(11) **EP 3 174 103 A1**

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 31.05.2017 Bulletin 2017/22

(51) Int Cl.: H01L 29/778 (2006.01)

H01L 29/66 (2006.01)

(21) Application number: 16204489.5

(22) Date of filing: 06.07.2012

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 18.07.2011 GB 201112330

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 12740091.9 / 2 735 031

(71) Applicant: EpiGan NV 3500 Hasselt (BE)

(72) Inventors:

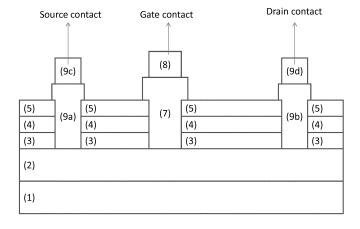
 Joff, DERLUYN 3051 Sint-Joris-Weert (BE) Stefan, DEGROOTE 3271 Scherpenheuvel-Zichem (BE)

 Marianne, GERMAIN 4000 Liège (BE)

(74) Representative: Plas, Axel Ivo Michel IP HILLS NV Hubert Frère-Orbaniaan 329 9000 Gent (BE)

Remarks:

This application was filed on 15-12-2016 as a divisional application to the application mentioned under INID code 62.


(54) A SEMICONDUCTOR III-V STRUCTURE, A DEVICE AND AN ELECTRONIC CIRCUIT

- (57) A semiconductor III-V structure comprising:
- a substrate;
- an epitaxial III-V semiconducting layer stack comprising a two dimensional Electron Gas;
- a protection layer stack for the active layer comprising: o a III-V evaporation layer on said second III-V active layer:
- o a III-V etch stop layer on top of the evaporation layer; and
- o a mask layer on top of the etch stop layer;

wherein said semiconductor III-V structure further comprises:

- a gate selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said gate region; and/or
- a source selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said source region and a drain selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said drain region.

Figure 3h: postprocessing of metallic contacts including n-type InGaN regrowth

EP 3 174 103 A1

25

40

45

Description

Field of the Invention

[0001] The present invention relates to a semiconductor structure comprising a substrate and III-V epitaxial layers grown on the substrate, a device comprising such a semiconductor structure, and an electronic circuit.

1

Background of the Invention

[0002] Group III-V devices, such as e.g. HEMTs, comprise a 2DEG (two dimensional Electron Gas) between two active layers, e.g. between a GaN and a AlGaN layer. It is known that this 2DEG results from spontaneous and piezo-electric polarization leading to charge separation within the materials. In most known devices of this type, the 2DEG is present at zero gate bias due to the characteristics of the materials. GaN FET devices for instance, with contacts formed on top of an AlGaN barrier layer, are normally-on devices. It is assumed that the formation of contacts on top of the epitaxial structure does not change drastically the polarization charges in a heterostructure such that if a 2DEG were present before the formation of the contacts, it would remain there after the processing. A certain negative voltage, called threshold voltage, on the gate is required to deplete the 2DEG through capacitive coupling. By applying a negative voltage to the gate an electron channel can be pinched off. This negative voltage is typically below a negative threshold voltage (Vth), typically between -2V and -8V. These transistors work in depletion-mode operation which means the channel has to be depleted to turn the transistor off.

[0003] For certain applications, such as e.g. power switching or integrated logic, negative polarity gate supply is undesired. In such a case, the gate control needs to work in such a way that, if the controlling circuitry fails for whatever reason, there is no galvanic connection between source and drain. FET devices for instance with a threshold voltage $V_{th} > 0$ are normally-off devices. At zero gate voltage, so without gate control, no channel is present to conduct current. These transistors work in enhancement mode (E-mode).

[0004] To make a normally-off device, i.e. a device where no current can flow between source and drain when the gate is grounded or floating, typically a channel needs to be interrupted selectively under the gate contact (i.e. in the intrinsic part of the device, which is the part of the device where the current can be modulated) while at the same time preserving an as high as possible 2DEG density in the other regions (i.e. the extrinsic part of the device). Figure 2 shows a cross section of a device with intrinsic and extrinsic parts. A gate bias above a certain positive threshold voltage will then induce a 2DEG under the gate contact allowing current to flow between source and drain.

[0005] Another issue with AlGaN/GaN HEMT's is the

relative high contact resistance of the ohmic contacts, because of the high bandgap of the III-nitride material and the absence of impurity doping. One possible approach is the selective regrowth of n-type doped GaN, preferably with a low bandgap such as InGaN, in the regions under the ohmic contacts. In all known examples of this approach, the samples are taken out of the reactor and are patterned with SiOx for selective regrowth. This is very detrimental for the passivation of the surface of AlGaN/GaN HEMT.

[0006] US2010327293A1 recites an AIN buffer layer, an undoped GaN layer, an undoped AlGaN layer, a ptype GaN layer and a heavily doped p-type GaN layer that are formed in this order. A gate electrode forms an Ohmic contact with the heavily doped p-type GaN layer. A source electrode and a drain electrode are provided on the undoped AlGaN layer. A pn-junction is formed in a gate region by a two dimensional electron gas generated at an interface between the undoped AlGaN layer and the undoped GaN layer and the p-type GaN layer, so that the gate voltage swing can be increased.

[0007] US2010327293A1 does not provide a structure with good passivation. Additionally, the growth of Junction Field Effect Transistors (JFET) where a p-type Al-GaN layer on top of the AlGaN barrier causes depletion of the 2DEG, so it needs to be removed in the extrinsic device areas. The etching process to remove the p-GaN in the extrinsic device area is non-selective to the underlying layers and as such is very difficult to control.

[0008] Additionally, in the approach of US2010327293A1, p-type AlGaN is first grown everywhere on the wafer and then removed except in the gate area of the devices. As a consequence, etch depth is hard to control, plasma damage may result from it and the uncovered surface may be hard to passivate in further processing steps.

[0009] V. Kumar, et al. in "High transconductance enhancement-mode AIGaN/GaN HEMTs on SiC substrate" (see Kumar in EL39-24 2003) recite use of an inductivelycoupled-plasma reactive ion etching (ICP-RIE), whereby recessed 1 µm gate-length enhancement-mode (Emode) AlGaN/GaN high electron mobility transistors (HEMTs) were fabricated. These 1 µm gate-length devices exhibited maximum drain current density of 470 mA/mm, extrinsic transconductance of 248 mS/mm and threshold voltage of 75 mV. These characteristics are much higher than previously reported values for GaNbased E-mode HEMTs. However, for practical applications, the threshold voltage is too low. A unity gain cutoff frequency (f_T) of 8 GHz and a maximum frequency of oscillation (f_{max}) of 26 GHz were also measured on these devices.

[0010] The HEMTs described in the publication of V. Kumar et al. are grown directly onto a substrate.

[0011] W.B. Lanford, et al. in "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage" (see Lanford in EL41-7 2005) recite fabrication of enhancement-mode high electron mobility transistors (E-

HEMTs) on GaN/AlGaN heterostructures grown on SiC substrates. Enhancement-mode operation was achieved with high threshold voltage (V_T) through the combination of low-damage and controllable dry gate-recessing and the annealing of the Ni/Au gates. As-recessed E-HEMTs with 1.0 mm gates exhibited a threshold voltage (V_T) of 0.35 V, maximum drain current ($I_{D,max}$) of 505 mA/mm, and maximum transconductance ($g_{m,max}$) of 345 mS=mm; the corresponding post-gate anneal characteristics were 0.47 V, 455 mA/mm and 310 mS/mm, respectively. The RF performance is unaffected by the postgate anneal process with a unity current gain cutoff frequency (f_T) of 10 GHz. However, for practical applications, the threshold voltage is too low.

3

[0012] The HEMTs described in the publication of W.B. Lanford et al. are grown directly onto a substrate. Additionally, gate recess etching happens with and without post-etch RTA treatment. Due to the non-selective nature of the etch, the process is hard to control.

[0013] Yong Cai et al. in "High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment" (see Cai et al. In EDL26-7 2005) recite a novel approach in fabricating high-performance enhancement mode (E-mode) AlGaN/GaN HEMTs. The fabrication technique is based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing with an annealing temperature lower than 500°C. Starting with a conventional depletion-mode HEMT sample, Yong Cai et al. found that fluoride-based plasma treatment can effectively shift the threshold voltage from -4V to 0.9 V. Most importantly, a zero transconductance (gm) was obtained at $V_{GS} = 0V$, demonstrating for the first time true E-mode operation in an AlGaN/GaN HEMT. At $V_{\rm GS}$ = 0 V, the off-state drain leakage current is 28 $\mu\text{A/mm}$ at a drain-source bias of 6 V. The fabricated E-mode AlGaN/GaN HEMTs with 1 µm-long gate exhibit a maximum drain current density of 310 mA/mm, a peak g_m of 148 mS/mm, a current gain cutoff frequency f_T of 10.1 GHz and a maximum oscillation frequency f_{max} of 34.3 GHz.

[0014] In the publication of Yong Cai, et al., CF₄ plasma treatment of the barrier layer is used. Fluorine plasma is known to have a detrimental effect on the dynamic behavior of the HEMT as it causes substantial increases in the dynamic on resistance. The HEMTs described in the publication of Yong Cai, et al. are directly grown on a substrate

[0015] F. Medjdoub et al. in "Novel E-Mode GaN-on-Si MOSHEMT Using a Selective Thermal Oxidation" (and related patent application US61080983) recite a novel normally-off AIN/GaN metal-oxide semiconductor high electron mobility transistors (MOSHEMT) on 100-mm Si substrates for high-power applications that is demonstrated for the first time by means of a selective thermal oxidation of AIIN. The formation of a high-quality insulating AION layer resulting from the dry thermal oxidation of AIN at 900°C in oxygen has been identified by transmission electron microscopy and X-ray photoelectron

spectroscopy. The AIN thermal oxidation appears to be highly selective toward the SiN cap layer allowing the local depletion of the 2-D electron gas (self-aligned to the gate) and thus the achievement of normally-off operation. Threshold voltage (V_T) of +0.8 V and drain leakage current at V_{GS} = 0 V well below 1 μ A/mm are obtained reproducibly over the wafer. The comparison of the fabricated MOSHEMTs with the control sample (identical but non-oxidized) reveals a drastic shift of VT toward positive values and three to four orders of magnitude drain leakage current reduction. The above HEMT's comprise a gate on an insulation layer, namely on AION.

[0016] The publication of F. Medjdoub et al. recites growth of thin barriers capped with in-situ SiN with and without thermal oxidation of the barrier. Without the thermal oxidation, due to the Schottky nature of the gate, the performance of the first approach is limited by the gate over-drive ($V_g < 2V$). In the case of the oxidation of the Al-rich barrier, issues remain with the leakage current, dielectric breakdown and reliability of the gate oxide. In both cases, the threshold voltage is too low for practical applications.

[0017] X. Hu et al. in "Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate" recite the fabrication and characterization of an enhancement mode AlGalnGaN heterojunction field-effect transistor (HFET) with selectively grown pn junction gate. At zero gate bias the device channel is depleted due to the high built-in potential of the gate-channel junction. The selective area growth approach enables both depletion and enhancement mode HFETs to be fabricated on the same wafer thus opening up the possibility of designing high speed, low consumption GaN-based logical integrated circuits.

[0018] In the approach by X. Hu et al., first a HEMT is grown, after which the wafer is taken out of the reactor to be patterned with SiO_x with openings in the gate area. Subsequently, p-type AlGaN is selectively grown in the openings. However, SiO_x is not a suitable passivation layer for HEMT devices and may cause the oxidation of the AlGaN barrier top surface, which leads to an increased dynamic on-resistance. Furthermore, it can only be deposited ex-situ i.e. after the wafer has been removed from the epitaxial reactor and exposed to atmosphere. After re-growth of the p-type AlGaN, the SiOx needs to be removed and replaced by a suitable passivation layer. Even further, as the AlGaN barrier has been exposed to atmospheric conditions as well as a number of processing steps, the passivation process may be difficult to control.

[0019] WO2000/19512 is directed to a method for forming a narrow gate of a pseudomorphic high electron mobility transistor (PHEMT). The method includes providing a structure including a III-V substrate, a channel layer over the substrate, a doped barrier layer over the channel layer, a protective layer disposed on the donor layer, an etch stop layer disposed over the protective layer, source and drain contact layers disposed over the

40

etch stop layer, and source and drain contacts. A mask (a layer of photoresist patterned by an electron beam) is provided over the surface of the structure and includes an aperture which exposes a surface portion of the contact layers. The method as described in connection with Figs. 3a-3e allows the formation of a gate recess by selective wet etching, thereby avoiding damage to the structure from dry etching. Further, because of the wet etching selectivity, there is a need to measure the channel current between source and drain to determine the etching point. As a consequence, the method yields greater uniformity, better reproducibility, and is less labor intense. Still, the method described in WO2000/19512 does not seem to enable better regrowth.

Summary of the Invention

[0020] It is an objective of the present invention to disclose a semiconductor structure, a device and an electronic circuit that overcome the above identified shortcomings of existing solutions. More particularly, it is an objective to disclose a semiconductor structure with a leakage current that is significantly reduced, a gate dielectric breakdown that is postponed, a reliability of the gate that is improved, a suitably positive threshold voltage, a 2DEG layer that does not deplete in the extrinsic device area, no oxidation of a barrier top surface, no dispersion resulting in good dynamic performance of for example a transistor.

[0021] According to a first aspect of the present invention, the above defined objectives are realized by a semiconductor III-V structure, comprising:

- a substrate;
- an epitaxial III-V semiconducting layer stack on top of the substrate, the epitaxial III-V semiconducting layer stack comprising an active layer, the active layer comprising:
 - o a first active III-V layer; and o a second active III-V layer; with a two dimensional Electron Gas between the first active III-V layer and the second active III-V layer;
- a protection layer stack for the active layer for use as a mask comprising:
 - o a III-V evaporation layer on the second III-V active layer, wherein the evaporation layer has a thickness of 2-10 nm thick;
 - o a III-V etch stop layer on top of the evaporation layer; and
 - o a mask layer on top of the etch stop layer;

wherein the mask layer and the III-V etch stop layer are locally removed in a gate region and/or source and drain regions, leaving the evaporation layer intact, and wherein the III-V evaporation layer is evap-

- orated in the gate region and/or the source and drain regions, thereby exposing the second active III-V layer.
- and wherein the semiconductor III-V structure further comprises:
- a gate comprising a III-V material, said gate being selectively and epitaxially re-grown through the protection layer stack on the second active III-V layer in the gate region; and/or
- a source selectively and epitaxially re-grown through the protection layer stack on the second active III-V layer in the source region, and a drain selectively and epitaxially regrown through the protection layer stack on the second active III-V layer in the drain region.

[0022] The semiconductor III-V structure according to the present invention provides any, a combination of, or all of the following advantages: a leakage current that is significantly reduced, and/or a gate dielectric breakdown that is postponed, and/or a reliability of the gate that is improved, and/or a suitably positive threshold voltage, and/or a 2DEG layer that does not deplete in the extrinsic device area, and/or no oxidation of a barrier top surface, and/or plasma damaged is prevented, and/or no dispersion resulting in good dynamic performance of e.g. a transistor is maintained, etc. Any, a combination of, or all of the above mentioned disadvantages are overcome hereby, or at least effects thereof are significantly reduced. In accordance with the present invention, the p-type Al-GaN is selectively re-grown in a gate area, using a novel in-situ deposited protection layer stack as mask. The protection layer stack of the present invention serves as an in-situ passivation layer for the device, allows precise control of its etching in the gate area and is an excellent mask for selective epitaxial re-growth. A better interface is obtained to the regrown p-type AlGaN. A transistor comprising the semiconductor III-V structure according to the present invention, such as a JFET, has superior performance compared to other types of e-mode HEMTs e.g. because of its excellent passivation, suitably high threshold voltage and large gate over-drive capability.

[0023] An active layer is a layer in which charge carriers flow from one electrode to another, whereby the flow can be controlled either inherently like a diode or explicitly, e.g. the source to the drain in a field effect transistor whereby the flow of charge is controlled by a gate. An active layer or layer stack comprises an electrically controllable material such as a semiconductor material configured to provide an electrical function such as a diode function or whose electrical conductivity can be modulated by a control electrode such as a gate.

[0024] The evaporation layer need not be very thick, as a too thick layer will e.g. consume extra chemicals and process time. The evaporation layer need not be very thin, as a too thin layer will not provide a pristine layer. Experimentally it has been found that the above thicknesses give at least satisfactory results. For exam-

20

40

45

ple, the evaporation layer has a thickness of 2-10 nm thick, such as for example 5 nm. The III-V evaporation layer for example comprises one or more of N, P, As, and one or more of B, AI, Ga, In and TI, preferably GaN. As such III-V layer compounds and combinations thereof may be selected. Good results were for example obtained with a GaN layer.

[0025] The III-V etch stop layer for example comprises one or more of N, P, As, and one or more of B, AI, Ga, In and TI, preferably AIGaN. As such III-V layer compounds and combinations thereof may be selected. Good results were for example obtained with a AIN layer. The etch stop layer for example has a thickness of 0.3 nm - 100 nm, preferably from 1-10 nm, such as 2-5 nm. The etch stop layer needs to have a minimal thickness in order to stop etching. Preferably the etch stop layer selectively stops etching. The etch stop layer need not be very thick. Typically 100 nm is sufficient. The thickness may vary e.g. depending on the etch chemistry used and time of etch processing. Etching may refer to dry etch, wet etch, and combinations thereof.

[0026] The mask layer comprises for example one or more of Si, Al, O and N, such as SiN. Some Al may for example be present, e.g. AlSiN. The mask layer has for example a thickness of 1-500 nm, preferably from 30-400 nm, more preferably from 50-300 nm, such as from 100-200 nm. The mask layer should be thick enough to provide is mask function, i.e. thicker than 1 nm. Good results were for example obtained with mask layer of 20-150 nm. Even further the mask layer may be thickened with for example SiN and/or SiO.

[0027] The protection layer stack is for example provided directly on the active layer. Further layers may for example be provided between the active layer and the protection layer stack. Alternatively, an epitaxially grown buffer layer is provided on the substrate. The buffer layer may be of a different nature than the substrate, in that for instance the band gap of the substrate and buffer layer are relatively far apart (such as 1,1 eV and 6,2 eV, respectively), at least a few eV apart, such as more than 2 eV, preferably more than 3 eV, more preferably more than 4 eV, in order to provide present characteristics, such as high break down voltage, e.g. larger than 250 V, preferably larger than 500 V, even more preferably larger than 1000 V, such as larger than 2000 V, or even much larger. The buffer layer is for example a III-V buffer layer. Therein III refers to a Group III elements, now being Group 13 and Group 3 elements, such as B, Al, Ga, In, TI, Sc, Y and Lanthanide and Actinide series. Therein V refers to a Group V elements, now being N Group elements, such as N, P, As, Sb, Bi. The buffer layer comprises a stack of layers, for example typically the first one being a nucleation layer. The buffer layer is for example capped with one or more protective layers before forming e.g. a gate, such as a III-V layer, such as GaN, AIN, and AlGaN, a SiN layer, and combinations thereof.

[0028] The one or more protective layers are for example a stack of GaN, applied on the active layer, an AIN

layer applied on the GaN layer, and a SiN layer applied on the AIN layer.

[0029] The one or more protective layers protect the underlying active layer during subsequent processing. As a consequence the present semiconductor III-V structure is fully compatible with other processes, in particular CMOS processes. Even further, as the active layer is protected it remains in excellent shape and can be processed further without extra precautions. Even further, by the nature of the manufacturing process, wherein the one or more protective layers are removed, such as by wet and/or dry etching, the surface of an active layer obtained thereby is in excellent condition to be further processed, such as for re-growth.

[0030] In a preferred example, the mask layer is SiN with high density, deposited in-situ in the MOCVD reactor. This SiN may be stoichiometric or non-stoichiometric. The SiN may for example contain some Al (AlSiN). For example it is typically 10nm - 500nm, such as 200nm thick.

[0031] The one or more protective layers are locally removed, preferably selectively removed, prior to regrowth.

[0032] In order to obtain a high quality surface of the buffer layer the one or more protective are removed, such as by selectively dry and/or wet etching thereof. These processes are well known by the person skilled in the art. [0033] A gate is provided through the protection layer stack on the active layer, wherein the gate comprises a III-V material, preferably a p-type III-V material, and wherein the gate is preferably selectively and epitaxially re-grown, where the Mg-doping is activated by annealing in nitrogen ambient and on top of which an ohmic contact is formed. The gate forms part of a semiconductor device to be formed, such as a transistor. As mentioned above in principle any III-V material being suitable for the envisaged purpose may be applied. In view of an E-mode device a p-type material is preferred. The gate is re-grown selectively, preferably by patterning the mask layer with patterns, wherein preferably re-growth of a III-V layer is performed, such as a III-N layer.

[0034] In an example of epitaxial re-growth, the surface of the starting material needs to be in a pristine condition ("epi-ready") because nucleation of re-grown epitaxial layers is amongst others determined by atomic configuration of this surface. Such a selectively re-grown epitaxial layer provides the best characteristics in view of the above and below mentioned advantages obtained by the present invention. Because alloys containing e.g. Al in general and (In)Al(Ga)N alloys specifically are very prone to oxidation and other types of contamination (scratches, changes in surface stoichiometry, etc.), any (in between) process step may deteriorate the surface condition of these layer stacks and make it impossible to do a high quality epitaxial growth on top of it.

[0035] By tuning growth conditions, epitaxial re-growth of e.g. GaN occurs on a substrate or on a first epitaxial structure but not on dielectric (SiOx or SiN) patterns. This

25

35

40

45

and/or

refers to the term "selective" growth, and is due to the fact that e.g. GaN does not nucleate on SiOx or SiN. It is known that adding AI to the GaN materials reduces this selectivity. More specifically, epitaxial growth of AIN is not selective because of the low mobility of AI-atoms on the growth surface. As such, the deposition of AI-rich AIGaN needs to occur before any patterning is done. However, exposure of AI-rich alloys to atmosphere or process conditions leads to the contamination of the top surface as described above.

[0036] The term "AlGaN" relates to a composition comprising Al, Ga and N in any stoichiometric ration (Alx-GayN), which composition may vary in layer, e.g. from having no Al at a bottom of the layer to having no Ga at a top of the layer. A composition such as (In)AlGaN may further comprise In in any suitable amount.

[0037] The semiconductor III-V structure can comprise a source and drain, which source and drain comprise a III-V material, preferably a n-type III-V material e.g. with a low bandgap, which III-V source and drain are preferably a selectively and epitaxial re-grown gate. Ohmic contacts are formed on the source and drain n-type III-V material.

[0038] A 2DEG (two dimensional Electron Gas) is formed between the two active layers. The first active III-V layer has for example a thickness of 20-500 nm, preferably from 30-300 nm, more preferably from 50-250 nm, such as from 100-150 nm, and/or the second active III-V layer has a thickness of 10-100 nm, preferably from 20-50 nm. Such a combination of thicknesses provides good characteristics for the active layer, e.g. in terms of the 2DEG obtained.

[0039] The first active III-V layer comprises for example one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably GaN, and/or

the second active III-V layer comprises for example one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably AlGaN. The compositions of the III-V layers may be chosen in view of characteristics to be obtained, and compositions may vary accordingly. In an example good results were obtained with a first GaN layer of about 150 nm thickness, and a second AlGaN layer of about 20 nm thickness.

[0040] An epitaxial structure on a substrate terminated by a functional layer comprising an Al-containing III-N alloy by capping it with a protective layer stack GaN / (Al(Ga)N) / SiN is for example provided, so that it subsequently may be subjected to various standard semiconductor process steps and yet can still be re-introduced in an MOCVD reactor such as for selective epitaxial re-growth onto the functional layer. A better interface of the Al(GaN)/SiN is obtained.

[0041] According to an optional aspect of the invention, a gate contact is provided in the gate region and/or source and drain contacts are provided through the protective layer stack on the second III-V active layer.

[0042] Source and drain contacts are provided through the protection layer stack on the active layer, wherein the

source and drain comprise a III-V material, preferably a n-type III-V material e.g. with a low bandgap energy, and wherein the source and drain are preferably selectively and epitaxially re-grown.

[0043] The source and drain form part of a semiconductor device to be formed, such as a transistor. As mentioned above in principle any III-V material being suitable for the envisaged purpose may be applied. In view of a low Ohmic contact resistance device an n-type material with low bandgap is preferred. A photo resist mask is for example provided on top of the mask layer and a gate region is defined, preferably lithographically defined. Such may be by any form of radiation, such as light, such as, depending on dimensions to be obtained, IR, UV, deep UV, e-UV etc, and e-beam. In CMOS processes an optical lithographic process is preferred, e.g. in view of compatibility. The person skilled in the art will be able to provide a suitable photo resist mask for a given process. [0044] According to an optional aspect of the invention, the III-V evaporation layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and Tl, and/or the III-V etch stop layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, and/or

the mask layer comprises one or more of Si, Al, O and N, and/or

the etch stop layer has a thickness of 0.3 nm - 100 nm,

the mask layer has a thickness of 1-500 nm.

[0045] Also a layer may vary in composition, e.g. more of a first element at a bottom thereof, and more of a second element at a top thereof.

[0046] Also a layer may in fact be a stack of individual layers, or similar, a layer having a gradient in composition.

[0047] According to an optional aspect of the invention, the gate comprises a p-type III-V material and/or wherein the source and the drain comprise a n-type III-V material.

[0048] The semiconductor III-V structure comprises a gate, which gate comprises a III-V material, preferably a p-type III-V material, which III-V gate is preferably a selectively and epitaxial re-grown gate.

[0049] The semiconductor III-V structure comprises a source and a drain, which source and drain comprise a III-V material, preferably a n-type III-V material, which III-V source and drain are preferably a selectively and epitaxial re-grown source and drain.

[0050] According to an optional aspect of the invention, an Ohmic contact is formed on the gate p-type III-V material and/or on the source and drain n-type III-V material.

[0051] According to an optional aspect of the invention, the gate and/or the source and the drain are selectively and epitaxially regrown by MOCVD.

[0052] According to an optional aspect of the invention, the evaporation layer is evaporated in the MOCVD reactor used for selectively and epitaxially re-growing the gate and/or the source and the drain.

[0053] According to an optional aspect of the invention, the gate comprises one or more of N, P, As, and one or

30

35

40

45

50

55

more of B, Al, Ga, In and Tl.

[0054] The gate comprises for example one or more of N, P, As, and one or more of B, Al, Ga, In and TI and one or more of Mg, C, Zn, Hg, Be, Li and Cd, preferably Mg-doped p-type AlGaN, with a metallic ohmic contact on top of the p-AlGaN. p-type AlGaN provides particularly good characteristics.

[0055] According to an optional aspect of the invention, the substrate is a <111> silicon substrate, wherein the first active III-V layer is a III-N layer and wherein the second active III-V layer is a III-N layer.

[0056] A semiconductor III-V structure according to embodiments of the present invention comprises for example a substrate, such as a Si, SiC, Ge, Si-on-insulator, Ge-on-insulator, a free-standing GaN substrate, a free-standing AlN substrate and sapphire substrate, preferably a Si substrate, such as a <111> Si substrate, and combinations thereof, such as $\operatorname{Si}_x \operatorname{Ge}_y$, and substrates comprising (initial) layers thereof, such as a stack of layers.

[0057] According to an optional aspect of the invention:

- the first active III-V layer has a thickness of 20-500nm; and/or
- the second active III-V layer has a thickness of 10-100nm; and/or
- the first active III-V layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI; and/or
- the second active III-V layer comprises one or more of N, P, As and one or more of B, Al, Ga, In, and Tl.

[0058] According to an optional aspect of the invention, the source and the drain comprise one or more of N, P, As, and one or more of B, Al, Ga, In and TI.

[0059] The source and drain comprise for example one or more of N, P, As, and one or more of B, Al, Ga, In and TI and one or more of Si and Ge, preferably Si-doped n-type InGaN, with a metallic ohmic contact on top of the n-InGaN. n-type InGaN provides particularly good characteristics.

[0060] According to a second aspect of the invention, there is provided a device comprising a semiconductor structure according to a first aspect of the invention, such as a transistor, such as an E-mode transistor, such as a JFET, transistor, a FET, a HEMT, such as an enhancement mode HEMT, a DHFET, a LED, a diode, and a power device.

[0061] A second aspect of the present invention relates to a to a device comprising the semiconductor structure, such as a transistor, such as an E-mode transistor, such as a JFET, transistor, a FET, a HEMT, such as an enhancement mode HEMT, a DHFET, a LED, a diode, and a power device. Types of FETs and applications thereof considered are for example: a DGMOSFET being a MOSFET with dual gates; a DNAFET being a specialized FET that acts as a biosensor, by using a gate made of single-strand DNA molecules to detect matching DNA

strands; a HEMT (High Electron Mobility Transistor), also called an HFET (heterostructure FET), which can be e.g. made using band gap engineering in a ternary semiconductor such as AIGaN; a DHFET (double heterostructure field effect transistor), a fully depleted wide-bandgap material forms an isolation between gate and body; power MOSFETs are still a device of choice for drain-to-source voltages of 1 to 200 V; an ISFET being an Ion-Sensitive Field Effect Transistor used to measure ion concentrations in a solution; when the ion concentration (such as H+, see pH electrode) changes, a current through the transistor will change accordingly; a JFET (Junction Field-Effect Transistor) that uses a reverse biased p-n junction to separate a gate from the body; a MESFET (Metal-Semiconductor Field-Effect Transistor) that substitutes a p-n junction of the JFET with a Schottky barrier; used in GaAs and other III-V semiconductor materials; a MODFET (Modulation-Doped Field Effect Transistor) that uses a quantum well structure formed by graded doping of an active region; a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that utilizes an insulator (typically SiO₂) between a gate and a body; and IGBTs that see application in switching internal combustion engine ignition coils, where fast switching and voltage blocking capabilities are important.

[0062] In FETs electrons can flow in either direction through the channel when operated in the linear mode, and the naming convention of drain terminal and source terminal is somewhat arbitrary, as the devices are typically (but not always) built symmetrically from source to drain. This makes FETs suitable for switching analog signals (multiplexing) or electrical power between paths (bidirectional power switching). With this concept, one can construct a solid-state mixing board or a power matrix converter, for example.

[0063] For some applications, e.g. high voltage FETs, the device is typically built asymmetrically, with the drain terminal being separated from the source and gate terminal by a larger spacing to withstand high voltage between the drain terminal and other terminals

[0064] The device according to the present invention further demonstrates improved ohmic contacts to electrodes such as source and drain electrodes, by using the same method to perform a regrowth but using different material, e.g. n-type InGaN, selectively in the electrode areas such as source and drain areas and making metallic ohmic contacts to that. For example, this solves the relative high contact resistance of the ohmic contacts with AlGaN/GaN HEMT's. In this use is made of the same protective stack for regrowth of n-type InGaN under the ohmic contacts. Hence a source and a drain are provided through the protection layer stack on the active layer, wherein the source and drain comprise a III-V material, preferably a n-type III-V material, e.g. with a low bandgap energy, and wherein the source and drain are preferably selectively and epitaxially re-grown. A photo resist mask can be provided on top of the mask layer and source and drain regions are defined, preferably lithographically de-

20

30

40

45

fined. Re-growth can be by MOCVD. The source and drain can comprise one or more of N, P, As, and one or more of B, Al, Ga, In and Tl, preferably n-type InGaN. The source and drain can be made of n-type III-V material. A device according to the present invention can be processed with a fully compatible CMOS process.

[0065] The present invention for example describes an enhancement mode HEMT device by making an (In)Al-GaN/GaN structure that is capped with a GaN / Al(Ga)N / SiN protective layer stack, which also serves as passivation layer for the active HEMT device. After a first epitaxial deposition of this structure, the top two (SiN and AI(Ga)N) layers of the protective layer stack are etched away in a gate area of the structure, leaving the GaN layer intact. This structure is then reintroduced into an MOCVD reactor, where the GaN is re-evaporated and ptype (Al)GaN is re-grown selectively in the gate area of the structure, yielding an enhancement mode structure, such as a transistor, such as a JFET or HEMT transistor. [0066] Alternatively, a HEMT device with low ohmic contact resistivity is provided by making an (In)Al-GaN/GaN structure that is capped with a GaN / Al(Ga)N / SiN protective layer stack, which also serves as passivation layer for the active HEMT device. A better interface of the AlGaN/SiN is obtained. After a first epitaxial deposition of this structure, the top two (SiN and Al(Ga)N) layers of the protective layer stack are etched away in a source and drain area of the structure, leaving the GaN layer intact. This structure is then reintroduced into an MOCVD reactor, where the GaN is re-evaporated and ntype (In)(Al)GaN is re-grown selectively in the source and drain area of the structure, yielding an electronic structure, such as a transistor, such as a DHFET or HEMT transistor with low ohmic contact resistivity.

[0067] According to a third aspect of the invention, there is provided an electronic circuit comprising a semiconductor structure according to a first aspect of the invention and/or a device according to a second aspect of the invention, such as an electronic circuit, a switch, high power application, high voltage application, image sensor, biosensor, integrated logic, and ion sensor.

[0068] A third aspect the present invention relates to a to an electronic circuit comprising the device and/or the semiconductor structure, such as an electronic circuit, a switch, high power RF amplifier, high power application, high voltage application, image sensor, biosensor, and ion sensor.

[0069] The electronic circuit finds application in e.g. digital circuits and power applications as well, including modern clocked analog circuits, voltage regulators, amplifiers, power transmitters, power convertors such as AC-DC converters, DC-DC converters (such as e.g. half-bridge, full-bridge or push-pull circuits), and DC-AC converters, motor drivers, etc.

[0070] The present electronic circuit is e.g. applied in the mentioned digital circuit, or in circuits for power conversion and power switching applications.

[0071] The present electronic circuit is applied in e.g.

a biosensor being an analytical device for the detection of an analyte that combines a biological component with a physicochemical detector component. In an example it consists of 3 parts:

a sensitive biological element, a biologically derived material or biomimic;

a transducer or a detector element that transforms the signal resulting from the interaction of the analyte with the biological element into another signal; and associated electronics or signal processors.

[0072] The present electronic circuit is applied in e.g. a gas sensor or ion sensor.

[0073] The invention is further detailed by the accompanying figures, which are exemplary and explanatory of nature and are not limiting the scope of the invention. To the person skilled in the art it may be clear that many variants, being obvious or not, may be conceivable falling within the scope of protection, defined by the present claims.

[0074] The present invention therefore relates to a semiconductor III-V structure, to a device comprising the semiconductor structure, and to an electronic circuit comprising the device and/or the semiconductor structure. Embodiments of the present invention can have the advantage of overcoming one or more of the above disadvantages, without jeopardizing functionality and advantages thereof. An independent aspect of the present invention is the use of regrowth to improve Ohmic contacts to source and drain, selectively in the source and drain areas and making metallic Ohmic contacts.

[0075] The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not correspond to actual reductions to practice of the invention.

[0076] It is to be noticed that the term "comprising", used in the claims, should not be interpreted as being restricted to the means listed thereafter. Thus, the scope of the expression "a device comprising means A and B" should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.

[0077] Similarly, it is to be noticed that the term "coupled" should not be interpreted as being restricted to direct connections only. Thus, the scope of the expression "a device A coupled to a device B" should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means.

[0078] The invention will be described by a detailed description of several embodiments of the invention. It is obvious that other embodiments of the invention can be configured by a person skilled in the art without departing form the true spirit or technical teaching of the invention, the invention therefore being limited only by the terms of the appended claims. It will be clear for a person skilled in the art that the present invention is also applicable to similar circuits that can be configured in any transistor technology, including for example, but not limited thereto, Bipolar, BICMOS...

[0079] It is observed that to some extent the above dimensions depend on a technology used, i.e. a more advanced technology using relatively smaller features will function better when using relatively smaller isolations and spaces.

Brief Description of the Drawings

[0800]

Figure 1 shows a cross section of a epitaxial layer stack.

Figure 2 shows a cross section of a semiconductor device with intrinsic and extrinsic parts.

Figure 3a-h show cross sections of methods step of manufacturing a semiconductor device according to the invention.

Detailed Description of Embodiment(s)

[0081] In this invention an enhancement mode transistor, such as a HEMT and JFET, are provided, comprising a first active (InAI)GaN layer (channel, layer 1 in Fig 1), a second active InAlGaN layer (barrier, layer 2) and a protective layer stack comprising GaN evaporation layer (layer 3), an Al(Ga)N etch stop layer (layer 4) and SiN masking layer (layer 5), where this AlGaN etch stop layer (Fig 3c) and SiN masking layer (Fig 3b) are removed in the gate region of the device. P-type (AI)GaN is then regrown selectively in this area (Fig 3f) after evaporation of the GaN evaporation layer (Fig 3e). On places where the protective layer stack has not been removed, the top SiN masking layer acts as a mask for the selective regrowth process so that no growth takes place there. The protective layer stack also acts as a passivation layer for the device.

[0082] The top SiN masking layer (layer 5) will protect the underlying III-nitride layers during any process steps necessary, e.g. lithography (Fig 3a) before local removal of the AlGaN etch stop layer and SiN masking layer in the gate area, e.g. because of its high temperature stability and chemical properties. Moreover, it protects the active device layers during epitaxial regrowth of the p-AlGaN in the gate area. SiN and SiOx are the two most commonly used dielectrics in Si CMOS technology, in

particular as a (sacrificial) capping material to protect sensitive wafer areas during additional processing. In a preferred embodiment, this layer is stoichiometric SiN with high density, deposited in-situ in the MOCVD reactor. It has been shown experimentally by inventors that e.g. a HEMT structure that is capped with in-situ SiN is not affected by processing steps that have a high temperature budget, whereas structures capped with GaN caps or uncapped structures show a significant reduction of channel density and electron mobility.

[0083] In another example, SiN contains some Al (AlSiN). It is typically 200nm thick (1nm - 500nm). The insitu SiN may be thickened externally by PECVD or LPCVD SiN or ${\rm SiO}_{\rm X}$ (for thicknesses beyond 500nm) before any other processing takes place.

[0084] An exact profile of a recess formed may be controlled by changing parameters of an ICP or RIE etching system; this is important because a sloped recess will determine the shape of the electrical field peak when a device is in pinch-off status and may allow to locally reduce maximum field strength, which is important for reliability of a device.

[0085] The protective layer stack comprises an Al(Ga)N etch stop layer (layer 4) below the SiN. Both dry and wet etches of SiN in a fluorine chemistry will stop on the AI(Ga)N etch stop layer with very high selectivity (see Fig 3b), so it allows for thorough removal of the remaining SiN without removing the Al(Ga)N etch stop layer or any of the layers below. In a preferred embodiment, this layer is pure AIN or AI-rich AIGaN and the AIN or AI-rich AIGaN is then removed in a wet etch, e.g. in an alkaline solution or in resist developer, exposing the underlying GaN evaporation layer (see Fig 3c). Because such etch process does not etch the GaN evaporation layer (i.e. the etch is very selective), its thickness can be kept very thin. This is important because it has been found that presence and properties of this layer affect a polarization charge profile and band alignment of the entire heterostructure and as a result properties of a 2DEG (e.g. electron density). By keeping the GaN layer thin, this impact is reduced. In another example, the Al(Ga)N etch stop layer also contains some Ga, and removal is done in a controlled dry etch process (which is less selective or nonselective towards GaN).

[0086] A wafer is then loaded back into an MOCVD reactor for re-growth of p-type (Al)GaN (structure as depicted in Fig 3d). p-Type III-nitrides are typically grown by doping a material with a suitable material, such as Mg, Be, C or Zn, e.g. by flowing Cp₂Mg in the reactor. Prior to re-growth, the layer stack is heated up to high temperature under ammonia overflow. Under selected conditions, the GaN evaporation layer evaporates in the gate areas where it has been uncovered by local removal of the SiN masking layer and Al(Ga)N etch stop layer, exposing a second active layer (see Fig 3e). As this layer has to this point always been capped and never been exposed to any possible source of contamination, its surface is in the right pristine condition to allow for epitaxial

40

45

re-growth. The growth will only occur in on the surface where the SiN masking layer and Al(Ga)N etch stop layer have been removed (Fig 3f). Typically, the re-grown layer is from 50-400 nm thick, such as form 100-250 nm, e.g. 150nm thick and has a p-type doping level of 5.10¹⁶-1.10²⁰/cm³, such as 1.10¹⁷-1.10¹⁹/cm³, such as about 1.1 0¹⁸/cm³.

[0087] The source and drain contacts are ohmic contacts to the 2DEG and can be made by depositing metal stacks (such Ti Al Ni Au, Ti Al Mo Au, Ti Al Ti Au, Ti Al TiW, Ti Al W, Ti Al WCr, ...) in contact with any layer of the protective layer stack or in contact with the second active layer (Fig 3g). The second active layer may be recessed prior to metal deposition. This may require local selective removal, in a source and drain area, of some of the layers of the protective layer stack by etching. In an example this removal is done in a dry etching system based on fluorine chemistry, e.g. in an inductively coupled plasma system using SF $_6$ or CF $_4$ as etching gas and RF (or "platen") and ICP (or "coil") etching powers of 10W and 150W respectively.

[0088] In an example, n-type (In)GaN is regrown selectively in the source area (9a in Fig 3h) and drain area (9b in Fig 3h) prior to depositing metal stacks (source contact 9c and drain contact 9d in Fig 3h), after having removed the SiN masking layer and AIN etch stop layers as described above.

[0089] The contact properties may be further improved by thermal annealing, typically at a temperature between 800°C and 900°C, such as at 850°C, in a nitrogen atmosphere or a forming gas atmosphere. When the contacts have been deposited on regrown n-type InGaN, the annealing temperature can be much reduced, e.g. below 600°C. This lowered thermal budget can enable new processing options, e.g. a gate first approach where the gate is defined before the ohmic contacts.

[0090] In an example, the processing continues by defining the isolation patterns. This is done by performing photoresist deposition and a photolithography step. In an example the photoresist patterns thus formed act as a mask for the etching of a mesa, e.g. in a dry etching system based on chlorine chemistry, e.g. in an inductively coupled plasma system using Cl₂ or BCl₃ as etching gas and RF (or "platen") and ICP (or "coil") etching powers of 50W and 150W respectively. In another example, patterns thus formed act as a mask for impurity implantation, e.g. by implanting nitrogen, helium, hydrogen, boron, iron, or magnesium. In an example, the impurity implantation uses triple implantation steps, e.g. one step at an acceleration voltage of 30keV, implanting a dose of 6 times 10¹²/cm² of N¹⁴, a second step at an acceleration voltage of 160keV, implanting a dose of 1.8 times 10¹³/cm² of N¹⁴ and a third step at an acceleration voltage of 400keV, implanting a dose of 2.5 times 10¹³/cm² of N¹⁴.

[0091] The gate contact is formed by making an ohmic contact to the re-grown p-type (Al)GaN in the gate area (Fig 3g). First, the p-type AlGaN needs to be activated

(i.e. breaking the bonds between hydrogen and magne-sium that renders the Mg electrically inactive), for instance by annealing in nitrogen atmosphere at a temperature at 700°C. During this activation step, the surface of the p-type AlGaN may be protected by a sacrifial layer (e.g SiOx). The activation of the p-type AlGaN can be done before the implant isolation step because the high temperature may degrade the isolation performance of the implantation. The ohmic contact metallisation typically comprises Ni/Pt/Au that is alloyed in an oxygen-containing atmosphere at temperatures around 700°C.

[0092] In an example, additional passivation layers are added. In an example, the passivation layer comprises SiN or Si-oxide, e.g. deposited by LPCVD, or PE-CVD or ICP-CVD. In an example, openings are made in the passivation layer to uncover the device terminals, by performing a photolithography step and etching the passivation layer, e.g. by wet etching in HF or buffered HF or by dry etching in an RIE or ICP plasma tool in a fluorine chemistry.

[0093] In an example, additional metal interconnect layers are defined using methods known to a person skilled in the art, to allow low resistivity current pathways for the gate, source and drain currents.

[0094] In an example, additional dielectric layers are added to prevent surface flash-over or breakdown in air. In a preferred example, the active device is a transistor. The transistor is in an example defined as a HEMT device, or as a JFET transistor. Various types of HEMT devices are know from literature, e.g. PHEMT, E-HEMT, D-HEMT or DHFET. In another example, the active device is a diode. In another example, the active device is a light-emitting diode.

[0095] Two or more of the above method steps, examples, dimensions, etc. may be combined in the present invention, depending on for instance requirements of a final device, transistor, etc.

[0096] Although the present invention has been illustrated by reference to specific embodiments, it will be apparent to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied with various changes and modifications without departing from the scope thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. In other words, it is contemplated to cover any and all modifications, variations or equivalents that fall within the scope of the basic underlying principles and whose essential attributes are claimed in this patent application. It will furthermore be understood by the reader of this patent application that the words "comprising" or "comprise" do not exclude other elements or steps, that the words "a" or "an" do not exclude a plurality, and that a single element, such as a computer system, a processor, or another integrated unit may fulfil the functions of several means recited in the claims. Any reference signs in the claims shall not be construed as limiting the respective claims concerned. The terms "first", "second", third", "a", "b", "c", and the like, when used in the description or in the claims are introduced to distinguish between similar elements or steps and are not necessarily describing a sequential or chronological order. Similarly, the terms "top", "bottom", "over", "under", and the like are introduced for descriptive purposes and not necessarily to denote relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and embodiments of the invention are capable of operating according to the present invention in other sequences, or in orientations different from the one(s) described or illustrated above.

CLAUSES

[0097]

I. A method of manufacturing a semiconductor III-V structure, comprising:

- providing an active layer,
- providing a protection layer stack for use as a mask for the active layer comprising:

o a III-V evaporation layer, wherein the evaporation layer preferably has a thickness of 2-10 nm thick, such as 5 nm, o a III-V etch stop layer on top of the evaporation layer, and o a mask layer on top of the etch stop layer.

II. The method as claimed in Clause I, wherein:

- the III-V evaporation layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably GaN, and/or
- the III-V etch stop layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably AlGaN, and/or
- the etch stop layer has a thickness of 0.3 nm -100 nm, preferably from 1-10 nm, such as 2-5 nm, and/or
- the mask layer comprises one or more of Si, Al, O and N, preferably SiN, and/or

the mask layer has a thickness of 1-500 nm, preferably from 30-400 nm, more preferably from 50-300 nm. such as from 100-200 nm.

III. The method as claimed in Clause I or II, wherein a gate is provided through the protection layer stack on the active layer, wherein the gate comprises a III-V material, preferably a p-type III-V material, and

wherein the gate is preferably selectively and epitaxially re-grown.

IV. The method as claimed in Clause III wherein an ohmic contact is formed on the gate p-type III-V material

V. The method as claimed in Clause III or IV wherein the re-growth is by MOCVD.

VI. The method as claimed in any of Clauses I-V, wherein a photo resist mask is provided on top of the mask layer and a gate region is defined, preferably lithographically defined.

VII. The method as claimed in any of Clauses I-VI, wherein the gate comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably p-type AlGaN.

VIII. The method as claimed in any of Clauses I-VII, further comprising:

providing a substrate, such as a Si, SiC, Ge, Sion-insulator, Ge-on-insulator, sapphire substrate, and combinations thereof, preferably a Si substrate, such as a <111> Si substrate, and

wherein the active layer is provided by an epitaxial III-V semiconducting layer stack on top of the substrate, comprising:

o a first active III-V layer, preferably a III-N layer,

o a second active III-V layer, preferably a III-N layer.

IX. The method as claimed in Clause VIII, wherein:

- the first active III-V layer has a thickness of 20-500 nm, preferably from 30-300 nm, more preferably from 50-250 nm, such as from 100-150 nm, and/or
- the second active III-V layer has a thickness of 10-100 nm, preferably from 20-50 nm, and/or
- the first active III-V layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably GaN, and/or
- the second active III-V layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, preferably AlGaN.

X. The method as claimed in Clause I or II, wherein a source and a drain are provided through the protection layer stack on the active layer, wherein the gate comprises a III-V material, preferably a n-type III-V material, and wherein the source and drain are preferably selectively and epitaxially re-grown.

11

20

15

25

30

40

45

50

10

15

20

30

35

40

45

50

55

XI. The method as claimed in Clause X wherein an ohmic contact is formed on the source and drain n-type III-V material.

XII. The method as claimed in Clause X or XI wherein the re-growth is by MOCVD.

XIII. The method as claimed in any of Clauses I-II or X-XII wherein a photo resist mask is provided on top of the mask layer and a gate region is defined, preferably lithographically defined.

XIV. The method as claimed in any of Clauses I-II or X-XIII, wherein the source and drain comprises one or more of N, P, As, and one or more of B, AI, Ga, In and TI, preferably n-type InGaN.

XV. A semiconductor III-V structure, comprising:

- an active layer,
- a protection layer stack for the active layer for use as a mask comprising

o a III-V evaporation layer, wherein the evaporation layer preferably has a thickness of 2-10 nm thick, such as 5 nm, o a III-V etch stop layer on top of the evaporation layer, and o a mask layer on top of the etch stop layer.

XVI. The semiconductor structure according to Clause XV, comprising a gate, which gate comprises a III-V material, preferably a p-type III-V material, which III-V gate is preferably a selectively and epitaxial re-grown gate

XVII. The semiconductor structure as claimed in Clause XVI wherein an ohmic contact is formed on the gate p-type III-V material.

XVIII. The semiconductor structure according to Clause XV, comprising a source and drain, which source and drain comprise a III-V material, preferably a n-type III-V material, which III-V source and drain are preferably a selectively and epitaxial regrown gate.

XIX. The semiconductor structure as claimed in Clause XVIII wherein ohmic contacts are formed on the source and drain n-type III-V material.

XX. Device comprising a semiconductor structure according to any of Clauses XV-XIX, such as a transistor, such as an E-mode transistor, such as a JFET, transistor, a FET, a HEMT, such as an enhancement mode HEMT, a DHFET, a LED, a diode, and a power device.

XXI. Electronic circuit comprising a semiconductor structure according to any of Clauses XV-XIX and/or a device according to Clause XX, such as an electronic circuit, a switch, high power application, high voltage application, image sensor, biosensor, integrated logic, and ion sensor.

Claims

- 1. A semiconductor III-V structure, comprising:
 - a substrate;
 - an epitaxial III-V semiconducting layer stack on top of said substrate, said epitaxial III-V semiconducting layer stack comprising an active layer, said active layer comprising

o a first active III-V layer; and o a second active III-V layer; with a two dimensional Electron Gas between said first active III-V layer and said second active III-V layer;

- a protection layer stack for the active layer for use as a mask comprising:

o a III-V evaporation layer on said second III-V active layer, wherein the evaporation layer has a thickness of 2-10 nm thick; o a III-V etch stop layer on top of the evaporation layer; and o a mask layer on top of the etch stop layer;

wherein said mask layer and said III-V etch stop layer are locally removed in a gate region and/or source and drain regions, leaving said evaporation layer intact, and wherein said III-V evaporation layer is evaporated in said gate region and/or said source and drain regions, thereby exposing said second active III-V layer;

and wherein said semiconductor III-V structure further comprises:

- a gate comprising a III-V material, said gate being selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said gate region; and/or a source selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said source region, and a drain selectively and epitaxially re-grown through said protection layer stack on said second active III-V layer in said drain region.
- A semiconductor III-V structure according to claim 1, wherein:

15

25

30

35

40

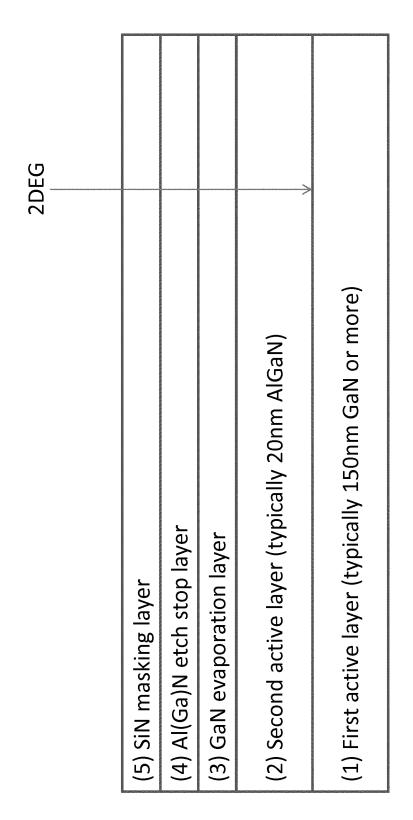
45

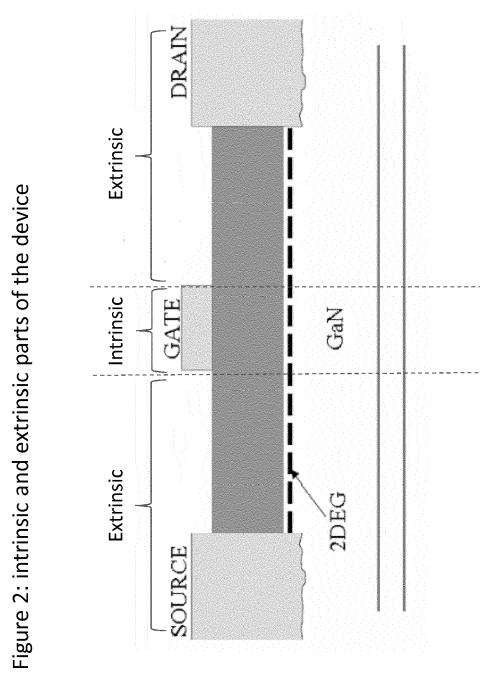
50

the III-V evaporation layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI, and/or

the III-V etch stop layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and Tl, and/or

the etch stop layer has a thickness of 0.3 nm - 100 nm, and/or


the mask layer comprises one or more of Si, Al, O and N, and/or


the mask layer has a thickness of 1-500 nm.

- A semiconductor III-V structure according to claim 1, wherein said gate comprises a p-type III-V material and/or wherein said source and said drain comprise a n-type III-V material.
- 4. A semiconductor III-V structure according to claim 3, wherein an Ohmic contact is formed on the gate p-type III-V material and/or wherein Ohmic contacts are formed on the source and drain n-type III-V material.
- 5. A semiconductor III-V structure according to claim 4, wherein a gate contact is provided in said gate region through said protective layer stack on said second III-V active layer, and/or wherein source and drain contacts are provided in said source and drain regions through said protective layer stack on said second III-V active layer.
- **6.** A semiconductor III-V structure according to claim 1, wherein said gate and/or said source and said drain are epitaxially re-grown by MOCVD.
- 7. A semiconductor III-V structure according to claim 6, wherein said evaporation layer is evaporated in the MOCVD reactor used for selectively and epitaxially re-growing said gate and/or said source and said drain.
- 8. A semiconductor III-V structure according to claim 1, wherein said gate comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI.
- 9. A semiconductor III-V structure according to any of the claims 1 to 8, wherein said substrate is a <111> silicon substrate, wherein said first active III-V layer is a III-N layer and wherein said second active III-V layer is a III-N layer.
- **10.** A semiconductor III-V structure according to claim 9, wherein:
 - said first active III-V layer has a thickness of 20-500nm; and/or
 - said second active III-V layer has a thickness of 10-100nm; and/or

- said first active III-V layer comprises one or more of N, P, As, and one or more of B, Al, Ga, In and TI; and/or
- said second active III-V layer comprises one or more of N, P, As and one or more of B, Al, Ga, In, and TI.
- 12. Device comprising a semiconductor III-V structure according to any of the claims 1 to 11, such as a transistor, such as an E-mode transistor, such as a JFET, transistor, a FET, a HEMT, such as an enhancement mode HEMT, a DHFET, a LED, a diode, and a power device.
- 13. Electronic circuit comprising a semiconductor III-V structure according to any of the claims 1 to 11 and/or a device according to claim 12, such as an electronic circuit, a switch, high power application, high voltage application, image sensor, biosensor, integrated logic, and ion sensor.

Figure 1: structure of first epitaxial stack

photoresist Gate region photoresist (3) (2) (5) (4)

Figure 3a: litho

photoresist (5) Gate region photoresist (3)(2) (5) (4)

Figure 3b: SiN etch

photoresist (4) (5) Gate region (3) (4) (2) (5)

Figure 3c: AIN etch

(4) (5) Gate region Figure 3d: photoresist strip (3) (4) (5) (2)

19

Figure 3e: GaN evaporation in MOCVD reactor (3) (5) (4) Gate region (4) (3) (2) (1)(5)

20

(7) p-(Al)GaN (3) (2)(4) Gate region (2) (5) (4) (3)

Figure 3f: regrowth of p-(AI)GaN

Drain contact (q6) Figure 3g: postprocessing of metallic contacts (4) (3)(5)Gate contact (7 (8) Source contact (9a) (2) (4) (3)(2)

22

Figure 3h: postprocessing of metallic contacts including n-type InGaN regrowth (3) Drain contact (2)(4) (96) (p6) (3) (2)(4) Gate contact (7 (8) Source contact (2) (3)(4) (9a) (36)(2)(4) (3) (2)

23

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 16 20 4489

0		

5

15

20

25

30

35

40

45

50

55

- P : intermediate document

Category	Citation of document with inc		Relevant	CLASSIFICATION OF THE
A	of relevant passage EP 1 424 734 A2 (NECCONDUCTOR [JP]) 2 June 2004 (2004-06 * paragraphs [0051] 10A-10J *	C COMPOUND 5-02)	to claim	INV. H01L29/778 H01L29/66
Α	US 2009/146182 A1 (FAL) 11 June 2009 (20 * paragraphs [0020] 1,2A-2C,3A-3C *		1-13	
A	US 2009/072272 A1 (S AL) 19 March 2009 (2 * paragraph [0057];	SUH CHANG SOO [US] ET 2009-03-19) figure 14 *	1-13	
A	US 2010/025730 A1 (FAL) 4 February 2010 * paragraphs [0075]		1-13	
A	EP 1 610 392 A2 (NGM 28 December 2005 (20 * paragraph [0046];		1-13	TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has be	•		
	Place of search The Hague	Date of completion of the search 6 April 2017	Fra	Examiner Inche, Vincent
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS ioularly relevant if taken alone ioularly relevant if combined with another iment of the same category inological background-written disclosure rmediate document	T : theory or princip E : earlier patent do after the filing de D : document cited L : document cited f	le underlying the i cument, but publiste in the application or other reasons	nvention shed on, or

EP 3 174 103 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 20 4489

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-04-2017

10	Patent document cited in search report	Publication date		
15	EP 1424734 A2	02-06-2004	CN 1507074 A EP 1424734 A2 JP 2004179318 A KR 20040047667 A TW 200416901 A US 2004104404 A1	23-06-2004 02-06-2004 24-06-2004 05-06-2004 01-09-2004 03-06-2004
20	US 2009146182 A1	11-06-2009	JP 5032965 B2 JP 2009141244 A US 2009146182 A1 US 2011037100 A1	26-09-2012 25-06-2009 11-06-2009 17-02-2011
25	US 2009072272 A1	19-03-2009	US 2009072272 A1 US 2011121314 A1 US 2012175680 A1 US 2013175580 A1 US 2014103399 A1 US 2016254363 A1 WO 2009039041 A2	19-03-2009 26-05-2011 12-07-2012 11-07-2013 17-04-2014 01-09-2016 26-03-2009
35 40	US 2010025730 A1	04-02-2010	CN 102171830 A EP 2311095 A2 EP 2571057 A2 JP 5576369 B2 JP 2011529639 A JP 2014222763 A KR 20110041550 A US 2010025730 A1 US 2011263102 A1 US 2012235160 A1 WO 2010014128 A2	31-08-2011 20-04-2011 20-03-2013 20-08-2014 08-12-2011 27-11-2014 21-04-2011 04-02-2010 27-10-2011 20-09-2012 04-02-2010
	EP 1610392 A2	28-12-2005	EP 1610392 A2 JP 2006032911 A US 2005274980 A1	28-12-2005 02-02-2006 15-12-2005
45				
50 88				
55 CS				

© L □ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 174 103 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2010327293 A1 [0006] [0007] [0008]
- US 61080983 B [0015]

• WO 200019512 A [0019]

Non-patent literature cited in the description

- V. KUMAR et al. High transconductance enhancement-mode AIGANIGAN HEMTs on SiC substrate, 2003 [0009]
- W.B. LANFORD et al. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage, 2005 [0011]
- YONG CAI et al. High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment, 2005 [0013]