(11) **EP 3 179 488 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

14.06.2017 Bulletin 2017/24

(51) Int Cl.:

H01F 7/122 (2006.01)

H01F 7/16 (2006.01)

(21) Application number: 15198358.2

(22) Date of filing: 08.12.2015

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(71) Applicants:

 Shen, Yu-Chiao Taoyuan City 33354 (TW) Wu, Tung-Po Taoyuan City 33058 (TW)

(72) Inventors:

 Shen, Yu-Chiao Taoyuan City 33354 (TW)

 Wu, Tung-Po Taoyuan City 33058 (TW)

(74) Representative: Cabinet Chaillot 16/20, avenue de l'Agent Sarre B.P. 74 92703 Colombes Cedex (FR)

(54) A MAGNETIC CIRCUIT SWITCHING DEVICE WITH SINGLE-SIDED ATTRACTION

(57) A magnetic circuit switching device with single-sided attraction includes a housing (10) with a first side (11) and a second side (12) individually arranged at either side, where the first side (11) has an attraction surface (13) to attract an iron core (30); a permanent magnet (50) having a first type magnetic pole (51) and a second type magnetic pole (52) individually arranged at inner and outer side with opposite properties; a nonconductive axial tube (60) for the iron core (30) to engage, having an opening (61) at the right side (32) extending to the second side (12) of the housing (10); and a spring

(70) providing elastic force for the iron core (30) to displace. With a magnetic path alteration function and the elastic force from the spring (70), the structure is able to keep the iron core (30) in a pre-determined position. Therefore the iron core (30) has a wider stretching range for operation, increasing the possibilities of wider application and ensuring in-time adjusting in case of deviation and wear and tear of the device. Also, the present invention requires less power for operation, thus achieving an energy-saving effect.

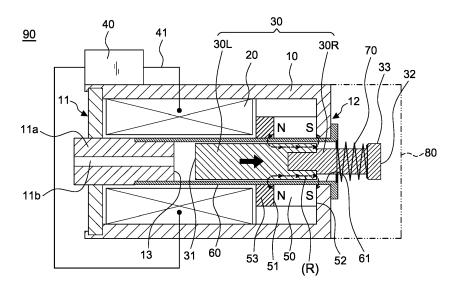


FIG.2A

EP 3 179 488 A1

20

25

30

35

40

45

50

BACKGROUND OF THE INVENTION

1. Field of the Invention:

[0001] The present invention relates to a magnetic circuit switching device with single-sided attraction, particularly to one that has two magnetic circuits and a single-sided attraction structure for a displaceable iron core to have a wider stretching range in operation.

1

2. Description of the Related Art:

[0002] The theory of magnetic field effect has been widely applied to valves, solenoids, and relays. A conventional solenoid valve attracts an iron core thereof by a magnetic force produced by an energized coil to open a valve port thereof. However, such solenoid valve has to keep energizing the coil to attract the iron core aside and keep a fixed position of the iron core, so as to keep the valve port opened. Therefore, it needs a great amount of power supply, and the solenoid valve would be overheated and burned by a short circuit after continuous operation.

[0003] The present inventor has therefore disclosed a magnetic power apparatus in US Patent No. 6,246,131 and a magnetic device with double fixing positions for changing the magnetic circuit in US Patent No. 6,057,750. The structure of a magnetic power apparatus 100 is illustrated in FIGS. 1A and 1B, including an outer shell 101, a coil 102, an iron core 103, a permanent magnet 104, a left attraction surface 105, and a right attraction surface 106. When the coil 102 is energized, the iron core 103 displaces leftwards or rightwards due to the magnetic force from the coil 102 or the permanent magnetic 104. Such structure has both sides to fixedly keep the position of the iron core 103 in operation by the permanent magnet 104, so it does not need continuous electricity supply, thus being energy-saving and preventing the invention from overheating and burning by a short circuit. The safety and durability are therefore ensured in the improved structure. However, the stretching range D of the iron core 103 is restricted due to the double sided fixing position; that is, the right attraction surface 106 is a closed structure 107. If the stretching range D is design to be 5mm, the iron core 103 can only displaces exactly 5mm, shorter or further is impossible. In this case, when an applied device (not shown) has deviation or wear and tear, the operation would be affected. Either the design is the permanent magnet 104 in a column shape with the iron core 103 disposed around the permanent magnet 104 as shown in FIGS. 1A and 1B, or the design is the permanent magnet 104 in a ring shape with the iron core 103 disposed in-between a plurality of permanent magnets **104** as shown in FIG. 5 and 6 in the US Patent No. 6,246,131, the defect would affect the operation.

[0004] Consequently, the inventor has devoted to im-

proving the restriction defect of the stretching range of the iron core **103**.

SUMMARY OF THE INVENTION

[0005] A primary object of the present invention is to provide a magnetic circuit switching device with single-sided attraction that has a magnetic path alteration function and an elastic force from a spring to keep an iron core in a pre-determined position, also enabling the iron core to have a wider stretching range for operation, increasing the possibilities of wider application and ensuring in-time adjusting in case of deviation and wear and tear of the device.

[0006] Another object of the present invention is to provide a magnetic circuit switching device with single-sided attraction that is able to change a normal position of the iron core with less power supply for operation, thus achieving an energy-saving effect.

[0007] In order to achieve the object above, the present invention comprises a housing, a driving circuit, a permanent magnet, a nonconductive axial tube, and a spring according to the annexed claim 1; whereby a magnetic path of the coil starts from the first type magnetic pole to the iron core, the second side, and then the second type magnetic pole when the coil is not energized, forming an outward magnetic circuit to provide a magnetic force for the iron core to displace rightwards with the spring providing an elastic force for the displacement as well, so that the iron core is kept in a position near the right; and when the driving circuit outputting an impulse voltage, the coil is energized, and a magnetic force produced thereby is greater than the magnetic force of the permanent magnet, therefore switching the magnetic path into a path starting from the first type magnetic pole to the iron core, the attraction surface, the first side, the housing, the second side, and then the second type magnetic pole, forming an inward magnetic circuit to force the iron core to displace leftwards and to have the left surface thereof fixedly attracted to the attraction surface for being kept in a position near the left; with the path alteration and the elastic force from the spring, the iron core is able to be stably kept in a position without consuming more electricity energy.

[0008] In addition, according to a particular embodiment, the iron core includes a conductive left section and a nonconductive right section to be engaged to form the iron core, and the driving circuit includes an output wire connected to the coil, which outputs a positive impulse voltage when electrified, and outputs a negative impulse voltage when not electrified, so that the coil is able to alter the magnetic path thereby, therefore displacing the iron core and keeping it in a steady position. Preferably, the first type magnetic pole of the permanent magnet is the north pole and the second magnetic pole is the south pole; advantageously, the first type magnetic pole of the permanent magnet further has a magnetic ring.

[0009] In an applicable embodiment, the attraction sur-

15

20

25

face is arranged at an end of a column body perpendicularly disposed on an inner side of the first side. The column body has an axial through hole arranged therein. And, preferably, the second side further connects to a valve which has a chamber arranged at the right side of the iron core and is separately connected to an inlet hole and an outlet hole so that the right surface of the iron core is able to abut on the inlet hole for closure; and the iron core further has a guiding hole connecting the chamber, so as to guide the air flowing back to the chamber to pass through the iron core and the axial through hole of the column body, to be discharged from the first side. [0010] With features disclosed above, the present invention has double magnetic circuits with single-sided attraction structure to replace the closed structure design disclosed in US Patent No. 6,246,131, so as to keep an iron core in a pre-determined position. With a magnetic path alteration function and an elastic force from a spring, the iron core has a wider stretching range for operation, increasing the possibilities of wider application and ensuring in-time adjusting in case of deviation and wear and tear of the device. Also, the present invention requires less power for operation, thus achieving an energy-saving effect.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011]

- FIG. 1A is a schematic diagram of a conventional double fixed solenoid valve structure, illustrating an iron core thereof displacing rightwards;
- FIG. 1B is a schematic diagram of a conventional double fixed solenoid valve structure, illustrating an iron core thereof displacing leftwards;
- FIG. 2A is a sectional view of the invention in an applicable embodiment, illustrating an iron core thereof displacing rightwards;
- FIG. 2B is a sectional view of the invention in an applicable embodiment, illustrating an iron core thereof displacing leftwards;
- FIG. 3A is a schematic diagram of FIG. 2A, showing a magnetic path when the present invention is not activated;
- FIG. 3B is a schematic diagram showing a magnetic path when the present invention is activated by a positive impulse voltage;
- FIG. 3C is a schematic diagram showing a magnetic path when the iron core is displacing leftwards;
- FIG. 3D is a schematic diagram showing a magnetic path after the iron core displaces leftwards;

- FIG. 3E is a schematic diagram showing a magnetic path when the present invention is activated by a negative impulse voltage;
- FIG. 3F is a schematic diagram showing a magnetic path after the iron core displaces rightwards;
- FIG. 4A is an application example of the present invention applied to a solenoid valve, showing rightward displacement of the iron core;
- FIG. 4B is an application example of the present invention applied to a solenoid valve, showing leftward displacement of the iron core;
- FIG. 5A is another application example of the present invention applied to a solenoid valve, showing rightward displacement of the iron core stopping the air intake;
- FIG. 5B is another application example of the present invention applied to a solenoid valve, showing leftward displacement of the iron core enabling the air intake and outlet; and
- FIG. 5C is another application example of the present invention applied to a solenoid valve, showing rightward displacement of the iron core stopping the air intake and enabling the air outlet.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

- **[0012]** Referring to FIGS. 2A and 2B, the present invention includes a housing **10**, a driving circuit **40**, a permanent magnet **50**, a nonconductive axial tube **60**, and a spring **70**.
- [0013] The housing 10 has a coil 20 arranged therein for an iron core 30 to linearly displace within. The iron core 20 is at least partially engaged in the coil 20 in normal status. The driving circuit 40 is arranged aside the housing 10 to provide an impulse voltage for path altering of a magnetic force, changing a position of the iron core 30, and therefore forming a solenoid magnetic device 90; such structure has been disclosed in the prior art.
- [0014] The feature of the present invention lies in that the housing 10 further has a first side 11 and a second side 12 individually arranged at either side thereof, both of which are conductive, and the first side 11 has an attraction surface 13 to attract a left surface 31 of the iron core 30.
- [0015] The permanent magnet 50 has a first type magnetic pole 51 and a second type magnetic pole 52 individually arranged at inner and outer side thereof with opposite properties. The second type magnetic pole 52 contacts the second side 12 of the housing 10 for operation. In this embodiment, the first type magnetic pole 51 of the permanent magnet 50 is the north pole and the second

25

40

45

magnetic pole 52 is the south pole; and a right section **30R** of the iron core **30** is able to pass through an inner periphery of the permanent magnet 50 for operation. The iron core 30 is preferred to include a conductive left section 30L and a nonconductive right section 30R to be engaged to form the iron core 30, but the present invention is not limited to such application. The iron core 30 is also applicable to be formed in one-piece by conductive materials, but the right section 30R should be arranged with a diameter shorter than the one of the left section 30L to avoid affecting the magnetic path, so that the magnetic path would follow the direction in the unbroken lines shown in FIG. 3C, entering the south pole and exiting from the north pole, then going along the left section 30L of the iron core **30**. In short, the magnetic path would not be affected or changed whether the right section 30R of the iron core **30** is made of conductive materials or not. [0016] Furthermore, the iron core 30 has a right surface 32 arranged at the corresponding side to the left surface 31. Referring to FIGS. 5A to 5C, in a preferred embodiment, the left surface 31 and the right surface 32 each has a flat surface arranged thereon for abutment on the attraction surface 13 or a pre-determined position, and the flat surfaces may further have adhesives thereon to ensure a tight and fixed abutment.

[0017] The nonconductive axial tube 60 is arranged for the left section 30L of the iron core 30 to engage; it has an opening 61 at right side thereof extending to the second side 12 of the housing 10 for the right surface 32 of the iron core 30 to be pushed out from the housing 30. The spring 70 is arranged around the iron core 30 at a pre-determined position to provide elastic force for the iron core 30. In this embodiment, the spring 70 is mounted around the right section 30R of the iron core 30 with its inner end abutting on the opening 61 of the axial tube 60 and its outer end abutting on a protruding flange 33 at the right end of the iron core 30, so as to provide elastic force for the iron core 30 to displace rightwards. Or the spring 70 can be arranged between the left surface 31 of the iron core 30 and the attraction surface 13 to provide elastic force with the same effect.

[0018] As illustrated in FIG. 2A, whereby a magnetic path of the coil 20 is formed starting from the first type magnetic pole 51 - the north pole - to the iron core 30, the second side 12, and then the second type magnetic pole 52 - the south pole - when the coil 20 is not energized, thus forming an outward magnetic circuit R to provide a magnetic force for the iron core 30 to displace rightwards with the spring 70 providing an elastic force for the displacement as well, so that the iron core 30 is kept in a position near right. A feature of the present invention is that the right surface 32 of the iron core 30 is not restricted by a closed side; it can pass through the second side 12. Unlike a conventional device, the iron core 30 of the present invention therefore has a wider stretching range for operation. In addition, the second side 12 further connects to a valve 80 which has an inlet hole 81; the iron core 30 is able to complement any deviation and wear

and tear of the device, ensuring in-time adjusting when the right surface **32** is abutting on the inlet hole **81** during operation.

[0019] Further referring to FIG. 2B, when the driving circuit 40 outputs an impulse voltage, the coil 20 is energized and a magnetic force produced thereby is greater than the magnetic force of the permanent magnet 50, therefore switching the magnetic path into a path starting from the first type magnetic pole 51 - the north pole - to the iron core 30, the attraction surface 13, the first side 11, the housing 10, the second side 12, and then the second type magnetic pole 52 - the south pole, forming an inward magnetic circuit L to force the iron core 30 to displace leftwards and to have the left surface 31 thereof fixedly attracted to the attraction surface 13 for being kept in a position near the left. With the path alteration and the elastic force from the spring 70, the iron core 30 is able to be stably kept in a position without consuming more electricity energy.

[0020] In this embodiment, the first type magnetic pole 51 of the permanent magnet 50 has a magnetic ring 53 for enhancement of the magnetic force; that is, the magnetic path from the first type magnetic pole 51 would pass the magnetic ring 53 and then go to the iron core 30 for an enhanced magnetic force for operation. If the magnetic force of the permanent magnet 50 is strong enough, the magnetic ring 53 can be optional. Most devices do not have a magnetic ring 53 in view of smaller volume and less cost requirement.

[0021] To further illustrate the magnetic path change in FIGS. 2A and 2B, further referring to FIGS. 3A-3F, when the power supply is off, the coil 20 is not energized, and the magnetic path is the first type magnetic pole 51 → the magnetic ring 53 → the iron core 30 → the second side 12 → the second type magnetic pole 52, thus forming an outward magnetic circuit R as the broken lines shown in FIG. 3A, a schematic diagram of FIG. 2A when the coil 20 is not energized. The iron core 30 therefore receives a rightward pushing force provided by the permanent magnet 50.

[0022] FIG. 3B illustrates the magnetic path when the device receives a positive impulse voltage. When receiving a positive impulse voltage, the original path of the magnetic force of the permanent magnet 50 (shown in broken lines) would be offset by a magnetic force produced by the power energy (shown in unbroken lines), turning the magnetic path of the permanent magnet 50 into the direction of the path of the coil 20 and forcing the iron core 30 displacing leftwards as shown in FIG. 3C; the magnetic path of the coil 20 is the shortest route. After the iron core 30 displaces leftwards, the magnetic path would become the one shown in FIG. 3C, entering into the second type magnetic pole 52 and exiting from the first type magnetic pole 51. Then the iron core 30 displaces leftwards to a position shown in FIG. 3D, with the magnetic path being the first type magnetic pole 51 \rightarrow the magnetic ring $53 \rightarrow$ the iron core $30 \rightarrow$ the attraction surface 13 \rightarrow the first side 11 \rightarrow the housing 10 \rightarrow the

20

25

35

40

45

50

55

second side $12 \rightarrow$ the second type magnetic pole 52, thus forming an inward magnetic circuit L and keeping the iron core 30 in position without energizing the coil 20. [0023] FIG. 3E illustrates the magnetic path when the device receives a negative impulse voltage. The iron core 30 is originally kept leftwards, thus the magnetic path of the coil **20** has to be reverse of the one shown in FIG. 3D to displace the iron core 30 rightwards. When receiving a negative impulse voltage, the magnetic path is shown in unbroken lines in FIG. 3E, producing a force to displace the iron core 30 to the right. The magnetic force in the path shown in broken lines would offset the force produced by the permanent magnet 50 and the attraction surface 13 would repel, therefore displacing the iron core 30 rightwards to a position shown in FIG. 3F. The magnetic path is the shortest so continuous power supply for the coil 20 is not necessary. The path would be the first type magnetic pole $51 \rightarrow$ the magnetic ring $53 \rightarrow$ the iron core 30 \rightarrow the second side 12 \rightarrow the second type magnetic pole 52, thus forming a closed outward magnetic circuit R to provide a rightwards magnetic force for the iron core 30; Together with the elastic force from the spring 70, the iron core 30 displaces back to the position shown in FIG. 3A without energizing the coil 20. The spring 70 offers elastic force for the iron core 30 to displace rightwards, therefore it may increase little counter force when the iron core 30 displaces leftwards; but this would not affect the displacement operation at all. With the spring 70 and the double magnetic circuits, the iron core 30 is able to displace without consuming much power energy, thus achieving an energy-saving feature.

[0024] In short, a feature of the present invention is to displace the iron core 30 by a magnetic force produced from the coil 20. The magnetic path of the permanent magnet 50 is altered since the path of a magnetic force is the shortest route; without another magnetic force in counter direction, the iron core 30 would keep staying in the same position.

[0025] The driving circuit 40 of the present invention can be disposed aside the housing 10 or isolated and connected to the coil 20 with an output wire 41 as shown in FIGS. 2A and 2B. When the output wire 41 is electrified, the driving circuit 40 would output a positive impulse voltage; when the output wire 41 is not electrified, the driving circuit 40 would output a negative impulse voltage, so that the coil 20 is able to alter the magnetic path thereby, therefore displacing the iron core 30 and keeping it in a steady position.

[0026] FIGS. 4A and 4B illustrate an application example of the present invention applied to a solenoid valve 90A. The second side 12 further connects to a valve 80 which has a chamber 82 arranged at the right side 32 of the iron core 30 and is separately connected to an inlet hole 81 and an outlet hole 83 so that the right surface 32 of the iron core 30 is able to abut on the inlet hole 81 for closure as shown in FIG. 4A. Referring to FIG. 4B, when the iron core 30 displaces leftwards, the inlet hole 81 opens for air to enter the chamber 82 and to be guided

into the outlet hole **83**, then a pre-determined device **84** which is shown in FIG. 5C, so as to function as a solenoid valve **90A**.

[0027] Furthermore, FIGS. 5A-5C illustrated another application example of the present invention applied to a solenoid valve 90A. The iron core 30 further has a guiding hole 33 connecting the chamber 82, thereby the iron core 30 close the inlet hole 81 with its right surface 32 as shown in FIG. 5A, and FIG. 5B shows when the inlet hole 81 opens for air to enter the chamber 82 and then to be guided to the outlet hole 83; in FIG. 5C, the predetermined device 84 is an air discharging device to guide the air flowing back to into the chamber 82 via the outlet hole 83 to pass through the iron core 30 and to be discharged from the first side 11 via an axial through hole 11b of a column body 11a. The present invention is especially suitable for such structure of a solenoid valve for features of simple structure and no residual magnetism, but it is also applicable to other electric devices as well. [0028] With aforesaid structures and measures, the present invention has the outward magnetic circuit R and the inward magnetic circuit L with the design of singlesided attraction for fixing. By changing path of the magnetic force and the elastic force from the spring 70, the iron core 30 is able to be kept in a position with a wider stretching range for operation, increasing the possibilities of wider application and ensuring in-time adjusting in case of deviation and wear and tear of the device. The defect in US Patent No. 6,246,131 is therefore overcome. On the other hand, the present invention also requires less power for operation, thus achieving an energy-sav-

[0029] Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.

Claims

1. A magnetic circuit switching device with single-sided attraction, comprising:

a housing (10) including a coil (20) arranged therein for an iron core (30) to linearly displace within; said iron core (30) being at least partially engaged in the coil (20) in normal status;

a driving circuit (40) arranged aside the housing (10) to provide an impulse voltage for path altering of a magnetic force, changing a position of the iron core (30), and therefore forming a solenoid magnetic device;

characterized in that the housing (10) further has a first side (11) and a second side (12) individually arranged at either side thereof, both of which are conductive, and the first side (11)

20

25

30

35

40

has an attraction surface (13) to attract a left surface (31) of the iron core (30);

a permanent magnet (50) having a first type magnetic pole (51) and a second type magnetic pole (52) individually arranged at inner and outer side thereof with opposite properties, the second type magnetic pole (52) contacting the second side (12) of the housing (10) and a right section (30R) of the iron core (30) being able to pass through an inner periphery of the permanent magnet (50) for operation;

a nonconductive axial tube (60) for a left section (30L) of the iron core (30) to engage, having an opening (61) at right side thereof extending to the second side (12) of the housing (10) for a right surface (32) of the iron core (30) to be pushed out from the housing (10); and a spring (70) arranged around the iron core (30)

a spring (70) arranged around the iron core (30) at a pre-determined position to provide elastic force for the iron core (30);

whereby a magnetic path of the coil (20) starts from the first type magnetic pole (51) to the iron core (30), the second side (12), and then the second type magnetic pole (52) when the coil (20) is not energized, forming an outward magnetic circuit (R) to provide a magnetic force for the iron core (30) to displace rightwards with the spring (70) providing an elastic force for the displacement as well, so that the iron core (30) is kept in a position near the right; and when the driving circuit (40) outputting an impulse voltage, the coil (20) is energized, and a magnetic force produced thereby is greater than the magnetic force of the permanent magnet (50), therefore switching the magnetic path into a path starting from the first type magnetic pole (51) to the iron core (30), the attraction surface (13), the first side (11), the housing (10), the second side (12), and then the second type magnetic pole (52), forming an inward magnetic circuit (L) to force the iron core (30) to displace leftwards and to have the left surface (31) thereof fixedly attracted to the attraction surface (13) for being kept in a position near the left; with the path alteration and the elastic force from the spring (70), the iron core (30) is able to be stably kept in a position without consuming more electricity energy.

- 2. The magnetic circuit switching device with singlesided attraction as claimed in claim 1, wherein the iron core (30) includes a conductive left section (30L) and a nonconductive right section (30R) to be engaged to form the iron core (30).
- 3. The magnetic circuit switching device with singlesided attraction as claimed in claim 1, wherein the driving circuit (40) includes an output wire (41) connected to the coil (20), which outputs a positive im-

pulse voltage when electrified, and outputs a negative impulse voltage when not electrified, so that the coil (20) is able to alter the magnetic path thereby, therefore displacing the iron core (30) and keeping it in a steady position.

- 4. The magnetic circuit switching device with single-sided attraction as claimed in claim 1, wherein the first type magnetic pole (51) of the permanent magnet (50) is the north pole and the second magnetic pole (52) is the south pole.
- 5. The magnetic circuit switching device with singlesided attraction as claimed in claim 4, wherein the first type magnetic pole (51) of the permanent magnet (50) has a magnetic ring (53).
- 6. The magnetic circuit switching device with singlesided attraction as claimed in claim 1, wherein the attraction surface (13) is arranged at an end of a column body (11a) perpendicularly disposed on an inner side of the first side (11).
- 7. The magnetic circuit switching device with singlesided attraction as claimed in claim 6, wherein the column body (11a) has an axial through hole (11b) arranged therein.
- 8. The magnetic circuit switching device with single-sided attraction as claimed in claim 7, wherein the second side (12) further connects to a valve (80) which has a chamber (82) arranged at the right side of the iron core (30) and is separately connected to an inlet hole (81) and an outlet hole (83) so that the right surface (32) of the iron core (30) is able to abut on the inlet hole (81) for closure; and the iron core (30) further has a guiding hole (34) connecting the chamber (82), so as to guide the air flowing back to the chamber (82) to pass through the iron core (30) and the axial through hole (11b) of the column body (11a), to be discharged from the first side (11).

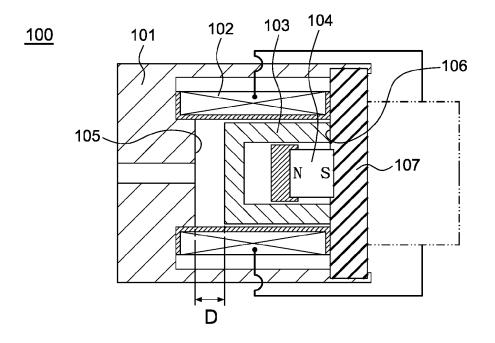


FIG.1A PRIOR ART

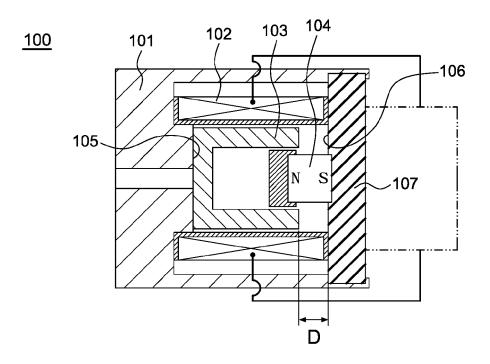


FIG.1B PRIOR ART

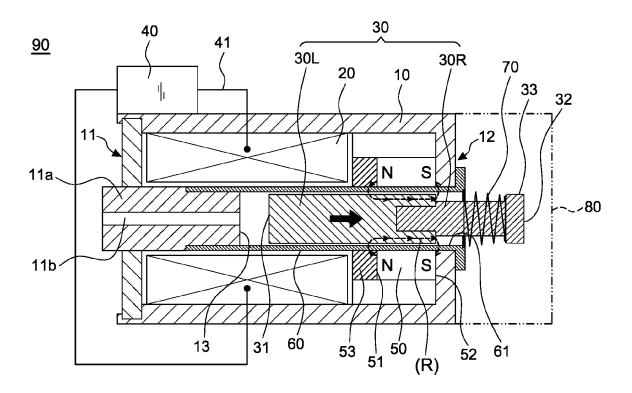


FIG.2A

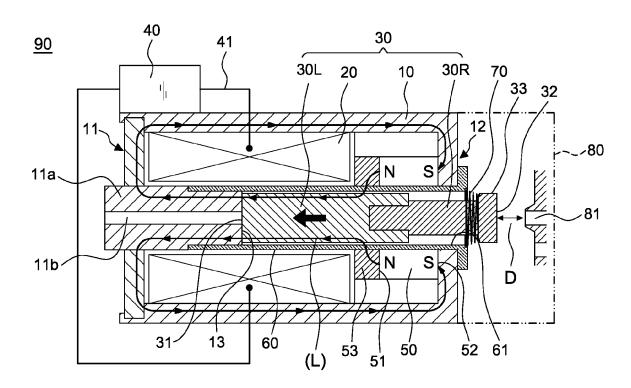


FIG.2B

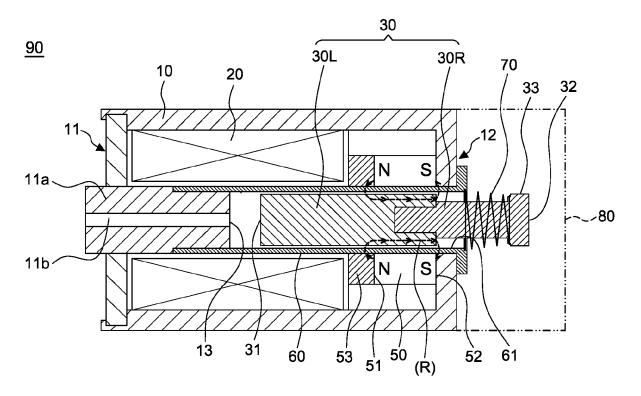


FIG.3A

FIG.3B

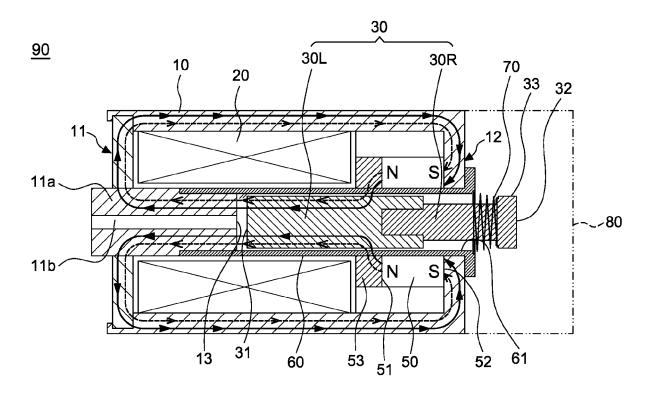


FIG.3C

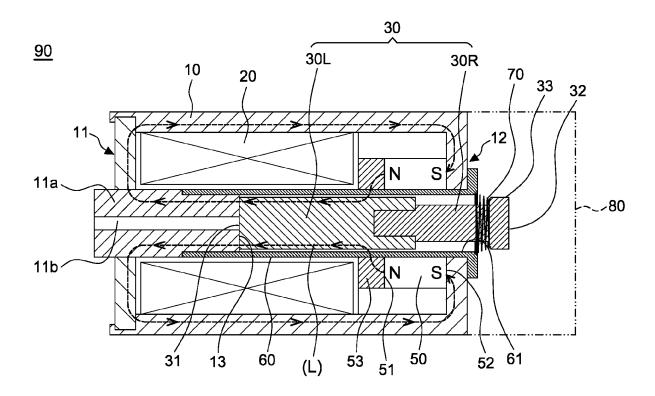


FIG.3D

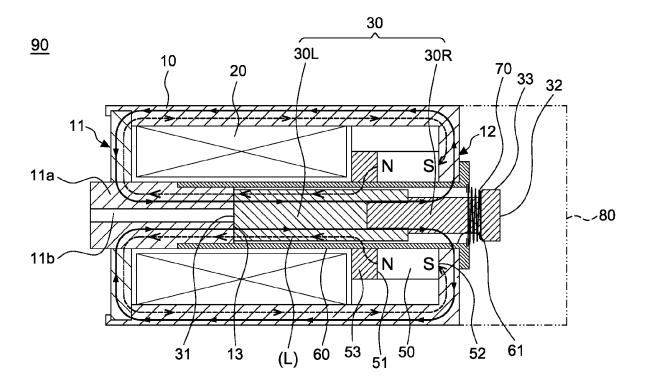


FIG.3E

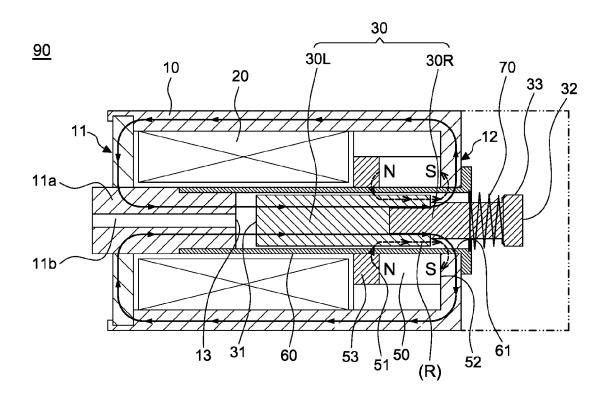


FIG.3F

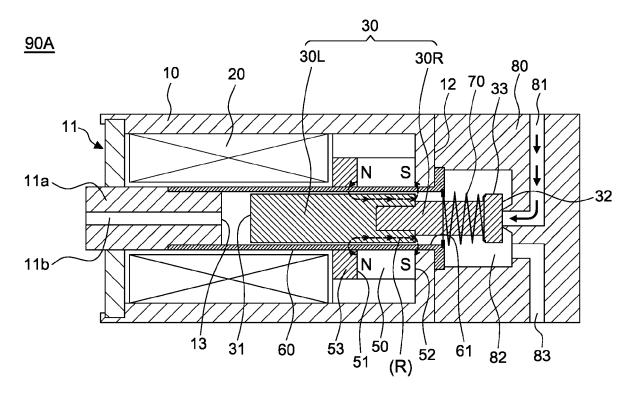


FIG.4A

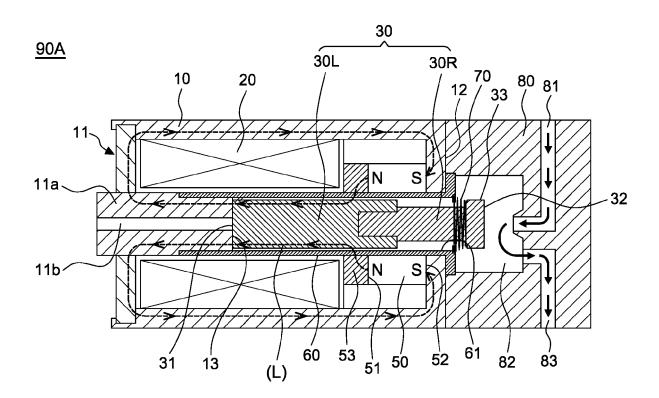


FIG.4B

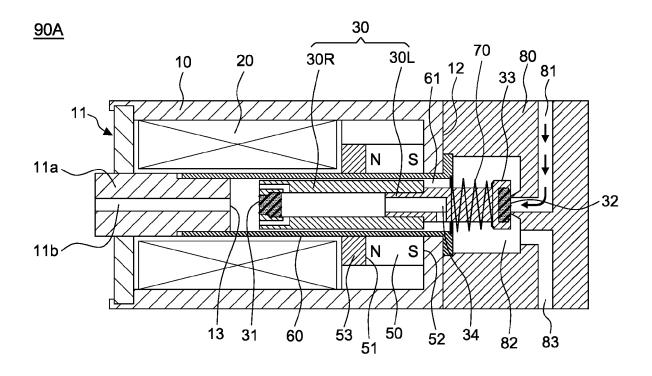


FIG.5A

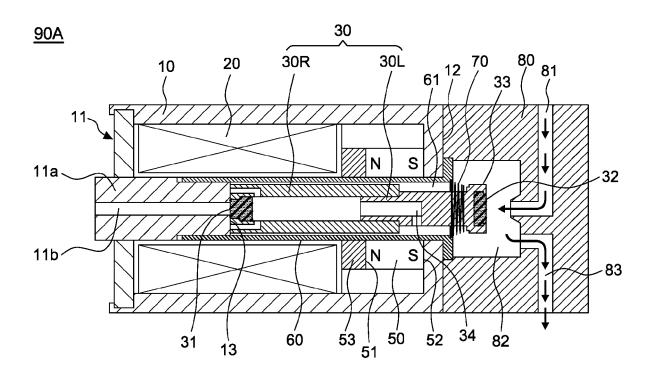


FIG.5B

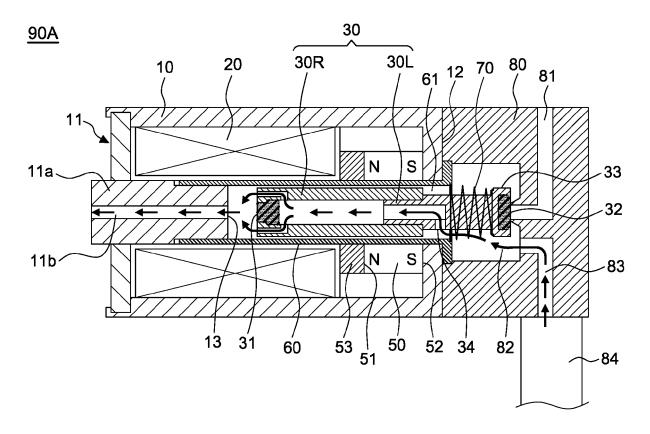


FIG.5C

EUROPEAN SEARCH REPORT

Application Number

EP 15 19 8358

10	
15	
20	
25	
30	
35	
40	
45	
50	

55

5

Citation of document with indicof relevant passage 3 2 099 223 A (HOSID December 1982 (1982 page 3, lines 20-23 page 3, line 89 - page 5, lines 45-91 3 5 029 807 A (FUCHS July 1991 (1991-07-column 4, line 5	EN ELECTRONI 2-12-01) 3,49-69 * lage 4, line 5 FRANZ [DE]) 09) column 5, li 15 CHIH-SHENG 15-12) 16 column 3, l	(CS CO) 48 * ine 24 * G [TW])	Relevant to claim 1-7 1-8	TECHNICAL FIELDS SEARCHED (IPC) TO THE APPLICATION OF THE APPLICATION (IPC) TO THE APPLICATION OF THE APPLICATION (IPC) TECHNICAL FIELDS SEARCHED (IPC) H01F F16K
December 1982 (1982 page 3, lines 20-23 page 3, lines 89 - page 5, lines 45-91 5 5 029 807 A (FUCHS July 1991 (1991-07-column 4, line 5 - 6 6 246 131 B1 (SHEN 2 June 2001 (2001-06 column 2, line 57 -	2-12-01) 3,49-69 * bage 4, line	48 *) ine 24 * G [TW])	1-7	H01F7/122 H01F7/16 TECHNICAL FIELDS SEARCHED (IPC) H01F
July 1991 (1991-07- column 4, line 5 - - 5 6 246 131 B1 (SHEN 2 June 2001 (2001-06 column 2, line 57 -	column 5, li column 5, li G CHIH-SHENG (-12) column 3, l	ine 24 * G [TW])		SEARCHED (IPC)
2 June 2001 (2001-06 column 2, line 57 -	5-12) · column 3, 1		1-8	SEARCHED (IPC)
				SEARCHED (IPC)
				H01F
ne present search report has bee	n drawn up for all cla	aims		
ace of search	•			Examiner
unich	21 June	2016	Go	ls, Jan
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure		T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding		
ا ا	ce of search nich GORY OF CITED DOCUMENTS rly relevant if taken alone ty relevant if combined with another t of the same category	ce of search Date of comple 21 June GORY OF CITED DOCUMENTS Try relevant if taken alone ty relevant if combined with another t of the same category L	nich 21 June 2016 GORY OF CITED DOCUMENTS rly relevant if taken alone rly relevant if combined with another to fithe same category T: theory or principle E: earlier patent doc after the filing data D: document cited in L: document cited for	Date of completion of the search CORY OF CITED DOCUMENTS To theory or principle underlying the Eilearlier patent document, but public after the filing date provided in the application to to the same category Date of completion of the search To theory or principle underlying the Eilearlier patent document, but public after the filing date provided in the application to to the same category Date of completion of the search To theory or principle underlying the Eilearlier patent document, but public after the filing date provided in the application to the same category.

EP 3 179 488 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 19 8358

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

21-06-2016

)	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
5	GB 2099223 A	01-12-1982	DE 3215057 A1 FR 2504718 A1 GB 2099223 A JP H0134326 Y2 JP S57170513 U US 4419643 A	18-11-1982 29-10-1982 01-12-1982 19-10-1989 27-10-1982 06-12-1983
)	US 5029807 A	09-07-1991	DE 3814765 A1 EP 0340625 A1 FR 2630805 A1 JP 2540206 B2 JP H01320385 A US 5029807 A	09-11-1989 08-11-1989 03-11-1989 02-10-1996 26-12-1989 09-07-1991
5	US 6246131 B1	12-06-2001	CA 2293034 A1 DE 19958888 A1 DE 20000397 U1 GB 2357375 A US 6246131 B1	20-06-2001 13-06-2001 13-04-2000 20-06-2001 12-06-2001
-				
0				
5				
)				
n NFM P0459				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 179 488 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6246131 B [0003] [0010] [0028]

• US 6057750 A [0003]