EP 3 187 305 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

05.07.2017 Patentblatt 2017/27

(21) Anmeldenummer: 16206563.5

(22) Anmeldetag: 23.12.2016

(51) Int Cl.:

B24B 23/02 (2006.01) B24D 7/10 (2006.01)

B24B 55/10 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

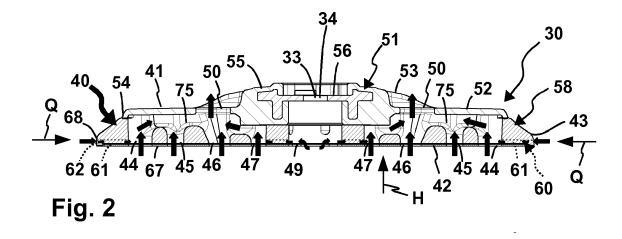
BA ME

Benannte Validierungsstaaten:

MA MD

(30) Priorität: 04.01.2016 DE 102016100072

(71) Anmelder: Festool GmbH 73240 Wendlingen am Neckar (DE)


(72) Erfinder: Randecker, Andreas 72581 Dettingen (DE)

(74) Vertreter: Patentanwälte Bregenzer und Reule Partnerschaftsgesellschaft mbB Neckarstraße 47

73728 Esslingen (DE)

(54)SCHLEIFTELLER UND SCHLEIFMITTEL

(57)Die Erfindung betrifft einen Schleifteller (40) für eine Hand-Schleifmaschine (10), mit einer Antriebshalterung (33) zur drehfesten Befestigung an einem Abtrieb (14a) der Hand-Schleifmaschine (10), so dass der Schleifteller (40) durch die Schleifmaschine (10) in eine zu einer schleifenden Bearbeitung eines Werkstücks (W) geeignete Schleifbewegung antreibbar ist, wobei ein Schleiftellerkörper (57) des Schleiftellers (40) eine mit einer Haftschicht (65) versehene Bearbeitungsfläche (42) zur lösbaren Befestigung eines mit einer Gegenhaftschicht (82) versehenen, insbesondere als Schleifblatt (90) ausgestalteten und eine Abrasionsschicht (81) zu einer abrasiven Bearbeitung des Werkstücks (W) aufweisenden Schleifmittels (80) aufweist, wobei an der Bearbeitungsfläche (42) Staubluft-Einströmöffnungen (44-48) für bei der Bearbeitung des Werkstücks (W) entstehende, mit Staub beladene und durch Staubluft-Durchströmöffnungen (84-88) des Schleifmittels (80) entlang einer Hauptströmungsrichtung (H) einströmende Staubluft (S) angeordnet sind, die mit mindestens einer Staubluft-Ausströmöffnung (50) an einer von der Bearbeitungsfläche (42) abgewandten Maschinenseite (31) des Schleiftellers (40) über eine Absaugkanalanordnung (78) verbunden sind, so dass im an der Schleifmaschine (10) montierten Zustand des Schleiftellers (40) eine Absaugeinrichtung (25) der Schleifmaschine (10) in die Staubluft-Einströmöffnungen (44-48) einströmende Staubluft (S) durch die mindestens eine Staubluft-Ausströmöffnung (50) ansaugen kann. Der Schleifteller (40) weist mindestens einen Staubluftkanal (61, 63) auf, der zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht (81) einen Staublufteinlass (62, 64) zwischen der Abrasionsschicht (81) des Schleifmittels (80) und der Maschinenseite (31) des Schleiftellers (40) aufweist und abseits der Abrasionsschicht (81) mit der mindestens einen Ausströmöffnung (50) in direkter Strömungsverbindung steht.

25

30

35

40

45

50

Beschreibung

[0001] Die Erfindung betrifft einen Schleifteller für eine Hand-Schleifmaschine, mit einer Antriebshalterung zur drehfesten Befestigung an einem Abtrieb der Hand-Schleifmaschine, so dass der Schleifteller durch die Schleifmaschine in eine zu einer schleifenden Bearbeitung eines Werkstücks geeignete, insbesondere rotatorische und/oder exzentrische, Schleifbewegung antreibbar ist, wobei ein Schleiftellerkörper des Schleiftellers eine mit einer Haftschicht versehene Bearbeitungsfläche zur lösbaren Befestigung eines mit einer Gegenhaftschicht versehenen, insbesondere als Schleifblatt ausgestalteten und eine Abrasionsschicht zu einer abrasiven Bearbeitung des Werkstücks aufweisenden Schleifmittels aufweist, wobei an der Bearbeitungsfläche Staubluft-Einströmöffnungen für bei der Bearbeitung des Werkstücks entstehende, mit Staub beladene und durch Staubluft-Durchströmöffnungen des Schleifmittels entlang einer Hauptströmungsrichtung einströmende Staubluft angeordnet sind, die mit mindestens einer Staubluft-Ausströmöffnung an einer von der Bearbeitungsfläche abgewandten Maschinenseite des Schleiftellers über eine Absaugkanalanordnung verbunden sind, so dass im an der Schleifmaschine montierten Zustand des Schleiftellers eine Absaugeinrichtung der Schleifmaschine in die Staubluft-Einströmöffnungen einströmende Staubluft durch die mindestens eine Staubluft-Ausströmöffnung ansaugen kann.

1

[0002] Ein derartiger Schleifteller ist beispielsweise in EP 2 070 651 B1 erläutert. Der bekannte Schleifteller sieht eine Absaugung der Staubluft durch die Durchströmöffnungen des Schleifmittels hindurch vor, wobei in der Ebene zwischen dem Schleifmittel und dem Schleifteller, also entlang der Bearbeitungsfläche des Schleiftellers, eine Querströmung von frischer Luft zur Vermeidung von Staubnestern zwischen Schleifmittel und Schleifteller vorgesehen ist. Der Betrieb des Schleiftellers ist in der Praxis effektiv, wobei dennoch Staub in die Umgebung des Schleiftellers gelangt, welcher bei der weiteren schleifenden Bearbeitung des Werkstücks wieder zwischen die Abrasionsschicht und das Werkstück kommt und dort zu unerwünschten Schleifeffekten führt. [0003] Es ist daher die Aufgabe der vorliegenden Erfindung, ein Schleifwerkzeug, insbesondere einen Schleifteller und/oder ein Schleifmittel, mit verbesserter Staubabsaugung bereitzustellen.

[0004] Zur Lösung der Aufgabe ist bei einem Schleifteller der eingangs genannten Art vorgesehen, dass er mindestens einen Staubluftkanal aufweist, der zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht einen Staublufteinlass zwischen der Abrasionsschicht des Schleifmittels und der Maschinenseite des Schleiftellers aufweist und abseits der Abrasionsschicht mit der mindestens einen Ausströmöffnung in direkter Strömungsverbindung steht.

[0005] An einem derartigen Schleifteller kann beispielsweise ein typisches Schleifblatt oder sonstiges Schleifmittel verwendet werden, welches Durchströmöffnungen für die Staubluft-Einströmöffnungen an der Bearbeitungsseite des Schleiftellers hat. Somit können vorhandene Schleifmittel oder Schleifblätter ohne weiteres weiter verwendet werden. Weiterhin können Schleifmittel verwendet werden, die auch für sozusagen konventionelle Schleifteller, also Schleifteller ohne mindestens einen Staubluftkanal im Sinne der Erfindung, geeignet sind, sodass auf der Baustelle selbst dann, wenn ein erfindungsgemäßer Schleifteller verwendet wird, vorhandene Schleifteller mit konventioneller Absaugung von Staubluft weiter verwendbar sind. Es ist aber auch möglich, an einem Schleifteller gemäß der Erfindung das nachfolgend erläuterte Schleifmittel zu verwenden. Dieses Schleifmittel kann aber auch an anderen, sozusagen konventionellen Schleifteller verwendet werden, weil es das erfindungsgemäße Konzept für sich realisiert:

Zur Lösung der Aufgabe ist nämlich auch ein Schleifmittel, insbesondere Schleifblatt, für einen Schleifteller zur Verwendung an einer Hand-Schleifmaschine vorgesehen, wobei der Schleifteller anhand einer Antriebshalterung drehfest an einem Abtrieb der Hand-Schleifmaschine befestigbar ist, so dass der Schleifteller durch die Schleifmaschine in eine zu einer schleifenden Bearbeitung eines Werkstücks geeignete, insbesondere rotatorische und/oder exzentrische, Schleifbewegung antreibbar ist, wobei das Schleifmittel eine Abrasionsschicht zu einer abrasiven Bearbeitung des Werkstücks und eine Gegenhaftschicht zur lösbaren Befestigung an einer mit einer Haftschicht versehenen Bearbeitungsfläche des Schleiftellers aufweist, wobei das Schleifmittel die Abrasionsschicht durchsetzende Staubluft-Durchströmöffnungen für bei der Bearbeitung des Werkstücks entstehende, mit Staub beladene und das Schleifmittel entlang einer Hauptströmungsrichtung zum Schleifteller hin, insbesondere in Staubluft-Einströmöffnungen an der Bearbeitungsfläche des Schleiftellers hinein, durchströmende Staubluft aufweist, so dass im an der Schleifmaschine montierten Zustand von Schleifteller und Schleifmittel eine Absaugeinrichtung der Schleifmaschine in die Staubluft-Einströmöffnungen einströmende Staubluft durch mindestens eine mit den Staubluft-Einströmöffnungen über eine Absaugkanalanordnung in Strömungsverbindung stehende Staubluft-Ausströmöffnung an einer von der Bearbeitungsfläche abgewandten Maschinenseite des Schleiftellers ansaugen kann. Bei dem Schleifmittel ist vorgesehen, dass es mindestens einen Staubluftkanal aufweist, der zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht einen Staublufteinlass seitlich neben der Abrasionsschicht aufweist.

[0006] Bei einem Schleifwerkzeug, das den oben erläuterten erfindungsgemäßen Schleifteller und/oder das erfindungsgemäße Schleifmittel aufweist, kommt ein Grundgedanke zum Ausdruck, nämlich dass Staubluft zwar in der Hauptströmungsrichtung in an sich bekannter Weise durch die Durchtrittsöffnungen des Schleifmittels und die mit diesen typischerweise oder vorteilhafterweise fluchtenden Staubluft-Einströmöffnungen des Schleiftellers abgesaugt wird, zusätzlich aber auch noch die Peripherie des Schleiftellers abgesaugt wird, nämlich durch den mindestens einen Staubluftkanal hindurch, der zwischen der eigentlichen Arbeitsschicht, der Abrasionsschicht, und der Oberseite des Schleiftellers oder der Maschinenseite des Schleiftellers einen Staubluft-Einlass oder mehrere Staubluft-Einlässe aufweist.

[0007] Somit wird also Staubluft nicht nur in der Hauptströmungsrichtung, sondern auch in einer Querströmungsrichtung von der Werkstück-Oberfläche abgesaugt. Dabei gelangt diese Staubluft nicht über die Abrasionsschicht zur Ausströmöffnung, sondern beispielsweise direkt in einen oder mehrere der Staubluft-Einströmöffnungen des Schleiftellers. Wenn also beispielsweise in der Umgebung des Schleifwerkzeugs, beispielsweise im Bereich seines Außenumfangs oder auch in einem sonstigen sozusagen passiven inneren Bereich des Schleiftellers oder Schleifwerkzeugs, nämlich dort, wo vorteilhaft für die Bedienung der Antriebshalterung eine mit der Antriebshalterung fluchtende Öffnung vorhanden ist, Stäube, insbesondere sehr feine Stäube vorhanden sind, werden diese über den mindestens einen Staubluftkanal optimal abgesaugt. Dabei muss der Staub eben nicht durch die Staubluft-Durchströmöffnungen des Schleifmittels strömen, sondern gelangt abseits der Abrasionsschicht zu der mindestens einen Staubluft-Ausströmöffnung.

[0008] Der mindestens eine Staubluftkanal oder die Anordnung mehrerer Staubluftkanäle und/oder deren Staublufteinlässe sind also vorzugsweise nicht in oder an der Abrasionsschicht vorgesehen, sodass diese abgesehen von den Staubluft-Durchtrittsöffnungen vollständig zur abrasiven oder schleifenden Bearbeitung des Werkstücks bereitsteht.

[0009] Anhand eines elektrischen Antriebsmotors, eines Druckluftmotors oder dergleichen anderen Antriebs der Schleifmaschine kann das Schleifwerkzeug, insbesondere der Schleifteller, in eine rotatorische Schleifbewegung und/oder eine exzentrische Schleifbewegung und/oder eine hyperzykloide Schleifbewegung angetrieben werden. Die Schleifmaschine weist dazu vorzugsweise ein Getriebe, beispielsweise ein Exzentergetriebe, auf.

[0010] Die Abrasionsschicht weist beispielsweise eine Körnung oder ein Schleifgewirke auf.

[0011] Der mindestens eine Staubluftkanal ist vorzugsweise in direkter Strömungsverbindung mit mindestens einer der Staubluft-Einströmöffnungen. Der im Schleifmittel vorgesehene Staubluftkanal steht zweckmäßigerweise abseits der Abrasionsschicht mit der mindestens einen Durchströmöffnung in direkter Strömungsverbindung

[0012] Der mindestens eine Staubluftkanal kommuni-

ziert und/oder ist in Strömungsverbindung beispielsweise unmittelbar mit der Absaugkanalanordnung und/oder mindestens einer der Staubluft-Einströmöffnungen und/oder mit der mindestens einen Staubluft-Ausströmöffnung an der Maschinenseite des Schleiftellers.

[0013] Bevorzugt ist es, dass der mindestens eine Staubluftkanal zur Durchströmung mit Staubluft zwischen der Abrasionsschicht des Schleifmittels und der Maschinenseite des Schleiftellers quer zu der Hauptströmungsrichtung verläuft. Somit strömt also die Staubluft quer zu Hauptströmungsrichtung.

[0014] Bevorzugt ist es, wenn der mindestens eine Staubeinlass für den mindestens einen Staubluftkanal nahe bei der Abrasionsschicht ist. Beispielsweise ist vorgesehen, dass der Staublufteinlass für den mindestens einen Staubluftkanal in einem Zwischenraum zwischen dem Schleifblatt und der Bearbeitungsfläche angeordnet ist. Bevorzugt ist es, wenn der Schleiftellerkörper oder der Schleifteller insgesamt keinen Staublufteinlass für den mindestens einen Staubluftkanal oder weitere derartige Staubluftkanäle oberhalb der Bearbeitungsfläche aufweist. Somit sind also sämtliche Staublufteinlässe nahe bei der Abrasionsschicht und nicht beispielsweise im Schleiftellerkörper unmittelbar angeordnet.

[0015] Vorteilhaft ist es, wenn der mindestens eine Staublufteinlass oder alle Staublufteinlässe, die zwischen der der Abrasionsschicht und der Maschinenseite angeordnet sind und mit der mindestens einen Ausströmöffnung in direkter Strömungsverbindung stehen, im Bereich der Haftschicht oder der Ebene der Haftschicht und/oder im Bereich der Gegenhaftschicht oder der Ebene der Gegenhaftschicht angeordnet sind.

[0016] Zweckmäßig ist es ferner, wenn an dem Schleiftellerkörper, beispielsweise einem Schaumkörper oder elastischen Grundkörper des Schleiftellers, der die Bearbeitungsfläche aufweist, kein Staublufteinlass vorhanden ist. Mithin verläuft also die Strömung vorteilhaft im Bereich der Bearbeitungsfläche oder der Ebene der Bearbeitungsfläche von dem mindestens einen Staublufteinlass in Richtung der mindestens einen Ausströmöffnung.

[0017] Bevorzugt ist es weiterhin, wenn der Schleifteller eine Anordnung mehrerer Staublufteinlässe zwischen der Bearbeitungsseite und der Maschinenseite an seinem Außenumfang, insbesondere an seinem radialen Außenumfang oder seinem sich quer zur Bearbeitungsfläche erstreckenden Außenumfang, aufweist. Die Staublufteinlässe sind zweckmäßigerweise alle in der Ebene der Haftschicht oder an der Haftschicht angeordnet.

[0018] Die Staublufteinlässe sind zweckmäßigerweise in vorbestimmten Abständen oder Winkelabständen am Außenumfang des Schleiftellers zueinander angeordnet. Insbesondere sind die Abstände gleich. Somit sind in äquidistanten Positionen Staublufteinlässe am Außenumfang des Schleiftellers vorgesehen.

[0019] Zweckmäßig ist es auch, wenn die Anzahl der Staublufteinlässe am Außenumfang limitiert ist, bei-

40

45

spielsweise dass nur 40-50 Staublufteinlässe maximal vorhanden sind. Es können auch deutlich weniger Staublufteinlässe vorgesehen sein, beispielsweise nur 20-30 Staublufteinlässe vorhanden sind. Es können auch weniger als 20 Staublufteinlässe am Außenumfang des Schleiftellers vorgesehen sein, beispielsweise nur 16-18 Staublufteinlässe.

[0020] Das Verhältnis von strömungsdichten Partien am Außenumfang oder Innenumfang einer Ebene, in der der mindestens eine Staubluftkanal im Schleifteller oder Schleifmittel verläuft, zu aufgrund des mindestens einen Staubluftkanals und des mindestens einen Staubluftkanals und des mindestens einen Staublufteinlasses für eine Durchströmung mit Luft strömungsdurchlässigen Partien am Außenumfang oder Innenumfang dieser Ebene, beträgt vorzugsweise mindestens 10 zu 1, bevorzugt 5 zu 1 und weiter bevorzugt mindestens 3 zueinander zu 1. Das Schleifmittel und/oder der Schleifteller ist also in dieser Ebene umfangsseitig (Innenumfang oder Außenumfang) im wesentlichen strömungsdicht, weist jedoch den Staublufteinlass oder eine Anordnung mehrerer Staublufteinlässe auf.

[0021] Vorteilhaft ist es, wenn der mindestens eine Staubeinlass oder mehrere Staublufteinlässe näher bei der Abrasionsschicht als bei der Maschinenseite des Schleiftellers sind.

[0022] Die Haftschicht oder die Gegenhaftschicht bilden beispielsweise insgesamt eine Klett-Verbindung. Beispielsweise ist die Haftschicht oder die Gegenhaftschicht durch Velours oder ein sonstiges textiles Gewebe gebildet, während die zugeordnete komplementäre Komponente, also die Gegenhaftschicht oder die Haftschicht, eine Anordnung von Kletthaken umfasst. Selbstverständlich ist es möglich, dass eine lösbare Klebeverbindung als Haftschicht und/oder Gegenhaftschicht vorgesehen ist.

[0023] Die Haftschicht und/oder die Gegenhaftschicht können sich bis zum äußeren Rand des Schleiftellers, also über die gesamte Bearbeitungsfläche erstrecken. Es ist aber auch möglich, dass die Bearbeitungsfläche Aussparungen hat, an denen keine Haftschicht vorhanden ist. Selbstverständlich kann auch die Gegenhaftschicht nicht bis zum äußersten Randbereich das Schleifmittel reichen oder Aussparungen aufweisen. Eine bevorzugte Variante sieht vor, dass die Haftschicht und/oder die Gegenhaftschicht bis auf einen zweckmäßigerweise schmalen Randbereich die Bearbeitungsfläche des Schleiftellers oder die dieser gegenüberliegenden Befestigungsfläche des Schleifmittels bedecken.

[0024] Der Rand des Schleiftellers und/oder Schleifmittels, wo keine Haftschicht oder Gegenhaftschicht vorhanden ist, kann für eine Luftströmung, insbesondere eine Strömung der Staubluft, vorgesehen sein. Der Randbereich des Schleiftellers oder Schleifmittels, wo keine Haftschicht oder Gegenhaftschicht vorhanden ist, beträgt vorzugsweise maximal 10 %, besonders bevorzugt maximal 5 %, der Bearbeitungsfläche des Schleiftellers oder der ihr gegenüberliegenden Befestigungsfläche das Schleifmittels.

[0025] Bevorzugt ist es, wenn der mindestens eine Staubluftkanal zumindest abschnittsweise oder ausschließlich in der Haftschicht des Schleiftellers und/oder der Gegenhaftschicht des Schleifmittels verläuft. Der mindestens eine Staubluftkanal kann beispielsweise als eine Aussparung in der Haftschicht und/oder der Gegenhaftschicht des Schleifmittels ausgebildet sein. Somit braucht also beispielsweise der Schleiftellerkörper keine Aussparung für den Staubluftkanal aufweisen. Insbesondere bevorzugt ist es, wenn ein mit dem mindestens einen Staublufteinlass direkt verbundener oder diesen Staublufteinlass aufweisender Abschnitt oder in einer gemeinsamen Ebene mit dem Staublufteinlass angeordneter oder verlaufender Abschnitt des mindestens einen Staubluftkanals ausschließlich in der Haftschicht des Schleiftellers und/oder der Gegenhaftschicht des Schleifmittels verläuft.

[0026] Es ist aber möglich, dass zusätzlich zu dem mindestens einen Staubluftkanal in der Haftschicht oder Gegenhaftschicht mindestens ein weiterer Staubluftkanal im Schleiftellerkörper verläuft. Weiterhin ist es möglich, dass der Staubluftkanal über einen ersten Abschnitt in der Haftschicht und/oder der Gegenhaftschicht verläuft, und in einem weiteren oder zweiten Abschnitt in dem Schleiftellerkörper angeordnet ist. Der erste Abschnitt ist mit dem mindestens einen Staublufteinlass verbunden oder mündet in diesen. Der mindestens eine Staublufteinlass bildet zweckmäßigerweise einen Eingangsbereich oder Eingang des ersten Abschnitts des Staubluftkanals.

[0027] Ferner ist es möglich, dass im Schleiftellerkörper eine Aussparung vorgesehen ist, die mit einer Aussparung in der Haftschicht des Schleiftellers fluchtet oder mit dieser zusammenfällt, sodass beide Aussparungen in Zusammenwirkung einen Staubluftkanal ausbilden.

[0028] Der in der Haftschicht oder Gegenhaftschicht verlaufende Staubluftkanal kann optional dazu dienen, Fremdluft in die Ebene der Haftschicht oder Gegenhaftschicht einzubringen, um dort die Bildung von Staubnestern zu vermeiden.

[0029] Der mindestens eine Staubluftkanal wird in der Haftschicht oder Gegenhaftschicht zum Beispiel dadurch gebildet, dass Material der Haftschicht oder Gegenhaftschicht durch Stanzen oder Schneiden ausgespart ist. Es ist auch möglich, dass beispielsweise durch thermische Bearbeitung, beispielsweise einen Schmelzvorgang, Partien der Haftschicht oder Gegenhaftschicht komprimiert oder umgeformt oder thermisch verformt oder geschmolzen sind, sodass der mindestens eine Staubluftkanal oder Strömungskanal ausgebildet ist.

[0030] Der mindestens eine Staubluftkanal ist zweckmäßigerweise durch das Schleifmittel abgedeckt, wenn dieses am Schleifteller befestigt ist. Es ist möglich, dass der mindestens eine Staubluftkanal zur Abdeckung durch das Schleifmittel ausgestaltet oder vorgesehen ist. Beispielsweise ist der Staubluftkanal als eine Rinne ausgestaltet, die durch das Schleifmittel abgedeckt wird. Der mindestens eine Staubluftkanal hat beispielsweise einen

40

U-förmigen oder V-förmigen Querschnitt, auch andere Querschnitte, beispielsweise W-förmige oder T-förmige oder dergleichen, möglich sind. Beispielsweise deckt das Schleifmittel den mindestens einen Staubluftkanal guer zu der Hauptströmungsrichtung ab. Somit bildet beispielsweise das Schleifmittel eine Wand oder Seitenwand des Staubluftkanals, während andere Wandflächen von dem Schleifteller bereitgestellt werden. Dies hat unter anderem den Vorteil, dass beim Entfernen des Schleifmittels vom Schleifteller der Staubluftkanal frei kommt, so dass sich dort eventuell ansammelnder Schmutz oder Staub herausfallen kann. Der Staubluftkanal wird vorteilhaft automatisch quasi gereinigt, indem das Schleifmittel entfernt wird. Es ist aber auch möglich, den nach Entfernen des Schleifmittels vom Schleifteller frei zugänglichen Staubluftkanal zum Beispiel auszubla-

[0031] Der mindestens eine Staublufteinlass des mindestens einen Staubluftkanals ist zweckmäßigerweise an einem Außenumfang des Schleiftellers neben der Bearbeitungsfläche vorgesehen. Der mindestens eine Staublufteinlass des mindestens einen Staubluftkanals kann aber auch an einem Innenumfang einer mit der Antriebshalterung fluchtenden Öffnung an der Bearbeitungsseite vorgesehen sein. Es versteht sich, dass auch die Kombination möglich ist, d.h. dass ein Staublufteinlass oder mehrere Staublufteinlässe sowohl am Außenumfang als auch an der vorgenannten Öffnung für die Antriebshalterung oder bei der Antriebshalterung vorgesehen sind.

[0032] Der mindestens eine Staublufteinlass am Außenumfang des Schleiftellers oder die Anordnung derartiger Staublufteinlässe am Außenumfang des Schleiftellers hat bzw. haben den Vorteil, dass Staub aus der Umgebung des Schleiftellers optimal angesaugt und vom Werkstück weggefördert werden kann. Der Staublufteinlass oder die Staublufteinlässe an einem Zentralbereich des Schleiftellers, beispielsweise im Bereich der Öffnung, die mit der Antriebshalterung fluchtet, verbessert die Staubabfuhr im Zentralbereich des Schleiftellers, insbesondere vor dem Hintergrund, dass der Schleifteller in seinem Zentralbereich eine relativ geringe Rotationsgeschwindigkeit oder Eigenrotationsgeschwindigkeit im Exzenterbetrieb aufweist.

[0033] Ohne weiteres können mehrere Staublufteinlässe und Staubluftkanäle auch am Außenumfang des Schleifmittels oder am Innenumfang einer Öffnung des Schleifmittels, insbesondere in gleichen Winkelabständen, vorgesehen sein, die mit der Antriebshalterung des Schleiftellers fluchtet, wenn es am Schleifteller angeordnet ist. Die Staublufteinlässe oder Staubluftkanäle sind zweckmäßigerweise in direkter Strömungsverbindung mit Durchströmöffnungen des Schleifmittels, insbesondere mit um das Zentrum des Schleifmittels ringförmig angeordneten Durchströmöffnungen.

[0034] Eine bevorzugte Ausführungsform sieht vor, dass der Schleifteller und/oder das Schleifmittel eine Anordnung mehrerer an dem jeweiligen Außenumfang an-

geordneter Staublufteinlässe aufweist, die mit Staubluftkanälen oder mindestens einem Staubluftkanal kommunizieren, die bzw. der in Strömungsverbindung mit der mindestens einen Ausströmöffnung stehen. Bevorzugt ist es, wenn jeweils ein einziger, aber auch beispielsweise jeweils zwei oder drei Staublufteinlässe mit einer jeweiligen Ausströmöffnung kommunizieren. Die Staublufteinlässe sind zweckmäßigerweise in gleichen Winkelabständen oder äquidistant am Außenumfang des Schleiftellers angeordnet.

[0035] Dieselbe Konfiguration kann aber auch in Bezug auf eine mit der Antriebshalterung vorgesehene Öffnung an der Bearbeitungsseite des Schleiftellers oder des Schleifmittels vorgesehen sein. Am Innenumfang dieser Öffnung können beispielsweise mehrere, insbesondere in gleichen Winkelabständen angeordnete, Staublufteinlässe vorgesehen sein, die mit der mindestens einen Ausströmöffnung abseits der Abrasionsschicht in Strömungsverbindung stehen.

[0036] Bevorzugt ist nicht nur eine einzige Ausströmöffnung für die Staubluft zur Schleifmaschine hin vorhanden. Zweckmäßigerweise sind mindestens zwei oder
weitere Ausströmöffnungen vorgesehen. Bevorzugt ist
es, wenn mehrere Ausströmöffnungen ringförmig um die
Antriebshalterung an der Maschinenseite des Schleiftellers angeordnet sind.

[0037] Zweckmäßigerweise sind zwischen den Ausströmöffnungen Verstärkungsrippen des Schleiftellers vorgesehen.

[0038] Vorteilhaft ist es, wenn einer jeweiligen Ausströmöffnung mehrere Einströmöffnungen zugeordnet sind. Beispielsweise verläuft jeweils ein Absaugkanal der Absaugkanalanordnung zwischen mindestens zwei, vorzugsweise drei oder weiteren Einströmöffnungen und einer zugeordneten Ausströmöffnungen, die zur Absaugung der Staubluft durch die Hand-Schleifmaschine vorgesehen ist. Der Absaugkanal hat beispielsweise einen im Wesentlichen radialen Verlauf. Der Absaugkanal verläuft beispielsweise vom Außenumfang in Richtung der Antriebshalterung.

[0039] Zweckmäßigerweise ist vorgesehen, dass der Schleifteller und/oder das Schleifmittel eine Anordnung mehrerer an dem jeweiligen Außenumfang angeordneter Staublufteinlässe aufweist, wobei diese in der Haftschicht des Schleiftellers und/oder der Gegenhaftschicht des Schleifmittels vorgesehen sind. Bevorzugt ist es, wenn ausschließlich in der Haftschicht des Schleiftellers und/oder der Gegenhaftschicht des Schleifmittels derartige Staublufteinlässen vorgesehen sind. Zur Bildung eines jeweiligen Staublufteinlasses weist die Haftschicht oder die Gegenhaftschicht vorzugsweise eine Aussparung auf. Die Haftschicht oder Gegenhaftschicht als solche ist vorzugsweise nicht als Staublufteinlass ausgestaltet, d. h. eine gewisse Luftdurchlässigkeit der Haftschicht oder Gegenhaftschicht ist nicht als Staublufteinlass in diesem Sinne zu verstehen. Wenn also beispielsweise die Haftschicht und/oder die Gegenhaftschicht als eine Klettschicht oder Faserschicht ausgestaltet ist, bil-

det deren stoffspezifisch immanent vorhandene Strömungsdurchlässigkeit zweckmäßigerweise keinen Staublufteinlass oder eine Anordnung mehrerer Staublufteinlässe.

[0040] Im Bereich der Klettschicht oder Faserschicht, also jedenfalls im Bereich der Haftschicht oder Gegenhaftschicht sind der Staublufteinlass und/oder der Staubluftkanal oder ein mit dem Staublufteinlass kommunizierender Abschnitt des Staubluftkanals vorteilhaft als Verformungen und/oder Aussparungen des die Haftschicht oder Gegenhaftschicht bildenden Materials ausgestaltet. [0041] Der mindestens eine Staubluftkanal verläuft zweckmäßigerweise ebenfalls zumindest abschnittsweise radial und/oder bogenförmig und/oder sichelförmig von einem Außenumfang des Schleiftellers in Richtung der Antriebshalterung oder von einem Innenumfang einer mit der Antriebshalterung fluchtenden Öffnung in Richtung eines Außenumfangs des Schleiftellers. Beispielsweise ist der mindestens eine Staubluftkanal sichelförmig.

[0042] Bevorzugt ist es, wenn der Schleiftellerkörper elastisch ist und/oder aus einem luftundurchlässigen und/oder für Staubpartikel undurchlässigen Kunststoff besteht. Beispielsweise besteht der Schleiftellerkörper aus Schaumstoff. Der Schleiftellerkörper umfasst oder besteht in einer bevorzugten Ausführungsform aus Polyurethan-Schaum, insbesondere einem Elastomerschaum auf Polyesterbasis und/oder einem aromatischen PUR-Elastomerschaum. Der Schleiftellerkörper ist beispielsweise als ein Pad oder Kissen ausgestaltet. Der Schleiftellerkörper selbst hat vorzugsweise an seinem Außenumfang nur im Bereich der Bearbeitungsfläche oder der Ebene der Bearbeitungsfläche einen oder mehrere Staublufteinlässe.

[0043] Bevorzugt besteht der Schleiftellerkörper nicht aus einem Faserwerkstoff oder einem Gewirke. Es ist aber auch möglich, dass der Schleiftellerkörper aus einem derartigen Material besteht oder es aufweist.

[0044] Der Staubluftkanal ist zweckmäßigerweise dediziert ausgeformt oder ausgebildet. Mithin ergibt sich der Staubluftkanal vorteilhaft nicht zufällig dadurch, dass ein Faser-Gewirke oder eine Faserstruktur vorhanden ist, wobei zwischen den Fasern Staubluft strömen kann. In diesem Fall sieht eine Variante der Erfindung vor, dass der mindestens eine Staubluftkanal durch eine gezielte Formung oder Bohrung der Faserstruktur hergestellt ist. Weiterhin ist es möglich, dass die Faserstruktur nur eine Lage oder Schicht des Schleiftellers bereitstellt, während andere Lagen oder Schichten, insbesondere die Haftschicht oder eine Schicht aus einem Schaumstoff, zur Ausbildung des Staubluftkanals bzw. dessen Staublufteinlass vorgesehen sind.

[0045] Bevorzugt ist vorgesehen, dass der mindestens eine Staubluftkanal einen Strömungsquerschnitt hat, der nicht von Fasern durchsetzt ist und/oder von Fasern begrenzt ist. Zweckmäßigerweise erstreckt sich also der Staubluftkanal nicht, insbesondere nicht labyrinthartig, durch ein Fasernetzwerk oder einen Faserwerkstoff oder

ein Gewirke. Es ist allerdings grundsätzlich möglich, dass z.B. die Haftschicht oder Gegenhaftschicht ein einen Faserwerkstoff umfasst, beispielsweise einen Velours, der eine Seitenwand oder Seitenwände des mindestens einen Staubluftkanals begrenzen. Allerdings verläuft dieser Faserwerkstoff in diesem Fall nur seitlich am Staubluftkanal entlang und erstreckt sich nicht in den Staubluftkanal hinein, sodass der Staubluftstrom durch den mindestens einen Staubluftkanal nicht durch Fasern behindert ist.

[0046] Zweckmäßigerweise ist vorgesehen, dass der Schleiftellerkörper an einem Schleifteller-Träger oder Schleifteller-Oberteil angeordnet ist, welcher bzw. welches die Antriebshalterung aufweist. Der Träger oder das Oberteil ist beispielsweise tellerförmig. Der Träger oder das Oberteil haben beispielsweise Verstärkungsrippen. Die Verstärkungsrippen haben beispielsweise einen radialen Verlauf von der Antriebshalterung weg. Der Träger oder das Oberteil weisen beispielsweise eine deutlich höhere Biegefestigkeit und/oder ein größeres Elastizitätsmodul auf, beispielsweise eine mindestens zweifach oder dreifach höhere Biegefestigkeit oder ein mindestens zweifach oder dreifach höheres Elastizitätsmodul, als der Schleiftellerkörper. Beispielsweise ist der Schleiftellerkörper, den man auch als ein Pad oder Kissen bezeichnen kann, mit dem Träger oder dem Schleifteller-Oberteil verklebt, verschweißt oder in sonstiger Weise fest verbunden

[0047] Bevorzugt ist es, wenn der mindestens eine Staubluftkanal zumindest bei am Schleifteller angeordnete Schleifmittel einen geschlossenen Innenumfang aufweist. Der Strömungsquerschnitte Staubluftkanals ist also durch eine zumindest im Wesentlichen geschlossene Umfangswand begrenzt. Die Umfangswand kann mehrere Abschnitte aufweisen, beispielsweise vom Schleifteller und/oder vom Schleifmittel bereitgestellte Wandabschnitte. Beispielsweise kann ein Grundkörper Schleifmittels oder Schleifblatts Wandabschnitt bereitstellen. Ferner kann das Grundmaterial des Schleiftellerkörpers, beispielsweise Schaumstoff, einen Wandabschnitt bereitstellen. Seitenwände des mindestens einen Staubluftkanals können beispielsweise durch die Haftschicht und/oder die Gegenhaftschicht, beispielsweise durch eine Klettschicht oder eine Schicht aus Velours oder beide, bereitgestellt werden

[0048] Bevorzugt ist es, wenn der mindestens eine Staubluftkanal über seine Länge zwischen dem Staublufteinlass und seinem Auslass einen im Wesentlichen konstanten Strömungsquerschnitt aufweist. Es ist aber auch möglich, dass der Querschnitt oder Strömungsquerschnitt sich vom Staublufteinlass bis zum Auslass verengt oder aufweitet. Vorzugsweise ist jedoch vorgesehen, dass der Querschnitt oder Strömungsquerschnitt des mindestens einen Staubluftkanals über dessen Länge kontinuierlich verläuft.

[0049] Vorteilhaft ist es wenn der Staubluftkanal zumindest abschnittsweise einen flachen, beispielsweise

40

20

30

etwa rechteckigen, Querschnitt aufweist.

[0050] Vorteilhaft ist es, wenn an dem Schleifteller ausschließlich an der Bearbeitungsseite sowie an einem zu der Bearbeitungsseite winkeligen Innenumfang oder Außenumfang Einströmöffnungen oder Staublufteinlässe für die Staubluft vorhanden sind, während an der Maschinenseite ausschließlich die mindestens eine Staubluft-Ausströmöffnung oder mehrere Staubluft-Ausströmöffnungen angeordnet sind. An der Maschinenseite sind also zweckmäßigerweise keine Einströmöffnungen oder Staublufteinlässe für die Staubluft oder für Frischluft vorgesehen.

[0051] Eine Umfangskontur des Schleiftellers und/oder des Schleifmittels ist zweckmäßigerweise kreisrund oder oval. Es besteht aber auch die Möglichkeit, dass eine Umfangskontur des Schleiftellers und/oder das Schleifmittels beispielsweise dreieckförmig, rechteckig, insbesondere quadratisch, oder in sonstiger Weise polygonal ist. Der Schleifteller und das Schleifmittel haben also zweckmäßigerweise eine zu der jeweiligen Schleifaufgabe oder der Schleifmaschine passende Umfangskontur.

[0052] Zweckmäßigerweise hat der Schleifteller eine an sich aus EP 2 070 651 bekannte Grundkonzeption derart, dass ein Frischluftstrom oder Strom von Hinterströmluft zwischen dem Schleifblatt oder Schleifmittel und der Unterseite des Schleiftellers oder der Bearbeitungsseite des Schleiftellers strömt. Dadurch wird der Bildung von Staubnestern zwischen Schleifmittel und Schleifteller vorgebeugt.

[0053] Zweckmäßigerweise ist bei dem Schleifteller vorgesehen, dass er mindestens einen Zuluftkanal oder Luftzuströmkanal aufweist, der mindestens eine Zuströmöffnung abseits der Bearbeitungsfläche, insbesondere an einem Außenumfang des Schleiftellers und/oder an einem Innenumfang einer mit der Antriebshalterung kommunizierenden Öffnung an der Bearbeitungsfläche, sowie mindestens eine Zuluft-Ausströmöffnung an der Bearbeitungsfläche aufweist, so dass Hinterströmluft durch die mindestens eine Zuströmöffnung einströmen und aus der mindestens einen Zuluft-Ausströmöffnung ausströmen kann, um zur Bildung eines Hinterströmluftstroms zwischen dem Schleifmittel und dem Schleifteller in Richtung der Staubluft-Einströmöffnungen zu strömen. Es versteht sich, dass mehrere Einströmöffnungen und/oder mehrere Zuluft-Ausströmöffnungen vorgesehen sein können, die mit dem mindestens einen Zuluftkanal in Strömungsverbindung stehen.

[0054] Zweckmäßigerweise erstreckt sich der mindestens eine Zuluftkanal von einem Außenumfang des Schleiftellers in Richtung eines Zentrums, vorzugsweise bis in das Zentrum hinein, das Schleiftellers. Beispielsweise sind eine oder mehrere um das Zentrum sternförmig angeordnete Luftkanäle vorhanden.

[0055] Es ist möglich, dass mindestens ein Zuluftkanal eine im Zentrum des Schleiftellers angeordnete Zuströmöffnung und eine am Außenumfang des Schleiftellers angeordnete Zuströmöffnung aufweist.

[0056] Bevorzugt ist es, wenn manche der Luftkanäle nur am Außenumfang des Schleiftellers eine Zuströmöffnung aufweisen, während andere Luftkanäle am Außenumfang und am Innenumfang bzw. im Zentrum des Schleiftellers eine Zuströmöffnung haben.

[0057] Die Aufgabe der Zuluft-Ausströmöffnungen der Zuluftkanäle ist es in erster Linie, frische Luft bzw. mit wenig staubbeladene Luft zwischen das Schleifmittel und die Unterseite oder Bearbeitungsseite des Schleiftellers zu bringen. Vorteilhaft ist in diesem Zusammenhang folgendes zu sehen:

Zweckmäßigerweise ist vorgesehen, dass die mindestens eine Zuströmöffnung des Zuluftkanals weiter von der Bearbeitungsseite entfernt ist als der Staublufteinlass des mindestens einen Staubluftkanals. Somit gelangt Staubluft in erster Linie durch den Staublufteinlass, während die Zuströmöffnung weniger mit Staub belastet ist. Man kann auch sagen, dass die mindestens eine Zuströmöffnung näher bei der Maschinenseite angeordnet ist als bei der Bearbeitungsseite.

[0058] Es ist möglich, dass an der Maschinenseite bzw. der zu der Bearbeitungsseite entgegengesetzten Seite des Schleiftellers keine Zuströmöffnung für einen Zuluftkanal vorgesehen ist. Anders formuliert ist es möglich, dass ausschließlich an einem Außenumfang des Schleiftellers seitlich neben der Bearbeitungsseite und/oder an einer mit der Antriebshalterung fluchtenden Öffnung an der Bearbeitungsseite Zuströmöffnung in für den mindestens einen Zuluftkanal vorgesehen sind, der an der Bearbeitungsseite ausmündet.

[0059] Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert. Es zeigen:

- Figur 1 eine schematische Seitenansicht einer Schleifmaschine mit einem Schleifwerkzeug,
- 40 Figur 2 einen Querschnitt durch das Schleifwerkzeug gemäß Figur 1 entsprechend einer Schnittlinie A-A in Figur 4,
- Figur 3 ein linker Abschnitt durch das Schleifwerkzeug aus Figur 2 mit Schleifteller und Schleifmittel,
 - Figur 4 eine Frontalansicht von der Schleifmittelseite her auf den Schleifteller gemäß vorstehender Figuren,
 - Figur 5 eine Frontalansicht von Maschinenseite her auf den Schleifteller gemäß vorstehender Figuren,
 - Figur 6 eine perspektivische Schrägansicht des Schleiftellers gemäß vorstehender Figuren von der Schleifmittelseite her,

Figur 7 eine Frontalansicht von unten auf das Schleifmittel.

Figur 8 eine Variante des Schleiftellers gemäß vorstehender Figuren in perspektivischer Schrägansicht, und

Figur 9 den Schleifteller gemäß Figur 8 mit daran angebrachtem Schleifmittel mit einer Sicht auf das Schleifmittel.

[0060] Eine Schleifmaschine 10 dient zum abrasiven Bearbeiten oder zum Schleifen eines Werkstücks W, beispielsweise eines Bauteils oder einer Karosserie eines Automobils, eines Holz-Werkstücks oder dergleichen.
[0061] Die Schleifmaschine 10 weist einen Antriebsmotor 11 auf, der direkt oder über ein Getriebe 12 eine Werkzeugwelle 13 antreibt, an deren Abtrieb 14a eine Werkzeugaufnahme 14 angeordnet ist. Anhand eines Antriebsschalters 15 kann der Antriebsmotor 11 eingeschaltet und ausgeschaltet, vorzugweise auch hinsichtlich seiner Drehzahl eingestellt werden. Zur Einstellung der Drehzahl kann aber auch ein separater Schalter vorgesehen sein.

[0062] Der Antriebsmotor 11 sowie das Gehäuse 12 sind in einem Gehäuse 16 untergebracht, von dem ein Handgriff 10 zum Ergreifen durch einen Bediener absteht. Selbstverständlich kann auch ein lang gestreckter Griffstab oder Handgriff, insbesondere bei einer Ausgestaltung einer Schleifmaschine als Wand- und/oder Deckenschleifmaschine vorgesehen sein.

[0063] Der Antriebsmotor 11 ist vorzugsweise ein elektrischer Antriebsmotor, wobei Druckluftmotor ohne weiteres auch möglich ist. Das Getriebe 12, das beispielsweise einen Exzenterwelle umfasst, hat beispielsweise einen Antriebsabschnitt 18, von dem der Handgriff 17 absteht. An dem Gehäuse 12 ist weiterhin ein Versorgungsanschluss 19 zum Anschluss einer Versorgungsleitung 20, beispielsweise einem Druckluftschlauch und/oder einer elektrischen Leitung (je nach Antriebskonzept des Antriebsmotors 11), vorgesehen.

[0064] Zudem steht auch ein Auslassabschnitt 21 von dem Antriebsabschnitt 18 ab, durch welchen ein Staubabfuhrkanal 22 verläuft. Am Endbereich des Staubabfuhrkanals 22 ist ein Staubabfuhr-Anschluss 23 zum Anschluss beispielsweise einer Absaugleitung 24, insbesondere eines Saugrohres, vorgesehen. Die Absaugleitung 24 führt beispielsweise zu einem in der Zeichnung nicht dargestellten Staubsauger. Die Absaugleitung 24 bildet zweckmäßigerweise einen Bestandteil einer Absaugeinrichtung 25 zum Absaugen von Staub von einer Oberfläche des Werkstücks W. Es versteht sich, dass an dem Staubabfuhr-Anschluss 23 selbstverständlich auch ein Staubsammelbehälter, beispielsweise ein Sack oder Beutel, vorgesehen sein kann.

[0065] Anhand des Antriebsmotors 11 ist ein Schleifwerkzeug 30 beispielsweise in eine rotatorische und/oder oszillierende und/oder hyperzykloide Schleif-

bewegung antreibbar.

[0066] Eine Maschinenseite 31 des Schleifwerkzeugs 30 ist an der Schleifmaschine 10 befestigt oder der Schleifmaschine 10 zugewandt, während eine Bearbeitungsseite 32 dem Werkstück W zugeordnet ist. Das Schleifwerkzeug 30 weist an der Maschinenseite 31 eine Antriebshalterung 33 für die Werkzeugaufnahme 14 an der

[0067] Werkzeugwelle 13 auf. Bei einem erfindungsgemäßen Schleifwerkzeug oder Schleifteller kann die Antriebshalterung beispielsweise ein Gewindestift oder einen Montagezapfen aufweisen, der mit einer entsprechenden Werkzeugaufnahme der Schleifmaschine verbindbar ist. Beim Ausführungsbeispiel hat die Schleifmaschine 10 jedoch als Werkzeugaufnahme 14 selbst einen Zapfen oder Befestigungsvorsprung, der in eine entsprechende Aufnahme 34 der Antriebshalterung 33 eingreift. Beispielsweise umfasst die Antriebshalterung 33 Bajonettkonturen oder dergleichen. Auf die ganz konkrete Ausgestaltung der Antriebshalterung 90 kommt es jedoch nicht an. Sie sorgt lediglich dafür, dass das Schleifwerkzeug 30 drehfest mit der Werkzeugwelle 13 verbindbar ist, so dass die Antriebskraft des Antriebsmotors 11 auf das Schleifwerkzeug 30 übertragen werden kann.

[0068] Das Schleifwerkzeug 30 umfasst einen Schleifteller 40, an welchem ein Schleifmittel 80 lösbar befestigt ist. Eine Maschinenseite 41 des Schleiftellers 40 ist mit der Antriebshalterung 33 versehen. Der Maschinenseite 41 entgegengesetzt weist der Schleifteller 40 eine Bearbeitungsfläche 42 auf, die beispielsweise eine kreisrunde Umfangskontur aufweist. Ohne weiteres möglich wäre aber, dass ein Schleifteller mit einem ähnlichen Aufbau wie der Schleifteller 40 beispielsweise eine dreieckförmige oder rechteckförmige Außenumfangskontur hat.

[0069] An der Bearbeitungsfläche 42 hat der Schleifteller 40 eine Haftschicht 65, beispielsweise mit Kletthaken, an der das Schleifmittel 80 mit seiner dazu passenden Gegenhaftschicht 82 lösbar befestigbar ist. Die Gegenhaftschicht 82 ist beispielsweise aus einem Textilmaterial, insbesondere Velours. Die Gegenhaftschicht 82 ist beispielsweise an einem blattartigen Grundkörper 92, beispielsweise aus Papier oder einem Textilgewebe, angeordnet. Es wäre aber auch möglich, dass die Gegenhaftschicht 82 unmittelbar den Grundkörper für eine Abrasionsschicht 81 bildet. Die Abrasionsschicht 81 weist wie andere Abrasionsschichten erfindungsgemäß verwendbarer oder erfindungsgemäßer Schleifmittel beispielsweise eine Körnung oder ein Schleifgewirke auf. Die Abrasionsschicht 81 und die Gegenhaftschicht 82 sind an einander entgegengesetzten Seiten des Grundkörpers 91 vorgesehen.

[0070] Das Schleifmittel 80, das beispielsweise als ein Schleifblatt 90 ausgestaltet ist, weist eine Vielzahl von Durchströmöffnungen 84-88 für Staubluft S auf, mit der beim Schleifen des Werkstücks W entstehender Staub abgesaugt wird oder die beim Schleifen des Werkstücks W entsteht. Die Durchströmöffnungen 84-88 sind beispielsweise in konzentrischen Kreisen angeordnet. Die

55

40

Durchströmöffnungen 84 und 88 sind beispielsweise entlang einer bezüglich der Antriebshalterung radial äußeren Kreislinie, die Durchströmöffnungen 87 entlang einer bezüglich der Antriebshalterung radial inneren Kreislinie vorgesehen. Zwischen diesen Kreislinien befinden sich zwei Kreislinien mit weiteren Radien, entlang derer die Durchströmöffnungen 85, 86 angeordnet sind.

[0071] Beispielsweise ist jeweils eine Reihenanordnung von Durchströmöffnungen 84, 85, 86, 87 entlang einer Radiallinie angeordnet. Die Abstände der Durchströmöffnungen 84-87 zueinander sind zweckmäßigerweise etwa gleich.

[0072] Die Durchströmöffnungen 84-88 sind zweckmäßigerweise im Wesentlichen gleichmäßig über die Fläche der Abrasionsschicht 81 verteilt.

[0073] Zwischen jeweils zwei Durchströmöffnungen 88 ist eine Durchströmöffnung 84 angeordnet. Die Durchströmöffnungen 84 und/oder 86 weisen einen größeren Strömungsquerschnitt oder Durchmesser als die Durchströmöffnungen 85, 87, 88 auf.

[0074] Die Durchströmöffnungen 84-88 sind vorzugsweise kreisrund, könnten aber auch jede andere Querschnittsgeometrie aufweisen, beispielsweise dreieckig oder in sonstiger Weise polygonal sein.

[0075] Die Kreislinien mit den Durchströmöffnungen 84-88 erstrecken sich um eine zentrale Öffnung 89, die mit der Antriebshalterung 33 des Schleifwerkzeugs 30 fluchtet. Somit ist die Antriebshalterung 33 auch von der Bearbeitungsfläche 42 her zugänglich. Weiterhin ist die zentrale Öffnung 89 auch zur Absaugung von Staubluft S geeignet, was später noch deutlich wird.

[0076] An dem Schleifteller 14 sind passend zu den Durchströmöffnungen 84-88 Einströmöffnungen 44-48 vorgesehen, durch die die Staubluft S in den Schleifteller 40, nämlich in eine Absaugkanalanordnung 78 des Schleiftellers 40, einströmen kann. Ein Lochbild der Durchströmöffnungen 44-48 und der Durchströmöffnungen 84-88 ist vorzugsweise identisch, sodass diese miteinander fluchten. Beispielsweise sind die Einströmöffnungen 44 entlang einer radial äußeren Kreislinie um die Antriebshalterung 33 oder das Zentrum des Schleiftellers 40 angeordnet. Sie korrespondieren mit den Durchströmöffnungen 84 und sind diesen zugeordnet. Eine Einströmöffnung 44 ist jeweils zwischen Einströmöffnungen 48 angeordnet, die auf derselben Kreislinien wie die Einströmöffnungen 44 liegen, jedoch einen kleineren Querschnitt als die Einströmöffnungen 44 haben.

[0077] Auf konzentrischen Kreislinien liegen weiterhin die Einströmöffnungen 45, 46, 47, passend zu den Durchströmöffnungen 85, 86, 87.

[0078] Die Absaugkanalanordnung 78 umfasst Absaugkanäle 75, die jeweils in einer Ausströmöffnung 50 an der Maschinenseite 41 des Schleiftellers 40 ausmünden. Die Absaugkanäle 75 umfassen jeweils einen Hauptkanal 76, welcher mit den Einströmöffnungen 44, 45, 46, 47 kommuniziert. Von dem Hauptkanal 76 verzweigen Zweigkanäle 77, welche mit den Einströmöffnungen 48 strömungsverbunden sind. Somit kann über

einen jeweiligen Absaugkanal 75 Staubluft S von den Einströmöffnungen 44-48 zu einer zugeordneten Ausströmöffnung 50 strömen.

[0079] Die Ausströmöffnungen 50 sind ringförmig, zweckmäßigerweise in gleichmäßigen Abständen, um die Antriebshalterung 33 angeordnet. Die Ausströmöffnungen 50 sind an der Maschinenseite 31, 41 angeordnet. Im an der Schleifmaschine 10 montierten Zustand des Schleifwerkzeugs 30 befinden sich die Ausströmöffnungen 50 in einem Absaugbereich 26 der Absaugeinrichtung 25 der Schleifmaschine 50, so dass die Staubluft S vom Werkstück W durch die Durchströmöffnungen 84-88, die Einströmöffnungen 44-48 sowie die Absaugkanalanordnung 78 zu den Ausströmöffnungen 50 und über diese weiter in die Absaugleitung 24 strömen kann. Dadurch ist eine effektive Staubabsaugung von unterhalb der Abrasionsschicht 81 entstehendem Staub möglich.

[0080] Im Zentrum des Schleiftellers 40 befindet sich eine Öffnung 49, durch die die Antriebshalterung 33 zugänglich ist. Die Öffnung 49 ist fluchtend oder koinzident mit der Öffnung 89, wenn das Schleifmittel 80 am Schleifteller 40 befestigt ist.

[0081] Die Einströmöffnungen 44-48 sowie vorzugsweise ganz oder im Wesentlichen die Absaugkanalanordnung 78 sind zweckmäßigerweise in einem Schleiftellerkörper 57 ausgebildet. Der Schleiftellerkörper 57 umfasst beispielsweise einen Schaumkörper 58. Der Schleiftellerkörper 57 ist elastisch nachgiebig und jedenfalls nachgiebiger als ein Schleifteller-Träger 51, den man auch als Schleifteller-Oberteil bezeichnen könnte, an welchem die Ausströmöffnungen 50 vorgesehen sind. Der Schleifteller-Träger 51 stabilisiert sozusagen den Schleifteller 40.

[0082] Der Träger 51 weist einen Plattenabschnitt 52 auf, der jedoch einen geringeren Durchmesser oder eine geringere Querschnittsfläche aufweist als die Bearbeitungsfläche 42. Beispielsweise steht eine die Außenumfangsfläche 43 bereitstellende oder bildende Außenumfangsfläche 59 des Schleiftellerkörpers 57 nach radial außen vor einen Rand oder Außenumfang 54 des Plattenabschnitts 52 vor. Somit ist also ein relativ weicher, durch den Träger 51 nicht versteifter Randbereich des Schleiftellerkörpers 57 vorgesehen, was an sich ja bekannt ist.

[0083] Der Schleifteller-Träger 51 weist eine vor den Plattenabschnitt 52 nach oben vorstehende Erhöhung 55 auf, in welcher die Antriebshalterung 33 vorgesehen ist. In der Erhöhung 55 ist ein Einsatzteil 56 angeordnet, insbesondere eingebettet oder umspritzt, welches die Antriebshalterung 33 aufweist. Das Einsatzteil 56 besteht beispielsweise aus Metall, während der Schleifteller-Träger 51 aus einem Kunststoffmaterial bestehen kann. Vorzugsweise ist der Schleifteller-Träger 51 durch Rippen 53 verstärkt, welche sich von der Erhöhung 55 weg nach radial außen in Richtung des Außenumfangs 54 des Plattenabschnitts 52 erstrecken. Zweckmäßigerweise ist jeweils eine Ausströmöffnung 50 zwischen zwei

40

45

Rippen 53 angeordnet.

[0084] Vorzugsweise ragt der die Erhöhung 55 aufweisende Abschnitt des Schleiftellers 50 in den Absaugbereich 26 der Schleifmaschine 10 hinein, sodass die Ausströmöffnungen 50 dort angeordnet sind und die Staubluft S effektiv vom Schleifteller 40 abgesaugt werden kann. Die Staubluft S strömt dabei entlang einer Hauptströmungsrichtung H in die Durchströmöffnungen 84-88 ein.

[0085] Nun hat sich in der Praxis aber gezeigt, dass durchaus im Umgebungsbereich um den Schleifteller 40 herum Staub an der Oberfläche des Werkstücks W ablagern kann, was ungünstigen Schleifergebnissen führt. Der Schleifstaub kann nämlich aus der Umgebung des Schleiftellers 40 wieder unter die Abrasionsschicht 81 gelangen, wo er zu einer zusätzlichen Abrasion des Werkstücks W führt, sodass das Arbeitsergebnis nicht zufriedenstellend ist. Die nachfolgende Maßnahme schafft Abhilfe:

Der Schleifteller 40 hat eine Anordnung 60 von Staublufteinlässen 62 im Bereich der Außenumfangsfläche 43 nahe bei der Abrasionsschicht 81, nämlich in einem Zwischenraum zwischen dem Schleifmittel 80 und der Bearbeitungsfläche 42.

[0086] Die Staublufteinlässe 62 sind also bezüglich des Zentrums des Schleiftellers 40 oder bezüglich der Antriebshalterung 33 radial außen vorgesehen, so dass aus der Umgebung des Schleiftellers 40 Staubluft S in Richtung des Schleiftellers 40, zweckmäßigerweise in einer zu der Hauptströmungsrichtung H querverlaufenden Querströmungsrichtung Q, gesaugt wird. Die Staublufteinlässe 62 sind an Staubluftkanälen 61 vorgesehen, die direkt mit den radial außen am Schleifteller 40 vorgesehenen Einströmöffnungen 88 in Strömungsverbindung stehen. Somit kann die Staubluft S von außen her in Richtung des Schleifwerkzeugs 30 oder des Schleiftellers 40 strömen und gelangt dabei nicht etwa zwischen das Werkstück W und die Abrasionsschicht 81, sondern wird zwischen der Abrasionsschicht 81 und der Maschinenseite 31 des Schleifwerkzeugs 30 angesaugt.

[0087] Die Staubluftkanäle 61 weisen beispielsweise einen sichelförmigen oder gekrümmten Verlauf auf. Es versteht sich, dass auch andere Verläufe möglich sind, beispielsweise ein etwa geradliniger oder radialer Verlauf eines schematisch in Figur 6 eingezeichneten Staubluftkanals 261.

[0088] Die Krümmung der Staubluftkanäle 61 kann entgegen einer typischen Drehrichtung oder in Richtung einer typischen Drehrichtung des Schleifwerkzeugs 30 vorgesehen sein.

[0089] Weitere Staublufteinlässe 64 sind am Innenumfang der Öffnung 49 vorgesehen und kommunizieren über Staubluftkanäle 63 mit Einströmöffnungen 47a der Einströmöffnungen 47. Zwischen jeweils zwei Einströmöffnungen 47a, zu denen ein Staubluftkanal 63 führt, ist eine Einströmöffnung 47b vorgesehen, zu der kein

Staubluftkanal führt. Dadurch ist es beispielsweise möglich, dass die Staubluftkanäle 63 ähnlich wie die Staubluftkanäle 61 einen relativ großen Querschnitt aufweisen können, was eine effektive Staubabsaugung begünstigt. [0090] Die Staubluftkanäle 61, 63 sind vorzugsweise dadurch gebildet, dass die Haftschicht 65 entsprechende Aussparungen aufweist. Es können aber auch unmittelbar am Schaumkörper 58 oder Schleiftellerkörper 57 zur Bildung der Staubluftkanäle 61, 63 Aussparungen, insbesondere Rinnen, vorgesehen sein. Beispielsweise ist die Haftschicht 65 von einem Stanzkörper gebildet oder einem Körper, der durch Ausschneiden hergestellt ist. Die Haftschicht 65 ist beispielsweise auf den Schleiftellerkörper 57 angeklebt. Es ist auch möglich, dass der Schleiftellerkörper 57 an einen die Haftschicht 65 aufweisende Haftschichtlage 67 angespritzt oder in sonstiger Weise angeformt ist. Beispielsweise wird die Haftschichtlage 67, zum Beispiel eine Klettschicht, in eine Spritzform eingelegt, in welcher dann der Schleiftellerkörper 57 oder der Schaumkörper 58 an die Haftschichtlage 67 angespritzt wird.

[0091] Die Haftschicht 65 erstreckt sich jedoch nicht bis zum radialen Außenumfang 68 des Schleiftellers 40. Dort ist ein Rand 66 des Schleiftellerkörpers 57 ohne Haftschicht 65 vorgesehen. Der Rand 66 ist relativ schmal. An dem Rand 66 können Aussparungen für die Staubluftkanäle 61 ausgebildet sein.

[0092] Eine Hinterlüftungsanordnung 70, die zwischen der Bearbeitungsfläche 42 des Schleiftellers 40 und dem Schleifmittel 80 der Bildung von Staubnestern entgegen wirkt, umfasst beispielsweise Zuströmöffnungen 71, die über Zuluftkanäle 73, 73b mit Zuluft-Ausströmöffnungen 72 strömungsverbunden sind. Die Zuluftkanäle 73 weisen weiterhin eine Zuströmöffnung 74 am Innenumfang der Öffnung 49 auf, sodass sozusagen von radial außen und radial innen jeweils Zuluft F in die Zuluftkanäle 73 einströmen kann. Die Zuluftkanäle 73b haben nur die Zuströmöffnung in 71.

[0093] Die Zuströmöffnung in 71, 73 sind näher bei der Maschinenseite 41, 31 des Schleifwerkzeugs 30 oder des Schleiftellers 40 als die Staublufteinlässe 62, 64. Somit gelangt mit weniger staubbeladene Zuluft F in die Zuluftkanäle 73, 73b.

[0094] Die Zuluft F strömt aus den Zuluftkanälen 73, 73b über Zuluft-Ausströmöffnungen 72 in den Zwischenraum zwischen Schleifteller 40 und das Schleifmittel 80, also in die Verbindungsebene zwischen der Gegenhaftschicht 82 und der Haftschicht 65. Von dort wird die Zuluft F über die Einströmöffnungen 44-48 wieder abgesaugt, so dass sich eventuell zwischen der Haftschicht 65 und der Gegenhaftschicht 82 ansammelnder Staub effektiv entfernt wird.

[0095] Das vorgenannte Konzept von Staubluftkanälen, die zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht 81 neben der Abrasionsschicht 81 verlaufen oder dort Staublufteinlässe aufweisen, kann selbstverständlich auch bei einem Schleifmittel realisiert sein. Dies soll schematisch anhand der Figuren 8 und 9

40

10

15

20

25

30

35

40

45

50

55

mit einem Schleifteller 140 und einem Schleifmittel 180 eines Schleifwerkzeugs 130 erläutert werden.

[0096] Der Schleifteller 140 hat im Wesentlichen denselben Grundaufbau wieder Schleifteller 40, sodass insoweit die gleichen Bezugszeichen verwendet sind. Beispielsweise sind die bereits erläuterten Einströmöffnungen 44-48 vorhanden.

[0097] Das Schleifmittel 180 entspricht im Wesentlichen dem Schleifmittel 80, hat also ebenfalls die bereits erläuterten Bestandteile, für die die gleichen Bezugszeichen verwendet sind.

[0098] Allerdings ist im Unterschied zu dem Ausführungsbeispiel mit dem Schleifteller 40 und dem Schleifmittel 80 die Anordnung der Staublufteinlässe und der Staubluftkanäle zur Ansaugöffnung von Staubluft S aus der Umgebung des Schleiftellers 140 bzw. das Schleifmittel das 180 anders getroffen, nämlich derart, dass das Schleifmittel 180 Staubluftkanäle 161 aufweist, die mit den Durchströmöffnungen 88 unmittelbar und auf der Seite der Gegenhaftschicht 182 strömungsverbunden sind. Am Schleifteller 140 sind im Bereich der Staubluftkanäle 161 keine Vertiefungen oder Staubluftkanäle vorgesehen. Dies wäre aber durchaus möglich, ähnlich wie beim Schleifteller 40. Mithin könnten also die Staubluftkanäle 161 und 61 zusammenwirkend vorgesehen sein, was einen entsprechend größeren Strömungsquerschnitt für die Staubluft S bereitstellt.

[0099] Mithin verlaufen also die Staubluftkanäle 161 nicht auf der Abrasionsschicht 81 des Schleifmittels 180, sondern im Bereich der Gegenhaftschicht 182. Die Gegenhaftschicht 182 weist zur Bildung der Staubluftkanäle 161 beispielsweise Aussparungen oder Rinnen auf, die am äußeren Randbereich 83 des Schleifmittels 180 Staublufteinlässe 162 aufweisen. Durch diese Staublufteinlässe 162 kann Staubluft S ähnlich wie durch die Staublufteinlässe 62 in Richtung der Ausströmöffnungen 50 abseits der Abrasionsschicht 81 strömen.

[0100] Selbstverständlich könnten auch zum Ersatz oder zur Ergänzung der Staubluftkanäle 63 radial innen entsprechende Staubluftkanäle am Schleifmittel 180, das vorzugsweise als Schleifblatt 190 ausgestaltet ist, vorgesehen sein. Beim Schleifteller 140 sind jedoch die Staubluftkanäle 63 ausgebildet, sodass das Schleifmittel 180 im Bereich der Öffnung 89 keine Staubluftkanäle aufweisen muss.

[0101] In Figur 3 ist noch exemplarisch eingezeichnet, dass ein Staublufteinlass und/oder ein Staubluftkanal auch außerhalb der Haftschicht eines Schleiftellers angeordnet sein können. Beispielsweise ist ein Staublufteinlass 362 an der Außenumfangsfläche 59 des Schleiftellerkörpers 57 angeordnet. Der Staublufteinlass 362 führt zu einem Staubluftkanal 361, welcher durch den Schleiftellerkörpers 57 verläuft und unmittelbar in den Absaugkanal 75 mündet.

Patentansprüche

- Schleifteller (40) für eine Hand-Schleifmaschine (10), mit einer Antriebshalterung (33) zur drehfesten Befestigung an einem Abtrieb (14a) der Hand-Schleifmaschine (10), so dass der Schleifteller (40) durch die Schleifmaschine (10) in eine zu einer schleifenden Bearbeitung eines Werkstücks (W) geeignete, insbesondere rotatorische und/oder exzentrische, Schleifbewegung antreibbar ist, wobei ein Schleiftellerkörper (57) des Schleiftellers (40) eine mit einer Haftschicht (65) versehene Bearbeitungsfläche (42) zur lösbaren Befestigung eines mit einer Gegenhaftschicht (82) versehenen, insbesondere als Schleifblatt (90) ausgestalteten und eine Abrasionsschicht (81) zu einer abrasiven Bearbeitung des Werkstücks (W) aufweisenden Schleifmittels (80) aufweist, wobei an der Bearbeitungsfläche (42) Staubluft-Einströmöffnungen (44-48) für bei der Bearbeitung des Werkstücks (W) entstehende, mit Staub beladene und durch Staubluft-Durchströmöffnungen (84-88) des Schleifmittels (80; 180) entlang einer Hauptströmungsrichtung (H) einströmende Staubluft (S) angeordnet sind, die mit mindestens einer Staubluft-Ausströmöffnung (50) an einer von der Bearbeitungsfläche (42) abgewandten Maschinenseite (31) des Schleiftellers (40) über eine Absaugkanalanordnung (78) verbunden sind, so dass im an der Schleifmaschine (10) montierten Zustand des Schleiftellers (40) eine Absaugeinrichtung (25) der Schleifmaschine (10) in die Staubluft-Einströmöffnungen (44-48) einströmende Staubluft (S) durch die mindestens eine Staubluft-Ausströmöffnung (50) ansaugen kann, dadurch gekennzeichnet, dass er mindestens einen Staubluftkanal (61, 63) aufweist, der zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht (81) einen Staublufteinlass (62, 64) zwischen der Abrasionsschicht (81) des Schleifmittels (80) und der Maschinenseite (31) des Schleiftellers (40) aufweist und abseits der Abrasionsschicht (81) mit der mindestens einen Ausströmöffnung (50) in direkter Strömungsverbindung steht.
- Schleifteller (40) nach Anspruch 1, dadurch ge-2. kennzeichnet, dass der Staublufteinlass (62, 64) für den mindestens einen Staubluftkanal (61, 63) in einem Zwischenraum zwischen dem Schleifmittel, insbesondere dem Schleifblatt (90), und der Bearbeitungsfläche (42) angeordnet ist und/oder dass der Schleifteller (40) oder der Schleiftellerkörper (57) keinen oberhalb der Bearbeitungsfläche (42) angeordneten Staublufteinlass (62, 64) für den mindestens einen Staubluftkanal (61, 63) aufweist und/oder an dem, insbesondere als Schaumkörper oder elastischen Körper ausgestalteten, Schleiftellerkörper (57) des Schleiftellers (40) kein Staublufteinlass (62, 64) angeordnet ist und/oder der mindestens eine Staublufteinlass (62, 64) oder alle Staublufteinlässe,

15

20

25

30

40

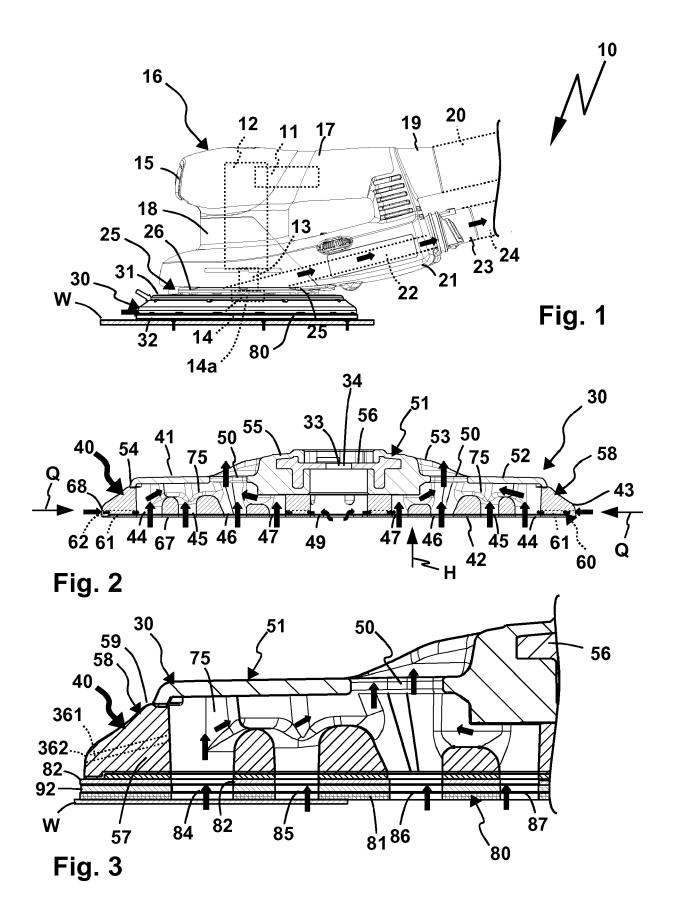
die zwischen der Abrasionsschicht (81) und der Maschinenseite (31) angeordnet sind und mit der mindestens einen Ausströmöffnung (50) in direkter Strömungsverbindung stehen, im Bereich der Haftschicht oder der Ebene der Haftschicht (65) verlaufen

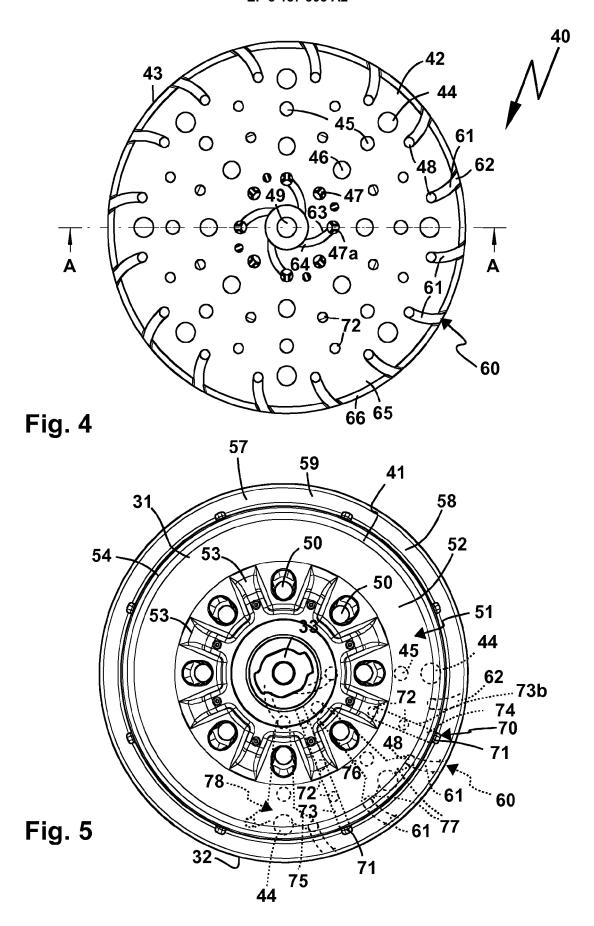
- 3. Schleifteller (40) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er eine Anordnung mehrerer Staublufteinlässe (62, 64) zwischen der Bearbeitungsseite und der Maschinenseite an seinem Außenumfang aufweist, wobei die Staublufteinlässe (62, 64) in vorbestimmten, insbesondere gleichen, Abständen oder Winkelabständen zueinander angeordnet sind und/oder eine vorbestimmte Anzahl aufweisen, insbesondere maximal 50 oder 40 Staublufteinlässe (62, 64), vorzugsweise maximal 20-30 Staublufteinlässe (62, 64) und weiter bevorzugt weniger als 30 Staublufteinlässe (62, 64) vorgesehen sind.
- 4. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Staubluftkanal (61, 63) zumindest abschnittsweise oder ausschließlich in der Haftschicht (65) verläuft und/oder als eine Aussparung in der Haftschicht (65) und/oder der Gegenhaftschicht (82) ausgestaltet ist und/oder dass sich die Haftschicht (65) und/oder die Gegenhaftschicht (82) nicht bis zu einem Außenrandbereich (66, 83) der Bearbeitungsfläche (42) oder des Schleifmittels (80) erstrecken.
- 5. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Staubluftkanal (61, 63), insbesondere quer zu der Hauptströmungsrichtung (H), durch das Schleifmittel (80) abgedeckt ist, wenn das Schleifmittel (80) am Schleifteller (40) montiert ist, und/oder dass der mindestens eine Staubluftkanal (61, 63) zur Abdeckung durch das Schleifmittel (80) ausgestaltet oder vorgesehen ist und/oder einen Uförmigen oder V-förmigen Querschnitt aufweist und/oder als eine Rinne ausgestaltet ist.
- 6. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Staubluftkanal (61, 63) zur Durchströmung mit Staubluft (S) zwischen der Abrasionsschicht (81) des Schleifmittels (80) und der Maschinenseite (31) des Schleiftellers (40) quer zu der Hauptströmungsrichtung (H) verläuft und/oder der mindestens eine Staubluftkanal (61, 63) in direkter Strömungsverbindung mit mindestens einer der Staubluft-Einströmöffnungen (44-48) und/oder mit der Absaugkanalanordnung (78) steht.
- 7. Schleifteller (40) nach einem der vorhergehenden

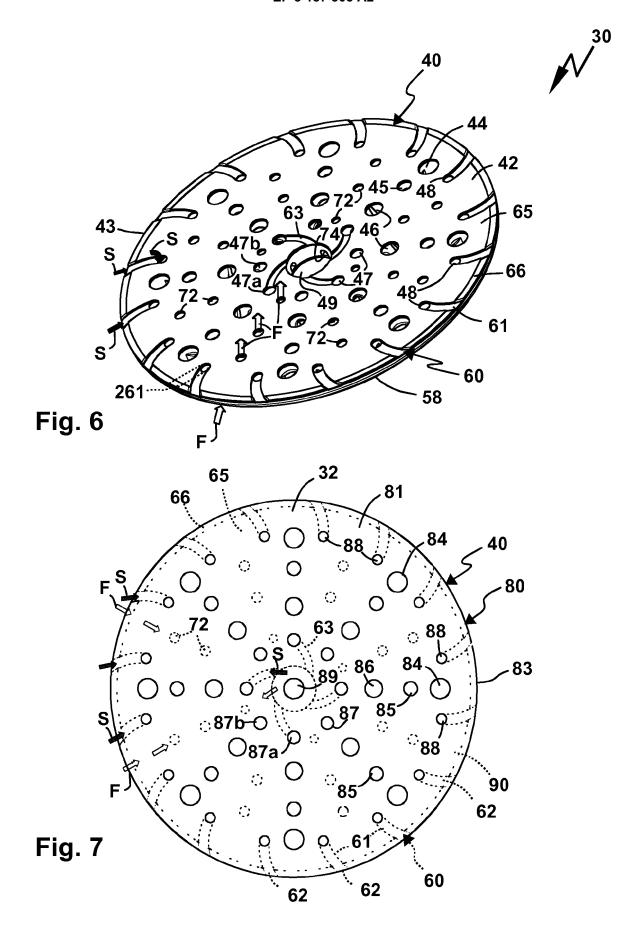
- Ansprüche, **dadurch gekennzeichnet**, **dass** der Staublufteinlass (62, 64) des mindestens einen Staubluftkanals (61, 63) an einem insbesondere radialen oder sich quer zur Bearbeitungsfläche (42) erstreckenden Außenumfang (68) des Schleiftellers (40) neben der Bearbeitungsfläche (42) und/oder in der Ebene der Bearbeitungsfläche (42) vorgesehen ist und/oder an einem Innenumfang einer mit der Antriebshalterung (33) fluchtenden Öffnung (49) an der Bearbeitungsseite vorgesehen ist.
- 8. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er eine Anordnung mehrerer, insbesondere in gleichen Winkelabständen, an seinem Außenumfang (68) und/oder am Innenumfang einer mit der Antriebshalterung (33) kommunizierenden Öffnung (49) angeordneter Staublufteinlässe für Staubluftkanäle (61, 63) aufweist, die in Strömungsverbindung mit der mindestens einen Ausströmöffnung (50) und/oder mit ringförmig um seinen Zentralbereich angeordneten Staubluft-Einströmöffnungen (44-48) stehen.
- 9. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, der mindestens eine Staubluftkanal (61, 63) zumindest abschnittsweise radial und/oder bogenförmig und/oder sichelförmig von einem Außenumfang (68) des Schleiftellers (40) in Richtung der Antriebshalterung (33) oder von einem Innenumfang einer mit der Antriebshalterung (33) fluchtenden Öffnung (49) in Richtung eines Außenumfangs (68) des Schleiftellers (40).
- 10. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schleiftellerkörper (57) elastisch ist und/oder aus einem luftundurchlässigen Kunststoff, insbesondere einem Schaumstoff, und/oder nicht aus einem Gewirke oder Faserwerkstoff besteht und/oder einen Schaumkörper (58) aufweist und/oder an einem tellerförmigen Träger (51), welcher die Antriebshalterung (33) aufweist, angeordnet ist.
- 11. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Staubluftkanal (61, 63) einen Strömungsquerschnitt hat, der nicht von Fasern durchsetzt ist und/oder von Fasern begrenzt ist und/oder 50 nicht in einem Gewirke oder Schaumkörper oder Faserwerkstoff vorgesehen ist und/oder der mindestens eine Staubluftkanal (61, 63) zumindest bei am Schleifteller (40) angeordnetem Schleifmittel (80) einen geschlossenen Innenumfang aufweist und/oder 55 dass der mindestens eine Staubluftkanal (61, 63) über seine Länge zwischen dem Staublufteinlass (62, 64) und seinem Auslass einen kontinuierlich verlaufenden und/oder im wesentlichen konstanten

20

25


40


45


Strömungsquerschnitt und/oder zumindest abschnittsweise einen flachen, insbesondere etwa rechteckigen Querschnitt aufweist.

- 12. Schleifteller (40) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er mindestens einen Zuluftkanal (73) aufweist, der mindestens eine Zuströmöffnung (71) abseits der Bearbeitungsfläche (42), insbesondere an einem Außenumfang (68) des Schleiftellers (40) und/oder an einem Innenumfang einer mit der Antriebshalterung (33) kommunizierenden Öffnung (49) an der Bearbeitungsfläche (42), sowie mindestens eine Zuluft-Ausströmöffnung (72) an der Bearbeitungsfläche (42) aufweist, so dass Hinterströmluft durch die mindestens eine Zuströmöffnung (71) einströmen und aus der mindestens einen Zuluft-Ausströmöffnung (72) ausströmen kann, um zur Bildung eines Hinterströmluftstroms zwischen dem Schleifmittel (80) und dem Schleifteller (40) in Richtung der Staubluft-Einströmöffnungen (44-48) zu strömen, wobei vorteilhaft vorgesehen ist, dass sich der mindestens eine Zuluftkanal (73) von einem Außenumfang (68) des Schleiftellers (40) in Richtung eines Zentrums, insbesondere bis zu einem Zentrum, das Schleiftellers (40) erstreckt und/oder dass der mindestens eine Zuluftkanal (73) eine Zuströmöffnung (71) am Außenumfang (68) und im Zentrum des Schleiftellers (40) aufweist und/oder dass die mindestens eine Zuströmöffnung (71) weiter von der Abrasionsschicht (81) als der Staublufteinlass (62, 64) des mindestens einen Staubluftkanals (61, 63) entfernt ist.
- 13. Schleifwerkzeug (30) zur Verwendung an einer Hand-Schleifmaschine (10), dadurch gekennzeichnet, dass es einen Schleifteller (40) nach einem der vorhergehenden Ansprüche und das Schleifmittel (80) umfasst, welches mit den Staubluft-Einströmöffnungen (44-48) kommunizierende Staubluft-Durchströmöffnungen (84-88) und die Gegenhaftschicht (82) aufweist.
- 14. Schleifmittel (180), insbesondere Schleifblatt (90), für einen Schleifteller (40) zur Verwendung an einer Hand-Schleifmaschine (10), wobei der Schleifteller (40) anhand einer Antriebshalterung (33) drehfest an einem Abtrieb (14a) der Hand-Schleifmaschine (10) befestigbar ist, so dass der Schleifteller (40) durch die Schleifmaschine (10) in eine zu einer schleifenden Bearbeitung eines Werkstücks (W) geeignete, insbesondere rotatorische und/oder exzentrische, Schleifbewegung antreibbar ist, wobei das Schleifmittel (180) eine Abrasionsschicht (81) zu einer abrasiven Bearbeitung des Werkstücks (W) und eine Gegenhaftschicht (82) zur lösbaren Befestigung an einer mit einer Haftschicht (65) versehenen Bearbeitungsfläche (42) des Schleiftellers (40) aufweist, wobei das Schleifmittel (180) die Abrasions-

- schicht (81) durchsetzende Staubluft-Durchströmöffnungen (84-88) für bei der Bearbeitung des Werkstücks (W) entstehende, mit Staub beladene und das Schleifmittel (180) entlang einer Hauptströmungsrichtung (H) zum Schleifteller (40) hin, insbesondere in Staubluft-Einströmöffnungen (44-48) an der Bearbeitungsfläche (42) des Schleiftellers (40) hinein, durchströmende Staubluft (S) aufweist, so dass im an der Schleifmaschine (10) montierten Zustand von Schleifteller (40) und Schleifmittel (180) eine Absaugeinrichtung (25) der Schleifmaschine (10) in die Staubluft-Einströmöffnungen (44-48) einströmende Staubluft (S) durch mindestens eine mit den Staubluft-Einströmöffnungen (44-48) über eine Absaugkanalanordnung (78) in Strömungsverbindung stehende Staubluft-Ausströmöffnung (50) an einer von der Bearbeitungsfläche (42) abgewandten Maschinenseite (31) des Schleiftellers (40) ansaugen kann, dadurch gekennzeichnet, dass es mindestens einen Staubluftkanal (161) aufweist, der zum Wegfördern von Staub aus der Umgebung der Abrasionsschicht (81) einen Staublufteinlass (162) seitlich neben der Abrasionsschicht (81) aufweist.
- 15. Schleifmittel (180) nach Anspruch 14, dadurch gekennzeichnet, dass der mindestens eine Staubluftkanal (61, 63) insbesondere ausschließlich in der Gegenhaftschicht (82) verläuft und/oder abseits der Abrasionsschicht (81) mit der mindestens einen Durchströmöffnung (84-88) in direkter Strömungsverbindung steht und/oder als eine Aussparung in der Gegenhaftschicht (82) ausgestaltet ist und/oder dass es eine Anordnung mehrerer, insbesondere in gleichen Winkelabständen, an seinem Außenumfang und/oder am Innenumfang einer mit der Antriebshalterung kommunizierenden Öffnung (89) angeordneter Staublufteinlässe (162) für Staubluftkanäle (161) aufweist, die in Strömungsverbindung mit, insbesondere um ein Zentrum des Schleifmittels (180) ringförmig angeordneten, Durchströmöffnungen (84-88) stehen.

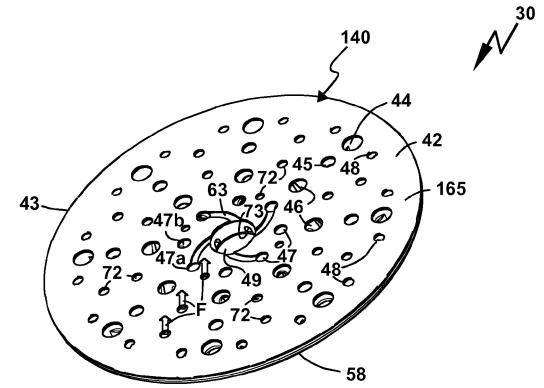
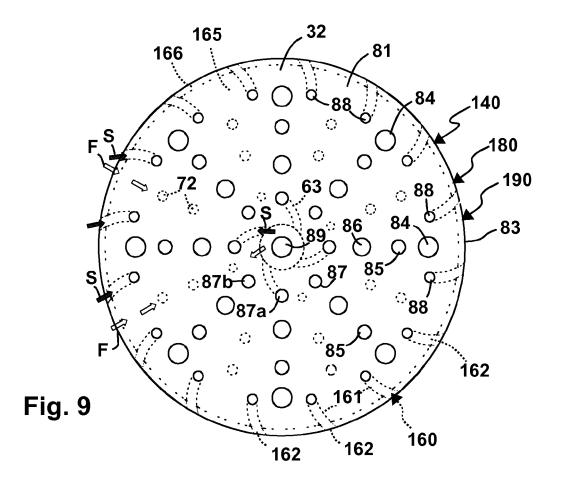



Fig. 8

EP 3 187 305 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• EP 2070651 B1 [0002]

EP 2070651 A [0052]