

(11) EP 3 196 276 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

26.07.2017 Bulletin 2017/30

(51) Int Cl.:

C10G 57/00 (2006.01) C10G 9/00 (2006.01) C07C 6/02 (2006.01)

(21) Application number: 16151925.1

(22) Date of filing: 19.01.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(71) Applicant: Shell Internationale Research Maatschappij B.V. 2596 HR Den Haag (NL) (72) Inventors:

- WADMAN, Sipke Hidde 1031 HW Amsterdam (NL)
- SMITS, Jozef Jacobus Titus 1031 HW Amsterdam (NL)
- KONING, Rens 1031 HW Amsterdam (NL)
- (74) Representative: Matthezing, Robert Maarten et al Shell International B.V. Intellectual Property Services P.O. Box 384 2501 CJ The Hague (NL)

(54) A METHOD OF UPGRADING CRUDE OIL

- (57) The present invention provides a method of upgrading crude oil, the method at least comprising the steps of:
- (a) providing an olefin-containing crude oil stream;
- (b) adding an olefin-containing stream to the olefin-containing crude oil stream provided in step (a), thereby obtaining an olefin-enriched stream;
- (c) subjecting the olefin-enriched stream obtained in step
- (b) to an olefin metathesis reaction in the presence of one or more metathesis catalysts thereby obtaining a metathesis product, the metathesis product containing at least 20 wt.% of a fraction having a boiling point between 50-380°C at atmospheric pressure;
- (d) removing at least partly the fraction having a boiling point between 50-380°C from the metathesis product as obtained in step (c).

EP 3 196 276 A1

Description

15

20

25

30

35

40

45

50

[0001] The present invention relates to upgrading crude oil.

[0002] In crude oil processing, there is a growing demand for so-called 'middle distillates' (such as kerosene, heating oil, jet fuel, etc.), whereas at the same time the supply of crude oils shifts to more heavy crude oils. The upgrading of crude oils has traditionally been performed via thermal cracking, catalytic cracking or hydrocracking, all using high temperatures and resulting in unselective reactions. Hence, there has been a continuous desire in developing alternative processes that convert crude oils, in particular heavy crude oils, into middle distillate fractions.

[0003] It is an object of the present invention to provide an alternative method for upgrading crude oil, in particular heavy crude oil. It is a further object of the present invention to provide a method for upgrading crude oil, which can be performed at a relatively low temperature, such as below 300°C.

[0004] One or more of the above or other objects can be achieved by providing a method of upgrading crude oil, the method at least comprising the steps of:

- (a) providing an olefin-containing crude oil stream;
- (b) adding an olefin-containing stream to the olefin-containing crude oil stream provided in step (a), thereby obtaining an olefin-enriched stream;
- (c) subjecting the olefin-enriched stream obtained in step (b) to an olefin metathesis reaction in the presence of one or more metathesis catalysts thereby obtaining a metathesis product, the metathesis product containing at least 20 wt.% of a fraction having a boiling point between 50-380°C at atmospheric pressure;
- (d) removing at least partly the fraction having a boiling point between 50-380°C from the metathesis product as obtained in step (c).

[0005] It has surprisingly been found according to the present invention that the upgrading of crude oil, in particular heavy crude oil, can be achieved by an olefin metathesis reaction. Olefin metathesis is a well-known reaction and has been subject to a Nobel Prize in Chemistry in 2005 (in particular for the discovery of a variety of highly efficient and selective catalysts). Because of the relative simplicity of olefin metathesis it often creates fewer undesired by-products than alternative organic reactions. The olefin metathesis reaction typically provides for the redistribution of fragments of olefins by the scission and regeneration of carbon-carbon double bonds. The olefin metathesis reaction can be carried out at room and elevated temperatures using a wide variety of catalysts.

[0006] The present inventors have now surprisingly found that the presence of contaminants commonly present in crude oil (such as nitrogen, oxygen and/or sulphur compounds, and/or metal contaminants such as nickel and vanadium compounds), in particular in heavy crude oils, do not hamper or detrimentally retard the olefin metathesis reaction. Also, the present inventors have surprisingly found that the metathesis catalysts used survive the presence of typical contaminants as present in crude oil, in particular heavy crude oil.

[0007] In step (a), an olefin-containing crude oil stream is provided. Although the olefin-containing crude oil stream is not particularly limited, it typically is from a mineral or fossil (hence non-vegetable and non-synthetic) origin. The olefin-containing crude oil stream may have been obtained as a fraction during processing and refining crude oil. Preferably, at least 10 wt.%, more preferably, at least 20 wt.%, even more preferably at least 50 wt.% or even more than 80 wt.% or even 100 wt.% of the olefin-containing crude oil stream is from a mineral origin.

[0008] Preferably, the olefin-containing crude oil stream provided in step (a) has an aromatic content of at least 10 wt.%, preferably at least 20 wt.%, as determined by ¹H-NMR. Further, it is preferred that the olefin-containing crude oil stream provided in step (a) has a sulphur content of at least 0.1 wt.%, preferably at least 0.5 wt.%, more preferably at least 1.0 wt.%, even more preferably at least 2.0 wt.%, as determined by ASTM D2622. Also, it is preferred that the olefin-containing crude oil stream provided in step (a) has an API gravity of at most 19, as determined according to ASTM D 6822 at 15°C. Further it is preferred that the olefin-containing crude oil stream provided in step (a) has a total Ni/V/Fe content of at least 50 ppm, preferably at least 100 ppm, as determined by ASTM D5863. Also, it is preferred that the olefin-containing crude oil stream provided in step (a) has an asphaltene content of at least 0.04 gram per 100 gram, as determined by ASTM D2007. Further, it is preferred that the olefin-containing crude oil stream provided in step (a) has an Micro-Carbon Residue ('MCR') of at least 0.02 gram per 100 gram as determined by ASTM D4530.

[0009] According to a preferred embodiment of the present invention, at least 50 wt.%, preferably at least 90 wt.%, of the olefin-containing crude oil stream provided in step (a) has a boiling point of above 250°C at atmospheric pressure, preferably above 300°C, more preferably above 330°C, even more preferably above 360°C, yet even more preferably above 390°C. Further, it is preferred that the olefin-containing crude oil stream provided in step (a) contains at least 2.0 wt.%, preferably at least 5.0 wt.%, more preferably at least 10.0 wt.%, even more preferably at least 20 wt.% olefins. Typically, the content of olefins can be determined by ¹H NMR or by bromine number according to ASTM D2710.

[0010] In step (b), an olefin-containing stream is added to the olefin-containing crude oil stream provided in step (a), thereby obtaining an olefin-enriched stream. Although the olefin-containing stream added in step (b) is not particularly

limited, it typically contains lighter olefins than the olefins present in the olefin-containing crude oil stream provided in step (a).

[0011] Preferably, at least 50 wt.%, preferably at least 90 wt.%, of the olefin-containing stream added in step (b) has a boiling point of below 150°C at atmospheric pressure, preferably below 100°C, more preferably below 80°C, even more preferably below 50°C.

[0012] Further it is preferred that the olefin-containing stream added in step (b) contains at least 2.0 wt.%, preferably at least 5.0 wt.%, more preferably at least 10.0 wt.%, even more preferably at least 20 wt.% olefins.

[0013] According to an especially preferred embodiment according to the present invention, at least 90 wt.% of the olefins of the olefin-containing stream added in step (b) are selected from the group consisting of ethylene, propylene, butenes and mixtures thereof.

[0014] In step (c), the olefin-enriched stream obtained in step (b) is subjected to an olefin metathesis reaction in the presence of one or more metathesis catalysts thereby obtaining a metathesis product, the metathesis product containing at least 20 wt.% of a fraction having a boiling point between 50-380°C at atmospheric pressure.

[0015] As the person skilled in the art is familiar with the olefin metathesis reaction and suitable metathesis catalysts and conditions, this is not discussed here in detail.

[0016] Suitable metathesis catalysts include the so-called 'Schrock catalysts' (molybdenum(IV)- and tungsten(IV)-based) and 'Grubbs' catalysts' (ruthenium(II) carbenoid complexes). Suitable metathesis catalysts have been described in detail in paragraphs [0041]-[0091] of WO 2010/062958, the teaching of which is hereby incorporated by specific reference.

[0017] Preferably, the one or more metathesis catalysts to be used according to the present invention are metal carbene catalysts based on the group consisting of ruthenium, molybdenum, osmium, chromium, rhenium and tungsten and a combination thereof; preferably metal carbene catalysts based on the group consisting of ruthenium, molybdenum, tungsten and a combination thereof; more preferably heterogeneous catalysts based on molybdenum. There is also a preference for iron oxide catalysts.

[0018] Typically, the olefin-enriched stream is subjected to the olefin metathesis reaction in step (c) at a temperature between 10°C and 400°C, more typically above 20°C, even more typically above 50°C, preferably above 70°C. Preferably, the olefin-enriched stream is subjected to the olefin metathesis reaction in step (c) at a temperature below 300°C, preferably below 200°C, more preferably below 160°C.

[0019] Furthermore, the olefin-enriched stream is typically subjected to the olefin metathesis reaction in step (c) at a pressure above 2.0 bar, more typically above 5 bar, more typically above 20 bar, preferably above 50 bar.

[0020] As mentioned above, the metathesis product contains at least 20 wt.% of a fraction having a boiling point between 50-380°C at atmospheric pressure. Preferably, the metathesis product obtained in step (c) contains at least 25 wt.%, more preferably at least 30 wt.%, even more preferably at least 40 wt.%, yet even more preferably at least 50 wt.%, of a fraction having a boiling point between 50-380°C at atmospheric pressure.

[0021] According to an especially preferred embodiment according to the present invention, the metathesis product obtained in step (c) comprises at least 5.0 wt.% more of a fraction having a boiling point between 50-380°C at atmospheric pressure, when compared to the olefin-enriched stream as obtained in step (b), preferably at least 7.0 wt.% more, more preferably at least 10 wt.% more, or even at least 20 wt.% more.

[0022] In step (d), the fraction having a boiling point between 50-380°C is at least partly removed from the metathesis product as obtained in step (c), typically by distillation. The fraction having a boiling point between 50-380°C can be suitably used as a middle distillate.

[0023] Preferably, the fraction having a boiling point between 50-380°C as removed at least partly in step (d) contains at least 20 wt.%, preferably at least 50 wt.% olefins, more preferably at least 80 wt.% olefins.

[0024] Hereinafter the invention will be further illustrated by the following non-limiting examples.

Examples

Example 1

[0025] A dehydrogenated vacuum gas oil (VGO) with the composition and properties as given in Table 1 was obtained.

Table 1. Properties and composition of VGO

Property / component	Amount	Measuring method
Specific gravity 15/4C	0 . 898	
Hydrogen [wt.%]	12.4	
Carbon [wt.%]	3.3	

55

50

10

30

35

(continued)

Property / component	Amount	Measuring method
H/C ratio	1.74	
Oxygen [wt.%]	0.071	
Total nitrogen [ppmw]	706	
Sulfur content [wt.%]	2.121	ASTM D2622
Basic nitrogen [ppmw]	232	
Mono aromatic nuclei [wt.%]	4.72	
Di aromatic nuclei [wt.%]	3.77	
Tri aromatic nuclei [wt.%]	3.13	
Tetra+ aromatic nuclei [wt.%]	2.49	
Total aromatic nuclei [wt.%]	14.1	
Micro Carbon Residue (MCR) [wt.%]	0.33	ASTM D4530
Bromine number	6.9	
Fraction of carbon atoms in naphthenic structure [wt.%]	25.4	
Fraction of carbon atoms in aromatic structure [wt.%]	14.4	¹ H-NMR
Fraction of carbon atoms in paraffinic structure [wt.%]	45.5	
Total amount of olefins [wt.%]	45	¹ H-NMR
Iron [ppmw]	0.55	
Sodium [ppmw]	0.11	
Nickel [ppmw]	0.08	
Vanadium [ppmw]	0.38	
Ni/V/Fe content [ppmw]	1.01	ASTM D5863
Asphaltene content [wt.%]		ASTM D2007
Viscosity at 100°C [cSt]	3.33	
V50	19.4	
UOPK	11.89	

[0026] A 272 mg sample of the above VGO and 503 mg catalyst potassium-promoted iron oxide catalyst (as prepared according to the general synthesis procedure as described on page 2119 of S.C. Ndlela et al., "Reducibility of Potassium-Promoted Iron Oxide under Hydrogen Conditions", Ind. Eng. Chem. Res. 42, 2112-2121 (2003)), were fed into an 8 ml Hastelloy C autoclave. The autoclave was charged with ethylene (62 bar, 47 mol. equivalents) and was heated to 150°C. The sample was kept isothermal for 3 hours, after which it was cooled down. The pressure loss from the reaction was 6.0 bar. The gas cap was collected and measured with GC. The obtained liquid (being the metathesis product) was washed off the catalyst with n-pentane (1 ml) and was measured by GC, SimDist, and NMR analysis. The results are given in Table 2.

Table 2. Change in boiling range properties by metathesis reaction.

Boiling range [°C]	Before metathesis reaction [wt.%]	After metathesis reaction [wt.%]	Difference [wt.%]
50-380	61.4	68.9	+7.6
380-615	38.6	31.1	-7.6
25-100	0.44	3.26	+2.82
100-200	6.74	9.33	+2.59

(continued)

Boiling range [°C]	Before metathesis reaction [wt.%]	After metathesis reaction [wt.%]	Difference [wt.%]
200-300	21.57	26.61	+3.04
300-400	40.22	38.59	-1.63
400-500	25.26	20.03	-5.23
500-600	5.77	4.18	-1.59

10

15

20

5

Table 2 shows an increase of material having a boiling point of 50-380°C and a decrease in material having a boiling point from 380-615°C. This is indicative for that higher-boiling olefins in the (ethylene-enriched) VGO sample have been converted into lower-boiling olefins in the metathesis product.

[0027] Using atmospheric distillation a fraction having a boiling point between 50-380°C at atmospheric pressure was removed from the metathesis product. The removed fraction may be suitably used as a middle distillate.

Discussion

[0028] As can be seen from the Example, the present invention provides a method for upgrading crude oil.

[0029] The person skilled in the art will readily understand that many modifications may be made without departing from the scope of the invention.

Claims

25

30

35

- 1. A method of upgrading crude oil, the method at least comprising the steps of:
 - (a) providing an olefin-containing crude oil stream;
 - (b) adding an olefin-containing stream to the olefin-containing crude oil stream provided in step (a), thereby obtaining an olefin-enriched stream;
 - (c) subjecting the olefin-enriched stream obtained in step (b) to an olefin metathesis reaction in the presence of one or more metathesis catalysts thereby obtaining a metathesis product, the metathesis product containing at least 20 wt.% of a fraction having a boiling point between 50-380°C at atmospheric pressure;
 - (d) removing at least partly the fraction having a boiling point between 50-380°C from the metathesis product as obtained in step (c).

2. The method according to any of the preceding claims, wherein the olefin-containing crude oil stream provided in step (a) has an aromatic content of at least 10 wt.%, as determined by ¹H-NMR.

- **3.** The method according to claim 1 or 2, wherein the olefin-containing crude oil stream provided in step (a) has a sulphur content of at least 0.1 wt.% as determined by ASTM D2622.
 - **4.** The method according to any of the preceding claims, wherein the olefin-containing crude oil stream provided in step (a) has an API gravity of at most 19, as determined according to ASTM D 6822 at 15°C

45

5. The method according to any of the preceding claims, wherein at least 50 wt.%, preferably at least 90 wt.%, of the olefin-containing crude oil stream provided in step (a) has a boiling point of above 250°C at atmospheric pressure, preferably above 300°C, more preferably above 330°C, even more preferably above 360°C, yet even more preferably above 390°C.

50

6. The method according to any of the preceding claims, wherein the olefin-containing crude oil stream provided in step (a) contains at least 2.0 wt.%, preferably at least 5.0 wt.%, more preferably at least 10.0 wt.%, even more preferably at least 20 wt.% olefins.

7. The method according to any of the preceding claims, wherein at least 50 wt.%, preferably at least 90 wt.%, of the olefin-containing stream added in step (b) has a boiling point of below 150°C at atmospheric pressure, preferably below 100°C, more preferably below 80°C, even more preferably below 50°C.

- **8.** The method according to any of the preceding claims, wherein the olefin-containing stream added in step (b) contains at least 2.0 wt.%, preferably at least 5.0 wt.%, more preferably at least 10.0 wt.%, even more preferably at least 20 wt.% olefins.
- **9.** The method according to any of the preceding claims, wherein the olefin-enriched stream is subjected to the olefin metathesis reaction in step (c) at a temperature below 300°C, preferably below 200°C, more preferably below 160°C.

- **10.** The method according to any of the preceding claims, wherein the metathesis product obtained in step (c) comprises at least 5.0 wt.% more of a fraction having a boiling point between 50-380°C at atmospheric pressure, when compared to the olefin-enriched stream as obtained in step (b).
- 11. The method according to any of the preceding claims, wherein the fraction having a boiling point between 50-380°C as at least partly removed in step (d) contains at least 20 wt.%, preferably at least 50 wt.% olefins, more preferably at least 80 wt.% olefins.

EUROPEAN SEARCH REPORT

Application Number

EP 16 15 1925

5		
10		Cat X
15		
20		А
25		Α,
30		
35		
40		
45		
	2	
50	4C01)	
	1503 03.82 (P04C01) C	

55

	DOCUMENTS CONSIDER	RED TO BE RELEVANT		
Category	Citation of document with indic of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	US 6 369 286 B1 (0'RE 9 April 2002 (2002-04 * column 3, lines 3-5 * column 6, lines 25- * column 14, lines 62 * column 17, lines 12 * column 18, lines 1- * claims 1,3,4,7 *	1-09) 5 * -32 * 2-65 * 2-18, 54-57 *	1-11	INV. C10G57/00 C07C6/02 C10G9/00
Α	US 6 566 568 B1 (CHEN 20 May 2003 (2003-05- * column 6, lines 42- * column 11, lines 56 * column 13, lines 46 * claims 1,11 *	-20) -48 * 5-62 *	1-11	
A,D	WO 2010/062958 A1 (EUSCIENCES [US]; LUETKE COHEN STEVEN) 3 June * paragraph [0041]; o	ENS MELVIN L [US]; 2010 (2010-06-03)	1-11	TECHNICAL FIELDS SEARCHED (IPC) C10G C07C
	The present search report has bee	n drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
X : part Y : part docu A : tech O : non	The Hague ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another iment of the same category inological background -written disclosure rmediate document	11 July 2016 T: theory or princip E: earlier patent chafter the filing chafter the filing chafter the	I Die underlying the i coument, but publi- ate in the application for other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 15 1925

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

11-07-2016

Patent docum cited in search r		Publication date		Patent family member(s)	Publication date
US 6369286	B1	09-04-2002	AU AU BR GB JP NL US WO ZA	779479 B2 2485201 A 3998001 A 0108838 A 2359820 A 2003525343 A 1017475 A1 1017475 C2 6369286 B1 0164816 A2 200101756 A	27-01-2005 13-12-2001 12-09-2001 30-12-2003 05-09-2001 26-08-2003 07-09-2001 06-08-2002 09-04-2002 07-09-2001 11-09-2001
US 6566568	B1	20-05-2003	AU US WO	2002366783 A1 6566568 B1 03053894 A1	09-07-2003 20-05-2003 03-07-2003
WO 2010062	958 A1	03-06-2010	CA CN EP JP KR RU US WO	2742374 A1 102227394 A 2352712 A1 5730775 B2 2012509985 A 20110103981 A 2011121030 A 2011237850 A1 2015094504 A1 2010062958 A1	03-06-2010 26-10-2011 10-08-2011 10-06-2015 26-04-2012 21-09-2011 10-01-2013 29-09-2011 02-04-2015 03-06-2010
ORM P0459					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

WO 2010062958 A [0016]

Non-patent literature cited in the description

S.C. NDLELA et al. Reducibility of Potassium-Promoted Iron Oxide under Hydrogen Conditions. Ind. Eng. Chem. Res., 2003, vol. 42, 2112-2121 [0026]