TECHNICAL FIELD
[0001] The present invention relates to an audio processing device that performs audio signal
processing to a digital audio signal.
BACKGROUND ART
[0002] There is an audio processing device that performs audio signal processing such as
D/A conversion and amplification to a digital audio signal. Some of the audio processing
devices output an analog audio signal to multiple speakers including a speaker that
is provided at a ceiling. (For example, see patent literature 1.) In recent years,
there are cases where a ceiling reflection type speaker that reproduces an audio toward
the ceiling is provided instead of the speaker that is provided at the ceiling because
providing the speaker at the ceiling is expensive. The audio that is reproduced by
the ceiling reflection type speaker reflects at the ceiling and arrives at a listener.
PRIOR ART DOCUMENT
PATENT LITERATURE
SUMMARY OF THE INVENTION
PROBLEM TO BE RESOLVED BY THE INVENTION
[0004] Like above, in case that the ceiling reflection type speaker that makes the audio
reflect at the ceiling reproduces the audio, frequency band that the listener feels
superior is different between the audio that is arrived from the ceiling reflection
type speaker at the listener directly (direct route) and the audio that is arrived
at the listener after being reflected at the ceiling (reflected route). In the direct
route, the audio of frequency that is not more than predetermined frequency becomes
superior. In the reflected route, the audio of frequency that is not less than predetermined
frequency becomes superior. Therefore, time lag of route difference between the direct
route and the reflected route occurs between the audio of low frequency and the audio
of high frequency. For this reason, in case that the listener listens to the audio
that is output from the ceiling reflection type speaker, there is a problem that the
listener feels that sense of localization and sense of connecting with the other channels
are lost.
[0005] An objective of the present invention is to resolve a problem that a listener feels
that sense of localization and sense of connecting with the other channels are lost
in case that the listener listens to an audio that is output from a ceiling reflection
type speaker in an audio processing device that output an analog audio signal to speakers
including the ceiling reflection type speaker that makes an audio reflect at a ceiling.
MEANS FOR SOLVING THE PROBLEM
[0006] An audio processing device of a first invention that outputs an analog audio signal
to speakers including a ceiling reflection type speaker that reproduces an audio toward
a ceiling comprising: a digital signal processor that performs audio signal processing
against a digital audio signal; and a D/A converter that converts the digital audio
signal that is output from the digital signal processor into an analog audio signal,
wherein the digital signal processor performs low-pass filter processing that extracts
low frequency component from the digital audio signal, high-pass filter processing
that extracts high frequency component from the digital audio signal, delay processing
that delays the low frequency component of the digital audio signal that is extracted
by the low-pass filter processing, and composition processing that composes the low
frequency component of the digital audio signal that is delayed by the delay processing
and high frequency component of the digital audio signal that is extracted by the
high-pass filter processing toward the digital audio signal as the audio signal processing.
[0007] In the present invention, low frequency component of a digital audio signal that
is delayed by delay processing and high frequency component of the digital audio signal
that is extracted by high-pass filter processing are composed. Then, a composed digital
audio signal is converted into an analog audio signal and the analog audio signal
is output to a ceiling reflection type speaker. Therefore, time lag that occurs from
arrival route difference between an audio of low frequency and the audio of high frequency
is resolved. Due to this, a problem that a listener feels that sense of localization
and sense of connecting with the other channels are lost can be resolved.
[0008] The audio processing device of a second invention, is the audio processing device
of the first invention, wherein the digital signal processor delays the low frequency
component of the digital audio signal with time difference between time that an audio
arrives at a listener after reflecting at the ceiling from the ceiling reflection
type speaker and time that the audio arrives from the ceiling reflection type speaker
at the listener directly in the delay processing.
[0009] The audio processing device of a third invention, is the audio processing device
of the second invention, wherein the digital signal processor performs calculation
of "(Lr - Ld) / Vs × 100) so as to calculate the time difference in case that the
distance of a reflected route that the audio arrives at the listener after reflecting
at the ceiling from the ceiling reflection type speaker is "Lr", the distance of a
direct route that the audio arrives from the ceiling reflection type speaker at the
listener directly is "Ld", and sound speed is "Vs".
[0010] The audio processing device of a fourth invention, is the audio processing device
of the third invention, wherein the digital signal processor measures the distance
of the direct route "Ld" by sound field correction.
[0011] The audio processing device of a fifth invention, is the audio processing device
of the third or the fourth invention, wherein the digital signal processor performs
calculation of "2 × (Lc
2+ (Ld/2)
2))
1/2" so as to calculate the distance of the reflected route "Lr" in case that the distance
from the ceiling reflection type speaker to the ceiling is "Lc".
[0012] The audio processing device of a sixth invention, is the audio processing device
of the fifth invention, further comprising: a controller that receives setting of
the distance to the ceiling "Lc".
[0013] The audio processing device of the seventh invention, is the audio processing device
of anyone of the first to the sixth invention, wherein the digital audio processor
extracts low frequency component not more than 2.5 kHz from the digital audio signal
in the low-pass filter processing and extracts high frequency component not less than
2.5 kHz from the digital audio signal in the high-pass filter processing.
[0014] An audio processing device of the eighth invention that outputs an analog audio signal
to a ceiling reflection type speaker that reproduces an audio toward a ceiling comprising:
a digital signal processor that performs audio signal processing against a digital
audio signal; and a D/A converter that converts the digital audio signal that is output
from the digital signal processor into an analog audio signal, wherein the digital
signal processor performs low-pass filter processing that extracts low frequency component
from the digital audio signal, high-pass filter processing that extracts high frequency
component from the digital audio signal, delay processing that delays the low frequency
component of the digital audio signal that is extracted by the low-pass filter processing,
and composition processing that composes the low frequency component of the digital
audio signal that is delayed by the delay processing and the high frequency component
of the digital audio signal that is extracted by the high-pass filter processing as
the audio signal processing.
EFFECT OF THE INVENTION
[0015] According to the present invention, a problem that a listener feels that sense of
localization and sense of connecting with the other channels are lost can be resolved.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016]
Fig. 1 is a block diagram illustrating a configuration of an AV receiver according
to an embodiment of the present invention.
Fig. 2 is a side view illustrating a ceiling reflection type speaker schematically.
Fig. 3 is a diagram illustrating audio signal processing that is performed against
a digital audio signal for the ceiling reflection type speaker by a DSP.
Fig. 4 is a diagram that is for describing delay time (time difference) by the distance
difference between reflected route and direct route.
DESCRIPTION OF THE EMBODIMENTS
[0017] An embodiment of the present invention is described below. Fig. 1 is a block diagram
illustrating a configuration of an AV receiver according to an embodiment of the present
invention. An AV receiver 1 (an audio processing device) outputs an analog audio signal
to multiple speakers including a ceiling reflection type speaker 11 that reproduces
an audio toward a ceiling. For example, a reproduction component 14 such as Blu-ray
(registered trademark) player is connected to the AV receiver 1. As illustrated in
Fig. 1, the AV receiver 1 includes a microcomputer 2, a display section 3, an operation
section 4, a DSP (Digital Signal Processor) 5, a D/A converter 6, and an amplifier
7. The AV receiver 1 can perform video signal processing to a digital video signal
so as to output a video signal to a television receiver in addition to a digital audio
signal. In the present embodiment, the configuration of the AV receiver 1 related
to audio signal processing to the digital audio signal is described.
[0018] The microcomputer 2 (a controller) controls respective sections composing the AV
receiver 1. The display section 3 displays a setting screen, volume level and so on.
The display section 3 is configured by a LCD (Liquid Crystal Display), a fluorescence
display tube, and so on. The operation section 4 is for receiving user operation.
The operation section 4 is configured by operation buttons that are provided at an
enclosure of the AV receiver 1, and a remote controller.
[0019] The DSP 5 (a digital signal processor) performs the audio signal processing such
as audio decode processing that generates a multiple channels digital audio signal
from the digital audio signal that is output from the reproduction component 14, equalizing
processing, and sound field processing.
[0020] Herein, for example, a 7.1 channels digital audio signal and a 2 channels digital
audio signal for the ceiling reflection type speaker 11 are included in the multiple
channels digital audio signal (7.1.2 channels). A front left, a front right, a center,
a subwoofer, a surround left, a surround right, a surround back left, and a surround
back right digital audio signal are included in the 7.1 channels digital audio signal.
The 7.1 channels digital audio signal is for the speaker 12 and the subwoofer speaker
13 that are not speakers of type that output the audio toward the ceiling. In other
words, the 7.1 channels digital audio signal is for the speaker 12 and the subwoofer
speaker 13 that reproduce the audio toward the listener directly. Sound emission direction
of the speaker that reproduces the audio toward the listener directly is almost a
horizontal direction. The 2 channels digital audio signal for the ceiling reflection
type speaker 11 is a height channel digital audio signal. Front height left and front
height right digital audio signals are included in a 2 channel digital audio signal
for the ceiling reflection type speaker 11.
[0021] Low-pass filter (hereinafter referred as to "LPF') processing that the DSP 5 performs
is described later. The D/A converter 6 D/A-converts the digital audio signal into
the analog audio signal.
[0022] The amplifier 7 amplifies the analog audio signal into which the D/A convert 6 D/A-converts.
The amplifier 7 amplifies front left, front right, center, surround left, surround
right, surround back left, surround back right, front height left, and front height
right analog audio signals respectively.
[0023] The front left analog audio signal that the amplifier 7 amplifies is output to the
speaker 12 for the front left. The front right analog audio signal that the amplifier
7 amplifies is output to the speaker 12 for the front right. The center analog audio
signal that the amplifier 7 amplifies is output to the speaker 12 for the center.
The surround left analog audio signal that the amplifier 7 amplifies is output to
the speaker 12 for the surround left. The surround right analog audio signal that
the amplifier 7 amplifies is output to the speaker 12 for the surround right.
[0024] The surround back left analog audio signal that the amplifier 7 amplifies is output
to the speaker 12 for the surround back left. The surround back right analog audio
signal that the amplifier 7 amplifies is output to the speaker 12 for the surround
back right. The front height left analog audio signal that the amplifier 7 amplifies
is output to the ceiling reflection type speaker 11 for the front height left. The
front height right analog audio signal that the amplifier 7 amplifies is output to
the ceiling reflection type speaker 11 for the front height right. The subwoofer analog
audio signal into which the D/A converter 6 D/A-converts is output to the subwoofer
speaker 13.
[0025] Fig. 2 is a side view illustrating the ceiling reflection type speaker 11 schematically.
The ceiling reflection type speaker 11 is put on the speaker 12 that reproduces the
audio toward the listener directly and used on it. For example, the ceiling reflection
type speaker 11 for the front height left is put on the speaker 12 for the front left
and used on it. Further, the ceiling reflection type speaker 11 for the front height
right is put on the speaker 12 for the front right and used on it. The ceiling reflection
type speaker 11 may be put on the speaker 12 for the surround left and used as the
speaker for rear height left. The ceiling reflection type speaker 11 may be put on
the speaker 12 for the surround right and used as the speaker for rear height right.
Sound emission direction of the speaker 12 is almost a horizontal direction.
[0026] Next, the LPF processing, high-pass filter (hereinafter referred as to "HPF') processing,
delay processing and composition processing by the DSP 5 are described. The LPF processing,
the HPF processing, the delay processing, and the composition processing by the DSP
5 are performed against the digital audio signal for the ceiling reflection type speaker
11. The LPF processing, the HPF processing, the delay processing, and the composition
processing by the DSP 5 are not performed against the digital audio signal (for example,
7.1 channels audio signal) for the speaker 12 and the subwoofer speaker 13 other than
the ceiling reflection type speaker 11.
[0027] Fig. 3 is a diagram illustrating the audio signal processing that is performed against
the digital audio signal for the ceiling reflection type speaker 11 by the DSP 5.
The DSP 5 performs the LPF processing that extracts low frequency component from the
digital audio signal for the ceiling reflection type speaker 11. Concretely, the DSP
5 extracts the low frequency component not more than 2.5 kHz from the digital audio
signal. Further, the DSP 5 performs the HPF processing that extracts high frequency
component form digital audio signal. Concretely, the DSP 5 extracts the high frequency
component not less than 2.5 kHz from the digital audio signal.
[0028] The DSP 5 performs the delay processing that delays the low frequency component of
the digital audio signal that is extracted by the LPF processing. Concretely, the
DSP 5 delays the low frequency component of the digital audio signal with time difference
(delay time) between time that the audio arrives at the listener after reflecting
at the ceiling from the ceiling reflection type speaker 11 and time that the audio
arrives from the ceiling reflection type speaker 11 at the listener directly.
[0029] Fig. 4 is a diagram that is for describing delay time (time difference) by the distance
difference between a reflected route and a direct route. The reflected route is a
route that the audio arrives at the listener after reflecting at the ceiling from
the ceiling reflection type speaker 11. The direct route is a route that the audio
arrives from the ceiling reflection type speaker 11 at the listener directly. Distance
of the reflected route is "Lr". Distance of the direct route is "Ld". Sound speed
is Vs = 340 [m/s]. Delay time is "Dta". The DSP 5 performs calculation of "Dta = (Lr
- Ld) / Vs × 1000[m/s]" so as to calculate the delay time (the time difference).
[0030] The DSP 5 measures the distance of the direct route "Ld" by sound field correction.
The sound field correction is performed by the DSP 5 after measuring test tone by
a microphone. In case that the sound field correction is not performed by the DSP
5, default value (for example, general distance between the ceiling reflection type
speaker 11 and the listener) is used as the distance of the direct route "Ld".
[0031] In case that the distance from the ceiling reflection type speaker 11 to the ceiling
is "Lc", the DSP 5 performs calculation of "Lr = 2 ×((Lc
2 + (Ld / 2)
2))
1/2" so as to calculate the distance of the reflected route "Lr". Herein, the microcomputer
2 receives setting of the distance to the ceiling "Lc" via the operation section 4.
For example, the microcomputer 2 displays OSD (On Screen Display) that the distance
to the ceiling "Lc" can be input at the television receiver and receives setting of
the distance to the ceiling "Lc" that is input by a remote controller before measuring
the test tone. In case that the microcomputer 2 does not receive the distance to the
ceiling "Lc", default value (for example, the distance "Lc" from the ceiling reflection
type speaker 11 to the ceiling of average height) is used as the distance to the ceiling
"Lc".
[0032] In case that the distance from the ceiling reflection type speaker 11 to the ceiling
"Lc" is 1.70 [m] and the distance of the direct route "Ld" is 2.10 [m], the distance
of the reflected route "Lr" is 4.00 [m]. Then, the delay time Dta is (4.00 - 2.10)
/ 340 × 1000 = 5.58 [ms].
[0033] The DSP 5 performs the composition processing that composes the low frequency component
of the digital audio signal that is delayed by the delay processing and the high frequency
component of the digital audio signal that is extracted by the HPF processing. The
digital audio signal that is composed by the composition processing is output to the
D/A converter 6. The D/A converter 6 converts the digital audio signal that is output
from the DSP 5 into the analog audio signal. The analog audio signal that is D/A-converted
by the D/A converter 6 is output to the ceiling reflection type speaker 11. The ceiling
reflection type speaker 11 reproduces the audio based on the analog audio signal that
is output from the D/A converter 6.
[0034] As described in the above, in the present embodiment, low frequency component of
the digital audio signal that is delayed by the delay processing and high frequency
component of the digital audio signal that is extracted by the HPF processing are
composed. Then, a composed digital audio signal is converted into the analog audio
signal and the analog audio signal is output to the ceiling reflection type speaker
11. Therefore, time lag that occurs from arrival route difference between the audio
of low frequency and the audio of high frequency is resolved. Due to this, a problem
that the listener feels that sense of localization and sense of connecting with the
other channels are lost can be resolved.
[0035] The embodiment of the present invention is described above, but the mode to which
the present invention is applicable is not limited to the above embodiment and can
be suitably varied without departing from the scope of the present invention.
[0036] In the above mentioned embodiment, the DSP 5 extracts low frequency component not
more than 2.5 kHz from the digital audio signal in the LPF processing. Low frequency
component that is extracted in the LPF processing is not limited to component not
more than 2.5 kHz and may be other frequency band. Further, the DSP 5 extracts high
frequency component not less than 2.5 kHz from the digital audio signal in the HPF
processing. High frequency component that is extracted in the HPF processing is not
limited to component not less than 2.5k kHz and may be other frequency band.
[0037] In the above mentioned embodiment, the AV receiver is illustrated as an audio processing
device. Not limited to this, it may be the other audio processing device.
INDUSTRIAL APPICABILITY
[0038] The present invention can be suitably employed in the audio processing device that
performs audio signal processing to the digital audio signal.
DESCRIPTION OF REFFERENCE SIGNS
[0039]
- 1
- AV receiver (audio processing device)
- 2
- Microcomputer (controller)
- 5
- DSP (digital signal processor)
- 6
- D/A converter
- 11
- Ceiling reflection type speaker
- 12
- Speaker
- 13
- Subwoofer Speaker
1. An audio processing device that outputs an analog audio signal to speakers including
a ceiling reflection type speaker that reproduces an audio toward a ceiling comprising:
a digital signal processor that performs audio signal processing against a digital
audio signal; and
a D/A converter that converts the digital audio signal that is output from the digital
signal processor into an analog audio signal,
wherein the digital signal processor performs low-pass filter processing that extracts
low frequency component from the digital audio signal, high-pass filter processing
that extracts high frequency component from the digital audio signal, delay processing
that delays the low frequency component of the digital audio signal that is extracted
by the low-pass filter processing, and composition processing that composes the low
frequency component of the digital audio signal that is delayed by the delay processing
and high frequency component of the digital audio signal that is extracted by the
high-pass filter processing toward the digital audio signal as the audio signal processing.
2. The audio processing device according to claim 1, wherein the digital signal processor
delays the low frequency component of the digital audio signal with time difference
between time that an audio arrives at a listener after reflecting at the ceiling from
the ceiling reflection type speaker and time that the audio arrives from the ceiling
reflection type speaker at the listener directly in the delay processing.
3. The audio processing device according to claim 2, wherein the digital signal processor
performs calculation of (Lr - Ld) / Vs × 100 so as to calculate the time difference
in case that the distance of a reflected route that the audio arrives at the listener
after reflecting at the ceiling from the ceiling reflection type speaker is "Lr",
the distance of a direct route that the audio arrives from the ceiling reflection
type speaker at the listener directly is "Ld", and sound speed is "Vs".
4. The audio processing device according to claim 3, wherein the digital signal processor
measures the distance of the direct route "Ld" by sound field correction.
5. The audio processing device according to claim 3 or 4, wherein the digital signal
processor performs calculation of "2 × (Lc2+ (Ld/2)2))1/2" so as to calculate the distance of the reflected route "Lr" in case that the distance
from the ceiling reflection type speaker to the ceiling is "Lc".
6. The audio processing device according to claim 5, further comprising: a controller
that receives setting of the distance to the ceiling "Lc".
7. The audio processing device according to anyone of claims 1 to 6, wherein the digital
audio processor extracts low frequency component not more than 2.5 kHz from the digital
audio signal in the low-pass filter processing and extracts high frequency component
not less than 2.5 kHz from the digital audio signal in the high-pass filter processing.
8. An audio processing device that outputs an analog audio signal to a ceiling reflection
type speaker that reproduces an audio toward a ceiling comprising: a digital signal
processor that performs audio signal processing against a digital audio signal; and
a D/A converter that converts the digital audio signal that is output from the digital
signal processor into an analog audio signal,
wherein the digital signal processor performs low-pass filter processing that extracts
low frequency component from the digital audio signal, high-pass filter processing
that extracts high frequency component from the digital audio signal, delay processing
that delays the low frequency component of the digital audio signal that is extracted
by the low-pass filter processing, and composition processing that composes the low
frequency component of the digital audio signal that is delayed by the delay processing
and the high frequency component of the digital audio signal that is extracted by
the high-pass filter processing as the audio signal processing.