (60) selon la revendication 1 ou 2,
dans lequel
le récipient sous pression (70) est doté d'une partie de support de circonférence
externe (76) qui supporte la structure céramique en nid d'abeille (100) par en dessous,
le testeur de résistance à la rupture isostatique (60) comprenant en outre
une unité photographique (80) destinée à photographier l'espace intérieur de récipient
(74) du récipient sous pression (70) depuis le dessus après que la structure céramique
en nid d'abeille (100) mise sous pression jusqu'à la résistance au test de pression
par l'unité de mise sous pression partielle (30) est acheminée depuis le récipient
sous pression (70) ; et
une unité de détermination d'image de rupture (53) destinée à déterminer qu'une rupture
survient dans la structure céramique en nid d'abeille (100) lorsqu'au moins un morceau
brisé de la paroi de séparation (104) et de la paroi circonférentielle (101) de la
structure céramique en nid d'abeille (100) est détecté à partir de l'image photographiée
photographiée par l'unité photographique (80).
5. Testeur de résistance à la rupture isostatique (1, 60) selon l'une quelconque des
revendications 1 à 4, dans lequel
l'unité de mise sous pression partielle (30) inclut une position de la paroi circonférentielle
(101) serrée des deux côtés pour support par un dispositif de serrage (54a, 54b) étant
utilisé pour acheminer la structure céramique en nid d'abeille (100) vers le récipient
sous pression (10), et une région incluant un quelconque côté d'une première face
d'extrémité (102a) et de l'autre face d'extrémité (102b) de la structure céramique
en nid d'abeille (100) dans la partie sous pression (105).
6. Testeur de résistance à la rupture isostatique (1, 60) selon l'une quelconque des
revendications 1 à 5, dans lequel
le corps élastique de mise sous pression (20) est déformé élastiquement au moyen de
l'un quelconque d'eau et d'air.
7. Procédé de test de résistance à la rupture isostatique comprenant :
un processus de logement de structure céramique en nid d'abeille consistant à loger
une partie d'une structure céramique en nid d'abeille en forme de pilier (100) incluant
des parois de séparation en forme de treillis (104) pour définir une pluralité de
cellules (103) s'étendant d'une première face d'extrémité (102a) à une autre face
d'extrémité (102b) et une paroi circonférentielle (101) dans un récipient sous pression
tubulaire (10, 70), le récipient sous pression tubulaire (10, 70) ayant au moins une
partie des deux extrémités ouvertes ;
un processus de mise sous pression partielle consistant à déformer de manière élastique
un corps élastique de mise sous pression tubulaire (20) disposé à l'intérieur du récipient
sous pression (10, 70) de sorte à entourer une circonférence entière d'une partie
sous pression (105), et à appliquer une pression uniforme à la circonférence entière
de la paroi circonférentielle (101) de la partie sous pression (105) de la structure
céramique en nid d'abeille (100) logée dans le récipient sous pression (10, 70) jusqu'à
une résistance au test de pression ; et
un processus de mesure de pression consistant à mesurer une valeur de la pression
uniforme appliquée à la paroi circonférentielle par le corps élastique de mise sous
pression (20),
caractérisé en ce que le corps élastique de mise sous pression tubulaire a une longueur inférieure ou égale
à la moitié d'une longueur dans une direction axiale de la paroi circonférentielle
(101) de la structure céramique en nid d'abeille (100).
8. Procédé de test de résistance à la rupture isostatique selon la revendication 7, comprenant
en outre
un processus de détermination de pression de rupture consistant à détecter une chute
de pression supérieure ou égale à une valeur de référence de la pression lors de la
mise sous pression et à déterminer la chute de pression en tant que survenance d'une
rupture dans la structure céramique en nid d'abeille (100).
9. Procédé de test de résistance à la rupture isostatique selon la revendication 7 ou
8, comprenant en outre :
un processus photographique consistant à photographier au moins un morceau brisé de
la paroi de séparation (104) et de la paroi circonférentielle (101), le morceau brisé
se détachant de la structure céramique en nid d'abeille (100) lorsqu'une rupture se
produit dans la structure céramique en nid d'abeille (100) ; et
un processus de détermination d'image de rupture consistant à déterminer que la rupture
se produit dans la structure céramique en nid-abeille (100) lorsque le morceau brisé
est détecté à partir de l'image photographiée photographiée dans le processus photographique.
10. Procédé de test de résistance à la rupture isostatique selon la revendication 7 ou
8, dans lequel
le récipient sous pression (10) est doté d'une partie de support de circonférence
externe (76) qui supporte la structure céramique en nid d'abeille (100) depuis le
dessous,
le procédé de test de résistance à la rupture isostatique comprenant en outre :
un processus photographique consistant à photographier la face inférieure de récipient
(72a), qui est la face supérieure de la partie de support de circonférence externe,
de la partie inférieure de récipient (72) du récipient sous pression (70) depuis le
dessus après que la structure céramique en nid-abeille (100) mise sous pression jusqu'à
la résistance au test de pression dans le processus de mise sous pression partielle
est acheminée depuis le récipient sous pression (70) ; et
un processus de détermination d'image de rupture consistant à déterminer qu'une rupture
survient dans la structure céramique en nid d'abeille (100) lorsqu'au moins un morceau
brisé de la paroi de séparation (104) et de la paroi circonférentielle (101) de la
structure céramique en nid d'abeille (100) est détecté à partir de l'image photographiée
photographiée dans le processus photographique.
11. Procédé de test de résistance à la rupture isostatique selon l'une quelconque des
revendications 7 à 10, comprenant en outre :
un processus d'inversion de structure céramique en nid d'abeille consistant à inverser
les positions supérieure et inférieure de la première face d'extrémité (102a) et de
l'autre face d'extrémité (102b) de la structure céramique en nid d'abeille (100),
dans lequel chaque valeur de la pression sur le côté de la première face d'extrémité
et sur le côté de l'autre face d'extrémité de la structure céramique en nid d'abeille
(100) est mesurée.
12. Procédé de test de résistance à la rupture isostatique selon l'une quelconque des
revendications 7 à 11, comprenant en outre :
un processus de rupture en immersion consistant à introduire la structure céramique
en nid d'abeille (100) qui n'est pas brisée à la résistance au test de pression prédéterminée
dans un testeur de résistance à la rupture isostatique en immersion, et à appliquer
une pression d'eau à la structure céramique en nid d'abeille (100) étant complètement
immergée pour rompre la structure céramique en nid d'abeilles (100) ;
un processus de mesure de résistance à la rupture en immersion consistant à mesurer
une valeur d'une résistance de rupture en immersion à un instant où la structure céramique
en nid d'abeilles (100) est rompue ; et
un processus de calcul de résistance au test cible consistant à calculer une résistance
au test cible dans le processus de mise sous pression partielle sur la base de la
corrélation entre la valeur mesurée de la résistance à la rupture en immersion et
une valeur de la résistance au test de pression sous pression dans le processus de
mise sous pression partielle.