

(11) **EP 3 192 878 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 19.07.2017 Bulletin 2017/29

(21) Application number: 15840654.6

(22) Date of filing: 07.09.2015

(51) Int Cl.: C12Q 1/68 (2006.01) C12N 15/09 (2006.01)

(86) International application number: **PCT/JP2015/004535**

(87) International publication number: WO 2016/038877 (17.03.2016 Gazette 2016/11)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAMF

Designated Validation States:

MA

(30) Priority: 10.09.2014 JP 2014184379

(71) Applicants:

 National University Corporation Tokyo Medical and Dental University Bunkyo-ku Tokyo 113-8510 (JP) Lymphotec Inc. Tokyo 135-0041 (JP)

(72) Inventors:

SHIMIZU, Norio
 Tokyo 113-8510 (JP)
 TAKAHASHI, Hideyuki
 Tokyo 113-8510 (JP)

 (74) Representative: Gill, Siân Victoria et al Venner Shipley LLP
 200 Aldersgate
 London EC1A 4HD (GB)

(54) METHOD FOR DETECTING MYCOPLASMA

(57) An object of the present invention is to provide a detection method for *Mycoplasma* by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy, a set of a forward primer, a reverse primer and a probe for the detection and a kit containing the set. *Mycoplasma* in a test sample is detected by a multiplex real time quantitative PCR using one or more forward primers, each of which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1, and which contains a nucleotide se-

quence at nucleotide positions 14 to 24 in SEQ ID No: 1; reverse primers, each of which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the one or more nucleotide sequences represented by SEQ ID Nos: 14 and 17 to 20; and a probe(s), which is an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 33, or which consists of a complementary nucleotide sequence thereto.

Description

Technical Field

[0001] The present invention relates to a method for detecting *Mycoplasma*, and particularly relates to a *Mycoplasma* detection method by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy, a set of a forward primer, a reverse primer and a probe, and a kit containing such a set.

Background Art

10

20

30

35

40

45

50

55

[0002] Mycoplasma is a eubacterium classified in the class Mollicutes. In a broad sense, not only the genus Mycoplasma but also the genus Ureaplasma, the genus Mesoplasma, the genus Entomoplasma, the genus Spiroplasma, the genus Acholeplasma, the genus Asteroleplasma, and the genus Thermoplasma are sometimes called Mycoplasma. Mycoplasma is the smallest self-replicable organism. At least 200 types of species are presently known. Mycoplasma has no peptidoglycan cell wall, which is commonly found in eubacteria. Because of this, the cell has an indefinite shape and flexibility. Since Mycoplasma has a small size of about 0.2 to 0.8 μm and indefinite in shape, the cell can pass through a sterilization filter of about 0.2 μm. Because of this, even if a cell culture medium is subjected to filter sterilization, Mycoplasma cannot be removed. In particular, certain species of Mycoplasma are known as representative bacteria causing microbial contamination in cell culture.

[0003] Due to the absence of a cell wall, *Mycoplasma* is not sensitive to antibiotics such as penicillin-based and cephem-based antibiotics, usually used in cell culture. Unlike other bacterial contaminants, *Mycoplasma* proliferates in a cell culture supernatant without causing visible changes such as a turbidity increase of medium and degeneration of cultured cell. Thus, *Mycoplasma* contamination is overlooked and spread unless *Mycoplasma* is found by the *Mycoplasma* detection method. *Mycoplasma* adsorbs to the cell membrane and depletes cell nutrients, thereby inhibiting cell proliferation and changing gene expression. For the reasons, experimental results from an infected culture are low in reliability. Accordingly, it is an important prerequisite to check the absence of *Mycoplasma* contamination before study. If cells infected with *Mycoplasma* are used for treatment in the field of regenerative medicine and cell therapy requiring cell culture, the cells negatively affect the immune system and may have a risk of causing pneumonia, urethritis and arthritis. Accordingly, it is essential to carry out a Mycoplasma test in production sites of biological material-derived medicines and clinical sites of regenerative medicine and cell therapy.

[0004] As the Mycoplasma test method, the Japanese pharmacopoeia proposes three methods, i.e., a culture method (agar and liquid medium method), a DNA staining method using indicator cells (indicator cell culture method) and a Nested PCR method, as reference information. However, the culture method has a problem in that a culture period of 28 days is too long. The DNA staining method has a problem in that the sensitivity is low. The Nested PCR method has a problem in that a false-positive due to carry over contamination of an amplified product is likely to occur. The three test methods are all insufficient as a safety test method for regenerative medicine and cell therapy used in practice. In the circumstances, a more practical method for detecting *Mycoplasma* has been in developing.

[0005] For example, Patent Document 1 discloses e.g., a primer pair for use in specifically amplifying a gene of *Mycoplasma* by real time PCR and a method for detecting *Mycoplasma* using the primer pair. In this method, 23S rRNA gene of *Mycoplasma* is used as an amplification target. Non-Patent Document 1 discloses e.g., a primer pair for use in specifically amplifying a gene of e.g., *Mycoplasma*, by real time PCR, a probe for detecting a product amplified by use of the primer pair and a method for detecting e.g., *Mycoplasma* by the primer pair and probe. In this method, tuf gene of e.g., *Mycoplasma* is used as an amplification target. Patent Document 2 discloses e.g., a primer set for use in specifically amplifying a *Mycoplasma* gene by a special gene amplification method called LAMP (loop-mediated isothermal amplification) method, a probe for detecting a product amplified by use of the primer set and a method for detecting *Mycoplasma* using the primer set and probe. In this method, 16S rRNA gene of *Mycoplasma* is used as an amplification target. Patent Document 3 discloses e.g., a kit containing a primer for use in specifically amplifying a gene of *Mycoplasma* by a real time nucleic acid amplification reaction (real time PCR) and a method for detecting *Mycoplasma* in a cell culture medium by use of the primer. In this method, rpoB gene of *Mycoplasma* is used as an amplification target. Likewise, a method for detecting *Mycoplasma* has been in developing. In the circumstance, a more practical *Mycoplasma* detection method by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy has been desired.

[0006] Note that, Non-Patent Document 2 discloses that primers, which are used in a conventional Nested PCR method for detecting *Mycoplasma*, are used as primers for targeting 16S rRNA gene, 23S rRNA gene of *Mycoplasma* and the spacer region between both genes, for amplification. However, the conventional Nested PCR has a problem in that a false positive due to carry over contamination with an amplified product is likely to occur, as mentioned above.

[0007] In the meantime, certain species of *Mycoplasma* are known to cause pneumonia. For example, Patent Document 4 discloses e.g., a method for detecting a pneumococcus such as *Mycoplasma pneumoniae* by specifically amplifying

a gene of the pneumococcus by e.g., PCR, for diagnosing pneumonia, a primer for use in the method and a complementary probe to a product amplified by the method. In this method, an amplification target for detecting *Mycoplasma pneumoniae* is DnaJ1 gene. As described, in order to diagnose pneumonia caused by *Mycoplasma*, development of a more practical detection method for *Mycoplasma* by which *Mycoplasma* can be more quickly and easily detected with high sensitivity and accuracy, has been desired.

Prior Art Documents

Patent Documents

[8000]

5

10

15

30

45

50

55

- Patent Document 1: Japanese unexamined Patent Application Publication No. 2004-305207.
- Patent Document 2: Japanese unexamined Patent Application Publication No. 2012-60925.
- Patent Document 3: Japanese unexamined Patent Application Publication No. 2013-515458.
- Patent Document 4: International Publication No. WO2011/122034.

Non-Patent Documents

20 [0009]

- Non-Patent Document 1: International Journal of Medical Microbiology (2009) 299, 291-300.
- Non-Patent Document 2: Res. Microbiol. (1993) 144, 489-493.

25 Summary of the Invention

Object to be Solved by the Invention

[0010] An object of the present invention is to provide a *Mycoplasma* detection method by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy and a set and kit of a forward primer, a reverse primer and a probe.

Means to Solve the Object

[0011] The present inventors conducted intensive studies with a view to attaining the above object. During the studies, they designed a plurality of combinations of a forward primer and reverse primer, which correspond to specific sequences in 16S rRNA gene and 23S rRNA gene having a *Mycoplasma*-specific sequence and the spacer region between both genes, and a probe for detecting a product amplified by use of the primer pair. When they carried out a multiplex real time quantitative PCR using the combinations, they found that a great number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy. Based on the finding, they arrived at accomplishment of the present invention.

[0012] More specifically, the present invention relates to,

- (1) A set of a forward primer, a reverse primer and a probe for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, wherein
- the set contains one or more forward primers, two or more reverse primers and one or more probes;
- the probe(s) is a probe for specifically detecting products amplified by use of the forward primer and the reverse primer; the forward primer(s) is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1, and which contains a nucleotide sequence (caaggtatccc) at nucleotide positions 14 to 24 in SEQ ID No: 1; the reverse primers each are an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the one or more nucleotide sequences represented by SEQ ID Nos: 14 and 17 to 20; and the probe(s) is an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 33, or which consists of a complementary nucleotide sequence thereto,
- (2) the set according to (1), wherein the one or more forward primers are one or more oligonucleotides each consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of

continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1 and which contains a nucleotide sequence (caaggtatccctac) at nucleotide positions 14 to 27 in SEQ ID No: 1,

(3) the set according to (1) or (2), wherein the one or more forward primers are one or more oligonucleotides selected from the group consisting of the following (A) and (B):

5

10

- (A) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 2, and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 2, and
- (B) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 3, and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 3,
- 15

20

25

30

35

40

45

an oligonucleotide consisting of any one of nucleotide sequence selected from SEQ ID Nos: 4 to 7, 11 and 12, and an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 13;

(5) the not excepting to any one of (1) to (4), wherein at least one of the reverse primary is an eligenty-least-decide.

(4) the set according to any one of (1) to (3), containing two forward primers, wherein the two forward primers are

- (5) the set according to any one of (1) to (4), wherein at least one of the reverse primers is an oligonucleotide containing a nucleotide sequence (wsccaaggcatccaccah) at nucleotide positions 3 to 20 in SEQ ID No: 14,
- (6) the set according to any one of (1) to (5), wherein the two or more reverse primers are two or more oligonucleotides selected from the following (C1), (C2-1), (C2-2), (C2-3), (D), (E1), (E2), (F) and (G):
 - (C1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 15,
 - (C2-1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a, and w at nucleotide position 22 is a,
 - (C2-2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is c, and w at nucleotide position 22 is a,
 - (C2-3) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a, and w at nucleotide position 22 is t,
 - (D) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 17,
 - (E1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is g, and r at each of nucleotide positions 4 and 9 is g,
 - (E2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is c, and r at each of positions 4 and 9 is a,
 - (F) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 25 nucleotides in the nucleotide sequence represented by SEQ ID No: 19, and
 - (G) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 23 nucleotides in the nucleotide sequence represented by SEQ ID No: 20,

50

(7) the set according to any one of (1) to (6), wherein the two or more reverse primers are two or more oligonucleotides selected from the following oligonucleotides:

55

an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 21, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 22, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 24, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 25, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 26,

an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 27 an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 17, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 28, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 29, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 19, and an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 20,

- (8) the set according to any one of (1) to (7), wherein the probe is an oligonucleotide containing a nucleotide sequence (sggrtggaty) at nucleotide positions 7 to 16 in SEQ ID No: 33 or a complementary nucleotide sequence thereto, (9) the set according to any one of (1) to (8), wherein the one or more probes are one or more oligonucleotides selected from the following (H) to (L):
 - (H) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 34, or which consists of a complementary nucleotide sequence thereto,
 - (I) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 35 or which consists of a complementary nucleotide sequence thereto,
 - (J) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 36, or which consists of a complementary nucleotide sequence thereto,
 - (K) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 37, or which consists of a complementary nucleotide sequence thereto, and
 - (L) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 38, or which consists of a complementary nucleotide sequence thereto,
- (10) the set according to any one of (1) to (9), wherein the one or more probes are one or more oligonucleotides selected from the following (h) to (l):
 - (h) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 39,
 - (i) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 40,
 - (j) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 41,
 - (k) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 42, and
 - (I) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 43, and
 - (11) the set according to any one of (1) to (10), wherein the probe is TaqMan (registered trade mark) probe having the 5' end modified with a fluorescent substance and the 3' end modified with a quencher.
 - The present invention also relates to

5

10

15

20

25

30

35

40

- (12) A kit for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, wherein the kit has the set of a forward primer, a reverse primer and a probe according to any one of (1) to (11) and a solid support, and the probe is immobilized onto the solid support.
- The present invention further relates to
- 45 (13) a method for detecting Mycoplasma in a test sample by a multiplex real time quantitative PCR, comprising
 - (a) Step a of extracting DNA from the test sample,
 - (b) Step b of performing a multiplex real time quantitative PCR using the DNA extracted in Step a as a template and the forward primer and reverse primer contained in the set according to any one of (1) to (11) or the kit according to (12), and
 - (c) Step c of detecting the presence of *Mycoplasma* in the test sample by detecting a product amplified by the multiplex real time quantitative PCR in Step b by use of the probe contained in the set according to any one of (1) to (11) or in the kit according to (12),
- (14) the method for detecting *Mycoplasma* according to (13), wherein the product amplified by the multiplex real time quantitative PCR in Step c is detected by detecting whether or not a specific hybridization with the probe contained in the set according to any one of (1) to (11) or in the kit according to (12) occurs, and
 - (15) the method for detecting Mycoplasma according to (13) or (14), wherein the detection limit (sensitivity) of one

or more *Mycoplasma* species selected from the group consisting of *Mycoplasma arginini*, *Mycoplasma buccale*, *Mycoplasma faucium*, *Mycoplasma hominis*, *Mycoplasma orale*, *Mycoplasma salivarium*, *Mycoplasma fermentans*, *Mycoplasma lipophilum*, *Mycoplasma primatum*, *Mycoplasma hyorhinis*, *Mycoplasma synoviae*, *Mycoplasma genitalium*, *Mycoplasma pneumoniae*, *Acholeplasma laidlawii*, *Ureaplasma urealyticum*, *Mycoplasma gallisepticum* and *Spiroplasma citri*, is 10 cfu/mL or less.

Effect of the Invention

[0013] According to the present invention, it is possible to provide a detection method for *Mycoplasma* by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy and a set and kit of a forward primer, a reverse primer and a probe for the detection.

Brief Description of Drawings

¹⁵ [0014]

5

10

20

25

30

35

40

45

50

55

[Figure 1] The upper panel shows the positions of the genome of *Mycoplasma* to which individual forward primers and reverse primers correspond. The lower panel shows *Mycoplasma* species targeted by individual sets (combinations) of a forward primer, a probe and a reverse primer.

[Figure 2] Figure 2 shows the results of detection sensitivity to individual *Mycoplasma* species measured by the detection method of the invention (detection method of the present invention) and the detection method described in a reference paper (the detection method of Non-Patent Document 1).

[Figure 3] Figure 3 shows bacteria, fungi and mammal derived cells which did not actually show cross reactivity in the multiplex real time quantitative PCR method of the present invention.

[Figure 4] Figure 4 shows the positional relationship of F1 forward primer and variation primers thereof; and R1 reverse primer and variation primers thereof on the sequence.

[Figure 5] Figure 5 shows the results of the multiplex real time quantitative PCR of the present invention using combinations of F1 forward primer, variation primers thereof, R1 reverse primer and variation primers thereof. The ct value indicates the number of cycles repeated until a PCR amplified product reached a predetermined amount. A smaller ct value shows that a target is detected with a higher sensitivity.

[Figure 6] Figure 6 shows a part of the comparison results between the genomic sequences of *Mycoplasma* (*Mycoplasma arginini*, *Mycoplasma hyorhinis*, *Mycoplasma genitalium*, *Mycoplasma fermentans*, *Spiroplasma citri*) and the genomic sequence of *Clostridium sporogenes* (a species not belonging to *Mycoplasma*).

[Figure 7-1] Figure 7-1 shows the results of comparing the genomic sequences in the vicinity of the forward primer, probe and reverse primer of the present invention in *Mycoplasma microti, Mycoplasma penetrans, Mycoplasma iowae*, *Mycoplasma muris*, *Ureaplasma urealyticum*, *Mycoplasma pneumoniae*, *Mycoplasma genitalium* and *Mycoplasma gallisepticum*.

[Figure 7-2] Figure 7-2 shows the results of comparing the genomic sequences in the vicinity of the forward primer, probe and reverse primer of the present invention in *Mycoplasma microti, Mycoplasma penetrans, Mycoplasma iowae, Mycoplasma muris, Ureaplasma urealyticum, Mycoplasma pneumoniae, Mycoplasma genitalium* and *Mycoplasma gallisepticum*.

[Figure 7-3] Figure 7-3 shows the results of comparing the genomic sequences in the vicinity of the forward primer, probe and reverse primer of the present invention in *Mycoplasma microti, Mycoplasma penetrans, Mycoplasma iowae, Mycoplasma muris, Ureaplasma urealyticum, Mycoplasma pneumoniae, Mycoplasma genitalium* and *Mycoplasma gallisepticum*.

Mode of Carrying Out the Invention

(Set of forward primer, reverse primer and probe of the present invention)

[0015] A set of a forward primer, a reverse primer and a probe of the present invention (hereinafter also referred to simply as "the set of the present invention") is a set of a forward primer, a reverse primer and a probe for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR. The set contains one or more forward primers, two or more reverse primers and one or more probes. The probe(s) is a probe for specifically detecting a product amplified by use of the forward primer and the reverse primer. The forward primer(s) is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1, and which contains a nucleotide sequence at nucleotide positions 14 to 24 in the nucleotide sequence represented by SEQ ID No: 1. The reverse primers each are

an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the one or more nucleotide sequences represented by SEQ ID Nos: 14 and 17 to 20. The probe (s) is an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 33, or which consists of a complementary nucleotide sequence thereto. The forward primer, reverse primer and probe of the present invention each are not particularly limited as long as they satisfy the aforementioned limitations.

of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides (preferably 17 to 26 nucleotides, more preferably 17 to 23 nucleotides, further preferably 18 to 22 nucleotides, still further preferably 19 to 21 nucleotides) in the nucleotide sequence represented by SEQ ID No: 1 and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 1. Of these oligonucleotide, in order to detect *Mycoplasma* with a higher sensitivity or accuracy, an oligonucleotide containing a nucleotide sequence at nucleotide positions 11 to 24 in SEQ ID No: 1 and an oligonucleotide containing a nucleotide sequence at nucleotide positions 14 to 27 in SEQ ID No: 1 are preferable; and an oligonucleotide containing a nucleotide sequence at nucleotide positions 11 to 27 in SEQ ID No: 1 is more preferable. The nucleotide c at nucleotide position 27 in SEQ ID No: 1 is extremely highly conserved in *Mycoplasma* species; however, the nucleotide is often not c in other bacteria except *Mycoplasma*. Thus, the nucleotide c at nucleotide position 27 in SEQ ID No: 1 is the characteristic nucleotide specifically observed in *Mycoplasma*.

10

15

20

25

30

35

40

45

50

55

[0017] The set of the present invention may contain a single forward primer, alone. However, in order to detect a greater number of *Mycoplasma* species, at least two forward primers including the following two types: (A) and (B), are preferably contained and the following two types: (A) and (B), are more preferably contained.

- (A) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides (preferably 17 to 26 nucleotides, more preferably 17 to 23 nucleotides, further preferably 18 to 22 nucleotides, still further preferably 19 to 21 nucleotides) in the nucleotide sequence represented by SEQ ID No: 2 (the nucleotide sequence represented by SEQ ID No: 1 in which the nucleotide s at nucleotide position 24 is c), and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 2 (superordinate concept of F1 series forward primer); and
- (B) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides (preferably 17 to 26 nucleotides, more preferably 17 to 23 nucleotides, further preferably 18 to 22 nucleotides, still further preferably 19 to 21 nucleotides) in the nucleotide sequence represented by SEQ ID No: 3 (the nucleotide sequence represented by SEQ ID No: 1 in which the nucleotide s at nucleotide position 24 is g), and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 3 (superordinate concept of F2 forward primer).

[0018] As more specific examples of the one or more forward primers contained in the set of the present invention, one or more forward primers, which are oligonucleotides selected from the following (A1) to (A6) and (B1) are preferable. Of them, one or more forward primers, which are oligonucleotides selected from the following (A1) to (A6) and the forward primer, which is an oligonucleotide of the following (B1), are preferably contained.

- (A1) An oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 21 nucleotides (preferably 18 to 20 nucleotides, more preferably 19 nucleotides) in the nucleotide sequence at nucleotide positions 8 to 30 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of F1 forward primer and two nucleotides added to the 3' end thereof) (superordinate concept of F1 forward primer),
- (A2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 21 nucleotides (preferably 18 to 20 nucleotides, more preferably 19 nucleotides) in the nucleotide sequence at nucleotide positions 9 to 30 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of M1 forward primer and a single nucleotide added to the 3' end thereof) (superordinate concept of M1 forward primer),
- (A3) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 21 nucleotides (preferably 18 to 20 nucleotides, more preferably 19 nucleotides) in the nucleotide sequence at nucleotide positions 6 to 28 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of TF forward primer and two nucleotides added to the 3' end thereof) (superordinate concept of TF forward primer),
- (A4) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 18 to 22 nucleotides (preferably 19 to 21 nucleotides, more preferably 20

nucleotides) in the nucleotide sequence at nucleotide positions 9 to 30 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of MyTF-1 forward primer) (superordinate concept of MyTF-1 forward primer),

(A5) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 21 nucleotides (preferably 18 to 20 nucleotides, more preferably 19 nucleotides) in the nucleotide sequence at nucleotide positions 4 to 26 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of MyTF-5 forward primer and two nucleotides added to the 3' end thereof) (superordinate concept of MyTF-5 forward primer),

5

10

15

20

25

30

35

40

45

50

- (A6) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 19 to 23 nucleotides (preferably 20 to 22 nucleotides, more preferably 21 nucleotides) in the nucleotide sequence at nucleotide positions 5 to 29 in SEQ ID No: 2 (a sequence having two nucleotides added to the 5' end of MyTF-6 forward primer and two nucleotides added to the 3' end thereof) (superordinate concept of MyTF-6 forward primer), and
- (B1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 21 nucleotides (preferably 18 to 20 nucleotides, more preferably 19 nucleotides) in the nucleotide sequence at nucleotide positions 8 to 30 in SEQ ID No: 3 (a sequence having two nucleotides added to the 5' end of F2 forward primer and two nucleotides added to the 3' end thereof) (superordinate concept of F2 forward primer).
- **[0019]** As the oligonucleotide (A1), the following oligonucleotide (a1) is preferable. As the oligonucleotide (A2), the following oligonucleotide (a2) is preferable. As the oligonucleotide (A3), the following oligonucleotide (a3) is preferable. As the oligonucleotide (A4), the following oligonucleotide (A5), the following oligonucleotide (A5), the following oligonucleotide (A6) is preferable. As the oligonucleotide (B1), the following oligonucleotide (B1), the following oligonucleotide (B1) is preferable.
 - (a1) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 4 (the nucleotide sequence at nucleotide positions 10 to 28 in SEQ ID No: 2) (F1 forward primer),
 - (a2) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 5 (the nucleotide sequence at nucleotide positions 11 to 29 in SEQ ID No: 2) (M1 forward primer),
 - (a3) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 6 (the nucleotide sequence at nucleotide positions 8 to 26 in SEQ ID No: 2) (TF forward primer),
 - (a4) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 7 (the nucleotide sequence at nucleotide positions 11 to 30 in SEQ ID No: 2) (MyTF-1 forward primer),
 - (a5) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 11 (the nucleotide sequence at nucleotide positions 6 to 24 in SEQ ID No: 2) (MyTF-5 forward primer),
 - (a6) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 12 (the nucleotide sequence at nucleotide positions 7 to 27 in SEQ ID No: 2) (MyTF-6 forward primer), and
 - (b1) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 13 (the nucleotide sequence at nucleotide positions 10 to 28 in SEQ ID No: 3) (F2 forward primer).
- [0020] Of the aforementioned primers: F1 forward primer, M1 forward primer, TF forward primer, MyTF-1 forward primer, MyTF-5 forward primer and MyTF-6 forward primer (collectively referred to also as "F1 series forward primer"), F1 forward primer, M1 forward primer, TF forward primer, MyTF-1 forward primer and MyTF-5 forward primer are preferable, and in particular, F1 forward primer, MyTF-1 forward primer and MyTF-5 forward primer are more preferable. [0021] The forward primers (A), (A1) to (A6) and (a1) to (a6) are suitable for detecting, for example, Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma lipophilum, Mycoplasma primatum, Mycoplasma hyorhinis, Mycoplasma synoviae, Mycoplasma genitalium, Mycoplasma pneumoniae, Acholeplasma laidlawii, Ureaplasma urealyticum and Mycoplasma gallisepticum. The forward primers (B), (B1) and (b1) are suitable for detecting for example, Spiroplasma citri. [0022] The reverse primer of the present invention is not particularly limited as long as it is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 25 nucleotides) in the one or more nucleotide sequences represented by SEQ ID Nos: 14 and 17 to 20. The set of the present invention may contain a single reverse primer alone. However, in order to detect a greater number of Mycoplasma species, the set preferably contains two or more (preferably three or more, more preferably four or more, further preferably five or more, more preferably six or more, further preferably seven or more, more preferably eight or more, further preferably nine) reverse primers selected from the group consisting of preferably the following (C) to (G) [more preferably (C1), (C2-1), (C2-2), (C2-3), (D), (E1), (E2), (F), (G)].
 - (C) An oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide se-

quences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 14 (superordinate concepts of R1 series and R4 series reverse primers),

- (D) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 26 nucleotides, more preferably 20 to 26 nucleotides) in the nucleotide sequence represented by SEQ ID No: 17 (superordinate concept of R2 reverse primer).
- (E) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides (preferably 18 to 22 nucleotides) in the nucleotide sequence represented by SEQ ID No: 18 (superordinate concepts of R3 and R6 reverse primers),
- (F) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 25 nucleotides (preferably 18 to 25 nucleotides, more preferably 20 to 25 nucleotides) in the nucleotide sequence represented by SEQ ID No: 19 (superordinate concept of R5 reverse primer), and
- (G) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 23 nucleotides (preferably 18 to 23 nucleotides, more preferably 20 to 23 nucleotides) in the nucleotide sequence represented by SEQ ID No: 20 (superordinate concept of R7 reverse primer).
- [0023] As the oligonucleotide (C), the following oligonucleotides (C1) and (C2) are preferable.

5

10

15

20

25

30

35

50

- (C1) An oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 15 (superordinate concept of R1 series reverse primer), and
- (C2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 20 to 26 nucleotides) in the nucleotide sequence represented by SEQ ID No: 16 (superordinate concept of R4 series reverse primer).
- **[0024]** As the oligonucleotide (C1), the following oligonucleotides (c1-1), (c1-2) and (c1-3) are preferable. Of them, oligonucleotide (c1-1) is more preferable.
 - (c1-1) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 21 (nucleotide sequence at nucleotide positions 1 to 23 in SEQ ID No: 15) (R1 reverse primer),
 - (c1-2) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 22 (nucleotide sequence at nucleotide positions 1 to 22 in SEQ ID No: 15) (M6-2 reverse primer), and
 - (c1-3) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 24 (nucleotide sequence at nucleotide positions 3 to 20 in SEQ ID No: 15) (TR-2 reverse primer).
- [0025] As the oligonucleotide (C2), the following oligonucleotides (C2-1), (C2-2) and (C2-3) are preferable.
- 40 (C2-1) An oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a and w at nucleotide position 22 is a (in the nucleotide sequence represented by SEQ ID No: 16, the nucleotide sequence (mawa) at nucleotide positions 20 to 23 is the nucleotide sequence (aaaa) represented by SEQ ID No: 30) (superordinate concept of R4-1 reverse primer),
 - (C2-2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is c and w at nucleotide position 22 is a (in the nucleotide sequence represented by SEQ ID No: 16, the nucleotide sequence (mawa) at nucleotide positions 20 to 23 is the nucleotide sequence (caaa) represented by SEQ ID No: 31) (superordinate concept of R4-2 reverse primer), and
 - (C2-3) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 18 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a and w at nucleotide position 22 is t (in the nucleotide sequence represented by SEQ ID No: 16, the nucleotide sequence (mawa) at nucleotide positions 20 to 23 is the nucleotide sequence (aata) represented by SEQ ID No: 32) (superordinate concept of R4-3 reverse primer).

[0026] As the oligonucleotide (C2-1), the following oligonucleotide (c2-1) is preferable. As the oligonucleotide (C2-2), the following oligonucleotide (c2-2) is preferable. As the oligonucleotide (C2-3), the following oligonucleotide (c2-3) is preferable.

- (c2-1) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 25 (nucleotide sequence at nucleotide positions 3 to 26 of the nucleotide sequence represented by SEQ ID No: 16, where m at nucleotide position 20 is a, and w at nucleotide position 22 is a) (R4-1 reverse primer),
- (c2-2) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 26 (nucleotide sequence at nucleotide positions 3 to 26 of the nucleotide sequence represented by SEQ ID No: 16, where m at nucleotide position 20 is c, and w at nucleotide position 22 is a) (R4-2 reverse primer), and
- (c2-3) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 27 (nucleotide sequence at nucleotide positions 3 to 26 of the nucleotide sequence represented by SEQ ID No: 16, where m at nucleotide position 20 is a, and w at nucleotide position 22 is t) (R4-3 reverse primer).
- 15 **[0027]** As the oligonucleotide (D), the following oligonucleotide (d) is preferable.

5

10

20

25

35

40

45

50

- (d) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 17 (R2 reverse primer).
- [0028] As the oligonucleotide (E), the following oligonucleotides (E1) and (E2) are preferable.
 - (E1) An oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides (preferably 18 to 22 nucleotides) in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is g, and r at each of nucleotide positions 4 and 9 is g (superordinate concept of R3 reverse primer), and
 - (E2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides (preferably 18 to 22 nucleotides) in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is c, and r at each of nucleotide positions 4 and 9 is a (superordinate concept of R6 reverse primer).
- [0029] As the oligonucleotide (E1), the following oligonucleotide (e1) is preferable. As the oligonucleotide (E2), the following oligonucleotide (e2) is preferable.
 - (e1) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 28 (nucleotide sequence at nucleotide positions 5 to 24 in SEQ ID No: 18 where r at nucleotide position 9 is g)(R3 reverse primer), and (e2) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 29 (nucleotide sequence at nucleotide positions 5 to 24 in SEQ ID No: 18 where r at nucleotide position 9 is a)(R6 reverse primer).
 - [0030] As the oligonucleotide (F), the following oligonucleotide (f) is preferable.
 - (f) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 19 (R5 reverse primer).
 - [0031] As the oligonucleotide (G), the following oligonucleotide (g) is preferable.
 - (g) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 20 (R7 reverse primer).
 - [0032] The reverse primers (C1), (c1-1), (c1-2) and (c1-3) are suitable for detecting, for example, *Mycoplasma genitalium* and *Mycoplasma pneumoniae*. The reverse primers (C2-1) and (c2-1) are suitable for detecting, for example, *Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma orale* and *Mycoplasma salivarium*. The reverse primers (C2-2) and (c2-2) are suitable for detecting, for example, *Mycoplasma fermentans, Mycoplasma lipophilum* and *Mycoplasma primatum*. The reverse primers (C2-3) and (c2-3) are suitable for detecting, for example, *Mycoplasma hyorhinis*. The reverse primers (D) and (d) are suitable for detecting, for example, *Acholeplasma laidlawii*. The reverse primers (E1) and (e1) are suitable for detecting, for example, *Mycoplasma gallisepticum*. The reverse primers (E2) and (e2) are suitable for detecting, for example, *Ureaplasma urealyticum*. The reverse primers (F) and (f) are suitable for detecting, for example, *Mycoplasma synoviae*.
 - [0033] The probe of the present invention is not particularly limited as long as it is an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 33, or which consists of a complementary

nucleotide sequence thereto. As the probe of the present invention, an oligonucleotide containing a nucleotide sequence (sggrtggaty) at nucleotide positions 7 to 16 in SEQ ID No: 33 or a complementary nucleotide sequence thereto is preferable and an oligonucleotide containing a nucleotide sequence at nucleotide positions 44 to 48 or a complementary nucleotide sequence thereto is more preferable. The set of the present invention may contain a single probe, alone. However, in order to detect a greater number of *Mycoplasma* species, it is preferable that preferably two or more probes, more preferably three or more probes, further preferably four or more probes, and still further preferably five probes selected from the following(H) to (L) are contained.

(H) An oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 19 to 25 nucleotides, more preferably 20 to 24 nucleotides) in the nucleotide sequence represented by SEQ ID No: 34 (the nucleotide sequence represented by SEQ ID No: 33 where s at nucleotide position 33 is g, and r is a, and y is c), or which consists of a complementary sequence thereto (superordinate concept of P1-1 probe),

10

15

20

25

30

40

45

50

55

- (I) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 19 to 25 nucleotides, more preferably 20 to 24 nucleotides) of the nucleotide sequence represented by SEQ ID No: 35 (the nucleotide sequence represented by SEQ ID No: 33 where s at nucleotide position 33 is g, and r is g, and y is t), or which consists of a complementary nucleotide sequence thereto (superordinate concept of P1-2 probe),
- (J) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 19 to 25 nucleotides, more preferably 20 to 24 nucleotides) of the nucleotide sequence represented by SEQ ID No: 36 (the nucleotide sequence represented by SEQ ID No: 33 where s at nucleotide position 33 is g, and r is a, and y is t), or which consists of a complementary nucleotide sequence thereto (superordinate concept of P1-3 probe),
- (K) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 19 to 25 nucleotides, more preferably 20 to 24 nucleotides) of the nucleotide sequence represented by SEQ ID No: 37 (the nucleotide sequence represented by SEQ ID No: 33 where s at nucleotide position 33 is g, and r is g, and y is c), or which consists of a complementary nucleotide sequence thereto (superordinate concept of P1-4 probe), and
- (L) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides (preferably 19 to 25 nucleotides, more preferably 20 to 24 nucleotides) of the nucleotide sequence represented by SEQ ID No: 38 (the nucleotide sequence represented by SEQ ID No: 33 where s at nucleotide position 33 is c, and r is a, and y is c), or which consists of a complementary nucleotide sequence thereto (superordinate concept of P2 probe)
- [0034] As the oligonucleotide (H), the following oligonucleotide (h) is preferable. As the oligonucleotide (I), the following oligonucleotide (j) is preferable. As the oligonucleotide (J), the following oligonucleotide (j) is preferable. As the oligonucleotide (K), the following oligonucleotide (k) is preferable. As the oligonucleotide (L), the following oligonucleotide (I) is preferable.
 - (h) An oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 39 (the nucleotide sequence at nucleotide positions 2 to 23 in SEQ ID No: 34) (P1-1 probe),
 - (i) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 40 (the nucleotide sequence at nucleotide positions 2 to 23 in SEQ ID No: 35) (P1-2 probe),
 - (j) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 41 (the nucleotide sequence at nucleotide positions 2 to 23 in SEQ ID No: 36) (P1-3 probe),
 - (k) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 42 (the nucleotide sequence at nucleotide positions 2 to 23 in SEQ ID No: 37) (P1-4 probe),
 - (I) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 43 (the nucleotide sequence at nucleotide positions 2 to 23 in SEQ ID No: 38) (P2 probe).

[0035] The probes (H) and (h) are suitable for detecting, for example, *Mycoplasma arginini*, *Mycoplasma buccale*, *Mycoplasma faucium*, *Mycoplasma hominis*, *Mycoplasma orale*, *Mycoplasma salivarium*, *Mycoplasma fermentans*, *Mycoplasma lipophilum*, *Mycoplasma primatum*, *Mycoplasma hyorhinis*, *Acholeplasma laidlawii* and *Ureaplasma urealyticum*, and more suitable for detecting, in particular, *Mycoplasma arginini*, *Mycoplasma buccale*, *Mycoplasma faucium*, *Mycoplasma hominis*, *Mycoplasma Salivarium*, *Mycoplasma fermentans*, *Mycoplasma Lipophilum*, *Mycoplasma hyorhinis*, *Acholeplasma laidlawii* and *Ureaplasma urealyticum*. The probes (I) and (i) are suitable for detecting, for example, *Mycoplasma arginini*, *Mycoplasma buccale*, *Mycoplasma faucium*, *Mycoplasma hominis*, *Mycoplasma orale*, *Mycoplasma salivarium*, *Mycoplasma buccale*, *Mycoplasma salivarium*, *Mycoplasma sal*

fermentans, Mycoplasma lipophilum, Mycoplasma primatum and Mycoplasma synoviae, and more suitable for detecting, in particular, Mycoplasma orale, Mycoplasma primatum and Mycoplasma synoviae. The probes (K) and (k) are suitable for detecting, for example, Mycoplasma genitalium and Mycoplasma pneumoniae.

[0036] The probes (L) and (I) are suitable for detecting, for example, Spiroplasma citri.

[0037] As a preferable combination of the forward primer, reverse primer and probe of the present invention, CA to CI shown in the following Table 1 can be mentioned. The set of the present invention preferably contain, in order to detect a greater number of *Mycoplasma* species, two (preferably three or more, more preferably four or more, further preferably five or more, more preferably six or more, further preferably seven or more, more preferably eight or more, and particularly preferably nine) combinations selected from combinations CA to CI.

[Table 1]

		[Table I]	
	Pr	imer and probe con	tained in combination
Combination name	Forward primer	Reverse primer	Probe corresponding to primer pair
CA	(A)	(C2-1)	(H) (e.g. P1-1)
	(e.g. F1)	(e.g. R4-1)	or (J) (e.g. P1-3)
СВ	(A) (e.g. F1)	(C2-2) (e.g. R4-2)	(H) (e.g. P1-1) or
	(e.g. 1 1)	(e.g. 1 \ 1- 2)	(J) (e.g. P1-3)
CC	(A) (e.g. F1)	(C2-3) (e.g. R4-3)	(H) (e.g. P1-1)
CD	(A) (e.g. F1)	(G) (e.g. R7)	(J) (e.g. P1-3)
CE	(A) (e.g. F1)	(C1) (e.g. R1)	(K) (e.g. P1-4)
CF	(A) (e.g. F1)	(D) (e.g. R2)	(H) (e.g. P1-1)
CG	(A) (e.g. F1)	(E1) (e.g. R3)	(H) (e.g. P1-1)
СН	(A) (e.g. F1)	(E2) (e.g. R6)	(I) (e.g. P1-2)
CI	(B) (e.g. F2)	(F) (e.g. R5)	(L) (e.g. P2)

[0038] Examples of detection targets of combination CA include *Mycoplasma arginini*, *Mycoplasma buccale*, *Mycoplasma faucium*, *Mycoplasma hominis*, *Mycoplasma orale* and *Mycoplasma salivarium*. Examples of detection targets of combination CB include *Mycoplasma fermentans*, *Mycoplasma lipophilum* and *Mycoplasma primatum*. Examples of detection targets of combination CC include *Mycoplasma hyorhinis*. Examples of detection targets of combination CD include *Mycoplasma synoviae*. Examples of detection targets of combination CE include *Mycoplasma genitalium* and *Mycoplasma pneumoniae*. Examples of detection targets of combination CF include *Acholeplasma laidlawii*. Examples of detection targets of combination CG include *Mycoplasma gallisepticum*. Examples of detection targets of combination

CH include Ureaplasma urealyticum. Examples of detection targets of combination CI include Spiroplasma citri.

[0039] The forward primers and reverse primers mentioned above can be each used as a primer in the present invention, as long as it can be used for amplifying a target nucleic acid specific to *Mycoplasma* species as a detection target, even if it has deletion, substitution or addition of one or several nucleotides (for example, 1 to 5 nucleotides, preferably 1 to 3 nucleotides, more preferably 1 to 2 nucleotides, further preferably a single nucleotide) in the nucleotide sequence. The forward primers and reverse primers of the present invention can be synthesized by a conventional method such as a triethyl phosphate method and a phosphoric diester method using e.g. a DNA synthesizer commonly employed.

[0040] The probe of the present invention is a single stranded nucleic acid capable of forming a double stranded molecule (hybrid) by hybridizing specifically to a product (amplicon) amplified by use of the corresponding primer pair.

12

10

15

20

25

30

35

40

50

As the single stranded nucleic acid, a single stranded DNA is preferably mentioned since it is excellent in stability as a probe. Each of the probes can be used as the probe of the present invention if it is a nucleotide sequence having a sequence identity of 85% or more (preferably 90% or more, more preferably 95% or more, further preferably 98% or more) with each of the nucleotide sequences and can hybridize specifically with a detection target, i.e., an amplified product of Mycoplasma species. The probe of the present invention can be synthesized by a conventional method such as a triethyl phosphate method and a phosphoric diester method using e.g., a DNA synthesizer commonly employed. [0041] The probe of the present invention is preferably labeled with a marker substance for detecting a product amplified by use of the corresponding primer pair, more preferably labeled with a fluorescent substance in order to quickly detect an amplified product with high sensitivity, more preferably double-labeled with a fluorescent substance and a quencher, and is further preferably a TaqMan (registered trade mark) probe. The TaqMan probe is a nucleic acid probe usually having the 5' end modified with a fluorescent substance (reporter fluorescent dye) and the 3' end modified with a quencher (quenching fluorescent dye). Examples of the reporter fluorescent dye include fluorescein-based fluorescent dyes such as 6-FAM (6-carboxyfluorescein), TET (6-carboxy-4,7,2',7'-tetrachlorofluorescein) and HEX (6-carboxy-2',4',7',4,7-hexachlorofluorescein). Examples of the quenching fluorescent dye include rhodamine type fluorescent dyes such as 6carboxytetramethylrhodamine (TAMRA) and 6-carboxy-X-rhodamine (ROX). In the present invention, the nucleotide sequence represented by SEQ ID No: 5 is used; at the same time, a non-fluorescent quenching material. i.e., a minor groove binder (MGB), is suitably used in order to increase the Tm value of the nucleotide sequence by about 8 to 10°C than the Tm value of the corresponding primer pair. These fluorescent dyes are known in the art and contained in commercially available real time PCR kits. The fluorescent dyes contained in the kit can be used.

(Kit of the present invention)

10

20

25

30

40

45

50

55

[0042] A kit of the present invention for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR (hereinafter also referred to simply as "the kit of the present invention") is not particularly limited as long as it contains a set of a forward primer, a reverse primer and a probe and a solid support and the probe is immobilized onto the solid support. A probe immobilized onto a solid support is preferably used because an amplified product can be more quickly detected. The "solid support" of the present invention refers to a base material to which the oligonucleotide of the probe can be bound. Examples thereof include a microplate (microtiter plate), membrane (e.g., nylon, nitrocellulose), beads (e.g., resin), fine metal particles and a substrate (e.g., glass, silicon, resin). A probe is immobilized onto a solid support via either covalent bonding or noncovalent bonding. When a microplate is used, a probe solution may be added dropwise in wells and simply dried.

(Method for detecting Mycoplasma)

[0043] A method for detecting *Mycoplasma* according to the present invention is not particularly limited as long as it is a method for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, comprising

- (a) Step a of extracting DNA from the test sample,
- (b) Step b of performing a multiplex real time quantitative PCR using the DNA extracted in Step a as a template and the set of the primer pair of the present invention or the kit of the present invention and
- (c) Step c of detecting the presence of *Mycoplasma* in the test sample by detecting a product amplified by the multiplex real time quantitative PCR in Step b.

[0044] Owing to the method, a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy.

[0045] The "Mycoplasma" in the present invention refers to not only bacteria belonging to the genus Mycoplasma but also bacteria belonging to the class Mollicutes, which includes the genus Mycoplasma, the genus Ureaplasma, the genus Mesoplasma, the genus Entomoplasma, the genus Spiroplasma, the genus Acholeplasma, the genus Asteroleplasma and the genus Thermoplasma. Of them, bacteria belonging to the genus Mycoplasma, the genus Ureaplasma, the genus Spiroplasma and the genus Acholeplasma are preferably mentioned. Of them, bacteria belonging to the genus Mycoplasma are more preferably mentioned. A particularly preferable Mycoplasma as a detection target of the present invention is one or more Mycoplasma species selected from the group consisting of Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma lipophilum, Mycoplasma primatum, Mycoplasma hyorhinis, Mycoplasma synoviae, Mycoplasma genitalium, Mycoplasma pneumoniae, Acholeplasma laidlawii, Ureaplasma urealyticum, Mycoplasma gallisepticum and Spiroplasma citri.

[0046] The "test sample" of the present invention is not particularly limited. Examples thereof include cultured cells, cell culture supernatants and biological samples of animals such as mammals, reptiles, amphibians and birds and plants.

Note that, before DNA is extracted from a test sample, if necessary, a pretreatment such as filtration and removal of contamination may be carried out.

[0047] Step a mentioned above is not particularly limited as long as it is a step of extracting DNA from a test sample. As a method for extracting DNA from a test sample, a conventional method can be used. Examples thereof that can be used include a liquid-liquid extraction method such as a phenol/chloroform method and a solid-liquid extraction method using a carrier. Alternatively, various types of DNA extraction kits commercially available from reagent manufacturers, such as QIAamp (registered trade mark), DNA Mini Kit (manufactured by QIAGEN) and Loopamp (registered trade mark) SR DNA extraction kit (manufactured by Eiken Chemical Co., Ltd.), may be used.

[0048] A case where DNA is extracted from a test sample by use of QIAamp (registered trade mark) DNA Mini Kit (manufactured by QIAGEN) will be described below.

[0049] A test sample $(200~\mu\text{L})$ is taken and placed in a microtube. To the sample in the microtube, $20~\mu\text{L}$ of proteinase K and $200~\mu\text{L}$ of Buffer AL are added and then the mixture is stirred by a vortex for 15 seconds. The temperature of the microtube is kept at 56°C for 10 minutes. To the sample, $200~\mu\text{L}$ of ethanol (100%) is added and then the mixture is stirred by a vortex for 15 seconds. The sample is transferred to a QIAamp Mini spin Column (equipped with a 2 mL-collection tube) and centrifuged at room temperature and at $6000~\times$ g for one minute. The sample in the QIAamp Mini spin Column is transferred to a new 2 mL-collection tube and $500~\mu\text{L}$ of Buffer AW1 is added to the sample. The mixture is centrifuged at room temperature and at $6000~\times$ g for one minute. The sample in the QIAamp Mini spin Column is transferred to a new 2 mL-collection tube and $500~\mu\text{L}$ of Buffer AW2 is added to the sample. The mixture is centrifuged at room temperature and at $20000~\times$ g for 3 minutes. The sample in the QIAamp Mini spin Column is transferred to a new 2 mL-collection tube and centrifuged at room temperature at $20000~\times$ g for one minute. The sample in the QIAamp Mini spin Column is transferred to a 1.5 mL-tube and $200~\mu\text{L}$ of Buffer AE is added to a membrane. The sample was kept at room temperature for one minute and centrifuged at room temperature and at $6000~\times$ g for one minute to obtain a DNA extract. The column is discarded.

[0050] Step b mentioned above is not particularly limited as long as it is a step of performing a multiplex real time quantitative PCR using the DNA extracted in Step a as a template and the set of a primer pair of the present invention or the kit of the present invention. The multiplex real time quantitative PCR is real time quantitative PCR using a plurality of primer pairs (2 pairs or more or 3 pairs or more) simultaneously in a single reaction site for amplification. The real time quantitative PCR (real time PCR) is a method of monitoring and analyzing the amount of product amplified by PCR in real time. The multiplex real time quantitative PCR requires no electrophoresis and is excellent in speed and quantitative performance. Such a multiplex real time quantitative PCR can be performed in accordance with a general operation of the multiplex real time quantitative PCR except that DNA extracted in the Step a is used as a template and the set of a primer pair of the present invention or the kit of the present invention is used. The general operation of the multiplex real time quantitative PCR is described, for example, in "Molecular Cloning, fourth edition" (Green and Sambrook, Cold Spring Harbor Laboratory Press, 2012) and an instruction manual for a multiplex real time quantitative PCR kit (for example, Brilliant Multiplex QPCR Master Mix (manufactured by Agilent Technologies)). As a method of detecting an amplified product by a real time quantitative PCR, an intercalator method and a probe method are commonly known. In order to detect *Mycoplasma* with high sensitivity and accuracy, the probe method, i.e., a method of detecting an amplified product by use of a probe, is preferable.

[0051] The concentrations of the forward primer, reverse primer and probe to be used in the present invention, are not particularly limited as long as Mycoplasma can be detected. The concentrations of them when used can be appropriately controlled by those skilled in the art. The concentrations that can be used, for example, fall within the range of 0.005 to 3 μ M and preferably within the range of 0.01 to 1 μ M.

[0052] As a preferable multiplex real time quantitative PCR method, for example, the following methods A and B can be mentioned.

(Method A)

10

30

35

40

45

50

55

[0053] In a 0.2 mL-tube, a reaction solution (40 μ L) and 10 μ L of a DNA solution derived from a test sample are added. The total solution (50 μ L) can be subjected to a PCR reaction. The PCR reaction solution can be prepared by blending a 1 \times PCR Gold Buffer (15 mM Tris-HCl (pH8.0), 50 mM KCl) (manufactured by ABI), 3 mM MgCl₂ (manufactured by ABI), 60 mM trehalose, 200 μ M each dNTPs (manufactured by Trilink)), 1.25 U of amplitaq Gold DNA polymerase, a forward primer (0.5 μ M of F1 primer, 0.2 μ M of F2 primer) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.), a reverse primer (0.5 μ M of R1 primer, 0.3 μ M of R2 primer, 0.15 μ M of R3 primer, 0.125 μ M of R4-1 primer, 0.125 μ M of R4-2 primer, 0.125 μ M of R4-3 primer, 0.2 μ M of R5 primer, 0.15 μ M of R6 primer, 0.125 μ M of R7 primer) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.) and a fluorescent probe (0.045 μ M of P1-1 probe, 0.045 μ M of P1-2 probe, 0.045 μ M of P1-3 probe, 0.045 μ M of P1-4 probe and 0.002 μ M of P2 probe) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.). As the PCR, a cycle consisting of an activation step at 95°C for 10 minutes, a denaturation step at 95°C for 15 seconds and an annealing/extension (signal detection) at 60°C for one

minute, can be repeated for 45 times. The concentration of PCR product can be calculated by detecting a signal from the fluorescent probe. The multiplex real time quantitative PCR test can be performed by use of a real time PCR system called LightCycler 480 (manufactured by Roche diagnostics). As a negative control, Distilled Water Deionized, Sterile (manufactured by Nippon Gene Co., Ltd.) can be used.

(Method B)

5

10

25

30

40

45

50

55

[0054] In a $0.2\,\text{mL}$ -tube, a reaction solution (40 μ L) and 10 μ L of a DNA solution derived from a test sample are added. The total solution (50 μ L) can be subjected to a PCR reaction. The PCR reaction solution can be prepared by blending 1 \times PCR Buffer (75 mM Tris-HCl (pH8.8), 20 mM (NH₄)₂SO₄, 3 mM MgCl₂, 0.01% (v/v) Tween 20, 250 μ M each dNTPs), 1.25 U of Taq DNA polymerase (manufactured by Thermo scientific), 5 μ g of anti-taq high (manufactured by TOYOBO), a forward primer (0.5 μ M of F1 primer, 0.2 μ M of F2 primer) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.), a reverse primer (0.5 μ M of R1 primer, 0.3 μ M of R2 primer, 0.15 μ M of R3 primer, 0.125 μ M of R4-1 primer, 0.125 μ M of R4-2 primer, 0.125 μ M of R4-3 primer, 0.2 μ M of R5 primer, 0.15 μ M of R6 primer, 0.125 μ M of R7 primer) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.) and a fluorescent probe (0.045 μ M of P1-1 primer, 0.045 μ M of P1-2 primer, 0.045 μ M of P1-3 primer, 0.045 μ M of P1-4 primer and 0.002 μ M of P2 primer) (production is outsourced to TSUKUBA OLIGO SERVICE CO., LTD.). As the PCR, a cycle consisting of a pre-denaturation step at 95°C for one minute, a denaturation step at 95°C for 5 seconds and an annealing/extension (signal detection) at 60°C for one minute can be repeated for 45 times. The concentration of a PCR product can be calculated by detecting a signal from the fluorescent probe. The multiplex real time quantitative PCR test can be performed by use of a real time PCR system called LightCycler 480 (manufactured by Roche diagnostics). As a negative control, Distilled Water Deionized, Sterile (manufactured by Nippon Gene Co., Ltd.) can be used.

[0055] The multiplex real time quantitative PCR and detection of an amplified product can be performed by use of a commercially available real time PCR system, such as LightCycler 480 (manufactured by Roche diagnostics).

[0056] In the method for detecting *Mycoplasma* of the present invention, the detection limit (sensitivity) of *Mycoplasma* is usually 100 cfu/mL or less, preferably 10 cfu/mL or less and more preferably 5 cfu/mL or less. In particular, the detection limits (sensitivity) of *Mycoplasma arginini* (preferably ATCC 23838), *Mycoplasma fermentans* (preferably NBRC15854), *Mycoplasma gallisepticum* (preferably NBRC14855), *Mycoplasma hyorhinis* (preferably NBRC14858), *Mycoplasma orale* (preferably NBRC14477), *Mycoplasma pneumoniae* (preferably NBRC14401), *Mycoplasma synoviae* (preferably ATCC25204), *Acholeplasma laidlawii* (preferably NBRC14400) and *Spiroplasma citri* are preferably 10 cfu/mL or less and more preferably 5 cfu/mL or less.

[0057] Now, the present invention will be more specifically described below by way of Examples; however, the present invention is not limited by these Examples.

35 Example 1

[Design of primer and probe for detecting Mycoplasma]

[0058] To design primers and probes which can specifically detect an extremely greater number of Mycoplasma species, the genomic sequences of Mycoplasma species described in Figure 1, the lower panel (in the column of "Mollicutes species") and the genomic sequences of other bacteria, fungi and mammals described in Figure 3 were collected, aligned and analyzed. As a result, it was found that a predetermined region out of 16S rRNA gene, 23S rRNA gene and the spacer region between both genes is relatively highly conserved among Mycoplasma species even though Mycoplasma species have characteristic sequences to individual species. Based on the predetermined region, primers and probes which can specifically detect a great number of Mycoplasma species were designed. More specifically, a sequence which anneals with the genomic sequence of the predetermined region of Mycoplasma or a complementary sequence thereto and which presumably does not anneal with the genomic sequence or a complementary sequence of the region of other bacteria (mismatch frequently occurs) was employed as the sequence of a forward primer or a reverse primer. A sequence, which hybridizes with the sequence of another predetermined region contained in a product amplified by use of these primers or a complementary sequence thereto and which presumably does not hybridize with the like sequence or a complementary sequence of other bacteria was determined as the sequence of a probe (see, Figure 1, upper panel and Figure 7-1 to Figure 7-3). As an example, the results of comparing the genomic sequences of Mycoplasma (Mycoplasma arginini, Mycoplasma hyorhinis, Mycoplasma genitalium, Mycoplasma fermentans, Spiroplasma citri) to the genomic sequence of Clostridium sporogenes (not belonging to Mycoplasma) are partly shown in Figure 6.

[0059] As is apparent from the lower panel of Figure 1, F1 forward primer (SEQ ID No: 4), R4-1 reverse primer (SEQ ID No: 25) and P1-1 (SEQ ID No: 39) or P1-3 (SEQ ID No: 41) probe constitute a set (combination A) targeting *Mycoplasma* of Group 1a; F1 forward primer (SEQ ID No: 4), R4-2 reverse primer (SEQ ID No: 26) and P1-1 (SEQ ID No: 39) or P1-3 (SEQ ID No: 41) probe constitute a set (combination B) of targeting *Mycoplasma* of Group 1b; F1 forward primer (SEQ

ID No: 4), R4-3 reverse primer (SEQ ID No: 27) and P1-1 probe (SEQ ID No: 39) constitute s set (combination C) targeting Mycoplasma of Group 1c; F1 forward primer (SEQ ID No: 4), R7 reverse primer (SEQ ID No: 20) and P1-3 probe (SEQ ID No: 41) constitute a set (combination D) targeting Mycoplasma of Group 6; F1 forward primer (SEQ ID No: 4), R1 reverse primer (SEQ ID No: 21) and P1-4 probe (SEQ ID No: 42) constitute a set (combination E) targeting Mycoplasma of Group 2; F1 forward primer (SEQ ID No: 4), R2 reverse primer (SEQ ID No: 17) and P1-1 probe (SEQ ID No: 39) constitute a set (combination F) targeting Mycoplasma of Group 4; F1 forward primer (SEQ ID No: 4), R3 reverse primer (SEQ ID No: 28) and P1-1 probe (SEQ ID No: 39) constitute a set (combination G) targeting Mycoplasma of Group 3a; F1 forward primer (SEQ ID No: 4), R6 reverse primer (SEQ ID No: 29) and P1-2 probe (SEQ ID No: 40) constitute a set (combination H) targeting Mycoplasma of Group 3b; and F2 forward primer (SEQ ID No: 13), R5 reverse primer (SEQ ID No: 19) and P2 probe (SEQ ID No: 43) constitute a set (combination I) targeting Mycoplasma of Group 5. Note that, as is apparent from the lower panel of Figure 1, the detection targets of combination A are Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma orale and Mycoplasma salivarium; the detection targets of combination B are Mycoplasma fermentans, Mycoplasma lipophilum and Mycoplasma primatum; the detection target of combination C is Mycoplasma hyorhinis; the detection target of combination D is Mycoplasma synoviae; the detection targets of combination E are Mycoplasma genitalium and Mycoplasma pneumoniae; the detection target of combination F is Acholeplasma laidlawii; the detection target of combination G is Mycoplasma gallisepticum; the detection target of combination H is Ureaplasma urealyticum; and the detection target of combination I is Spiroplasma citri. Individual primers and probes of Sets A to I were synthesized by an oligonucleotide synthesizer.

20 Example 2

10

25

35

[Test for measuring detection sensitivity to Mycoplasma by primer-probe set]

[0060] To check the *Mycoplasma* detection sensitivity of the individual primers and probes of set A to I prepared in Example 1, the following multiplex real time quantitative PCR test was carried out.

(Materials)

[0061] Mycoplasma arginini (ATCC23838), Mycoplasma fermentans (NBRC15854), Mycoplasma gallisepticum (NBRC14855), Mycoplasma hyorhinis (NBRC14858), Mycoplasma orale (NBRC14477), Mycoplasma pneumoniae (NBRC14401), Mycoplasma synoviae (ATCC25204), Acholeplasma laidlawii (NBRC14400) and Spiroplasma citri (ATCC27556).

[0062] 5 Units/µL Amplitaq Gold DNA polymerase (manufactured by ABI).

[0063] Reagents provided together with Ampitaq Gold (ABI): $10 \times PCR$ Buffer (150 mM Tris-HCl, pH 8.0, 500 mM KCl), 25 mM MgCl₂, 10 mM each dNTP mix.

[0064] Distilled Water, Deionized, Sterile (manufactured by Nippon Gene Co., Ltd.).

(Method: Method A)

[0065] In a 0.2 mL-tube, a reaction solution (40 μ L) and 10 μ L of a DNA solution (5, 10, 100 or 1000 cfu/reaction) of 40 any one of Mycoplasma species mentioned above were added. The total solution (50 μL) was subjected to a PCR reaction. The PCR reaction solution was prepared by blending a 1 \times PCR Gold Buffer (15 mM Tris-HCl (pH8.0), 50 mM KCI) (manufactured by ABI), 3 mM MgCl₂ (manufactured by ABI), 60 mM trehalose, 200 μM each dNTPs (manufactured by ABI)), 1.25 U of amplitaq Gold DNA polymerase, a forward primer (0.5 μM of F1 primer, 0.2 μM of F2 primer) 45 (production was outsourced to TSUKUBA OLIGO SERVICE CO., LTD.), a reverse primer (0.5 µM of R1 primer, 0.3 µM of R2 primer, 0.15 μ M of R3 primer, 0.125 μ M of R4-1 primer, 0.125 μ M of R4-2 primer, 0.125 μ M of R4-3 primer, 0.2 μM of R5 primer, 0.15 μM of R6 primer, 0.125 μM of R7 primer) (production was outsourced to TSUKUBA OLIGO SERVICE CO., LTD.) and a fluorescent probe (0.045 μM of P1-1 probe, 0.045 μM of P1-2 probe, 0.045 μM of P1-3 probe, 0.045 μM of P1-4 probe and 0.002 μM of P2 probe) (production was outsourced to TSUKUBA OLIGO SERVICE 50 CO., LTD.). As the PCR, a cycle consisting of an activation step at 95°C for 10 minutes, a denaturation step at 95°C for 15 seconds, an annealing/extension (signal detection) at 60°C for one minute, was repeated for 45 times. The concentration of a PCR product was calculated by detecting a signal from the fluorescent probe. The multiplex real time quantitative PCR test was performed by use of a real time PCR system called LightCycler 480 (manufactured by Roche diagnostics).

[0066] The results of this test are shown in Figure 2, left column ("Detection method of invention"). As a comparative method, the conserved region of tuf gene was subjected to a conventional multiplex real time quantitative PCR method (Non-Patent Document 1). The results are shown in Figure 2, right column ("Detection method of reference paper"). From these results, it was shown that in the detection method of the present invention, the same or more excellent

detection sensitivity is obtained compared to that of the conventional analogous detection method. To be more specific, *Mycoplasma fermentans* (5 cfu/reaction) all in 3 samples was not detected (0/3) by the comparative method; however *Mycoplasma fermentans* (5 cfu/reaction) all in 3 samples was detected (3/3) by the detection method of the present invention. It was shown that sensitivity of the detection method of the present invention for detecting *Mycoplasma gallisepticum*, *Mycoplasma orale*, *Mycoplasma synoviae*, *Acholeplasma laidlawii* and *Spiroplasma citri* is extremely excellent compared to the comparative method.

Example 3

5

15

20

30

40

45

10 [Verification of cross reactivity with bacteria except *Mycoplasma*]

[0067] Whether each of forward primers, reverse primers and probes used in the multiplex real time quantitative PCR method of the present invention has cross reactivity with other bacteria except Mycoplasma, fungi and mammal derived cells was checked. As the other bacteria etc., the microbes etc. shown in Figure 3 were subjected to the multiplex real time quantitative PCR method of the present invention, which was carried out in the same manner as in Example 2. As a result, signals from fluorescent probes were not detected. From this, it was found that the primers and probes do not have cross reactivity with bacteria, fungi and mammal derived cells shown in Figure 3. Other than these, gene sequence information of Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bartonella bacilliformis, Bartonella grahamii, Borrelia duttonii, Borrelia recurrentis, Campylobacter curvus, Campylobacter hominis, Chlamydia muridarum, Chlamydia trachomatis, Chlamydophilia pneumonia, Clostridium botulinum, Clostridium perfringens, Clostridium tetani, Corynebacterium diphtheriae, Erysipelothrix rhusiopathiae, Fusobacterium necrophorum, Haemophilus influenza, Helicobacter pylori, Kineococcus radiotolerans, Lactobacillus brevis, Lactobacillus helveticus, Listeria monocytogenes, Listeria welshimeri serovar6b str, Micrococcus luteus, Moraxella catarrhalis, Moraxella lacunata, Mycobacterium gilvum, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis alpha 14, Nocardia carnea, Nocardia farcinica, Pediococcus pentosaceus, Pseudomonas putida, Rhodococcus jostii, Rickettsia africae, Rickettsia peacockii, Streptococcus sanguinis, Streptococcus suis, Streptococcus thermophilus, Treponema denticola, Treponema pallidum were obtained from known sequence database and compared to the sequences of forward primers, reverse primers and probes of the present invention. As a result, it was presumed that the cross reactivity with Mycoplasma in the multiplex real time quantitative PCR method of the present invention is denied. It was shown or presumed that the multiplex real time quantitative PCR method of the present invention has no cross reactivity with a great number of bacteria etc. except Mycoplasma, as shown in Figure 3, and is extremely high in specificity to Mycoplasma.

Example 4

³⁵ [Verification of sensitivity and cross reactivity of variation primers]

[0068] F1 forward primer, R1 reverse primer, or primers prepared by modifying them (referred to as "variation primers") were checked for sensitivity for detecting *Mycoplasma* and cross reactivity with *Lactobacillus bulgaricus*.

[0069] The forward primers shown in the following Table 2 were designed as variations of F1 forward primer and synthesized by an oligonucleotide synthesizer. Note that, the number of nucleotides of these variation primers and the relationship with F1 forward primer (the types and number of nucleotides added or deleted from the 5' end or 3' end of F1 forward primer) are shown in the following Table.

[Table 2]

		[145.5 2]	
Name of variation forward primer	SEQ ID No.	Number of nucleotides	Relationship with F1 forward primer
M1	5	19	1 nucleotide is deleted from 5' end 1 nucleotide is added to 3' end
TF	6	19	2 nucleotides are added to 5' end 2 nucleotides are deleted from 3' end
MyTF-1	7	20	1 nucleotide is deleted from 5' end 2 nucleotides are added to 3' end
MyTF-2	8	21	10 nucleotides are added to 5' end 8 nucleotides are deleted from 3' end
MyTF-3	9	22	8 nucleotides are added to 5' end

55

(continued)

Name of variation forward primer	SEQID No.	Number of nucleotides	Relationship with F1 forward primer
			5 nucleotides are deleted from 3' end
MyTF-4	10	22	10 nucleotides are added to 5' end 7 nucleotides are deleted from 3' end
MyTF-5	11	19	4 nucleotides are added to 5' end 4 nucleotide are deleted from 3' end
MyTF-6	12	21	3 nucleotides are added to 5' end 1 nucleotide is deleted from 3' end

5

10

15

20

25

30

35

45

50

55

[0070] The reverse primers shown in Table 3 were designed as variations of R1 reverse primer and synthesized by an oligonucleotide synthesizer. Note that, the number of nucleotides of these modified primers and the relationship with R1 reverse primer (the types and number of nucleotides added or deleted from the 5' end or 3' end of R1 reverse primer) are shown in the following Table 3.

[Table 3]

		[Table 5]	
Name of variation reverse primer	SEQ ID No.	Number of nucleotides	Relationship with R1 reverse primer
M6-2	22	22	Neither addition to nor deletion from 5' end 1 nucleotide is deleted from 3' end
TR	23	18	Neither addition to nor deletion from 5' end 5 nucleotides are deleted from 3' end
TR-2	24	18	2 nucleotides are deleted from 5' end 3 nucleotides are deleted from 3' end

[0071] The positional relationship between the sequences of F1 forward primer and the variation primers thereof or R1 reverse primer and variation primers as mentioned above are shown in Figure 4. Note that, the degree of positional shift in Figure 4 indicates which direction and how long distance (in terms of the number of nucleotides) the 3'-end nucleotide of a variation primer shifted relative to the 3'-end nucleotide of the reference primer (F1 in the case of a forward primer, R1 in the case of a reverse primer). For example, since M1 forward primer is prepared by adding a single nucleotide to the 3' end of F1 forward primer, the degree of positional shift is represented by "+1". In contrast, in the case of MyTF-6 forward primer, which is prepared by deleting a single nucleotide from the 3' end of F1 forward primer, the degree of positional shift is represented by "-1".

[0072] All combinations of F1 forward primer and the variation primers thereof and R1 reverse primer and the variation primers thereof (see the following Table 4) were subjected to the multiplex real time quantitative PCR method of the present invention (see Example 2). At the reaction, *Mycoplasma genitalium* (about 10⁶ cfu/reaction) and *Lactobacillus bulgaricus* (about 10⁶ cfu/reaction) were used as bacteria; and a mixture of P1-1, P1-2, P1-3, P1-4 and P2 was used as the fluorescent probe. As the negative control, Distilled Water Deionized, Sterile (manufactured by Nippon Gene Co., Ltd.) was used.

[Table 4]

Forward		F	1			M1			TF			MyTF-1				
Reverse	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1
Forward	MyTF-2				MyTF-3			MyTF-4			MyTF-5					
Reverse	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1	M6-2	TR	TR-2	R1
Forward	MyTF-6															
Reverse	M6-2	TR	TR-2	R1												

[0073] The detection results of samples in the multiplex real time quantitative PCR test are shown in Figure 5. A case of "not detected" is expressed by "-". In the case of "detected", a ct value is shown. The ct value is the number of cycles

repeated until the amount of a product amplified by PCR reached a predetermined value. The smaller ct value shows that a target is detected with a higher sensitivity. As is apparent from the results of Figure 5, in the cases where forward primers M1, F1, TF, MyTF-1 and MyTF-5 were used, *Mycoplasma genitalium* was detected with high sensitivity and *Lactobacillus bulgaricus* (not *Mycoplasma*) was not detected, regardless of the type of the reverse primers (M6-2, TR, TR-2 or R1) used in combination. In contrast, in the cases where forward primers MyTF-3, MyTF-4 and MyTF-6 were used, if reverse primers M6-2, TR-2 and R1 were used in combination, *Lactobacillus bulgaricus* was not detected. However, if a reverse primer TR was used in combination, cross reactivity with *Lactobacillus bulgaricus* was observed. Note that, the ct value of MyTF-6 to *Lactobacillus bulgaricus* was relatively high (42.25) of the three forward primers MyTF-3, MyTF-4 and MyTF-6, meaning that the cross reactivity of MyTF-6 with *Lactobacillus bulgaricus* was lowest in these three. In the case where MyTF-2 forward primer was used, if M6-2 reverse primer was used in combination, *Lactobacillus bulgaricus* was not detected; however if TR, TR-2 and R1 were used in combination, the cross reactivity with *Lactobacillus bulgaricus* was observed.

[0074] From the results of Figure 5, it was shown that F1, M1, TF, MyTF-1, MyTF-5 and MyTF-6 primers are preferable as the forward primer, in particular, F1 forward primer, MyTF-1 forward primer and MyTF-5 forward primer are more preferable.

Industrial Applicability

[0075] According to the present invention, it is possible to provide a detection method for *Mycoplasma* by which a greater number of *Mycoplasma* species can be more quickly and easily detected with high sensitivity and accuracy and a set and kit of a forward primer, a reverse primer and a probe for the detection. The present invention can be used not only in detecting *Mycoplasma* contamination in sites of culturing cells in the fields of biological material-derived medicine, regenerative medicine and cell therapy but also in diagnosing e.g., infectious diseases with *Mycoplasma*.

SEQUENCE LISTING

	<110>	National University Corporation Tokyo Medical and Dental Unive LYMPHOTEC Inc	rsity
5	<120>	Method for detection of mycoplasma	
	<130>	P13-039P	
10		JP2014-184379 2014-09-10	
	<160>	48	
	<170>	PatentIn version 3.1	
15	<210>	1	
	<211>		
	<212>		
		Artificial	
20	<220>		
		Forward primer of the present invention	
	<220>	T	
	<223>	Inventor: SHIMIZU, Norio; TAKAHASHI, Hideyuki	
	<400>	1	
25		gtcg taacaaggta tccstacgag	30
		,,	
	<210>		
	<211>		
30	<212>		
	<213>	Artificial	
	<220>		
		F1-family-Forward primer	
35	<400>		
	agttaa	gtcg taacaaggta tccctacgag	30
	<210>	3	
40	<211>		
	<212>		
	<213>	Artificial	
	<220>		
		F2-family-Forward primer	
45			
	<400>		2.0
	agttaa	gtcg taacaaggta tccgtacgag	30
50	<210>		
50	<211>		
	<212>		
	<213>	Artificial	
	<220>		
55		F1-Forward primer	
30			
	<400>	4	

	gtaaca	aggt atccctacg	19
	<210>		
5	<211>		
	<212>		
	<213>	Artificial	
	<220>		
		M1-Forward primer	
10	\223/	MI-Forward primer	
	<400>	5	
		ggta tecetacga	19
45	<210>		
15			
	<211>		
	<212>		
	<213>	Artificial	
	<220>		
20		TF-Forward primer	
	<400>		
	tcgtaa	caag gtatcccta	19
25			
20	<210>	7	
	<211>		
	<212>		
		Artificial	
	\Z13>	Artificial	
30	<220>		
		MyTF-1-Forward primer	
	12257	Myll I lorward primer	
	<400>	7	
25	taacaa	ggta tecetaegag	20
35			
	<210>	8	
	<211>		
	<212>		
40		Artificial	
70			
	<220>		
	<223>	MyTF-2-Forward primer	
	<400>	8	
45		agtc gtaacaaggt a	21
	gagooa	agoo goaacaaggo a	
	<210>		
	<211>		
50	<212>		
	<213>	Artificial	
	4000s		
	<220>	W == 2 = 1 ·	
	<223>	MyTF-3-Forward primer	
55	<400>	9	
		tcgt aacaaggtat cc	22
	59		

	<210> <211> <212>	22 DNA	
	<213>	Artificial	
5	<220> <223>	MyTF-4-Forward primer	
	<400>	10	
10	gagtta	agtc gtaacaaggt at	22
10			
	<210>	11	
	<211>		
	<212>		
15	<213>	Artificial	
	4000s		
	<220>	MyTF-5-Forward primer	
	1225/	Mil 5 lotward primer	
	<400>	11	
20	agtcgt	aaca aggtatccc	19
	<210>	12	
	<211>	21	
	<212>		
25	<213>	Artificial	
	<220>		
		MyTF-6-Forward primer	
30		12	
	gtcgta	acaa ggtatcccta c	21
	<210>		
	<211>		
35	<212>		
	<213>	Artificial	
	<220>		
		F2-Forward primer	
40			
	<400>	13 laggt atccgtacg	19
	graaca	laggi alcoglacg	19
	<210>		
45	<211>		
	<212>		
	<213>	Artificial	
	<220>		
	<223>	Reverse primer of the present invention-R1andR4-family	
50			
	<400>	14 aagg catccaccah awrctc	26
	aywacc	augy cacceacean antece	20
55	<210>		
	<211>		
	<212>	DNA	

	<213>	Artificial	
	<220>		
		R1-family-Reverse primer	
5		•	
		15	
	agtgcc	aagg catccaccat aagctc	26
	<210>	16	
10	<211>		
	<212>		
	<213>	Artificial	
	<220>		
15		R4-family-Reverse primer	
15			
	<400>	16	20
	agaccc	aagg catccaccam awactc	26
20	<210>		
	<211>		
	<212>	DNA Artificial	
	\213/	Architetar	
	<220>		
25	<223>	R2-Reverse primer	
	-4005	17	
		17 tact agtagtcatc ttgtgc	26
30			
	<210> <211>		
	<211> <212>		
		Artificial	
35	<220>	PO PC Parameter and the control of t	
	<223>	R3-R6-Reverse primer	
	<400>	18	
	tsaraa	ctra atagaatccg acca	24
40			
	<210>	19	
	<211>		
	<212>		
	<213>	Artificial	
45	<220>		
		R5-Reverse primer	
		19	٥-
50	tctctg	aaaa ctaaacataa cggtc	25
	<210>		
	<211>		
	<212>		
55	<213>	Artificial	
	<220>		

	<223>	R7-Reverse primer	
	<400>	20	
			23
5	aaccaa	acac aacageeeaa gge	
5			
	<210>	21	
	<211>		
	<212>		
40	<213>	Artificial	
10			
	<220>	P1 Paranas animas	
	<223>	R1-Reverse primer	
	<400>	21	
4-		aagg catccaccat aag	23
15			
	<210>		
	<211>		
	<212>		
20	<213>	Artificial	
	<220>		
		M6-2-Reverse primer	
	<400>	22	
25	agtgcc	aagg catccaccat aa	22
	-210 >	22	
	<210> <211>		
	<212>		
30		Artificial	
	<220>		
	<223>	TR-Reverse primer	
25	.400-	00	
35		23	18
	agrace	aagg catccacc	то
	<210>	24	
40	<211>	18	
40	<212>		
	<213>	Artificial	
	.000		
	<220>	MD 2 Devenge majmen	
45	\ZZ3 >	TR-2-Reverse primer	
45	<400>	24	
		ggca tccaccat	18
	-	- -	
50	<210>		
50	<211>		
	<212>		
	<213>	Artificial	
	<220>		
EE		R4-1-Reverse primer	
55	_		
	<400>	25	

	acccaa	ggca tccaccaaaa actc	24
	<210>	26	
5	<211>	24	
	<212>	DNA	
	<213>	Artificial	
	<220>		
10	<223>	R4-2-Reverse primer	
	<400>		0.4
	acccaa	ggca tccaccacaa actc	24
15	<210>	27	
, 0	<211>		
	<212>		
		Artificial	
20	<220>	n4 2 n	
	<223>	R4-3-Reverse primer	
	<400>	27	
	acccaa	ggca tccaccaaat actc	24
25			
20	<210>	20	
	<211>		
	<211>		
		Artificial	
00	\213/	ALCILICIAL	
30	<220>		
		R3-Reverse primer	
	<400>	28	
		atag aatccgacca	20
35	3		
	<210>	29	
	<211>	20	
	<212>	DNA	
40	<213>	Artificial	
	<220>		
	<223>	R6-Reverse primer	
45	<400>	29	
45	aactaa	atag aatccgacca	20
	<210>		
	<211>		
50	<212>		
	<213>	Artificial	
	<220>		
	<223>	4 nucleotides of the core of the reverse primer-1	
55	<400>	30	
	aaaa		4

```
<210> 31
         <211> 4
<212> DNA
<213> Artificial
5
         <220>
          <223> 4 nucleotides of the core of the reverse primer-2
          <400> 31
                                                                                        4
          caaa
10
         <210> 32
<211> 4
          <212> DNA
          <213> Artificial
15
         <220>
          <223> 4 nucleotides of the core of the reverse primer-3
          <400> 32
                                                                                        4
20
          aata
          <210> 33
         <211> 26
<212> DNA
<213> Artificial
          <220>
          <223> P1-P2-Probe
         <400> 33
30
                                                                                       26
         aacgtgsggr tggatyacct cctttc
          <210> 34
          <211> 26
          <212> DNA
35
          <213> Artificial
          <220>
          <223> P1-1-family-Probe
40
          <400> 34
                                                                                       26
          aacgtgggga tggatcacct cctttc
          <210> 35
         <211> 26
<212> DNA
<213> Artificial
45
          <220>
          <223> P1-2-family-Probe
50
          <400> 35
                                                                                       26
          aacgtggggg tggattacct cctttc
          <210> 36
55
          <211> 26
          <212> DNA
```

	<213>	Artificial	
	<220>		
		P1-3-family-Probe	
5			
		36	
	aacgtg	ggga tggattacct cctttc	26
	<210>	37	
10	<211>		
	<212>		
	<213>	Artificial	
	<220>		
15	<223>	P1-4-family-Probe	
13			
		37	26
	aacgtg	gggg tggatcacct cctttc	20
20	<210>		
	<211> <212>		
		Artificial	
25	<220>		
20	<223>	P2-family-Probe	
	<400>	38	
		cgga tggatcacct cctttc	26
30	<210>	30	
	<211>		
	<212>		
	<213>	Artificial	
35	<220>		
00		P1-1-Probe	
		39	
	acgtgg	ggat ggatcacctc ct	22
40			
	<210>		
	<211>		
	<212>	DNA Artificial	
45	\L13/	WE CTITOTOT	
	<220>		
	<223>	P1-2-Probe	
	<400>	40	
		gggt ggattacctc ct	22
50	3-39		
	.0		
	<210> <211>		
	<211> <212>		
55		Artificial	
	<220>		

	<223>	P1-3-Probe	
	<400>	A1	
			22
_	acgegg	gyac yyactaccic ct	~~
5			
	<210>	42	
	<211>		
	<212>		
		Artificial	
10			
	<220>		
	<223>	P1-4-Probe	
		42	
15	acgtgg	gggt ggatcacctc ct	22
	<210>	12	
	<211>		
	<212>		
20		Artificial	
20	1220		
	<220>		
	<223>	P2-Probe	
25	<400>		
25	acgtgc	ggat ggatcacctc ct	22
	<210>	4.4	
	<211>		
	<212>		
30		Artificial	
	\213/	ALCITICIAL	
	<220>		
	<223>	Core of P1-1-probe	
35	<400>		
	gggatg	gato	10
	<210>	45	
	<211>	10	
40	<212>		
		Artificial	
	<220>		
	<223>	Core of P1-2-probe	
45			
	<400>	45	
	ggggtg	gatt	10
	<210>	46	
50	<211>		
	<212>		
		Artificial	
	<220>		
55		Core of P1-3-probe	
00			
	<400>	46	

10 gggatggatt <210> 47 5 <211> 10 <212> DNA <213> Artificial <220> <223> 10 Core of P1-4-probe <400> 10 ggggtggatc 15 <210> 48 <211> 10 <212> DNA <213> **Artificial** 20 <220> <223> Core of P2-probe <400> 48 10 cggatggatc 25

Claims

35

40

45

50

- A set of a forward primer, a reverse primer and a probe for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, wherein the set contains one or more forward primers, two or more reverse primers and one or more probes;
 - the probe(s) is a probe for specifically detecting products amplified by use of the forward primer and the reverse primer; the forward primer(s) is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1, and which contains a nucleotide sequence (caaggtatccc) at nucleotide positions 14 to 24 in SEQ ID No: 1; the reverse primers each are an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in one or more nucleotide sequences represented by SEQ ID Nos: 14 and 17 to 20; and the probe(s) is an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 33, or which consists of a complementary nucleotide sequence thereto.
 - 2. The set according to Claim 1, wherein the one or more forward primers are one or more oligonucleotides each consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 1, and which contains a nucleotide sequence (caaggtatccctac) at nucleotide positions 14 to 27 in SEQ ID No: 1.
 - 3. The set according to Claim 1 or 2, wherein the one or more forward primers are one or more oligonucleotides selected from the group consisting of the following (A) and (B):
 - (A) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 2, and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 2, and
 - (B) a forward primer, which is an oligonucleotide consisting of a nucleotide sequence, which is selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 30 nucleotides in the nucleotide sequence represented by SEQ ID No: 3, and which contains a nucleotide sequence at nucleotide positions 14 to 24 in SEQ ID No: 3.

- **4.** The set according to any one of Claims 1 to 3, containing two forward primers, wherein the two forward primers are an oligonucleotide consisting of any one of nucleotide sequence selected from SEQ ID Nos: 4 to 7, 11 and 12, and an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 13.
- 5 The set according to any one of Claims 1 to 4, wherein at least one of the reverse primers is an oligonucleotide containing a nucleotide sequence (wsccaaggcatccaccah) at nucleotide positions 3 to 20 in SEQ ID No: 14.

10

15

20

25

30

35

40

45

- 6. The set according to any one of Claims 1 to 5, wherein the two or more reverse primers are two or more oligonucleotides selected from the following (C1), (C2-1), (C2-2), (C2-3), (D), (E1), (E2), (F) and (G):
 - (C1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 15,
 - (C2-1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a, and w at nucleotide position 22 is a,
 - (C2-2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is c, and w at nucleotide position 22 is a,
 - (C2-3) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 16 where m at nucleotide position 20 is a, and w at nucleotide position 22 is t,
 - (D) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No:17,
 - (E1) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is g, and r at each of nucleotide positions 4 and 9 is g,
 - (E2) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 24 nucleotides in the nucleotide sequence represented by SEQ ID No: 18 where s at nucleotide position 2 is c, and r at each of nucleotide positions 4 and 9 is a,
 - (F) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 25 nucleotides in the nucleotide sequence represented by SEQ ID No: 19, and
 - (G) an oligonucleotide consisting of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 23 nucleotides in the nucleotide sequence represented by SEQ ID No: 20.
- 7. The set according to any one of Claims 1 to 6, wherein the two or more reverse primers are two or more oligonucleotides selected from the following oligonucleotides:
 - an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 21, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 22, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 24, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 25, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 26, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 27 an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 17, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 28, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 29, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 19, and an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 20.
- 8. The set according to any one of Claims 1 to 7, wherein the probe is an oligonucleotide containing a nucleotide sequence (sggrtggaty) at nucleotide positions 7 to 16 in SEQ ID No: 33 or a complementary nucleotide sequence thereto.
 - 9. The set according to any one of Claims 1 to 8, wherein the one or more probes are one or more oligonucleotides

selected from the following (H) to (L):

5

10

15

20

25

30

40

- (H) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 34, or which consists of a complementary nucleotide sequence thereto,
- (I) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 35, or which consists of a complementary nucleotide sequence thereto,
- (J) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 36, or which consists of a complementary nucleotide sequence thereto,
- (K) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 37, or which consists of a complementary nucleotide sequence thereto, and
- (L) an oligonucleotide, which consists of a nucleotide sequence selected from the group consisting of nucleotide sequences each consisting of continuous 17 to 26 nucleotides in the nucleotide sequence represented by SEQ ID No: 38, or which consists of a complementary nucleotide sequence thereto.
- **10.** The set according to any one of Claims 1 to 9, wherein the one or more probes are one or more oligonucleotides selected from the following (h) to (l):
 - (h) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 39,
 - (i) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 40,
 - (j) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 41,
 - (k) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 42, and
 - (I) an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID No: 43.
 - 11. The set according to any one of Claims 1 to 10, wherein the probe is TaqMan (registered trade mark) probe having the 5' end modified with a fluorescent substance and the 3' end modified with a quencher.
- **12.** A kit for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, wherein the kit comprises the set of a forward primer, a reverse primer and a probe according to any one of Claims 1 to 11 and a solid support, and the probe is immobilized onto the solid support.
- 13. A method for detecting *Mycoplasma* in a test sample by a multiplex real time quantitative PCR, comprising
 - (a) Step a of extracting DNA from the test sample,
 - (b) Step b of performing a multiplex real time quantitative PCR using the DNA extracted in Step a as a template, and the forward primer and reverse primer contained in the set according to any one of Claims 1 to 11 or the kit according to Claim 12, and
 - (c) Step c of detecting the presence of *Mycoplasma* in the test sample by detecting a product amplified by the multiplex real time quantitative PCR in Step b by use of the probe contained in the set according to any one of Claims 1 to 11 or in the kit according to Claim 12.
- 45 **14.** The method for detecting *Mycoplasma* according to Claim 13, wherein the product amplified by the multiplex real time quantitative PCR in Step c is detected by detecting whether or not a specific hybridization with the probe contained in the set according to any one of Claims 1 to 11 or in the kit according to Claim 12 occurs.
- 15. The method for detecting Mycoplasma according to Claim 13 or 14, wherein the detection limit in sensitivity of one or more Mycoplasma species selected from the group consisting of Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma lipophilum, Mycoplasma primatum, Mycoplasma hyorhinis, Mycoplasma synoviae, Mycoplasma genitalium, Mycoplasma pneumoniae, Acholeplasma laidlawii, Ureaplasma urealyticum, Mycoplasma gallisepticum and Spiroplasma citri, is 10 cfu/mL or less.

[Figure 1]

	16s Ribosome	gene	Spacer region	23s Ribosome gene	
	Managara da para da managara da managar			Amplie	on size (bp)
Group 1a	F1	\rightarrow	P1-1, P1-3	R4-1	267-320
Group 1b	F1	>	P1-1, P1-3	€ R4-2	384-398
Group 1c	F1		P1-1	← R4-3	345
Group 2	F1	>	P1-4	₹ R1	286-313
Group 3a	F1	\rightarrow	P1-1>	← R3	184
Group 3b	F1	\rightarrow	P1-2	< R6	169
Group 4	F1	>	P1-1	← R2	99
Group 5	F2	\rightarrow	P2 *** *** *** *** ***	<──R5	112
Group 6	F1	>	P1-3	<r7< td=""><td>159</td></r7<>	159

Representative Example of each group

Group 1a: M. orale, Group 1b: M. fermentans, Group 1c: M. hyorhinis,

Group 2: M. pneumoniae, Group 3a: M. gallisepticum, Group 3b: U. urealyticum,

Group 4: A. laidlawii, Group 5: S. citri, Group 6: M. synoviae

		4	-	
	Forward primer	Probe	Keverse primer	Mollicutes species
		D1 1 D1 0		M. arginini, M. buccale, M. faucium,
Group 1a	F1	P1-1,P1-3	R4·1	M. hominis, M. orale, M. salirvarium
O11	[]1	P1-1.P1-3	R4-2	M. fermentans, M. lipophilum,
Group 1b		rri,riə	N4 Z	M. primatum
Group 1c	F1	P1-1	R4-3	M. hyorhinis
Group 2	F1	P1-4	R1	M. genitalium, M. pneumoniae
Group 3a	F1	P1-1	R3	M. gallisepticum
Group 3b	F1	P1-2	R6	U. urealyticum
Group 4	F1	P1-1	R2	A. laidlawii
Group 5	F2	P2	R5	S. citri
Group 6	F1	P1-3	R7	M. synoviae
	and the same for the second and the second are the	and the second s	and the contract of the contra	والمستوحة والمستوحة الناف فالعلم فالمستوا والمستوا والمستوا والمستوا والمستوا والمستودين والمراجع والمستود والم

[Figure 2]

			D
	cfu/reaction	Detection method of invention	Detection method of reference document
5	1000	3/8	3/3
Mycoplesma arginini	100	3/3	3/3
/coplesm arginini	10	3/3	3/3
₹	5	3/3	3/3
2 0	1000	3/3	3/3
Mycoplasma fermentans	100	3/3	3/3
8 E	10	3/3	3/3
ξů	5	3/3	0/3
2 5	1000	3/3	0/3 (3/3 only for 10 ⁵)
3€	100	3/3	0/3
Mycoplasma gallisecticum	10	3/3	0/3
28	5	3/3	0/3
2	1000	3/3	3/3
Mycoplasma hycrhinis	100	3/3	3/3
	10	3/3	3/3
\$	5	3/3	3/3
2	1000	3/3	3/3
Mycoplasma orale	100	3/3	3/3
§ 8	10	3/3	0/3
2	5	3/3	0/3
8.8	1000	3/3	3/3
Mycoplasma preumoviae	100	3/3	3/3
8 2	10	3/3	3/3
3 a	5	3/3	3/3
E s	1000	3/3	3/3
ycoptesm synoviae	100	3/3	3/3
Mycoplasma synoviae	10	3/3	1/3
	5	3/3	0/3
.	1000	3/3	0/3 (3/3 only for 10 ⁵)
Adoleplas	100	3/3	0/3
183	10	3/3	0/3
	5	3/3	0/3
Spiroplasma citri	1000	3/3	0/3
충동	100	3/3	0/3
Į į į	10	3/3	0/3
	5	3/3	0/3

[Figure 3]

Bacterial genome DNA		Fungal genome DNA	Mammal cells
Bacteroides vulgatus	Propionibacterium acnes	Aspergillus niger	Human T lymphocyte
Bacillus subtilis	Salmonella enterica subsp. enterica	Candida albicans	Mouse T lymphocyte
Brevibacillus brevis	Staphylococcus aureus		Raji cell
Clostridium acetobutylicum	Staphylococcus epidermidis		CHO DG44
Clostridium kluyveri	Streptococcus mutans		
Clostridium sporogenes	Streptococcus pneumoniae		
Escherichia coli	Streptococcus bovis		
Enterococcus faecalis	Streptomyces avermitilis		
Gluconacetobacter xylinus	Rhodococcus erythropolis		
Klebsiella pneumoniae	Rothia dentocariosa		
Lactobacillus acidophilus	Tetragenococcus halophilus		
Lactobacillus delbrueckii subsp. bulgaricus			
Lactobacillus casei			
Lactobacillus gasseri			
Pseudomonas aeruginosa			

Bacteria, fungi and mammal-derived cells which did not show cross reactivity by Multiplex qPCR

[Figure 4]

-			Degree of
Forward primer	F1primer	Probe	positional shift
F1 TGATTGGAGTTAAGTC GTA	ACAAGGTACCCCTACGAGAACGT	PT INTER CORRESPONDED DE SENTE	
	M1primer	Probe	
MI TGATTGGAGTTAAGTCG TA	ACAAGGTACCCCTACGAGAACGT	GGGGRTGGATYACCTCCTTTC	AAA +1
TF TGATTGGAGTTAAG TCGTA	TF primer ACAAGGTACCCCTACGAGAACG	Probe IGGGGRTGGATYACCTCCTTTC	4AA -2
MyTF-1 TGATTGGAGTTAAGTCG TA	.MyTF-1 primer ACAAGGTACCCCTACGAGAACG1	Probe IGGGGRTGGATYACCTCCTTTC	AAA +2
	2 primer ACAAGGTA CCCCTACGAGA <mark>ACG</mark> I	Probe GGGGRTGGATYACCTCCTTTC	AAA -8
MyTF- MyTF-3 TGATTGGA GTTAAGTCGTA	3 primer ACAAGGTACCC CTACGAGA <mark>ACG</mark> 1	Probe GGGGRTGGATYACCTCCTTTC	AAA -5
MyTF-4 TGATTG GAGTTAAGTCGTA	4 primer ACAAGGTAC CCCTACGAGA ACG T	Probe IGGGGRIGGATYACCICCITIC	AAA -7
MyTF- MyTF-5 TGATTGGAGTTA AGTCGTA	5 primer ACAAGGTACCCC TACGAGA <mark>ACG</mark> I	Probe IGGGGRIGGATYACCTCCTTTC	AAA -4
	6 primer ACAAGGTACCCCTACGAGAACG	Probe IGGGGRIGGATYACCTCCTTTC	AAA -1
			Degree of positional
Reverse primer Probe R1 ACGTGGGGRTGGATYACC	TCCTTTCAAATGGAG//GG	Riprimer G CTTATGGTGGATGCCTTGGCA	shift
Probe		NO Onelman	
	TCCTTTCAAATGGAG//GG	M6-2 primer GCTTATGGTGGATGCCTTGGCA	CTAA -1
Probe TR ACGTGGGGRTGGATYACC	TCCTTTCAAATGGAG//GG	TR primer GCTTAT GGTGGATGCCTTGGCA	CTAA -5
Probe TR-2 ACGTGGGGRTGGATYACC	TCCTTTCAAATGGAG//GG	TR-2 primer GCTT ATGGTGGATGCCTTGGCA	CTAA -3

[Figure 5]

				FI	-			M				TF	tı.			MyTF-1	-1	
			M6-2.	Ħ	TR-2.	Æ	M6-2.	TR.	TR-2.	≅	M6-2.	出	TR-2.	Æ	M6-2.	TR	TR-2.	≅
		cfu/tube	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ot value	ct value	ot value	ct value	ct value	ct value
	I M. genitalium	about 10°6	27.07	26.18	26.71	27.24	31.68	32.34	30.58	31.58	29.00	29.70	28.64	30.45	27.90	27.87	27.84	26.80
,,	2 L. bulgaricus	about 10^6	. is	. 1	. 1	. 1	. 1	. 1	ł)	ł	·	ŧ	į	t .	. 1		ŀ
	3 DW		1	£	Ė	ì	l.	. 1 ,	f.	I	1.	Ī	I	ı	.1	Į	Į,	ı
		·																
				MyT	MyTF-2			MyTF-3	-3			MyTF-4	F-4			MyTF-5	-5	
			M6-2.	Ŧ	TR-2.	R1	M6-2.	TR.	TR-2.	₹	M6-2.	뜨	TR-2.	Æ	M6-2.	H	TR-2.	₽
		cfu/tube	ct value	ct value	ct value	ct value	ct value	ct value	ot value	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ct value	ct value
,-	I M. genitalium	about 10^6	25.31	25.76	25.49	25.31	25.80	25.19	25.90	26.91	25.12	25.58	25.72	27.84	25.08	25.28	25.68	25.52
.,4	2 L. bulgaricus	about 10°6	İ	*41.95	*33.49	*21.40	1	*25.50	1	1	i	*39.90	i -	ı	1	1	ı	i
	3 DW		ı	1	1	ì	. I	. 1	1	1	1	1	1	ı		ı	1	·
					i c		-, -,		() کے	(, (+		-,	1		
				Σ	My I F-6		, dete	, indicates detected	res Les	rne c	ase v	«ner∈	case where L. buigaricus	ourge	ırıcı	s was	-0	
			M6-2.	Œ	TR-2.	Ξ												
		cfu/tube	ct ct value value	ct value	ct value	ct value												
,-	M. genitalium	about 10^6	25.52	25.81	25.51	26.10												
.,	2 L. bulgaricus	about 10^6	I	*42.25	ı.	ŧ.												
``,	3 DW		Ä,	Τ	1.	ï												

[Figure 7-1]

Probe AGGACTGGTGATTGGAGTTAAGTOGTAACAAGGTACCCTAOGGGATGATGGGGGTGCATCCTTCTAACGGAGTTAATTAAT	Probe AGGACTGGTAATTGGAGTTAAGTOGTAACAAGGTACCCTACGGGGTGGATCACCTCCTACGGAGTTAATTAA	Probe AGGACTGGTGATTGGAGTTAAGTGGTAACAAGGTACCCTAGGGGGTGGATGATCACCTCCTTTCTAACGGAGTTAATTAA	Probe AGGACTGGTGAITGGAGTTAAGTOGTAACAGGTACCCTACGGGGTGCATCACCTCCTTCTAACGGAGTTAATTTAGATATTAACAAATATTAGAATATTTAAAT-	.um AGGATCGGTGACTGGAGTTAAGTÇ GTAACAAGGTTACCTACGTAGGAACGTGGGGATGGATGGA	Probe AGCACCBGTGATTGGAGTTAAGTQGTAACAAGGAACGTGGGGGTGGATCACCTCCTTCTAATGGAGTTTTTTGTTTTCTTTTCATCTTTAATAAAGATAAATACT	Probe MRCACCGGTGATTGGAGTTAAGTOGTAACAAGGTACCCTACGAGGGTGGATCACCTCCTTCAAATGGAGTTTTTATTTTTTTT	Probe AGGGCCGGTGATTGGAGTTAAGTOGTAACAGGTACCTACGAGAACGTGGGGGTGGATTACCTCCTTTCTATGGAGTATAATAATAACACTAACAGGATATAACACTGTTACATAAAC	RB Primer TACATITIATAAAATCCAATTTTCTTTATTAACCTAATATAAATAA	R6 Primer TACTITATIAAAAAAATCCTAAACTGAAATTTATCTCATGTTATAAGAGTAAGATCCAGATTCTATTAATTTTAATTTTT-CTCTCAA	- TACTITATATAAAAATCCAGTTATTACTTAAAAATGAATTTTAATTGTAATAAQA <mark>AGGTCGGATTCTATTUAGT</mark> TTTGAGAGATATATTCTCTCTCAT	RS Primer ATTIGIGIACTITITATAGAAATCCAAAAAATAAACCTAAATAAAATA	CUM AAAAATOCATGTGAATATTAGCCACTTTTTTAAAAAATATTTCAAAAGTTCATA <mark>TGGTCGGATTCTATTTAAGTFTTGAG</mark> AGTTTATTCTCTCTCCCA	AAACAAAACATCAAAATCCATTTATTATTATCGGTGGTAAATTAAACCCAAATCGCTGTTTGGTCACAACTAACAACATATTGGTGAGATTGTATCGAGAAGAACATTT——CCG	INI TAATITITITITITITITITITITITITITITITITIT	GG
m crot	M. penetrans	M. iowae	m mu	U. urealyticum	M. pneumoniae	M. genitalium	M.gallisepticum	M. microti	M. penetrans	M. Towae	S ones	U.urealyticum	M. pneumoniae	M. genitalium	m os II senticim

[Figure 7-2]

								\sim	~~	مِی	~~	~~	کت	~~	<u>~</u>
M. microti	M. penetrans	M. iowae	M. mur is	U. urealyticumTAATATTTTATATATTATGGATGATGTTTGAAAACTGAATAATTATCAACAAATCTTTGTAATCATTGACATTAAGTTGTCAGTGAACAGAAACTATTAATTA	M. pneumoniaeGT	M. genitaljumGI	M.gailisepticumAGTIATTAAGTTTTTCTTTAAAGCTTTTTAACACTTTAAGTTAACACTTTAAGTTAACCTTG	M. microti	M. penetrans AAAATAGGAAGAAAAAAAAAAAAAAAAAAAAA	M. iowae	M. muris	W. urealyticumAATGATAAAGAAGTITAAGGATITATAATAAGTIACTAAGAG <mark>CTTATGGTGAATGCCTTGG-GAG</mark> AACAGGGGATGAAGGAAGGAAGGAAAGGAAAGGGTAGCTGAT	M. pneumoniae	M.genitalium····AAIACGAAAGGATCAAIACAATAGTTACTAAGG CTTATGGTGGATGGCTTGG-CACT AAAAGGCGATGAAGGACG	M. gallisepticumTAAAGATGATTAAGTTTACCTTCAAAGATCCAAGAAGAATATTAAAAGCTTTTTGGTCAGATAACTAAC

[Figure 7-3]

M. microti·······TATACCTAGCAGTATCCTGAGTACGGCGGGGACACGTGGAATCTTGTCGGAATCTGCCCAGACCATTGGGTAAGCCTAAATACTAACCAGTCACCGATAGCGTATAGTA	STATAGTA
M. penetrans	3TATAGTACCGT GAGG
M. iowae	3CATA
M. murís	3TATA
U. urealyticum	
M. pneumoníae	
M. genitalium.	And the state of t
M. gallisepticum ATTCAATAAAAATAGCTAATGGATCAAATACATAAGTTACTAAGGG CTTATGGTGGATGCCTTGGCACT AGAAGGGGATGAAGGGGAAGGGGAAAGGTGCTAGGGAAGTGCTGGGAAGTGCTGGGAAATGCTAGGGAAGTGGTACGGGAAGTGGTAGGTA	TACGGGGGAGCTGGTT

A: Nucleotide attached to primer/probe by mismatch A: Sequence specific to Mycoplasma

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2015/004535 A. CLASSIFICATION OF SUBJECT MATTER 5 C12Q1/68(2006.01)i, C12N15/09(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) C12Q1/68, C12N15/09 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 1922-1996 Jitsuyo Shinan Toroku Koho Jitsuyo Shinan Koho 1996-2015 Kokai Jitsuyo Shinan Koho 1971-2015 Toroku Jitsuyo Shinan Koho 1994-2015 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580(JDreamIII), CAplus/MEDLINE/EMBASE/BIOSIS(STN), DWPI(Thomson Innovation), GenBank/EMBL/DDBJ/GeneSeq 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 4-004899 A (Takara Shuzo Co., Ltd.), 1-15 09 January 1992 (09.01.1992), claims; pages 2 to 4; drawings 25 (Family: none) Υ STAKENBORG, T., et al., A multiplex PCR to 1 - 15identify porcine mycoplasmas present in broth cultures, Vet. Res. Commun., 2006, vol.30, issue 3, p.239-247, ISSN 0165-7380, 30 particularly, Abstract, MATERIALS AND METHODS 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "T" "A" document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "E" earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "L" document of particular relevance; the claimed invention cannot be 45 considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 November 2015 (18.11.15) 01 December 2015 (01.12.15) 50 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, <u>Tokyo 100-8915, Japan</u> Telephone No Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2015/004535

5			PCT/JPZ	015/004535
	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
	Category*	Citation of document, with indication, where appropriate, of the relev		Relevant to claim No.
10	Y	FRAGA, AP., et al., A Multiplex real-tim for detection of Mycoplasma gallisepticu Mycoplasma synoviae in clinical samples Brazilian commercial poultry flocks, Bra Microbiol., 2013, vol.44, no.2, p.505-51 1517-8382, particularly, Abstract, Mater and Methods	m and from z. J. 0, ISSN	1-15
15	Y	Hideyuki TAKAHASHI et al., "Multiplex qP ni yoru Shinki Mycoplasma Kensaho no Kai Regenerative Medicine, 2014-01, vol.13, extra issue, page 357(P-2-190), ISSN 134 entire text	hatsu", special	1-15
20	Y	WO 2005/078102 A1 (GENEIN CO., LTD.), 25 August 2005 (25.08.2005), claims; pages 4 to 15 & US 2007/0065828 A1 & EP 1713918 A1		1-15
25	Y	JP 6-098800 A (Takara Shuzo Co., Ltd.), 12 April 1994 (12.04.1994), claims; paragraphs [0004] to [0005]; exa (Family: none)	mples	1-15
30	Y	<pre>KR 10-2009-0081039 A (NKBIO CO., LTD.), 28 July 2009 (28.07.2009), examples & WO 2009/093856 A2</pre>		1-15
35	Y	JP 5-000088 A (Wakunaga Pharmaceutical (Ltd.), 08 January 1993 (08.01.1993), claims; paragraphs [0004] to [0027] (Family: none)	Co.,	1-15
40				
45				
50				

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2004305207 A [0008]
- JP 2012060925 A **[0008]**

- JP 2013515458 A **[0008]**
- WO 2011122034 A [0008]

Non-patent literature cited in the description

- *Medical Microbiology*, 2009, vol. 299, 291-300 **[0009]**
- Res. Microbiol., 1993, vol. 144, 489-493 [0009]
- **GREEN**; **SAMBROOK**. Molecular Cloning. Cold Spring Harbor Laboratory Press, 2012 **[0050]**