[0001] This invention relates generally to heads-up displays (HUD) and, more particularly
to HUD systems that generates a virtual image.
Prior Art:
[0002]
- [1] U.S. Patent No. 7,623,560, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof, Nov. 24, 2009,
- [2] U.S. Patent No. 7,767,479, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [3] U.S. Patent No. 7,829,902, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [4] U.S. Patent No. 8,049,231, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [5] U.S. Patent No. 8,098,265, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [6] U.S. Patent Application Publication No. 2010/0066921, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [7] U.S. Patent Application Publication No. 2012/0033113, El-Ghoroury et al, Quantum Photonic Imager and Methods of Fabrication Thereof,
- [8] U.S. Patent No. 4,218,111, Withrington eta al, Holographic Heads-up Displays, Aug. 19, 1980,
- [9] U.S. Patent No. 6,813,086, Bignolles et al, Head Up Display Adaptable to Given Type of Equipment, Nov. 2, 2004,
- [10] U.S. Patent No. 7,391,574, Fredriksson, Heads-up Display, June 24, 2008,
- [11] U.S. Patent No. 7,982,959, Lvovskiy et al, Heads-up Display, Jul. 19, 2011,
- [12] U.S. Patent No. 4,613,200, Hartman, Heads-Up Display System with Holographic Dispersion Correcting, Sep. 23, 1986,
- [13] U.S. Patent No. 5,729,366, Yang, Heads-Up Display for Vehicle Using Holographic Optical Elements, Mar. 17, 1998,
- [14] U.S. Patent No. 8,553,334, Lambert et al, Heads-Up Display System Utilizing Controlled Reflection from Dashboard Surface,
Oct. 8, 2013,
- [15] U.S. Patent No. 8,629,903, Seder et al, Enhanced Vision System Full-Windshield HUD, Jan. 14, 2014,
- [16] B. H. Walker, Optical Design of Visual Systems, Tutorial tests in optical engineering,
published by The international Society of Optical Engineering (SPIE), pp. 139-150,
ISBN 0-8194-3886-3, 2000,
- [17] C. Guilloux et al, Varilux S Series Braking the Limits,
- [18] M. Born, Principles of Optics, 7th Edition, Cambridge University Press 1999, Section
5.3, pp. 236-244, and
- [19] JP H08 122737 A, Shimadzu Corp.
[0003] Heads-up displays are being sought after as a visual aide technology that can contribute
to automotive safety by making automobile drivers more visually aware and informed
of the automobile dashboard information without taking their sight and attention off
the road. However, currently available heads-up displays are volumetrically large
and too expensive to be a viable option for use in automobiles. The same types of
difficulties, though to a lesser extent in the cost factor, are encountered in applications
of heads-up displays in small aircraft and helicopters. In the case of heads-up display
automotive applications, the volumetric and cost constraints are further exacerbated
by the wide range of vehicle sizes, types and price range. Therefore there is a need
for low-cost and non-bulky heads-up displays that would be suitable for use in small
vehicles such as automobiles, small aircraft and helicopters.
[0004] Prior art HUD systems can be grouped into two types; pupil imaging HUD and non-pupil
imaging HUD. Pupil imaging HUD are typically comprised of a relay module, which is
responsible for intermediate image delivery and pupil formation, and a collimation
module, which is responsible for image collimation and pupil imaging at the viewer's
eye location (herein referred to as the eye-box). The collimation module of a pupil
imaging HUD is typically realized as a tilted curved or planar reflector or a holographic
optical element (HOE) and the relay module is typically tilted for bending the light
path and to compensate for optical aberrations. Non-pupil imaging HUD defines the
system aperture by the light cone angle at the display or at the intermediate image
location by diffusion. For intermediate image HUD systems, a relay module is also
needed, but HUD aperture is decided by collimation optics alone. The collimation optics
usually has axial symmetry but with folding mirrors to meet the volumetric constraints.
This is decided by aberration correction needs and system volumetric aspects.
[0005] The prior art described in Ref [8], shown in FIG. 1-1, uses a concave HOE reflector
(11 in FIG 1-1) as a combiner and collimator to minimize collimation optics and reduce
the HUD system volumetric aspect. The resultant HUD system needs complicated tilted
relay optics (10 in FIG. 1-1) to compensate aberration and deliver an intermediate
image. In addition, this HUD system works only for a narrow spectrum.
[0006] The prior art described in Ref [9], shown in FIG. 1-2, uses a relay optics (REL)
module to deliver an intermediate image at the focal plane of convergent combiner
(CMB) mirror (CMB in FIG. 1-2) and defines the system pupil. The CMB mirror collimates
the intermediate image and images the system pupil onto the viewer's eye to facilitate
viewing. This pupil imaging HUD approach always involves a complicated REL module
for packaging and aberration compensation.
[0007] The prior art described in Ref [10], shown in FIG. 1-3, uses a projection lens (3)
to project an intermediate image on a diffusive surface (51 in FIG. 1-3) as an image
source and a semi-transparent collimating mirror (7 in FIG. 1-3). The collimating
mirror forms an image at infinity and the aperture of the collimation optics is defined
by the angular width of the diffuser.
[0008] The prior art described in Ref [11], shown in FIG. 1-4, uses an image forming source
comprised of two liquid crystal display (LCD) panels (23 in FIG. 1-4) to form an intermediate
image on a diffusive screen (5 in FIG. 1-4) which is placed at the focal plane of
the collimation optics module (1 in FIG. 1-4). The main purpose of the two LCD panels
in the image forming source is to achieve sufficient brightness for viewability of
the formed image. In order to achieve that objective the two LCD panels in the image
forming source are configured to either form two contiguous side by side images at
the diffusive screen or overlap two images shifted from each other horizontally and
vertically by a half pixel at the diffusive screen.
[0009] The prior art described in Ref [12] uses a pair of reflective holographic optical
elements (HOE) to achieve holographic dispersion correction and to project a virtual
image of a broadband display source within the observer's field of view. The prior
art described in Ref [13] also uses a pair of holographic optical elements (HOE);
one transmissive and another that is reflective to project an image onto the vehicle
windshield.
[0010] The prior art described in Ref [14], shown in FIG. 1-5, uses an image projector (14
in FIG. 1-5) mounted on the topside of the vehicle windshield configured to project
an image onto the vehicle dashboard equipped with a faceted reflective surface (18
in FIG. 1-5) with the latter being configured to reflect the image from the image
projector onto the windshield of the vehicle. The vehicle windshield surface is oriented
to reflect the image from the dashboard faceted reflective surface toward the viewer.
[0011] The prior art Ref [19] describes a head-up display device for a vehicle having a
number of display units which display different route guidance pictures. The light
radiated from the display units is led by a corresponding optical system comprising
a curved surface mirror. The radiated light is led to a translucent image display
part positioned in front of the driver. The positions of the respective displayed
pictures on the display part are separated. The image of the right display unit is
displayed on the right side and the image of the left display unit is displayed on
the left side of the display part.
[0012] Common amongst the briefly described prior art HUD systems as well as the many others
described in the cited prior art is the high cost and large volumetric size of the
system. In addition, none of the found prior art HUD systems can be scaled in size
and cost to match a wide range of automobiles and other vehicles' sizes and price
ranges. It is therefore an objective of this invention to introduce heads-up display
methods that use a multiplicity of emissive micro-scale pixel array imagers to realize
a HUD system that is substantially smaller in volume than a HUD system that uses a
single image forming source. It is further the objective of this invention to introduce
a novel split exit pupil HUD system design method that utilizes the multiplicity of
emissive micro-scale pixel array imagers to enable the realization of a modular HUD
system with volumetric and cost aspects that can be scaled to match a wide range automobile
and small vehicle sizes and price ranges. These objectives are accomplished by the
heads-up display according to claim 1 and the method of forming a heads-up display
according to claim 30. Additional objectives and advantages of this invention will
become apparent from the following detailed description of preferred embodiments thereof
that proceeds with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] In the following description, like drawing reference numerals are used for the like
elements, even in different drawings. The matters defined in the description, such
as detailed construction and design elements, are provided to assist in a comprehensive
understanding of the exemplary embodiments. However, the present invention can be
practiced without those specifically defined matters. Also, well-known functions or
constructions are not described in detail since they would obscure the invention with
unnecessary detail. In order to understand the invention and to see how it may be
carried out in practice, a few embodiments of it will now be described, by way of
nonlimiting example only, with reference to accompanying drawings, in which:
FIG. 1-1 Illustrates prior art Heads-up Display (HUD) systems that use a concave HOE
reflector as a combiner and collimator to minimize collimation optics and reduce the
HUD system volumetric aspect.
FIG. 1-2 illustrates prior art Heads-up Display (HUD) systems that use a relay optics
(REL) module to deliver an intermediate image at the focal plane of convergent combiner
(CMB) mirror and defines the system pupil.
FIG. 1-3 illustrates prior art Heads-up Display (HUD) systems that use a projection
lens (3) to project an intermediate image on a diffusive surface as an image source
and a semi-transparent collimating mirror.
FIG. 1-4 illustrates prior art Heads-up Display (HUD) systems that use an image forming
source comprised of two liquid crystal display (LCD) panels to form an intermediate
image on a diffusive screen which is placed at the focal plane of the collimation
optics module.
FIG. 1-5 illustrates prior art Heads-up Display (HUD) systems that use an image projector
mounted on the topside of the vehicle windshield configured to project an image onto
the vehicle dashboard equipped with a faceted reflective surface with the latter being
configured to reflect the image from the image projector onto the windshield of the
vehicle.
FIG. 2 illustrates an exemplary modular HUD (MHUD) system of this invention.
FIG. 3 illustrates the relationships among design parameters and constraints of the
MHUD system of FIG. 2.
FIG. 4 illustrates the optical design aspects and ray trace diagram of the HUD module
comprising the MHUD assembly of the embodiment of FIG. 2.
FIG. 5 illustrates the optical performance of the HUD module comprising the MHUD assembly
of the embodiment of FIG. 2.
FIG. 6 illustrates a multi view perspective of the MHUD assembly design example of
the MHUD system of the embodiment of FIG. 2.
FIG. 7 illustrates a functional block diagram of the interface and control electronics
design element (board) of the MHUD system of the embodiment of FIG. 2.
FIG. 8 illustrates the novel split eye-box design method of the MHUD system 200 of
the embodiment of FIG. 2.
FIG. 9 illustrates the actual volume of the MHUD assembly design example illustrated
in FIG. 6 installed in the dashboard of a sub-compact automobile.
FIG. 10 illustrates the ray path of the MHUD system 200 of this invention including
the sunlight loading.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] References in the following detailed description of the present invention to "one
embodiment" or "an embodiment" means that a particular feature, structure, or characteristics
described in connection with the embodiment is included in at least one embodiment
of the invention. The appearances of the phrase "in one embodiment" in various places
in this detailed description are not necessarily all referring to the same embodiment.
[0015] A new class of emissive micro-scale pixel array imager devices has been recently
introduced. These devices feature high brightness, very fast multi-color light intensity
and spatial modulation capabilities in a very small single device size that includes
all required image processing drive circuitry. The solid state light (SSL) emitting
pixels of one such device may be either a light emitting diode (LED) or laser diode
(LD) whose on-off state is controlled by the drive circuitry contained within a CMOS
chip (or device) upon which the emissive micro-scale pixel array of the imager is
bonded. The size of the pixels comprising the emissive array of such imager devices
would typically be in the range of approximately 5-20 microns with the typical emissive
surface area of the device being in the range of approximately 15-150 square millimeters.
The pixels within the emissive micro-scale pixel array device are individually addressable
spatially, chromatically and temporally, typically through the drive circuitry of
its CMOS chip. The brightness of the light generate by such imager devices can reach
multiple 100,000 cd/m2 at reasonably low power consumption. One example of such devices
are the QPI imagers (see Ref. [1-7]), referred to in the exemplary embodiments described
below. However it is to be understood that the QPI imagers are merely an example of
the types of devices that may be used in the present invention. (QPI is a trade mark
of Ostendo Technologies, Inc.) Thus in the description to follow, any references to
a QPI imager is to be understood to be for purposes of specificity in the embodiments
disclosed as one specific example of a solid state emissive pixel array imager that
may be used, and not for the purpose of any limitation of the invention.
[0016] The present invention combines the emissive micro pixel array device unique capabilities
of such imagers with a novel split exit pupil HUD system architecture in order to
realize a low-cost and small volume modular HUD (MHUD) system that can be readily
used in applications where the cost and volumetric constraints are paramount, such
as for example an automotive HUD. The combination of the emissive high brightness
micro emitter pixel array of imagers such as the QPI imagers and the split exit pupil
HUD architecture of this invention can enable HUD systems that operate effectively
in the high brightness ambient sunlight yet are volumetrically small enough to fit
behind the dashboard or instrument panel of a wide range of vehicle sizes and types.
(The word vehicle as used herein is used in the most general sense, and includes any
means in or by which someone travels, including but not necessarily limited to travel
on land, water, underwater and through the air. The low cost and modularity of the
split exit pupil HUD architecture enabled by the such imagers enables a modular HUD
system that can be tailored to fit the volumetric constraints of a wide range of vehicles.
The virtues of the split exit pupil HUD system will become more apparent from the
detailed description provided herein within the context of the embodiments described
in the following paragraphs.
[0017] FIG. 2 illustrates the design concept of the modular HUD (MHUD) system 200 of one
embodiment of this invention. As illustrated in FIG. 2, in the preferred embodiment,
the MHUD system 200 of the invention is comprised of the MHUD assembly 210 which in
turn is comprised of multiplicity of the modules 215 assembled together to form the
MHUD 210 whereby each module 215 is comprised of a single imager (such as a QPI imager)
with associated optics 220 and a concave mirror 230. As illustrated in FIG. 2, the
image emitted from each single imager with associated optics 220 is collimated, magnified
and reflected by its associated concave mirror 230, then partially reflected off the
vehicle windshield 240 to form the virtual image 260 which is viewable within the
eye-box segment 255 located at the nominal head position of the vehicle's driver (operator).
As illustrated in FIG. 2, each of the modules 215 of the MHUD assembly 210 is disposed
to form the same virtual image 260 at any one time and at the same location from the
vehicle windshield 240, but each at its corresponding eye-box segment 255, such that
the multiplicity of modules 215 of the MHUD assembly 210 collectively form the collective
eye-box 250 of the MHUD system 200. That is to say, the virtual image 260 could be
partially viewable from each of the eye-box segments 255 but fully viewable in the
collective eye-box 250. Accordingly, the overall size of the MHUD system 200 eye-box
segment 255 can be tailored by selecting the appropriate number of the modules 215
comprising the MHUD assembly 210. While each of the modules 215 of the MHUD assembly
210 is disposed to form the same virtual image 260 at any one time, those images of
course will change with time, and may change slowly, as will for example a fuel gauge
image, or may change more rapidly, such as in the display of a GPS navigation system
display image, though the MHUD system 200 of the present invention may operate at
frequencies at least up to a typical video rate if the image data is available at
such a rate.
[0018] In the preferred embodiment of the MHUD system 200 the eye-box segments 255 of the
modules 215 of the MHUD assembly 210 are each located at the exit pupil of the light
ray bundle reflected by their corresponding concave mirror 230. The collective eye-box
250 of the MHUD system 200 is in effect a split exit pupil eye-box that is formed
by the overlap of the eye-box segments 255 of the modules 215 of the MHUD assembly
210. This split exit pupil design method of the MHUD system 200 of this invention
is further explained in more detail in the following paragraphs.
[0019] In the preferred embodiment the MHUD system 200 of this invention, the MHUD assembly
210 is comprised of a multiplicity of the modules 215 assembled together to form the
MHUD assembly 210 whereby each module 215 is comprised of a QPI imager with associated
optics 220 and a concave mirror 230. The design method of the MHUD assembly 210 of
the MHUD system 200 of this embodiment of the invention and its respective modules
215 are described in more detail in the following paragraph preceded by an explanation
of the pertinent advantages and related design parameters tradeoff of the MHUD system
200 of this invention.
MHUD system 200 Optical Design Parameters Tradeoffs -
[0020] In order to appreciate the advantages of the MHUD system 200 of this invention, it
is deemed important to explain the underlying design tradeoffs of typical HUD systems
and the relationships between its pertinent design parameters. The image generated
by a HUD system is typically superimposed on the natural scene to make the viewer
operating the vehicle be visually aware of the vehicle operating parameters and to
also provide critical information, such as navigation for example, without requiring
the driver to take their sight and attention away from the road or the external surroundings
of the vehicle. The important parameters to consider in the design of a HUD system
include; the target size of the collective eye-box, the desired field of view (FOV),
the formed image size, the image resolution and the system volumetric constraints.
The relationships among these design parameters and constraints are illustrated in
FIG. 3.
How the modular HUD (MHUD) of this invention Realizes a Reduced Volume -
[0021] Referring to FIG. 3, a reduction of MHUD system 200 imager 220 size would lead to
a smaller effective focal length (EFL), which is the characteristic optical track
length of the system and generally contributes to the reduction of system volume.
However, if the eye-box size is maintained, the reduction of imager aperture size
will lead to a lower system F/# accompanied by an increase of optical complexity.
This generally results in larger system volume. In reference to the MHUD system 200
design concept illustrated in FIG. 2, the size of the eye-box segment 255 for each
module 215 is scaled along with the imager 220 size to avoid the increase of optical
complexity. This leads to the scaling of the volume of each of the modules 215 by
the imager 220 size ratio. A multiplicity of modules 215 would be combined to form
a MHUD assembly 210 that can provide an arbitrary sized collective eye-box 250. This
novel multi segments eye-box design concept of the MHUD system 200 of this invention
is realized by splitting the exit pupil of the system formed at the viewer's eye-box
into multiple segments, each corresponding with one of the eye-box segments 255 comprising
the collective eye-box 250 of the MHUD system 200 of this invention. This split exit
pupil design method of the MHUD system 200 of this invention would achieve smaller
overall volumetric aspects than a prior art HUD system providing the same size eye-box.
This would lead to a reduction in the overall HUD volume, complexity and cost. Other
advantages of split exit pupil design method of the MHUD system 200 of this invention
are described in the following discussion. Of course, each module is emitting the
same image at any one time, so a vehicle operator will see the same virtual image
at the same position, independent of which eye-box segment 255 or eye-box segments
255 the operator views.
[0022] The primary contributor to the volume of prior art HUD systems that uses a mirror
reflector Ref [8-10] has been identified as the concave mirror. Besides the large
size of the mirror itself, the size of the image source would also be proportionally
large, which dictates the use of either a large size imager, such as an LCD panel,
or forming a large size intermediate image that is projected on a diffusive screen,
which adds even more volume for incorporating the projector imager and its associated
projection optics. As explained in the foregoing discussion, the MHUD system 200 of
this invention achieves substantially smaller volumetric aspects than prior art HUD
systems that use a single concave mirror as the main reflector by using the MHUD assembly
210 that is comprised of the multiple modules 215 each using a smaller size concave
mirror 230 that are assembled together to form the overall reflector 235 of the MHUD
assembly 210, which is much smaller in size and achieves a much smaller optical track
length. The MHUD assembly 210 using the smaller aperture size imagers 220 enables
the use of smaller aperture size concave mirrors 230 with smaller optical track length
which result in the substantially smaller volume and volumetrically efficient MHUD
system 200 of this invention.
[0023] The design of the MHUD system 200 of this invention works by dividing the large collimated
beam that would typically be generated by the single large mirror into three equally
sized collimated sub-beams. Each sub-beam would be generated by the optical sub-system
of the module 215. As a result the F#, optical complexity and focal length (EFL) (or
optical track length) is reduced and consequently the physical volumetric envelope
of the system is reduced. FIG. 4 illustrates the optical design aspects and ray trace
diagram of the module 215 comprising the MHUD assembly 210. As illustrated in FIG.
4 the module 215 of a preferred embodiment is comprised of one QPI imager together
with its associated optics 220 and the concave mirror 230. Although in the embodiment
illustrated in FIG. 4 the optics 420 associated with the QPI imager 410 is shown as
a separate lens optical element, in an alternate embodiment of this invention the
QPI imager associated optics 420 would be attached directly on top of the emissive
surface of the QPI imager 410 to form the QPI imager assembly 220. As illustrated
in FIG. 4, in each of the modules 215 the reflective concave mirror 230 magnifies
and collimates the image generated by its corresponding QPI imager (or other imager)
220 to form one eye-box segment 255 of collective eye-box 250, while the optical element
420 associated with the QPI imager 410 in FIG. 4 balances the off-axis distortion
and tilting aberrations arising from the reflective concave mirrors 230.
[0024] FIG. 5 illustrates the optical performance of the module 215 of the MHUD assembly
210. As illustrated in FIG. 5, the role of the optical element 420 associated with
the QPI device 410 is to balance the off-axis distortion and tilting aberrations arising
from the reflective concave mirrors 230 in order to minimize the image swimming effect
while maintaining the modulation transfer function (MTF) sufficiently high. For the
purpose of completeness, the image swimming effect is typically caused by variations
in the direction of the light entering the viewer's pupil due to the optical distortion
caused by the mirror aberrations and would result in a perceived false motion of the
virtual image (known as "swimming effect") as the viewer's head moves (or gazes) about
in the HUD system eye-box Ref [16]. Minimizing the swimming effect in binocular optical
systems such as HUD is very important, as in extreme cases excessive swimming effect
in the virtual image could lead to motion sickness, vertigos or nauseas. These adverse
effects are caused by conflict between vestibular and oculo-motor aspects of the human
visual and perception systems, Ref [16,17].
[0025] Another advantage of the split exit pupil method of the MHUD system 200 of this invention
is that it achieves a substantially reduced swimming effect when compared to prior
art HUD systems that use a single mirror with a larger optical aperture. The aberrations
of the smaller optical aperture of the reflective concave mirrors 230 would typically
be much smaller than the aberrations of the relatively larger optical aperture reflective
mirrors used in prior art single mirror HUD systems. Since the swimming effect is
directly proportional with the magnitude of the optical distortion (or ray direction
deviation) caused by the aberrations arising from the HUD reflective mirror, the multiplicity
of smaller optical aperture concave mirrors 230 of the MHUD system 200 of this invention
would tend to achieve a substantially smaller swimming effect when compared with prior
art HUD systems. In addition, the angular overlap between the eye-box segments 255
of the MHUD modules 215 (explained in more detail in the discussion of FIG. 8) would
typically cause the perception of any point in the virtual image 260 to incorporate
optical contributions from the multiple MHUD modules 215. As a result, the optical
distortions (or ray direction deviation) caused by the aberrations of the individual
concave mirrors 230 of the multiple MHUD modules 215 would tend to be averaged at
any point in the virtual image 260, consequently causing a reduction in the overall
swimming effect perceived by the viewer of the MHUD system 200.
[0026] In another embodiment of this invention the imagers 220 of the MHUD assembly 210
would have a resolution that is higher than what the human visual system (HVS) can
resolve, with the added resolution being dedicated to a digital image warping pre-compensation
of the residual optical distortion caused by the aberrations arising from the concave
mirrors 230. In a typical HUD viewing experience the virtual image would be formed
at a distance of approximately 2.5m. The lateral acuity of the HVS is approximately
200 micro radians. At that distance the HVS can resolve roughly 2500x0.0002 = 0.5
mm pixel, which is equivalent to approximately 450x250 pixel resolution for a virtual
image 260 having 10" diagonal. The QPI imagers 220 used in the MHUD assembly 210 can
provide a much higher resolution than this limit, for example 640x360 resolution or
even 1280x720 with the same size optical aperture. The QPI imagers 220 providing a
higher resolution with the same size optical aperture enables the use of concave mirrors
230 with the same size optical aperture, thus maintaining the volumetric advantage
of the MHUD assembly 200. The added resolution of QPI imagers 220 allows the use of
digital image warping pre-compensation that virtually eliminates the optical distortion
arising from the concave mirrors 230 aberration and the resultant swimming effect
while maintaining the maximum achievable resolution at the virtual image 260 and the
same volumetric advantages.
[0027] Each of the reflective concave mirrors 230 can be either aspheric or free-form whereby
the aspherical or free-form factor of the concave mirror is selected to minimize the
optical aberrations of the concave mirror 230, and if necessary, the curvature of
the windshield. It should be noted that the position of each of the QPI imagers 220
is axially symmetric relative to their associated concave mirror 230 to ensure balanced
(somewhat equal) aberration at adjacent edges of any two of the concave mirrors 230.
This is an important design aspect of the MHUD system 200 of this invention because
it ensures uniform viewing transition of the virtual image 260 between the multiple
eye-box segments 255 of the collective eye-box 250 of the MHUD system 200.
[0028] FIG. 6 illustrates a multi view perspective of the MHUD assembly 210. As illustrated
in FIG. 6, the MHUD assembly 210 is comprised of three reflective concave mirrors
230 assembled together within the enclosure 600. The three concave mirrors 230 can
be either fabricated separately then fitted together within the enclosure 600 or can
be fabricated as a single part then fitted within the enclosure 600. The three concave
mirrors 230, whether assembled separately or as a single optical part, would be fabricated
using embossed polycarbonate plastic with the optical surface being subsequently coated
with a thin layer of reflective metal, such as silver or aluminum, using sputter techniques.
As illustrated in FIG. 6, the back sidewall of the enclosure is comprised of three
separate sections 610, each incorporating an optical window 615 which, when the back
sidewall sections 610 are assembled together each with its respective concave mirror
230, would be aligned with the optical axis of their respective concave mirror 230.
As illustrated in the side view perspective of FIG. 6, the top edge 617 of each of
the back sidewall sections 610 is angled toward the concave mirror 230 to allow the
imagers 220, which would be mounted on the angled edge surface 617 of the back sidewall
sections 610, to be aligned with the optical axis of their respective concave mirror
230.
[0029] As illustrated in the rear side view perspective of FIG. 6, the back sidewall sections
610 would be assembled together on one side of the back plate 630 with the control
and interface electronics (printed circuit board) 620 of the MHUD assembly 210 mounted
on the opposite side of the back plate 630. In addition, the back plate 630 also incorporates
thermal cooling fins to dissipate the heat generated by the imagers 220 and the interface
electronics element 620 of the MHUD assembly 210. As illustrated in the rear side
view perspective of FIG. 6, each of the imagers 220 would typically be mounted on
a flexible electrical board 618 that connects the imagers 220 to the control and interface
electronics 620.
[0030] As illustrated in the rear side view perspective of FIG. 6, the centers of the interface
edges of the each pair of the concave mirrors 230 and the back sidewall sections 610
incorporate the photo detectors (PD) 640, typically photo-diodes, each positioned
and oriented to detect the light emitted from the imagers 220 onto their respective
concave mirror 230. Typically three photo-diodes would be used in each module, one
for each color of light emitted. The output of the photo detectors (PD) 640 is connected
to the control and interface electronics 620 of the MHUD assembly 210 and is used
as input to the uniformity control loop (described in the discussion below), implemented
within the hardware and software design elements of the interface electronics element
620. Also provided to the control and interface electronics 620 of the MHUD assembly
210 as an input, is the output of the ambient light photo detector sensor 660, which
is typically an integral part of most vehicles' dashboard brightness control.
[0031] The control and interface electronics 620 of the MHUD assembly 210 incorporates the
hardware and software design functional elements illustrated in the block diagram
of FIG. 7, which include the MHUD interface function 710, the control function 720
and the uniformity loop function 730. The MHUD interface function 710 of the control
and interface electronics 620 of the MHUD assembly 210, which is typically implemented
in a combination of hardware and software, receives the image input 715 from the vehicle's
Driver Assistance System (DAS) and incorporates into the image the color and brightness
corrections 735 provided by the control function 720, then provides image inputs 744,
745 and 746 to the imagers 220 of the MHUD assembly 210. Although the same image input
715 data would be provided to the three imagers 220 of the MHUD assembly 210, the
MHUD interface function 710 incorporates each imager 220 specific color and brightness
corrections in their respective image inputs 744, 745 and 746 based on the color and
brightness corrections 735 received from the control function 720.
[0032] In order to ensure color and brightness uniformity across the multiple segments 255
of the collective eye-box 250, the uniformity loop function 730 of the control and
interface electronics 620 receives the input signals 754, 755 and 756 from the photo
detectors (PD) 640 of each of the modules 215 of the MHUD assembly 210, computes the
color and brightness associated with each of the modules 215 of the MHUD assembly
210 then calculates the color and brightness corrections required to make the color
and brightness become more uniform across the multiple segments 255 of the collective
eye-box 250. This would be accomplished with the aide of an initial calibration look-up
table that would be performed and stored in the memory of the control and interface
electronics 620 when the MHUD assembly 210 is originally assembled. The color and
brightness corrections calculated by the uniformity loop function 730 are then provided
to the control function 720 which combines these corrections with input received from
the ambient light sensor 650 and the external color and brightness adjustment input
command 725 to generate the color and brightness corrections 735 which then are incorporated
into the image data by the MHUD interface function 710 before the corrected image
data is provided as the image inputs 744, 745 and 746 to the imagers 220. In incorporating
the input received from the ambient light sensor 650 into the color and brightness
corrections, the control function 720 would adjust the brightness of the virtual image
of the heads-up display in proportion with or in relation to the vehicle external
light brightness. Note that image data as used herein means image information in any
form whatsoever, whether as received as an input to the heads-up display, as provided
to the imagers or as in any other form.
[0033] As explained previously, one embodiment of the MHUD system 200 uses imagers 220 with
higher resolution than the maximum HVS resolvable resolution at the virtual image
260 and incorporates means to eliminate or substantially reduce optical distortion
and the swimming effect it causes by digitally warping the image input to the imagers
220. The MHUD interface function 710 of the MHUD assembly 210 of the MHUD system 200
of that embodiment would also incorporate a multiplicity of look up tables each incorporating
data that identifies the digital image warping parameters required to pre-compensate
for the residual optical distortion of each of the concave mirrors 230. These parameters
are used by the MHUD interface function 710 to warp the digital image input of each
of the imagers 220 in such a way that the image data input to each of the imagers
220 pre-compensates for their corresponding concave mirror 230 residual distortion.
The digital image warping parameters incorporated in the look up tables of the MHUD
interface function 710 would be preliminarily generated from the optical design simulation
of the MHUD assembly 210, then augmented with optical test data that is based on measurements
of the residual optical distortion of each module 215 after the digital image warping
pre-compensation is applied by the MHUD interface function 710. The resultant digitally
warped image data is then combined with the color and brightness corrections 735 provided
by the control function 720, then the color and brightness corrected and distortion
pre-compensated image data is provided as the image inputs 744, 745 and 746 to the
imagers 220 of the MHUD assembly 210. With this design method of the MHUD system 200
the residual optical distortion caused by the concave mirrors 230 and its resultant
swimming effect would be substantially reduced or eliminated altogether, thus making
it possible to realize a distortion-free MHUD system 200.
[0034] As illustrated in the perspective view of FIG. 6, the top side of the MHUD assembly
210 is a glass cover 430, which would function as the optical interface window of
the MHUD assembly 210 at the top surface of the vehicle dashboard and would also function
as a filter that would attenuate the sunlight infrared emission to prevent sunlight
thermal loading at the imagers 220. The glass used should be selected to also be substantially
transparent to the wave lengths of the light of interest.
[0035] The design method of the MHUD assembly 210 leverages the characteristics of the human
visual system (HVS) to simplify the design implementation and assembly tolerances
of the MHUD assembly 210. First, the eye pupil being approximately 5 mm in diameter
(3-5 mm in daytime and 4-9 mm in night time) and resultant lateral acuity in viewing
the virtual image 260 would allow an indiscernibly small gap between the MHUD assembly
210 concave mirrors 230 that can reach as much as 1 mm in width. Second, the eye angular
difference accommodation limit of approximately 0.5 degree would allow a small angular
tilt between the MHUD assembly 210 concave mirrors 230 that can reach approximately
0.15 degree. These tilt and gap allowances set forth a remarkably relaxed mechanical
alignment tolerance requirement for the MHUD assembly 210 concave mirrors 230 and
therefore enable a very cost effective manufacturing and assembly approach for the
MHUD assembly 210. Any further tilt and/or alignment requirements man be easily accommodated,
normally in software.
[0036] FIG. 8 illustrates the novel split eye-box design method of the MHUD system 200 of
this invention. The illustration of FIG. 8 is meant to show the relationship between
collective eye-box 250 and the virtual image 260 of the MHUD system 200. FIG. 8 also
illustrates an example object 810, the arrow shown on the virtual image 260, displayed
by the MHUD system 200. In the design of the MHUD system 200, each of the eye-box
segments 255 would typically be positioned at the exit pupil of its respective module
215. As a result the image information presented to the viewer's eyes within each
of the eye-box segments 255 would be in the angular space. Thus the virtual image
260 arrow object 810 presented to the viewer within each of the eye-box segments 255
separately would typically be fully visible to the viewer when the viewer's head is
positioned within the central region of the respective eye-box segment 255, but the
tip or tail ends of the arrow object 810 of the virtual image 260 would gradually
vignette (or fade away) when the viewer's head is moved to the right side or left
side of the eye-box segment 255, respectively. In the design of the MHUD system 200
when the modules 215 are integrated together into the MHUD assembly 210, shown in
the perspective illustration of FIG. 6, the eye-box segments 255 of the modules 215
would be made to overlap, as illustrated in FIG. 8, to produce the collective eye-box
250 of the MHUD system 200. Thus the collective eye-box 250 of the MHUD system 200
is formed by the overlap of the exit pupil areas forming the eye-box segments 255
of the multiplicity of modules 215, thus making the image information presented to
the viewer's eyes within the collective eye-box 250 be an angularly multiplexed view
of the virtual image 260 extending over the combined angular field of view of the
MHUD modules 215. As illustrated in FIG. 8, the arrow object 810 of the virtual image
260 would become fully visible (or viewable) within the overlap area of the eye-box
segments 255 defining the collective eye-box 250 of the MHUD system 200 with the arrow
object 810 of the virtual image 260 gradually vignetting (or fading away) when the
viewer's head is moved to the right side or left side of the peripheral regions of
the collective eye-box 250, respectively.
[0037] The size of overlap between the eye-box segments 255 of the modules 215 is dependent
upon their angular vignetting profiles, 820 in FIG. 8, and would determine the ultimate
size of the collective eye-box 250 of the MHUD system 200. The latter is defined as
the collective eye-box 250 area boundaries or dimensions within which the virtual
image 260 is fully visible (or viewable) at the desired brightness uniformity. FIG.
8 also illustrates the resultant angular vignetting profile shield of the MHUD assembly
210 across the overall area of the overlapping eye-box segments 255 of the modules
215. As illustrated in FIG. 8, the brightness of the virtual image 260 that would
be perceived by the viewer would include brightness contributions of
ΛR, ΛC, and
ΛL (left, center and right) from each of the modules 215; respectively. The criterion
for defining the boundaries of the collective eye-box 250 would be the area A of the
overlap of the eye-box segments 255 within which the virtual image 260 brightness
is uniform within a given threshold
λ (for example, less than 25%) across the selected region; i.e.,
VarA(
ΛR +
ΛC +
ΛL) ≤
λ, the desired uniformity threshold. With this criterion for defining the boundaries
of the collective eye-box 250 and the overlap of the eye-box segments 255 of the modules
215 illustrated in FIG. 8, the perceived brightness across the virtual image 260 would
typically include a contribution of at least 50% from one of the modules 215. Meaning
that anywhere within the boundaries of the collective eye-box 250 defined by the stated
criterion, each of the modules 215 would contribute at least 50% of the perceived
brightness of the virtual image 260. With this design approach of the MHUD system
200 the desired brightness uniformity of the virtual image 260 would become the criterion
that defines the size of the collective eye-box 250. This design criterion is illustrated
in the FIG. 8 design example of using a uniformity threshold
λ = 25% to produce a 120 mm wide collective eye-box 250. As shown in the illustration
of FIG. 8, when a uniformity threshold
λ = 37.5% is used, an approximately 25% wider collective eye-box 250 measuring approximately
150 mm would be defined.
[0038] As illustrated in FIG. 8, in eye-box segment areas extending beyond the right and
left sides of the collective eye-box 250 of the MHUD system 200, the arrow object
810 of the virtual image would gradually vignette or fade away as the viewer's head
moves into these regions; respectively. With the design approach of the MHUD system
200, the addition of a module 215 to either the right or left sides of the MHUD assembly
210, illustrated in FIG. 6, would extend the lateral width of the collective eye-box
250 of the MHUD system 200, as defined by the design criterion defined earlier, to
the right or left sides; respectively, where the arrow object 810 of the virtual image
260 would become fully visible at a desired brightness uniformity. A similar effect
of extending the height of the collective eye-box 250 would occur in the orthogonal
direction when another row of modules 215 is added to the MHUD assembly 210. Thus
with this modular design method of the MHUD system 200 of this invention, any arbitrary
size collective eye-box 250 with any design selected width and height dimensions can
be realized by adding more of the modules 215 into the MHUD assembly 210.
[0039] In essence the split exit pupil modular design method of the MHUD system 200 of this
invention enables the use of a multiplicity of QPI imagers 220 and concave mirrors
230, each with relatively smaller apertures and each achieving a short optical track
length to replace the much longer optical length of the larger image source and the
single mirror used in prior art HUD systems. Thus the smaller apertures imagers 220
and concave mirrors 230 of the MHUD modules 210 collectively enable a substantially
smaller volumetric aspect than can be achieved by prior art HUD systems that use a
larger single image source and a single mirror to achieve the same size eye-box. Furthermore,
the size of the achieved collective eye-box 250 of the MHUD system 200 can be tailored
by using the appropriate number of modules 215 basic design elements. Conversely,
the volumetric aspects of the MHUD system 200 can be made to match the volume available
in the vehicle dashboard area while achieving a larger size collective eye-box 250
than would be achieved by a prior art HUD system that can fit in the same available
volume.
[0040] In order to illustrate the volumetric advantages of the MHUD system 200 of this invention
the perspective views of FIG. 6 shows the design dimension of an MHUD assembly 210
that uses three QPI imagers 220, each with an optical aperture size of 6.4x3.6 mm,
and three concave mirrors, each with an optical aperture size of 60x100 mm, to achieve
a 120x60 mm collective eye-box 250 size based on the brightness uniformity threshold
of
λ = 25%. Based on the design dimensions shown in FIG. 6, the total volume of the MHUD
assembly 210 would be approximately 1350 cc (1.35 liter). For comparison purposes,
the total volume of a prior art HUD system that uses a single larger aperture mirror
and a single larger image source to achieve the same eye-box size would be in excess
5000cc (5 liter). Thus the design method of the MHUD system 200 of this invention
would enable a HUD system that is a factor of 3.7x more volumetrically efficient (or
smaller) than prior art HUD systems. In order to visualize this volumetric advantage,
FIG. 9 illustrates the volume of the MHUD assembly 210 design example illustrated
in FIG. 6 installed in the dashboard of a sub-compact automobile. As illustrated in
FIG. 9, the volumetrically efficient design of the MHUD system 200 of this invention
enables the addition of HUD capabilities in an automobile with very constrained dashboard
volume in which prior art HUD systems would simply not fit.
[0041] FIG. 10 illustrates the ray path of the MHUD system 200. As illustrated in FIG. 10,
and previously explained and illustrated in FIG. 2, the three QPI imagers 220 comprising
the MHUD assembly 210 would each generate the same image at the same resolution (for
example 640x360 pixels) with the three images, and after being reflected by their
three respective concave mirrors 230, would angularly address the entire 120x60 mm
collective eye-box 250 of the earlier described design example and would collectively
provide 640x360 spatial resolution across the 125x225 mm virtual image 260 of the
earlier described design example. FIG. 10 illustrates a design requirement to generate
10,000 cd/m2 of brightness at the virtual image 260. With a typical windshield reflectivity
of approximately 20% and the collective eye-box 250 boundaries definition criterion
explained earlier, each of the three QPI imagers 220 would generate approximately
25,000 cd/m2 of brightness. Conservatively estimated, the three QPI imagers 220 plus
the control and interface electronics 620 of the MHUD assembly 210 would collectively
consume approximately 2 W to generate 25,000 cd/m2 of brightness, which is approximately
25% of the power consumption of a prior art HUD system.
[0042] Referring to the MHUD system 200 performance illustrated in FIG. 5, the encircled
energy plot of FIG. 5 shows the geometrical blur radius of the collimated light beam
from the concave mirror 230 optical aperture of 180 micron in size. With each of the
modules 215 design example illustrated in FIG. 6 having an effective focal length
of 72 mm, the 180 micron blur size indicated in the encircled energy plot of FIG.
5 gives each of the modules 215 an angular spread of 0.143 deg for a light beam originating
at a pixel of the imager 220 and collimated by its corresponding concave mirror 230.
The swimming effect associated with an angular spread of 0.143 deg over the full beam
width from a pixel while resolution (MTF) is decided by the effective beam width sampled
by eye pupil size. The MTF plot of FIG. 5 shows the MTF of each of the modules 215
calculated for a typical eye pupil aperture of 4mm diameter. The smaller this angular
spread angle, the smaller the swimming radius at the virtual image 260. For a virtual
image 260 viewed 2.5m from the collective eye-box 250 of the MHUD system 200, the
corresponding swimming radius for the MHUD system 200 design example would be 6.2mm.
A prior art HUD system that uses a single mirror and having an optical aperture size
equal to the full aperture size of the MHUD assembly 210 design example would have
an optical aperture that is approximately 2.4x larger than the optical aperture of
the module 215. Since the aberration blur size is directly proportional to the aperture
size raised to the third power Ref [18], the prior art single mirror HUD system having
an optical aperture size equal to the full aperture size of the MHUD assembly 210
design example would have a corresponding swimming radius approximately 14.3mm if
the 5
th order aberration happens to compensate for the large 3
rd order aberration, which cannot be achieved purposefully by design, otherwise the
prior art single mirror HUD system would typically have a corresponding swimming radius
of approximately 39.7mm, which is 6.2x larger than the swimming radius achieved by
the design example of the MHUD system 200. It should also be mentioned that with the
aberration pre-compensation method described earlier, the MHUD system 200 swimming
radius can be substantially reduced below the stated values of this design example
or even eliminated altogether.
[0043] FIG. 10 also illustrates the ray path of the MHUD system 200 with the sunlight loading
included. As illustrated in FIG. 10, the reverse optical path of the sunlight that
strikes the windshield of the vehicle would reach the collective eye-box 250 area
possibly causing a glare in the virtual image 260. In the design of the MHUD system
200 of this invention the amount of sunlight rays that could reach the collective
eye-box 250 will be much less in comparison to prior art HUD systems. First, in assuming
that the windshield 240 optical transmission is 80%, the light rays from the sun will
be attenuated by the windshield 240 to at most 80% of its brightness. Second, the
sun rays transmitted through the windshield 240 and reflected by one of the concave
mirrors 230 toward its corresponding imager 220 would be further attenuated by the
anti-reflective (AR) coating on the optical aperture of the imager 220 to at most
5% of its brightness before it is reflected back toward the concave mirrors 230 assembly.
Third, this reverse path sunlight would then be further attenuated to at most by 20%
of its brightness when it is reflected by windshield 240 toward the collective eye-box
250. Since, as explained earlier, the imager 220 and concave mirror 230 of each of
the modules 215 contributes at most 50% to the brightness of the virtual image 260,
the sunlight glare reflected from the modules 215 stricken by the sunlight would appear
further attenuated by 50% at the virtual image 260. Therefore, based on this path
attenuation analysis, the sunlight that would reach the collective eye-box 250 would
be attenuated to at most to 0.4% (much less than 1%) of its brightness. With the MHUD
system 200 being able to generate more than 10,000 cd/m2 of brightness and 0.4% sunlight
glare at the virtual image 260, the MHUD system 200 can tolerate a sunlight brightness
of more than 250,000 cd/m2, which is equivalent to a unified glare rating (UGR) (or
glare to image intensity ratio) of approximately 28dB. It is worth mentioning that
the glass cover 430 would be infrared absorbing, but transparent to light of the wavelengths
used in the heads-up display of the present invention to prevent the sun loading heat
from being concentrated by the concave mirror 230 assembly back to the imagers 220.
[0044] In the embodiments described above, multiple modules were disposed side by side to
provide overlapping eye-box segments to provide a wider collective eye-box 250 than
the eye-box segments 255 themselves. However, if desired, instead or in addition,
the modules may be disposed so that the eye-box segments of modules 215 are also stacked
to provide a taller collective eye-box 250, again all modules displaying the same
virtual image at the same position in front of the vehicle. Note that the stacking
to provide a taller collective eye-box 250 is in general not a stacking of modules,
but rather because of the slope of the typical windshield, the stacking of the eye-box
segments may be accomplished by simply using a larger, substantially horizontal area
of the dashboard for the additional modules. Also while it was previously stated that
"As illustrated in FIG. 2, the image emitted from each single imager with associated
optics 220 is collimated, magnified and reflected by its associated concave mirror
230, then partially reflected off the vehicle windshield 240 to form the virtual image
260 which is viewable within the eye-box segment 255 located at the nominal head position
of the vehicle's driver (operator)", in any embodiment, the extent of collimation
achieved by the concave mirror will necessarily be less than perfect, and may be intentionally
set to limit how far ahead of the vehicle the virtual image will be formed. In some
instances, the concave mirrors may in fact be purposely designed to distort the collimation
to offset any following sources of aberrations, the curvature of a windshield, if
any, being the most obvious example.
[0045] It was previously indicated that the off-axis distortion and tilting aberrations
and color and brightness corrections can be made in the control and interface electronics
620 of the MHUD assembly 210 of Fig. 2 (see also Fig. 6). Of course lateral position
correction of each image or image segment from each module 215 may also be made in
the control and interface electronics 620 (or mechanically) so that double images
or double image portions are not displayed. Further, it should be noted that "brightness
corrections" have at least two primary aspects. The first and most obvious is the
correction of brightness variations, module to module, so that an image brightness
(and color) from different modules will not be different. Associated with that however,
is the fact that image warping and other factors could possibly cause a variation
in brightness of image portions within an individual module, in that it is possible
that changes in pixel spacing due to warping could give rise to a visible brightness
aberration. If this is encountered, since the brightness of each individual pixel
in each module is individually controllable, if necessary pixel brightness may be
locally increased in areas where pixel separation is increased, and decreased in areas
where pixel separation is decreased. Finally, it should be noted that a typical solid
state emissive pixel array imager is not a square imager, but is typically a rectangle
of unequal dimensions. Consequently the selection of imager orientation may also provide
an additional variable that can be useful in the design of a heads-up display of the
present invention.
[0046] Table 1 below presents the salient performance characteristics of the QPI imager
based MHUD system 200 of certain embodiments of the invention illustrating their performance
advantages in comparison to prior art HUD system that uses a single larger mirror
and a single larger image source. As shown in Table 1, the split exit pupil MHUD system
of this invention out performs prior art HUD systems by multiple factors in every
performance category. In addition, because of its relaxed manufacturing tolerance
and smaller size mirror, explained earlier, the MHUD systems 200 of this invention
are expected to be much more cost effective than prior art with comparable eye-box
size.
Table 1: Performance Comparison
Parameter |
Prior Art HUD * |
QPI Imager Based MHUD |
Color Reproduction (Ratio of NTSC) |
80% |
140% Programmable |
Virtual Image Intensity |
6,000 cd/m2 |
> 10,000 cd/m2 |
Contrast Ratio |
400:1 |
> 100,000:1 |
Power Consumption (Imager + Drive Electronics) |
> 8 W |
< 2 W |
Relative Size (HUD Assembly) |
100% |
< 25% |
Aberration Induced Swimming Effect |
100% |
< 16% |
* Prior Art HUD based on using a high brightness LCD panel as image source |
[0047] Thus the present invention has a number of aspects, which aspects may be practiced
alone or in various combinations or sub-combinations, as desired. While certain preferred
embodiments of the present invention have been disclosed and described herein for
purposes of illustration and not for purposes of limitation, it will be understood
by those skilled in the art that various changes in form and detail may be made therein
without departing from the spirit and scope of the invention as defined by the full
breadth of the following claims.
1. A heads-up display for a vehicle comprising:
a multiplicity of modules (215), each said module (215) having;
a solid state emissive pixel array imager (410); and
a concave mirror (230) disposed to collimate, magnify and reflect an image generated
by the solid state emissive pixel array imager (410) toward a vehicle windshield (240)
to form a virtual image (260) that is viewable within an eye-box segment (255);
the multiplicity of modules (215) being disposed so that the eye-box segments (255)
combine to provide the heads-up display having a collective eye-box (250) that is
larger than the eye-box segment (255) of each module (215), the collective eye-box
(250) being located at a nominal head position of a vehicle's driver;
each module (215) being configured and positioned to form the respective virtual image
of said image at the same position from the vehicle windshield (240) and each module
(215) with its respective eye-box segment (255) being positioned at an exit pupil
of the respective module such that adjacent eye-box segments (255) of the multiplicity
of modules (255) overlap and combine to form a split exit pupil eye-box, whereby image
information presented to the vehicle's driver within the collective eye-box (250)
is an angularly multiplexed view of the virtual image extending over a collective
angular field of view.
2. The heads-up display of claim 1 wherein the overlap of the eye-box segments (255)
of the multiplicity of modules (215) forms a split exit pupil collective eye-box (250).
3. The heads-up display of claim 1 wherein the size of the eye-box segments (255) of
each module (215) and the number of modules (215) in the heads-up display are selected
to provide a collective eye-box size to accommodate a range of driver head positions.
4. The heads-up display of claim 1 wherein the split exit pupil eye-box of the heads-up
display enables a heads-up display with tailorable size eye-box and volumetric aspects
to match a wide range of vehicles' requirements while using the same heads-up display
modules (215).
5. The heads-up display of claim 1 wherein the collective eye-box (250) has a size that
is extendable in width and/or in height by incorporating one or more additional modules
(215).
6. The heads-up display of claim 1 wherein boundaries of the collective eye-box (250)
are areas of the overlap of eye-box segments (255) within which the brightness of
the virtual image (260) is uniform within a given threshold across the collective
eye-box (250).
7. The heads-up display of claim 6 wherein:
the overlap between the eye-box segments (255) cause the driver's perception of any
point in the virtual image (260) to incorporate optical contributions from more than
one of the multiplicity of modules (215), thereby causing optical distortions or ray
direction deviations induced by aberrations of individual concave mirrors of the multiplicity
of modules (215) to be averaged at any point in the virtual image, reducing any swimming
effect perceived by the driver.
8. The heads-up display of claim 1 wherein the concave mirrors (230) have either aspheric
or free-form reflective surfaces whereby the aspherical or free-form factor of the
reflective surfaces are selected to minimize their optical aberrations.
9. The heads-up display of claim 8 wherein the solid state emissive pixel array imagers
(410) each include associated optics (220; 420) that balance off-axis distortion and
tilting aberrations arising from the respective concave mirror (230), wherein the
associated optics (220; 420) is either a separate lens optical element or is attached
directly onto the respective solid state emissive pixel array imagers.
10. The heads-up display of claim 9 wherein:
the aberrations realized by an aperture size of each of the multiplicity of concave
mirrors (230), the aspherical or free-form factors of the concave mirrors and the
off-axis distortion and tilting aberrations balancing effects of the solid state emissive
pixel array imager associated optics (420) collectively minimize optical distortion
caused by the concave mirrors (230), thereby minimizing any swimming effect associated
with the heads-up display.
11. The heads-up display of claim 1 wherein each module (215) provides an optical aperture
size and a pixel resolution that provides a higher resolution than a human visual
system can resolve at the virtual image position, the additional resolution being
dedicated to digital image warping to pre-compensate for residual optical distortion
caused by aberrations arising from the concave mirrors (215), thereby reducing any
swimming effect perceived by the driver of the heads-up display.
12. The heads-up display of claim 1 further comprising:
an assembly (210) having;
the multiplicity of modules (215);
a multiplicity of photo detectors (410); and
a controller (620);
the multiplicity of photo detectors (640) each being positioned within the assembly
(210) to detect light emitted from the solid state emissive pixel array imager (410)
of a respective one of the modules (215);
the controller (620) being coupled to a source of image data for the virtual image
to be displayed, to outputs of the photo detectors (640) and to inputs to the solid
state emissive pixel array imagers (410), the controller (620) implementing control
functions in electronic hardware and/or software responsive to the outputs of the
photo detectors (640) to control the solid state emissive pixel array imagers (410)
to ensure color and brightness uniformity across the multiple eye-box segments (255)
of the collective eye-box (250).
13. The heads-up display of claim 12 wherein the controller (620) is further comprised
of a connection for coupling to an output of an ambient light photo detector (650)
of a vehicle as used to control vehicle dashboard brightness.
14. The heads-up display of claim 12 wherein:
the source of image data is a Driver Assistance System, and the control functions
implemented in electronic hardware and/or software in the controller (620) include:
a uniformity loop function (730) responsive to the outputs of the photo detectors
(640) to calculate respective color and brightness corrections and to couple the corrections
to each of the respective multiple solid state emissive pixel array imagers required
to provide color and brightness uniformity across the collective eye-box (250) of
the heads-up display;
a first control function (720) that combines the color and brightness corrections
calculated by the uniformity loop function (730) with an input to be received from
an ambient light photo detector sensor (650) of a vehicle as used to control vehicle
dashboard brightness and;
an interface function (710) that receives the image data (715) from the vehicle's
Driver Assistance System, incorporates into the image data provided to each solid
state emissive pixel array imager, specific color and brightness corrections (735)
provided by the control function (720), and
a second control function for controlling each of the multiple solid state emissive
pixel array imagers by providing image data as corrected for the respective solid
state emissive pixel array imager.
15. The heads-up display of claim 14 wherein;
the controller (620) includes an external color and brightness connection for coupling
to an external color and brightness adjustment input, and wherein the interface function
(710) further includes a capability to receive and incorporate an external color and
brightness adjustment into the image data of each solid state emissive pixel array
imager, specific color and brightness corrections provided by the control function;
and
the second control function being configured to control the multiple solid state emissive
pixel array imagers by providing image data as corrected for the respective solid
state emissive pixel array imager and as adjusted in accordance with the external
color and brightness adjustment.
16. The heads-up display of claim 14 wherein the interface function (710) is further configured
to perform digital image warping to pre-compensate for residual optical distortion
caused by aberrations arising from the concave mirrors (230), thereby reducing the
swimming effect perceived by the driver.
17. The heads-up display of claim 12 wherein the controller (620) is further comprised
of a connection for coupling to an output of an ambient light photo detector (650),
the output of the ambient light photo detector being used by the controller to control
brightness of the virtual image of the heads-up display by controlling the brightness
of emissions of the multiple solid state emissive pixel array imagers in relation
to ambient light brightness as detected by the ambient light photo detector.
18. The heads-up display of claim 12 further comprising a glass cover (430) forming an
optical interface window, the glass cover being selected to attenuate sunlight infrared
emission to reduce or prevent sunlight thermal loading on each of the multiple solid
state emissive pixel array imagers.
19. The heads-up display of claim 1, wherein each said module has a concave mirror (230)
having aspheric or free-form reflective surfaces .
20. The heads-up display of claim 19 wherein boundaries of the collective eye-box (250)
are areas of the overlap of the eye-box segments (255) within which the brightness
of the virtual image (260) is uniform within a given threshold across the collective
eye-box.
21. The heads-up display of claim 19 wherein the collective eye-box (250) has a size that
is extendable in width and/or in height by incorporating one or more additional modules
(215).
22. The heads-up display of claim 19 wherein the solid state emissive pixel array imagers
(410) each include associated optics (220) that balance off-axis distortion and tilting
aberrations arising from the respective concave mirror (230), wherein the associated
optics (220) is either a separate lens optical element or is attached directly onto
the respective solid state emissive pixel array imagers.
23. The heads-up display of claim 19 further comprising:
an assembly (210) having;
the multiplicity of modules (215);
a multiplicity of photo detectors (640); and
a controller (620);
the multiplicity of photo detectors (640) each being positioned within the assembly
(210) to detect light emitted from the solid state emissive pixel array imager (410)
of a respective one of the modules (215);
the controller (620) being coupled to a source of image data for the virtual image
to be displayed, to outputs of the photo detectors (640) and to inputs to the solid
state emissive pixel array imagers, the controller (620) implementing control functions
in electronic hardware and/or software responsive to the outputs of the photo detectors
(640) to control the solid state emissive pixel array imagers to ensure color and
brightness uniformity across the multiple eye-box segments (255) of the collective
eye-box (650).
24. The heads-up display of claim 23 wherein the controller (620) is further comprised
of a connection for coupling to an output of an ambient light photo detector (650)
of a vehicle as used to control vehicle dashboard brightness.
25. The heads-up display of claim 23 wherein:
the source of image data is a Driver Assistance System, and the control functions
implemented in electronic hardware and/or software in the controller include:
a uniformity loop function (730) responsive to the outputs of the photo detectors
(640) to calculate respective color and brightness corrections and to couple the corrections
to each of the respective multiple solid state emissive pixel array imagers (410)
required to provide color and brightness uniformity across the collective eye-box
(250) of the heads-up display;
a control function (720) that combines the color and brightness corrections calculated
by the uniformity loop function (730) with an input to be received from an ambient
light photo detector sensor (650) of a vehicle as used to control vehicle dashboard
brightness and;
an interface function (710) that receives the image data from the vehicle's Driver
Assistance System, incorporates into the image data provided to each solid state emissive
pixel array imager, specific color and brightness corrections provided by the control
function, and
a control function for controlling the multiple solid state emissive pixel array imagers
by providing image data as corrected for the respective solid state emissive pixel
array imager.
26. The heads-up display of claim 25 wherein;
the controller (620) includes an external color and brightness connection for coupling
to an external color and brightness adjustment input, and wherein the interface function
(710) further includes a capability to receive and incorporate an external color and
brightness adjustment into the image data of each solid state emissive pixel array
imager, specific color and brightness corrections provided by the control function;
and
the control function (720) is configured to control the multiple solid state emissive
pixel array imagers by providing image data as corrected for the respective solid
state emissive pixel array imager and as adjusted in accordance with the external
color and brightness adjustment.
27. The heads-up display of claim 25 wherein the interface function is further configured
to perform digital image warping to pre-compensate for residual optical distortion
caused by aberrations arising from the concave mirrors (230), thereby reducing the
swimming effect perceived by the driver.
28. The heads-up display of claim 23 wherein the controller (620) is further comprised
of a connection for coupling to an output of an ambient light photo detector (650),
the output of the ambient light photo detector (650) being used by the controller
(620) to control brightness of the virtual image of the heads-up display by controlling
the brightness of emissions of the multiple solid state emissive pixel array imagers
in relation to ambient light brightness as detected by the ambient light photo detector
(650).
29. The heads-up display of claim 23 further comprising a glass cover (430) forming an
optical interface window, the glass cover (430) being selected to attenuate sunlight
infrared emission to reduce or prevent sunlight thermal loading on each of the multiple
solid state emissive pixel array imagers.
30. A method of forming a heads-up display for a vehicle comprising:
using a multiplicity of modules (215), and performing in each module, directing an
image emitted by a solid state emissive pixel array imager in each module onto a respective
concave mirror (230) to collimate, magnify and reflect the image;
mounting the multiplicity of modules (215) in a vehicle so that the image from the
concave mirror (230) in each module can reflect from a vehicle windshield (240) toward
a vehicle operator's eyes to appear as a respective virtual image (260) at some position
in front of the vehicle, the position of the virtual images (260) being the same for
all modules (215); and
causing the solid state emissive pixel array imager in each module (215) to emit the
same image at any one time;
whereby a collective eye-box (250) viewable by an operator of the vehicle will be
larger than an eye-box segment (255) of any one module (215).
31. The method of claim 30 wherein:
each module (215) is positioned to form the respective virtual image (260) with the
respective eye-box segment (255) positioned at an exit pupil of the respective module
such that the eye-box segments (255) of the multiplicity of modules (215) overlap
and combine to form a split exit pupil collective eye-box (250), whereby image information
presented to the vehicle's operator within the collective eye-box (250) is an angularly
multiplexed view of the virtual image (260) extending over a collective angular field
of view, the overlap of the eye-box segments (255) of the multiplicity of modules
(215) forms a split exit pupil collective eye-box (250).
32. The method of claim 30 wherein aberrations caused by offsets and tilting of the virtual
images is compensated for electronically by corresponding adjustments in image data
provided to, and the image emitted, by each solid state emissive pixel array imager.
33. The method of claim 30 wherein the concave mirrors (230) are free-form reflective
surfaces selected to minimize optical aberrations.
34. The method of claim 30 wherein the concave mirrors (230) are free-form reflective
surfaces selected to minimize optical aberrations, including the optical aberrations
caused by a curved windshield.
35. The method of claim 30 further comprising providing optics (220) associated with each
solid state emissive pixel array imager (410) that balance off-axis distortion and
tilting aberrations arising from the respective concave mirror (230), the associated
optics (220) being either a separate lens optical element or being attached directly
onto the respective solid state emissive pixel array imager.
36. The method of claim 30 wherein each solid state emissive pixel array imager is selected
to provide a higher pixel resolution than a human visual system can resolve at the
virtual image position, and using the additional resolution for digital image warping
to pre-compensate for residual optical distortion caused by aberrations arising from
the concave mirrors, thereby reducing any swimming effect perceived by the driver
of the heads-up display.
37. The method of claim 30 further comprising:
providing a multiplicity of photo detectors (640) and a controller (620);
positioning the photo detectors (640) to detect light emitted from the solid state
emissive pixel array imager (410) of a respective one of the modules (215);
coupling the controller (620) to a source of image data for the virtual image to be
displayed, to outputs of the photo detectors (640) and to inputs to the solid state
emissive pixel array imagers;
implementing in the controller, control functions in electronic hardware and/or software
responsive to the outputs of the photo detectors to control the solid state emissive
pixel array imagers to ensure color and brightness uniformity across the multiple
eye-box segments (255) of the collective eye-box (250).
38. The method of claim 37 further comprising connecting the controller (620) to an output
of an ambient light photo detector (650) of a vehicle as used to control vehicle dashboard
brightness.
39. The method of claim 38 further comprising:
coupling the controller (620) to a Driver Assistance System to provide image data
to the controller, and the control functions implemented in electronic hardware and/or
software in the controller include:
a uniformity loop function (730) responsive to the outputs of the photo detectors
to calculate respective color and brightness corrections and to couple the corrections
to each of the respective multiple solid state emissive pixel array imagers required
to provide color and brightness uniformity across the collective eye-box of the heads-up
display;
a control function (720) that combines the color and brightness corrections calculated
by the uniformity loop function with an input to be received from an ambient light
photo detector sensor (650)of a vehicle as used to control vehicle dashboard brightness
and;
an interface function (710) that receives the image data from the vehicle's Driver
Assistance System, incorporates into the image data of each solid state emissive pixel
array imager, specific color and brightness corrections provided by the control function,
and
a control function for controlling the multiple solid state emissive pixel array imagers
by providing image data as corrected for the respective solid state emissive pixel
array imager.
40. The method of claim 38 further comprising coupling an output of an ambient light photo
detector (650) to the controller (620) and using its output to control brightness
of the virtual image of the heads-up display by controlling the brightness of emissions
of the multiple solid state emissive pixel array imagers in relation to ambient light
brightness as detected by the ambient light photo detector.
41. The method of claim 38 further comprising a glass cover (430) forming an optical interface
window, the glass cover being selected to attenuate sunlight infrared emission to
reduce or prevent sunlight thermal loading on each of the multiple solid state emissive
pixel array imagers.
42. The method of claim 38 further comprising;
coupling the controller (620) to an external color and brightness adjustment input,
and further providing a capability to receive and incorporate an external color and
brightness adjustment into the image data of each solid state emissive pixel array
imager, specific color and brightness corrections provided by the control function;
and
controlling the multiple solid state emissive pixel array imagers by providing image
data as corrected for the respective solid state emissive pixel array imager and as
adjusted in accordance with the external color and brightness adjustment.
43. The method of claim 42 wherein the controller (620) is further configured to perform
digital image warping to pre-compensate for residual optical distortion caused by
aberrations arising from the concave mirrors, thereby reducing the swimming effect
perceived by the driver.
1. Ein Head-up-Display für ein Fahrzeug, aufweisend:
eine Vielzahl von Modulen (215), wobei jedes Modul (215) aufweist;
einen Festkörper-Leuchtpixel-Array-Bilderzeuger (410); und
einen konkaven Spiegel (230), der so angeordnet ist, dass er ein von dem Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) erzeugtes Bild kollimiert, vergrößert und in Richtung einer Fahrzeugwindschutzscheibe
(240) reflektiert, um ein virtuelles Abbild (260) zu bilden, das innerhalb eines Eyebox-Segments
(255) sichtbar ist;
wobei die Vielzahl von Modulen (215) so angeordnet ist, dass sich die Eyebox-Segmente
(255) verbinden, so dass das Head-up-Display eine kollektive Eyebox (250) hat, welche
größer ist als das Eyebox-Segment (255) jedes Moduls (215), wobei die kollektive Eyebox
(250) an einer nominellen Kopfposition eines Fahrers des Fahrzeugs angeordnet ist;
wobei jedes Modul (215) so konfiguriert und positioniert ist, dass das jeweilige virtuelle
Abbild des Bildes sich an der gleichen Position gegenüber der Fahrzeugwindschutzscheibe
(240) befindet, und wobei jedes Modul (215) mit seinem jeweiligen Eyebox-Segment (255)
an einer Austrittspupille des zugehörigen Moduls derart positioniert ist, dass sich
benachbarte Eyebox-Segmente (255) der Vielzahl von Modulen (255) überlappen und verbinden,
so dass eine Eyebox mit aufgeteilter Austrittspupille gebildet ist, wodurch die einem
Fahrer des Fahrzeugs innerhalb der kollektiven Eyebox (250) präsentierten Bildinformationen
eine bezüglich des Winkels gemultiplexte Ansicht des virtuellen Abbilds sind, die
sich über einen kollektiven Sichtwinkel erstreckt.
2. Das Head-up-Display nach Anspruch 1, wobei die Überlappung der Exebox-Segmente (255)
der Vielzahl von Modulen (215) eine gemeinsame Eyebox (250) mit aufgeteilter Austrittspupille
bildet.
3. Das Head-up-Display nach Anspruch 1, wobei die Größe der Eyebox-Segmente (255) jedes
Moduls (215) und die Anzahl der Module (215) in dem Head-up-Display so ausgewählt
sind, dass eine Größe der gemeinsamen Eyebox zur Verfügung gestellt wird, die einem
Bereich der Kopfpositionen des Fahrers angepasst ist.
4. Das Head-up-Display nach Anspruch 1, wobei die Eyebox des Head-up-Displays mit aufgeteilter
Austrittspupille ein Head-up-Display mit einer Eyebox maßgeschneiderter Größe und
volumetrischen Aspekten ermöglicht, um zu einem weiten Bereich von Fahrzeuganforderungen
zu passen, während die gleichen Head-up-Display-Module (215) verwendet werden.
5. Das Head-up-Display nach Anspruch 1, wobei die gemeinsame Eyebox (250) eine Größe
aufweist, die in ihrer Breite und/oder in ihrer Höhe erweiterbar ist, indem ein oder
mehrere zusätzliche Module (215) hinzugefügt werden.
6. Das Head-up-Display nach Anspruch 1, wobei die Begrenzungen der gemeinsamen Eyebox
(250) Bereiche der Überlappung von Eyebox-Segmenten (255) sind, innerhalb welcher
die Helligkeit des virtuellen Abbilds (260) innerhalb eines gegebenen Schwellwerts
über die gemeinsame Eyebox (250) gleichförmig ist.
7. Das Head-up-Display nach Anspruch 6, wobei:
die Überlappung zwischen den Eyebox-Segmenten (255) bewirkt, dass an der Wahrnehmung
irgendeines Punkts in dem virtuellen Abbild (260) durch den Fahrer optische Beiträge
von mehr als einem der Vielzahl von Modulen (215) beteiligt sind, wodurch bewirkt
wird, dass optische Verzerrungen oder Strahlrichtungsabweichungen, die durch Aberrationen
der einzelnen konkaven Spiegel der Vielzahl von Modulen (215) induziert werden, an
jedem Punkt in dem virtuellen Abbild gemittelt werden, wodurch ein etwaiger durch
den Fahrer wahrgenommener Verschwimmungseffekt verringert wird.
8. Das Head-up-Display nach Anspruch 1, wobei die konkaven Spiegel (230) entweder eine
asphärische oder eine beliebig geformte reflektierende Oberfläche aufweisen, wobei
der asphärische oder beliebige Formfaktor der reflektierenden Oberflächen so ausgewählt
ist, dass ihre optischen Abbildungsfehler minimiert werden.
9. Das Head-up-Display nach Anspruch 8, wobei die Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) jeweils eine zugeordnete Optik (220; 420) enthalten, die eine Off-Axis-Verzerrungs-
und Kipp-Abbildungsfehler ausgleichen, die von dem zugehörigen konkaven Spiegel (230)
herrühren, wobei die zugehörige Optik (220; 420) entweder ein optisches Element mit
separater Linse ist oder direkt auf dem zugehörigen Festkörper-Leuchtpixel-Array-Bilderzeuger
befestigt ist.
10. Das Head-up-Display nach Anspruch 9, wobei:
die Abbildungsfehler, die durch eine Aperturgröße jedes der Vielzahl von konkaven
Spiegeln (230), die asphärischen oder beliebigen Formfaktoren der konkaven Spiegel
und die Off-Axis-Verzerrungs- und Kipp-Abbildungsfehler-Ausgleichseffekte der dem
Festkörper-Leuchtpixel-Array-Bilderzeuger zugeordneten Optik (420) erzielt werden,
gemeinsam die von den konkaven Spiegeln (230) bewirkten optischen Verzerrungen minimieren,
wodurch etwaige dem Head-up-Display zugeordnete Verschwimmungseffekte minimiert werden.
11. Das Head-up-Display nach Anspruch 1, wobei jedes Modul (215) eine optische Aperturgröße
und eine Pixelauflösung zur Verfügung stellt, die eine höhere Auflösung bereitstellt,
als das menschliche Auge an der Position des virtuellen Abbilds auflösen kann, wobei
die zusätzliche Auflösung einem digitalen Image Warping gewidmet ist, um eine restliche
optische Verzerrung zu kompensieren, die durch Abbildungsfehler bewirkt wird, welche
von den konkaven Spiegeln (215) herrühren, wodurch etwaige von dem Fahrer des Head-up-Displays
wahrgenommene Verschwimmungseffekte reduziert werden.
12. Das Head-up-Display nach Anspruch 1, ferner aufweisend:
eine Baugruppe (210), aufweisend:
die Vielzahl von Modulen (215);
eine Vielzahl von Fotodetektoren (410); und
eine Steuereinrichtung (620);
wobei die mehreren Fotodetektoren (640) jeweils innerhalb der Baugruppe (210) so positioniert
sind, dass sie das von dem Festkörper-Leuchtpixel-Array-Bilderzeuger (410) eines zugehörigen
Moduls (215) emittierte Licht erfassen;
wobei die Steuereinrichtung (620) mit einer Quelle von Bilddaten für das anzuzeigende
virtuelle Abbild, mit Ausgängen der Fotodetektoren (640) und mit Eingängen der Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) gekoppelt ist, wobei die Steuereinrichtung (620) Steuerfunktionen in elektronischer
Hardware und/oder Software implementiert, die auf die Ausgangssignale der Fotodetektoren
(640) ansprechen, um die Festkörper-Leuchtpixel-Array-Bilderzeuger (410) so anzusteuern,
dass eine Farb- und Helligkeitsgleichmäßigkeit über die mehreren Eyebox-Segmente (255)
der gemeinsamen Eyebox (250) gesichert wird.
13. Das Head-up-Display nach Anspruch 12, wobei die Steuereinrichtung (620) ferner einen
Anschluss zum Ankoppeln eines Ausgangs eines Umgebungslichtfotodetektors (650) eines
Fahrzeugs aufweist, wie er zum Steuern der Helligkeit einer Armaturentafel des Fahrzeugs
verwendet wird.
14. Das Head-up-Display nach Anspruch 12, wobei:
die Quelle der Bilddaten ein Fahrer-Assistenzsystem ist und die in elektronischer
Hardware und/oder Software in der Steuereinrichtung (620) implementierten Steuerfunktionen
einschließen:
eine auf die Ausgangssignale der Fotodetektoren (640) ansprechende Gleichförmigkeitsschleifenfunktion
(730) zum Berechnen der jeweiligen Farb- und Helligkeitskorrekturen und zum Einkoppeln
der Korrekturen in jeden der zugehörigen mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger,
um eine Farb- und Helligkeitsgleichförmigkeit über die gemeinsame Eyebox (250) des
Head-up-Displays zur Verfügung zu stellen:
eine erste Steuerfunktion (720), die die von der Gleichförmigkeitsschleifenfunktion
(730) berechneten Farb- und Helligkeitskorrekturen mit einem Eingangssignal kombiniert,
das von einem Umgebungslichtfotodetektorsensor (650) eines Fahrzeugs, wie er zum Steuern
der Helligkeit einer Fahrzeugarmaturentafel verwendet wird, empfangen werden soll,
und
eine Schnittstellenfunktion (710), die die Bilddaten (715) von dem Fahrer-Assistenzsystem
des Fahrzeugs empfängt, spezielle Farb- und Helligkeitskorrekturen (735), die von
der Steuerfunktion (720) zur Verfügung gestellt werden, in die Bilddaten einbringt,
die an jeden Festkörper-Leuchtpixel-Array-Bilderzeuger zur Verfügung gestellt werden,
und
eine zweite Steuerfunktion zum Steuern jedes der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
durch Bereitstellen von Bilddaten, wie sie für den jeweiligen Festkörper-Leuchtpixel-Array-Bilderzeuger
korrigiert worden sind.
15. Das Head-up-Display nach Anspruch 14, wobei:
die Steuereinrichtung (620) einen externen Farb-und-Helligkeits-Anschluss zum Koppeln
mit einem externen Farb-und-Helligkeits-Einstell-Eingangssignal aufweist und wobei
die Schnittstellenfunktion (710) ferner eine Möglichkeit einschließt, eine externe
Farb- und Helligkeitseinstellung zu empfangen und diese sowie spezifische von der
Steuerfunktion zur Verfügung gestellte Farb- und Helligkeitskorrekturen in die Bilddaten
jedes Festkörper-Leuchtpixel-Array-Bilderzeugers einzubringen; und
die zweite Steuerfunktion so konfiguriert ist, dass sie die mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
steuert, indem Bilddaten zur Verfügung gestellt werden, wie sie für den jeweiligen
Festkörper-Leuchtpixel-Array-Bilderzeuger korrigiert und in Übereinstimmung mit der
externen Farb- und Helligkeitseinstellung eingestellt worden sind.
16. Das Head-up-Display nach Anspruch 14, wobei die Schnittstellenfunktion (710) ferner
so konfiguriert ist, dass sie ein digitales Image Warping auszuführt, um eine optische
Restverzerrung vorzukompensieren, die durch Abbildungsfehler verursacht wird, die
aus den konkaven Spiegeln (230) herrühren, wodurch der von dem Fahrer wahrgenommene
Verschwimmungeffekt reduziert wird.
17. Das Head-up-Display nach Anspruch 12, wobei die Steuereinrichtung (620) ferner einen
Anschluss zum Ankoppeln eines Ausgangs eines Umgebungslichtfotodetektors (650) aufweist,
wobei das Ausgangssignal des Umgebungslichtfotodetektors von der Steuereinrichtung
verwendet wird, um die Helligkeit der virtuellen Abbildung des Head-up-Displays zu
steuern, indem die Helligkeit der Abstrahlungen der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
in Bezug auf die Helligkeit des Umgebungslichts, wie es von dem Umgebungslichtfotodetektor
erfasst worden ist, gesteuert wird.
18. Das Head-up-Display nach Anspruch 12, ferner aufweisend eine Glasabdeckung (430),
die ein optisches Schnittstellenfenster bildet, wobei die Glasabdeckung so ausgewählt
ist, dass sie die Infrarotemission des Sonnenlichts abschwächt, um eine durch das
Sonnenlicht bewirkte thermische Aufheizung jedes der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
zu verringern oder zu vermeiden.
19. Das Head-up-Display nach Anspruch 1, wobei jedes der Module einen konkaven Spiegel
(230) mit asphärischen oder beliebig geformten reflektierenden Oberflächen aufweist.
20. Das Head-up-Display nach Anspruch 19, wobei die Begrenzungen der gemeinsamen Eyebox
(250) Bereiche der Überlappung der Eyebox-Segmente (255) sind, innerhalb welcher die
Helligkeit des virtuellen Abbilds (260) innerhalb eines gegebenen Schwellwerts über
die gemeinsame Eyebox gleichmäßig ist.
21. Das Head-up-Display nach Anspruch 19, wobei die gemeinsame Eyebox (250) eine Größe
aufweist, die in ihrer Breite und/oder in ihrer Höhe erweiterbar ist, indem ein oder
mehrere zusätzliche Module (215) eingeschlossen werden.
22. Das Head-up-Display nach Anspruch 19, wobei die Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) jeweils eine zugehörige Optik (220) aufweisen, die Off-Axis-Verzerrungs und
Kipp-Abbildungsfehler ausgleichen, die aus dem jeweiligen konkaven Spiegel (230) herrühren,
wobei die zugehörige Optik (220) entweder ein optisches Element mit separater Linse
ist oder direkt auf dem zugehörigen Festkörper-Leuchtpixel-Array-Bilderzeuger befestigt
ist.
23. Das Head-up-Display nach Anspruch 19, ferner aufweisend:
eine Baugruppe (210), aufweisend:
die Vielzahl von Modulen (215);
eine Vielzahl von Fotodetektoren (640); und
eine Steuereinrichtung (620);
wobei mehreren Fotodetektoren (640) jeweils innerhalb der Baugruppe (210) so positioniert
sind, dass sie das von einem Festkörper-Leuchtpixel-Array-Bilderzeuger (410) eines
zugehörigen Moduls (215) emittierte Licht erfassen;
wobei die Steuereinrichtung (620) mit einer Quelle von Bilddaten für das anzuzeigende
virtuelle Abbild, mit Ausgängen der Fotodetektoren (640) und mit Eingängen der Festkörper-Leuchtpixel-Array-Bilderzeuger
gekoppelt ist, wobei die Steuereinrichtung (620) Steuerfunktionen in elektronischer
Hardware und/oder Software implementiert, die auf die Ausgangssignale der Fotodetektoren
(640) anspricht, um die Festkörper-Leuchtpixel-Array-Bilderzeuger so anzusteuern,
dass eine Farb- und Helligkeitsgleichförmigkeit über die mehreren Eyebox-Segmente
(255) der gemeinsamen Eyebox (650) gesichert wird.
24. Das Head-up-Display nach Anspruch 23, wobei die Steuereinrichtung (620) ferner einen
Anschluss zum Koppeln mit einem Ausgang eines Umgebungslichtfotodetektors (650) eines
Fahrzeugs, wie er zum Steuern der Helligkeit einer Fahrzeugarmaturentafel verwendet
wird, gekoppelt ist.
25. Das Head-up-Display nach Anspruch 23, wobei:
die Quelle der Bilddaten ein Fahrer-Assistenzsystem ist und wobei die in elektronischer
Hardware und/oder Software in der Steuereinrichtung implementierten Steuerfunktionen
einschließen:
eine auf die Ausgangssignale der Fotodetektoren (640) ansprechende Gleichförmigkeitsschleifenfunktion
(730) zum Berechnen zugehöriger Farb- und Helligkeitskorrekturen und zum Koppeln der
Korrekturen mit jedem der zugehörigen mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
(410), die erforderlich sind, um eine Farb- und Helligkeitsgleichförmigkeit über die
gemeinsame Eyebox (250) des Head-up-Displays zur Verfügung zu stellen;
eine Steuerfunktion (720), die die von der Gleichförmigkeitsschleifenfunktion (730)
berechneten Farb- und Helligkeitskorrekturen mit einem Eingangssignal kombiniert,
das von einem Umgebungslichtfotodetektorsensor (650) eines Fahrzeugs, wie er zum Steuern
der Helligkeit einer Fahrzeugarmaturentafel verwendet wird, empfangen werden soll,
und
eine Schnittstellenfunktion (710), die die Bilddaten aus dem Fahrer-Assistenzsystem
des Fahrzeugs empfängt, in die jedem der Festkörper-Leuchtpixel-Array-Bilderzeuger
zur Verfügung gestellten Bilddaten speziell von der Steuerfunktion zur Verfügung gestellte
Farb- und Helligkeitskorrekturen einbringt, und
eine Steuerfunktion zum Steuern der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger,
indem Bilddaten zur Verfügung gestellt werden, wie sie für den jeweiligen Festkörper-Leuchtpixel-Array-Bilderzeuger
korrigiert worden sind.
26. Das Head-up-Display nach Anspruch 25, wobei:
die Steuereinrichtung (620) einen externen Farb- und Helligkeitsanschluss zum Koppeln
mit einem externen Farb- und Helligkeitseinstelleingangssignal enthält und wobei die
Schnittstellenfunktion (710) ferner eine Fähigkeit einschließt, eine externe Farb-
und Helligkeitseinstellung zu empfangen und diese sowie die von der Steuerfunktion
zur Verfügung gestellten speziellen Farb- und Helligkeitskorrekturen in die Bilddaten
jedes Festkörper-Leuchtpixel-Array-Bilderzeugers einzubringen; und
die Steuerfunktion (720) so konfiguriert ist, dass die mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
gesteuert werden, indem Bilddaten zur Verfügung gestellt werden, wie sie für den jeweiligen
Festkörper-Leuchtpixel-Array-Bilderzeuger korrigiert und in Übereinstimmung mit der
externen Farb- und Helligkeitseinstellung eingestellt worden sind.
27. Das Head-up-Display nach Anspruch 25, wobei die Schnittstellenfunktion ferner so konfiguriert
ist, dass sie ein digitales Image Warping ausführt, um eine optische Restverzerrung
vorzukompensieren, die durch Abbildungsfehler verursacht ist, die aus den konkaven
Spiegeln (230) herrühren, wodurch der von dem Fahrer wahrgenommene Verschwimmungseffekt
reduziert wird.
28. Das Head-up-Display nach Anspruch 23, wobei die Steuereinrichtung (620) ferner einen
Anschluss zum Koppeln mit einem Ausgang eines Umgebungslichtfotodetektors (650) aufweist,
wobei das Ausgangssignal des Umgebungslichtfotodetektors (650) von der Steuereinrichtung
(620) verwendet wird, um die Helligkeit des virtuellen Abbilds des Head-up-Displays
zu steuern, indem die Helligkeit der Abstrahlungen der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
in Relation zu der von dem Umgebungslichtfotodetektor (650) erfassten Umgebungslichthelligkeit
gesteuert wird.
29. Das Head-up-Display nach Anspruch 23, ferner aufweisend eine Glasabdeckung (430),
die ein optisches Schnittstellenfenster bildet, wobei die Glasabdeckung (430) so ausgewählt
ist, dass sie Infrarotemissionen des Sonnenlichts dämpft, um eine thermische Aufheizung
jedes der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger durch das Sonnenlicht
zu reduzieren oder zu verhindern.
30. Ein Verfahren zum Ausbilden eines Head-up-Displays für ein Fahrzeug, umfassend:
Verwenden einer Vielzahl von Modulen (215) und Ausführen, in jedem Modul, des Lenkens
eines von einem Festkörper-Leuchtpixel-Array-Bilderzeuger in jedem Modul abgestrahlten
Bildes auf einen zugehörigen konkaven Spiegel (230) zum Kollimieren, Vergrößern und
Reflektieren des Bildes;
Montieren der Vielzahl von Modulen (215) in einem Fahrzeug derart, dass das Bild aus
dem konkaven Spiegel (230) in jedem Modul von einer Fahrzeugwindschutzscheibe (240)
zu den Augen eines Fahrzeugbedieners reflektiert werden kann, so dass es als zugehöriges
virtuelles Abbild (260) an irgendeiner Position vor dem Fahrzeug erscheint, wobei
die Position der virtuellen Abbilder (260) die gleiche ist für sämtliche Module (215);
und
Veranlassen der Festkörper-Leuchtpixel-Array-Bilderzeuger in jedem Modul (215), dass
sie zu jedem Zeitpunkt das gleiche Bild emittieren;
wodurch eine durch einen Bediener des Fahrzeugs sichtbare gemeinsame Eyebox (250)
größer ist als ein Eyebox-Segment (255) jedes der Module (215).
31. Das Verfahren nach Anspruch 30, wobei:
jedes Modul (215) so positioniert wird, dass das zugehörige virtuelle Abbild (260)
derart gebildet wird, dass das zugehörige Eyebox-Segment (255) an einer Austrittspupille
des zugehörigen Moduls positioniert ist, so dass die Eyebox-Segmente (255) der Vielzahl
von Modulen (215) einander überlappen und sich verbinden, um eine gemeinsame Eyebox
(250) mit aufgeteilter Austrittspupille zu bilden, wodurch die einem Bediener des
Fahrzeugs innerhalb der gemeinsamen Eyebox (250) präsentierten Bildinformationen eine
bezüglich des Winkels gemultiplexte Ansicht des virtuellen Abbilds (260) sind, die
sich über einen kollektiven Sichtwinkel erstreckt, wobei die Überlappung der Eyebox-Segmente
(255) der Vielzahl von Modulen (215) eine gemeinsame Eyebox (250) mit aufgeteilter
Austrittspupille bildet.
32. Das Verfahren nach Anspruch 30, wobei durch Offsets und Verkippen der virtuellen Abbilder
bewirkte Abbildungsfehler elektronisch kompensiert werden durch entsprechende Einstellungen
der jedem Festkörper-Leuchtpixel-Array-Bilderzeuger zur Verfügung gestellten Bilddaten
und des von ihm emittierten Bildes.
33. Das Verfahren nach Anspruch 30, wobei die konkaven Spiegel (230) beliebig geformte
reflektierende Oberflächen aufweisen, die zum Minimieren der optischen Abbildungsfehler
ausgewählt sind.
34. Das Verfahren nach Anspruch 30, wobei die konkaven Spiegel (230) beliebig geformte
reflektierende Oberflächen sind, die zum Minimieren der optischen Abbildungsfehler
ausgewählt sind, einschließlich der optischen Abbildungsfehler, die durch eine gekrümmte
Windschutzscheibe verursacht werden.
35. Das Verfahren nach Anspruch 30, ferner umfassend ein Bereitstellen einer jedem Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) zugeordneten Optik (220), die Off-Axis-Verzerrungs- und Kipp-Abbildungsfehler
ausgleicht, die von dem zugehörigen konkaven Spiegel (230) herrühren, wobei die zugeordnete
Optik (220) entweder ein optisches Element mit separaten Linsen ist oder direkt auf
dem zugehörigen Festkörper-Leuchtpixel-Array-Bilderzeuger befestigt ist.
36. Das Verfahren nach Anspruch 30, wobei jeder Festkörper-Leuchtpixel-Array-Bilderzeuger
so ausgewählt ist, dass er eine höhere Pixelauflösung bereitstellt, als das menschliche
Auge an der Position des virtuellen Abbilds auflösen kann, und Verwenden der zusätzlichen
Auflösung für ein digitales Image Warping, um verbleibende optische Verzerrungen vorzukompensieren,
die von Abbildungsfehlern verursacht werden, die aus den konkaven Spiegeln herrühren,
wodurch etwaige durch den Fahrer des Head-up-Displays wahrgenommene Verschwimmungseffekte
reduziert werden.
37. Das Verfahren nach Anspruch 30, ferner umfassend:
Bereitstellen einer Vielzahl von Fotodetektoren (640) und einer
Steuereinrichtung (620);
Positionieren der Fotodetektoren (640) derart, dass sie von dem Festkörper-Leuchtpixel-Array-Bilderzeuger
(410) eines zugehörigen der Module (215) emittiertes Licht erfassen;
Koppeln der Steuereinrichtung (620) mit einer Quelle von Bilddaten für das anzuzeigende
virtuelle Abbild, mit Ausgängen der Fotodetektoren (640) und mit Eingängen der Festkörper-Leuchtpixel-Array-Bilderzeuger;
Implementieren von Steuerfunktionen in elektronischer Hardware und/oder Software in
dem Controller, die auf die Ausgangssignale der Fotodetektoren ansprechen, um die
Festkörper-Leuchtpixel-Array-Bilderzeuger so anzusteuern, dass eine Farb- und Helligkeitsgleichmäßigkeit
über die mehreren Eyebox-Segmente (255) der gemeinsamen Eyebox (250) gesichert wird.
38. Das Verfahren nach Anspruch 37, ferner umfassend ein Verbinden der Steuereinrichtung
(620) mit einem Ausgang eines Umgebungslichtfotodetektors (650) eines Fahrzeugs, wie
er zum Steuern der Helligkeit einer Fahrzeuginstrumententafel verwendet wird.
39. Das Verfahren nach Anspruch 38, ferner umfassend:
Koppeln der Steuereinrichtung (620) mit einem Fahrer-Assistenzsystem zum Bereitstellen
der Bilddaten an die Steuereinrichtung, und wobei die in elektronischer Hardware und/oder
Software implementierten Steuerfunktionen in dem Controller einschließen:
eine auf die Ausgangssignale der Fotodetektoren ansprechende Gleichförmigkeitsschleifenfunktion
(730) zum Berechnen entsprechender Farb- und Helligkeitskorrekturen und zum Koppeln
der Korrekturen mit jedem der zugehörigen mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger,
die erforderlich sind, um eine Farb- und Helligkeitsgleichmäßigkeit über die kollektive
Eyebox des Head-up-Displays zur Verfügung zu stellen;
eine Steuerfunktion (720), die die von der Gleichförmigkeitsschleifenfunktion berechneten
Farb- und Helligkeitskorrekturen mit einem Eingangssignal kombiniert, das von einem
Umgebungslichtfotodetektorsensor (650) eines Fahrzeugs empfangen werden soll, wie
er verwendet wird, um die Helligkeit einer Instrumententafel zu steuern, und
eine Schnittstellenfunktion (710), die die Bilddaten aus dem Fahrer-Assistenzsystem
des Fahrzeugs empfängt und in die Bilddaten jedes Festkörper-Leuchtpixel-Array-Bilderzeugers
spezielle von der Steuerfunktion zur Verfügung gestellte Farb- und Helligkeitskorrekturen
einbringt, und
eine Steuerfunktion zum Steuern der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger,
in dem Bilddaten bereitgestellt werden, wie sie für den jeweiligen Festkörper-Leuchtpixel-Array-Bilderzeuger
korrigiert worden sind.
40. Das Verfahren nach Anspruch 38, ferner umfassend ein Koppeln eines Ausgangs eines
Umgebungslichtfotodetektors (650) mit der Steuereinrichtung (620) und ein Verwenden
seines Ausgangssignals zum Steuern der Helligkeit des virtuellen Abbilds des Head-up-Displays,
indem die Helligkeit der Emissionen der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
in Relation zu der von dem Umgebungslichtfotodetektor erfassten Umgebungslichthelligkeit
gesteuert wird.
41. Das Verfahren nach Anspruch 38, ferner umfassend eine Glasabdeckung (430), die ein
optisches Schnittstellenfenster bildet, wobei die Glasabdeckung so ausgewählt wird,
dass sie Infrarotemissionen des Sonnenlichts dämpft, um eine thermische Aufheizung
durch das Sonnenlicht in jedem der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger
zu reduzieren oder zu vermeiden.
42. Das Verfahren nach Anspruch 38, ferner umfassend:
Koppeln der Steuereinrichtung (620) mit einem externen Farb- und Helligkeitseinstelleingangssignal
und ferner ein Bereitstellen einer Fähigkeit zum Empfangen einer externen Farb- und
Helligkeitseinstellung und zum Einbringen dieser und spezieller von der Steuerfunktion
zur Verfügung gestellter Farb- und Helligkeitskorrekturen in die Bilddaten jedes Festkörper-Leuchtpixel-Array-Bilderzeugers;
und
Steuern der mehreren Festkörper-Leuchtpixel-Array-Bilderzeuger, indem Bilddaten zur
Verfügung gestellt werden, wie sie für den zugehörigen Festkörper-Leuchtpixel-Array-Bilderzeuger
korrigiert und in Übereinstimmung mit der externen Farb- und Helligkeitseinstellung
eingestellt worden sind.
43. Das Verfahren nach Anspruch 42, wobei die Steuereinrichtung (620) ferner so konfiguriert
ist, dass sie ein digitales Image Warping ausführt, um verbleibende optische Verzerrungen
vorzukompensieren, die durch Abbildungsfehler bewirkt werden, die aus den konkaven
Spiegeln herrühren, wodurch der von dem Fahrer wahrgenommene Verschwimmungseffekt
reduziert wird.
1. Head-up display pour un véhicule comprenant :
une multiplicité de modules (215), chaque dit module (215) ayant :
un imageur à matrice de pixels émissive à l'état solide (410) ; et
un miroir concave (230) disposé afin de collimater, agrandir et réfléchir une image
générée par l'imageur à matrice de pixels émissive à l'état solide (410) dans la direction
d'un pare-brise de véhicule (240) pour former une image virtuelle (260) qui peut être
visualisée à l'intérieur d'un segment de région oculaire (255) ;
la multiplicité de modules (215) étant disposé de sorte que les segments de région
oculaire (255) se combinent afin de fournir le head-up display ayant une région oculaire
collective (250) qui est plus grande que le segment de région oculaire (255) de chaque
module (215), la région oculaire collective (250) étant située à une position de tête
nominale d'un conducteur du véhicule ;
chaque module (215) étant configuré et positionné afin de former l'image virtuelle
respective de ladite image à la même position à partir du pare-brise du véhicule (240)
et chaque module (215) avec son segment de région oculaire respectif (255) étant positionné
au niveau d'une pupille de sortie du module respectif de sorte que des segments de
région oculaire adjacents (255) de la multiplicité de modules (255) se superposent
et se combinent pour former une région oculaire de pupille de sortie fendue, moyennant
quoi une information d'image présentée au conducteur du véhicule à l'intérieur du
segment oculaire collectif (250) est une vue multiplexée de manière angulaire de l'image
virtuelle s'étendant sur un champ de vision angulaire collectif.
2. Head-up display selon la revendication 1, dans lequel la superposition des segments
de région oculaire (255) de la multiplicité de modules (215) forme une région oculaire
collective de pupille de sortie fendue (250).
3. Head-up display selon la revendication 1, dans lequel la taille des segments de région
oculaire (255) de chaque module (215) et le nombre de modules (215) dans le head-up
display sont sélectionnés afin de fournir une taille de région oculaire collective
pour renfermer une plage de position de tête du conducteur.
4. Head-up display selon la revendication 1, dans lequel la pupille de sortie fendue
de le head-up display permet un affichage tête haut avec une région oculaire de taille
personnalisable et des aspects volumétriques concordant avec un large éventail d'exigences
du véhicule tout en utilisant les mêmes modules (215) d'head-up display.
5. Head-up display selon la revendication 1, dans lequel le segment oculaire collectif
(250) a une taille qui est extensible en largeur et/ou au hauteur en incorporant un
ou plusieurs modules (215) additionnels.
6. Head-up display selon la revendication 1, dans lequel les limites de région oculaire
collective (250) sont les zones de la superposition des segments de régions oculaires
(255) à l'intérieur desquelles la luminosité de l'image virtuelle (260) est uniforme
à l'intérieur d'un seuil donné au travers de la région oculaire collective (250).
7. Head-up display selon la revendication 6, dans lequel :
la superposition entre les segments de région oculaire (255) amène la perception du
conducteur de n'importe quel point dans l'image virtuelle (260) à incorporer des contributions
optiques provenant de plus d'un de la multiplicité de modules (215), en causant ainsi
des distorsions optiques ou des écarts de direction de rayon induits par les aberrations
des miroirs concaves individuels de la multiplicité de modules (215) à être calculés
en moyenne à n'importe quel point dans l'image virtuelle, en réduisant n'importe quel
effet de flottement perçu par le conducteur.
8. Head-up display selon la revendication 1, dans lequel les miroirs concaves (230) ont
des surfaces réfléchissantes soit asphériques, soit de forme libre, moyennant quoi
le facteur asphérique ou de forme libre des surfaces réfléchissantes est sélectionné
afin de minimiser leurs aberrations optiques.
9. Head-up display selon la revendication 8, dans lequel les imageurs à matrices de pixels
émissives à l'état solide (410) incluent chacun des optiques associées (220 ; 240)
qui compensent la distorsion désaxée et les aberrations d'inclinaison résultant du
miroir concave respectif (230), moyennant quoi les optiques associées (220 ; 240)
soit sont un élément optique à lentille séparée , soit sont fixées directement sur
les imageurs à matrices de pixels émissives à l'état solide respectifs.
10. Head-up display selon la revendication 9, dans lequel :
les aberrations réalisées par une taille d'ouverture de chacun de la multiplicité
de miroirs concaves (230), les facteurs asphérique ou de forme libre des miroirs concaves
et les effets compensant la distorsion désaxée et les aberrations d'inclinaison des
optiques (420) associée à l'imageur à matrices de pixels émissives à l'état solide
minimisent collectivement la distorsion optique causée par les miroirs concaves (230),
en minimisant ainsi n'importe quel effet de flottement associé à le head-up display.
11. Head-up display selon la revendication 1, dans lequel chaque module (215) fournit
une taille d'ouverture optique et une résolution de pixels qui fournit une résolution
plus haute que ce qu'un système visuel humain puisse résoudre à la position d'image
virtuelle, la résolution additionnelle étant dédiée à la distorsion d'images numériques
pour pré-compenser une distorsion optique résiduelle causée par les aberrations résultant
des miroirs concaves (215), en réduisant ainsi n'importe quel effet de flottement
perçu par le conducteur de le head-up display.
12. Head-up display selon la revendication 1, comprenant en outre :
un ensemble (210) ayant :
la multiplicité de modules (215) ;
une multiplicité de photodétecteurs (410) ; et
un contrôleur (620) ;
la multiplicité de photodétecteurs (640) étant chacun positionné à l'intérieur de
l'ensemble (210) pour détecter la lumière émise à partir de l'imageur à matrice de
pixels émissive à l'état solide (410) d'un respectif des modules (215) ;
le contrôleur (620) étant couplé à une source de données d'image pour l'image virtuelle
à afficher, aux sorties des photodétecteurs (640) et aux entrées des imageurs à matrices
de pixels émissives à l'état solide (410), le contrôleur (620) implémentant des fonctions
de commande en matériel et/ou logiciel électronique en réponse aux sorties des photodétecteurs
(640) pour commander les imageurs à matrices de pixels émissives à l'état solide (410)
pour assurer une uniformité de couleurs et de luminosité au travers des segments de
région oculaire multiples (255) de la région oculaire collective (250).
13. Head-up display selon la revendication 12, dans lequel le contrôleur (620) est en
outre composé d'une connexion pour le couplage à une sortie d'un photodétecteur de
lumière ambiante (650) d'un véhicule tel qu'utilisé pour commander une luminosité
de tableau de bord de véhicule.
14. Head-up display selon la revendication 12, dans lequel :
la source de données d'images est un système d'assistance au conducteur et les fonctions
de commande implémentées en matériel et/ou logiciel électronique dans le contrôleur
(620) incluent :
une fonction de boucle d'uniformité (730) en réponse aux sorties des photodétecteurs
(640) pour calculer les corrections de couleur et luminosité respectives et coupler
les corrections à chacun des multiples imageurs à matrices de pixels émissives à l'état
solide nécessaires pour fournir une uniformité de couleur et luminosité au travers
du de la région oculaire collective (250) de le head-up display ;
une première fonction de commande (720) qui combine les corrections de couleurs et
luminosités calculées par la fonction de boucle d'uniformité (730) avec une entrée
à recevoir depuis un capteur de photodétecteur de lumière ambiante (650) d'un véhicule
tel qu'utilisé pour commander la luminosité de tableau de bord du véhicule et ;
une fonction d'interface (710) qui reçoit les données d'images (715) provenant du
système d'assistance au conducteur du véhicule, incorpore dans les données d'images
fournies à chaque imageur à matrice de pixels émissive à l'État solide des corrections
de couleur et luminosité spécifique (735) fournies par la fonction de commande (720),
et
une seconde fonction de commande pour commander chacun des imageurs à matrices de
pixels émissives à l'état solide multiples en fournissant des données d'images telles
que corrigées pour l'imageur à matrices de pixels émissives à l'état solide respectif.
15. Head-up display selon la revendication 14, dans lequel
le contrôleur (620) inclut une connexion de couleur et luminosité externe pour le
couplage à une entrée de réglage de couleur et luminosité externe et dans lequel la
fonction d'interface (710) inclut en outre une capacité à recevoir et incorporer un
réglage de couleur et luminosité externe dans les données d'image de chaque imageur
à matrice de pixels émissive à l'état solide, des corrections de couleur et luminosité
spécifiques fournies par la fonction de commande ; et
la seconde fonction de commande étant configurée pour commander les imageurs à matrices
de pixels émissives à l'état solide multiples en fournissant des données d'images
telles que corrigées pour l'imageur à matrice de pixels émissive à l'état solide respectif
et telles que réglées conformément au réglage de couleur et luminosité externe.
16. Head-up display selon la revendication 14, dans lequel la fonction d'interface (710)
est en outre configurée pour effectuer une distorsion d'image numérique pour pré-compenser
une distorsion optique résiduelle causée par les aberrations résultant des miroirs
concaves (230), en réduisant ainsi l'effet de flottement perçu par le conducteur.
17. Head-up display selon la revendication 12, dans lequel le contrôleur (620) est en
outre composé d'une connexion pour le couplage à une sortie d'un photodétecteur de
lumière ambiante (650), la sortie du photodétecteur de lumière ambiante étant utilisée
par le contrôleur pour commander la luminosité de l'image virtuelle de le head-up
display en commandant la luminosité des émissions d'imageurs à matrices de pixels
émissives à l'état solide multiples en relation avec la luminosité de lumière ambiante
telle que détectée par le photodétecteur de lumière ambiante.
18. Head-up display selon la revendication 12, comprenant en outre un couvercle de verre
(430) formant une fenêtre d'interface optique, le couvercle de verre étant sélectionné
afin d'atténuer l'émission infrarouge de lumière solaire pour réduire ou empêcher
une charge thermique de lumière solaire sur chacun des imageurs à matrices de pixels
émissives à l'état solide multiples.
19. Head-up display selon la revendication 1, dans lequel chaque dit module a un miroir
concave (230) ayant des surfaces réfléchissantes asphériques ou de forme libre.
20. Head-up display selon la revendication 19, dans lequel les limites de la région oculaire
collective (250) sont les zones de la superposition des segments de région oculaire
(255) à l'intérieur de laquelle la luminosité de l'image virtuelle (260) est uniforme
à l'intérieur d'un seuil donné au travers de la région oculaire collective.
21. Head-up display selon la revendication 19, dans lequel la région oculaire collective
(250) a une taille qui est extensible en largeur et/ou hauteur en incorporant un ou
plusieurs modules additionnels (215).
22. Head-up display selon la revendication 19, dans lequel les imageurs à matrices de
pixels émissives à l'état solide (410) incluent chacun une des optiques associées
(220) qui compensent une distorsion désaxée et des aberrations d'inclinaison résultant
du miroir concave respectif (230), dans lequel les optiques associées (220) soit sont
un élément optique à lentille séparée, soit sont fixées directement sur les imageur
à matrice de pixels émissive à l'état solide respectif.
23. Head-up display selon la revendication 19, comprenant en outre :
un ensemble (210) ayant :
la multiplicité de modules (215) ;
une multiplicité de photodétecteurs (640) ; et
un contrôleur (620) ;
la multiplicité de photodétecteurs (640) étant chacun positionné à l'intérieur de
l'ensemble (210) pour détecter la lumière émise à partir de l'imageur à matrice de
pixels émissive à l'état solide (410) d'un respectif des modules (215) ;
le contrôleur (620) étant couplé à une source de données d'image pour l'image virtuelle
à afficher, aux sorties des photos détecteurs (640) et aux entrées des imageur à matrices
de pixels émissives à l'état solide, le contrôleur (620) implémentant des fonctions
de commande en matériel et/ou logiciel électronique en réponse aux sorties des photodétecteurs
(640) pour assurer une uniformité de couleur et de luminosité au travers des segments
de région oculaire multiples (255) de la région oculaire collective (650).
24. Head-up display selon la revendication 23, dans lequel le contrôleur (620) est en
outre composé d'une connexion pour le couplage à une sortie d'un photodétecteur de
lumière ambiante (650) d'un véhicule tel qu'utilisé pour commander la luminosité de
tableau de bord du véhicule.
25. Head-up display selon la revendication 23, dans lequel
la source de données d'images est un système d'assistance au conducteur et les fonctions
de commande implémentées en matériel et/ou logiciel électronique dans le contrôleur
incluent :
une fonction de boucle d'uniformité (730) en réponse aux sorties des photodétecteurs
(640) pour calculer les corrections de couleur et luminosité respective et coupler
les corrections à chacun des multiples imageurs à matrices de pixels émissives à l'état
solide (410) nécessaires pour fournir une uniformité de couleur et luminosité au travers
de la région oculaire collective (250) de le head-up display ;
une fonction de commande (720) qui combine les corrections de couleur et luminosité
calculées par la fonction de boucle d'uniformité (730) avec une entrée à recevoir
depuis un capteur de photodétecteur de lumière ambiante (650) d'un véhicule tel qu'utilisé
pour commander la luminosité de tableau de bord du véhicule et ;
une fonction d'interface (710) qui reçoit les données d'images provenant du système
d'assistance au conducteur du véhicule, incorpore dans les données d'images fournies
à chaque imageur à matrices de pixels émissives à l'état solide des corrections de
couleurs et luminosités spécifiques fournies par la fonction de commande, et
une fonction de commande pour commander chacun des imageurs à matrices de pixels émissives
à l'état solide multiples en fournissant des données d'images telles que corrigées
pour l'imageur à matrice de pixels émissive à l'état solide respectif.
26. Head-up display selon la revendication 25, dans lequel
le contrôleur (620) inclut une connexion de couleur et luminosité externe pour le
couplage à une entrée de réglage de couleur et luminosité externe et dans lequel la
fonction d'interface (710) inclut en outre une capacité à recevoir et incorporer un
réglage de couleur et luminosité externe dans les données d'image de chaque imageur
à matrice de pixels émissive à l'état solide, des corrections de couleur et luminosité
spécifique fournies par la fonction de commande ; et
la fonction de commande (720) est configurée pour commander les imageurs à matrices
de pixels émissives à l'état solide multiples en fournissant des données d'images
telles que corrigées pour l'imageur à matrice de pixels émissive à l'état solide respectif
et telles que réglées conformément au réglage de couleur et luminosité externe.
27. Head-up display selon la revendication 25, dans lequel la fonction d'interface est
en outre configurée pour effectuer une distorsion d'image numérique pour pré-compenser
une distorsion optique résiduelle causée par les aberrations résultant des miroirs
concaves (230), en réduisant ainsi l'effet de flottement perçu par le conducteur.
28. Head-up display selon la revendication 23, dans lequel le contrôleur (620) est en
outre composé d'une connexion pour le couplage à une sortie d'un photodétecteur de
lumière ambiante (650), la sortie du photodétecteur de lumière ambiante (650) étant
utilisée par le contrôleur (620) pour commander la luminosité de l'image virtuelle
de le head-up display en commandant la luminosité des émissions d'imageur à matrice
de pixels émissive à l'état solide multiples en relation avec la luminosité de lumière
ambiante telle que détectée par le photodétecteur de lumière ambiante (650).
29. Head-up display selon la revendication 23, comprenant en outre un couvercle de verre
(430) formant une fenêtre d'interface optique, le couvercle de verre (430) étant sélectionné
afin d'atténuer l'émission infrarouge de lumière solaire pour réduire ou empêcher
une charge thermique de lumière solaire sur chacun des imageurs à matrices de pixels
émissives à l'état solide multiples.
30. Procédé de formation d'un head-up display pour un véhicule comprenant de :
utiliser une multiplicité de modules (215), et effectuer dans chaque module, la direction
d'une image émise par un imageur à matrice de pixels émissive à l'état solide dans
chaque module sur un miroir concave respectif (230) pour collimater, agrandir et réfléchir
l'image;
monter la multiplicité de modules (215) dans le véhicule de sorte que l'image provenant
du miroir concave (230) dans chaque module puisse se réfléchir à partir d'un pare-brise
de véhicule (240) dans la direction d'un oeil d'opérateur du véhicule afin d'apparaître
comme une image virtuelle respective (260) à une position à l'avant du véhicule, la
position des images virtuelles (260) étant la même pour tous les modules (215) ; et
amener l'imageur à matrice de pixels émissive à l'état solide dans chaque module (215)
à émettre la même image à n'importe quel moment ;
moyennant quoi une région oculaire collective (250) pouvant être visualisée par un
opérateur du véhicule sera plus grande avec un segment de région oculaire (255) de
n'importe quel module (215).
31. Procédé selon la revendication 30, dans lequel :
chaque module (215) est positionné afin de former l'image virtuelle respective (260)
avec le segment de région oculaire respectif (255) positionné au niveau d'une pupille
de sortie du module respectif de sorte que les segments de région oculaire (255) de
la multiplicité de modules (215) se superposent et se combinent pour former une région
oculaire collective à pupille de sortie fendue (250), moyennant quoi une information
d'images présentée à l'opérateur du véhicule à l'intérieur de la région oculaire collective
(250) est une vue multiplexée de manière angulaire de l'image virtuelle (260) s'étendant
sur un champ de vision angulaire collectif, la superposition des segments de région
oculaire (255) de la multiplicité de modules (215) forme une région oculaire collective
(250) à pupille de sortie fendue.
32. Procédé selon la revendication 30, dans lequel les aberrations causées par les décalages
et l'inclinaison des images virtuelles sont compensées électroniquement par des réglages
correspondants des données d'images fournies à, et l'image émise, par chaque imageur
à matrice de pixels émissive à l'état solide.
33. Procédé selon la revendication 30, dans lequel les miroirs concaves (230) sont des
surfaces réfléchissantes de forme libre sélectionnées pour minimiser les aberrations
optiques.
34. Procédé selon la revendication 30, dans lequel les miroirs concaves (230) sont des
surfaces réfléchissantes de forme libre sélectionnées pour minimiser les aberrations
optiques, incluant les aberrations optiques causées par un pare-brise incurvé.
35. Procédé selon la revendication 30, comprenant en outre de fournir des optiques (220)
associée à chaque imageur à matrice de pixels émissive à l'état solide (410) qui compense
une distorsion des accès et des aberrations d'inclinaison résultant du miroir concave
respectif (230), les optiques associées (220) étant soit un élément optique à lentille
séparée, soit étant fixée directement sur l'imageur à matrice de pixel émissive à
l'état solide respectif.
36. Procédé selon la revendication 30, dans lequel chaque imageur à matrice de pixels
émissive à l'état solide respectif est sélectionné afin de fournir une la résolution
de pixels plus haute que ce qu'un système visuel humain peut résoudre à la position
d'image virtuelle, et d'utiliser la résolution additionnelle pour une distorsion d'image
numérique afin de récompenser une distorsion optique résiduelle causée par les aberrations
résultant des miroirs concaves, en réduisant ainsi n'importe quel effet de flottement
perçu par le conducteur de le head-up display.
37. Procédé selon la revendication 30, comprenant en outre de :
fournir une multiplicité de photodétecteurs (640) et un contrôleur (620) ;
positionner les photodétecteurs (640) pour détecter la lumière émise à partir de l'imageur
à matrice de pixels émissive à l'état solide (410) d'un des modules respectifs (215)
;
coupler le contrôleur (620) à une source de données d'image pour l'image virtuelle
à afficher, aux sorties des photodétecteurs (640) et aux entrées des imageurs à matrices
de pixels émissives à l'état solide ;
implémenter dans le contrôleur des fonctions de commande en matériel et/ou logiciel
électronique en réponse aux sorties des photodétecteurs pour commander les imageurs
à matrices de pixels émissives à l'état solide afin de garantir une uniformité de
couleur et luminosité au travers des segments de région oculaire multiples (255) de
la région oculaire collective (250).
38. Procédé selon la revendication 37, comprenant en outre de connecter le contrôleur
(620) à une sortie d'un photodétecteur de lumière ambiante (650) d'un véhicule tel
que utilisé pour commander une luminosité de tableau de bord de véhicule.
39. Procédé selon la revendication 38, comprenant en outre de :
coupler le contrôleur (620) à un système d'assistance au conducteur pour fournir des
données d'image au contrôleur et les fonctions de commande implémentées en matériel
et/ou logiciel électronique dans le contrôleur incluent :
une fonction de boucle d'uniformité (730) en réponse aux sorties des photodétecteurs
pour calculer les corrections de couleur et luminosité respectives et coupler les
corrections à chacun des multiples imageurs à matrices de pixels émissives à l'état
solide nécessaires pour fournir une uniformité de couleur et luminosité au travers
de la région oculaire collective de le head-up display ;
une fonction de commande (720) qui combine les corrections de couleur et luminosité
calculées par la fonction de boucle d'uniformité avec une entrée à recevoir depuis
un capteur de photodétecteur de lumière ambiante (650) d'un véhicule tel qu' utilisé
pour commander la luminosité de tableau de bord du véhicule et ;
une fonction d'interface (710) qui reçoit les données d'images provenant du système
d'assistance au conducteur du véhicule, incorpore dans les données d'images fournies
à chaque imageur à matrice de pixels émissive à l'état solide des corrections de couleur
et luminosité spécifiques fournies par la fonction de commande, et
une fonction de commande pour commander les imageurs à matrices de pixels émissives
à l'état solide multiples en fournissant des données d'images telles que corrigées
pour l'imageur à matrice de pixels émissive à l'état solide respectif.
40. Procédé selon la revendication 38, comprenant en outre de coupler une sortie d'un
photodétecteur de lumière ambiante (650) au contrôleur (620) et d'utiliser sa sortie
pour commander la luminosité de l'image virtuelle de le head-up display en commandant
la luminosité des émissions des imageurs à matrices de pixels émissives à l'état solide
multiples en relation avec les luminosités de lumière ambiante telle que détectées
par le photodétecteur de lumière ambiante.
41. Procédé selon la revendication 38, comprenant en outre un couvercle de verre (430)
formant une fenêtre d'interface optique, le couvercle de verre étant sélectionné afin
d'atténuer l'émission infrarouge de lumière solaire pour réduire ou empêcher une charge
thermique de lumière solaire sur chacun des imageurs à matrices de pixels émissives
à l'état solide multiples.
42. Procédé selon la revendication 38, comprenant en outre de :
coupler le contrôleur (620) à une entrée de réglage de couleur et luminosité externe
et fournir en outre une capacité pour recevoir et incorporer un ajustement de couleurs
et luminosités externe dans les données d'images de chaque imageur à matrice de pixels
émissive à l'état solide, des corrections de couleur et luminosité spécifique fournies
par la fonction de commande ; et
commander les imageurs à matrices de pixels émissives à l'état solide multiples en
fournissant des données d'images telles que corrigées pour l'imageur à matrice de
pixels émissives à l'état solide respectif et telles qu'ajustées conformément au réglage
de couleur et luminosité externes.
43. Procédé selon la revendication 42, dans lequel le contrôleur (620) est en outre configuré
pour effectuer une distorsion d'image numérique pour pré-compenser une distorsion
optique résiduelle causée par les aberrations résultant des miroirs concaves, en réduisant
ainsi l'effet de flottement perçu par le conducteur.