

(11) **EP 3 196 569 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

26.07.2017 Bulletin 2017/30

(51) Int Cl.:

F25B 13/00 (2006.01) F25B 49/02 (2006.01) F25B 40/06 (2006.01)

(21) Application number: 16152194.3

(22) Date of filing: 21.01.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(71) Applicant: Vaillant GmbH 42859 Remscheid (DE)

(72) Inventors:

 Mora, Miguel 03450 Banyeres de Mariola (Alicante) (ES)

 Acedo Navarrete, Jose E-01010 Vitoria (Araba) (ES)

(74) Representative: Hocker, Thomas

Vaillant GmbH Berghauser Strasse 40 42859 Remscheid (DE)

(54) SENSOR ARRAMGEMENT IN A HEAT PUMP SYSTEM

(57) The present invention discloses a heat pump system including a refrigerant circuit having a compressor, a first heat exchanger downstream of the compressor for operating as a condenser in a heating mode and operating as an evaporator in a cooling mode, a throttling device downstream of the first heat exchanger, and a second heat exchanger downstream of the throttling device for operating as an evaporator in the heating mode and operating as a condenser in the cooling mode. A reversing valve is disposed in the refrigerant circuit between the compressor and the first/second heat ex-

changer for selectively reversing the refrigerant flow therein. A sensor combination for being used to calculate a present super-heating degree, wherein the sensor combination includes a temperature sensor for detecting a temperature of the refrigerant after leaving from the second heat exchanger and before entering the reversing valve and a second sensor for being used to measure a saturated temperature of the refrigerant at a low pressure side. In this way, the heat pump system can avoid super-heating degree instabilities caused by the reversing valve, thereby improving its performance and efficiency.

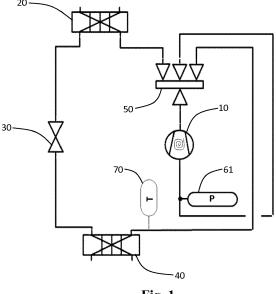


Fig. 1

EP 3 196 569 A1

20

35

40

FIELD OF THE INVENTION

[0001] The present invention relates to a heat pump system, and more particularly to a heat pump system employing a reversing valve for reversing the refrigerant flow so that the system can perform either space heating or space cooling.

1

BACKGROUND OF THE INVENTION

[0002] Fig.5 shows a conventional heat pump system that can perform either space heating or space cooling. The system has a compressor 81 for compressing a refrigerant, an indoor heat exchanger 82 for cooling the refrigerant in a heating mode and vaporizing the refrigerant in a cooling mode, an expansion valve 83 for lowing the pressure of the refrigerant, and an outdoor heat exchanger 84 for vaporizing the refrigerant in the heating mode and cooling the refrigerant in the cooling mode. A four-way valve 90 is provided between the compressor 81 and the indoor/outdoor heat exchanger 82, 84 to switch a channel of the refrigerant flow. In the heating mode, the hot gas refrigerant leaving from the compressor 81 enters the four-way valve 90 at its port 94, and leaves the four-way valve at its port 91 to discharge to the indoor heat exchanger 82; in the mean time, the cold gas refrigerant discharging from the outdoor heat exchanger 84 passes through the four-way valve 90 via ports 93 to 92, and goes back to the compressor 81. During the period, there is a heat exchange between the hot compressor discharge refrigerant flow and the cool compressor suction refrigerant flow in the four-way valve 90. In the cooling mode, the four-way valve 90 is operable to switch the channel of refrigerant flow in a reverse direction, that is, to switch the refrigerant channel from the compressor 81 to the indoor heat exchanger 82 via ports 94 to 91 to another refrigerant channel from the compressor 81 to the outdoor heat exchanger 84 via ports 94 to 93; meanwhile, the gas refrigerant flow discharging from the indoor heat exchanger 82 passes through the fourway valve 90 via ports 91 to 92, and goes back to the compressor 81.

[0003] A temperature sensor 85 and a pressure sensor 86 are placed in a compressor suction line to measure a suction temperature of the compressor 81 and a saturated temperature at a low pressure side respectively. A present super-heating degree can be calculated from a difference between the suction temperature of the compressor and the saturated temperature at the low pressure side. A controller (not shown) further compares the present super-heating degree with a target super-heating degree which is stored in a storing part of the controller, and then controls the system to reach and maintain the target super-heating degree to prevent the liquid refrigerant flowing into the compressor 81. In other words, the control of super-heating degree assures the refrigerant

evaporation has been finished before entering the compressor 81. The control of super-heating degree is performed by regulating an openness amount of the expansion valve 83.

[0004] As mentioned above, a heat exchange exists in the four-way valve 90, however, this heat exchange is uncontrolled and difficult to predict. The four-way valve introduces many temperature uncertainties that can lead to a problem in the control of the super-heating degree. This problem is that the super-heating degree is difficult to make it steady and set it as most efficient for all conditions. Nowadays, the problem can be solved by setting a higher target super-heating degree. For example, for a normal heat pump system without a four-way valve, the minimum steady super-heating degree can be set at 3K, however, when an additional four-way valve is introduced in the system, the minimum steady super-heating degree has to be set at 7K. This obviously makes the system become less efficient.

SUMMARY OF THE INVENTION

[0005] It is an object of present invention to provide a heat pump system that can avoid super-heating degree instabilities caused by a reversing valve, thereby improving performance and efficiency of the system.

[0006] According to one aspect of the present invention there is provided a heat pump system including a refrigerant circuit having a compressor for compressing a refrigerant, a first heat exchanger downstream of the compressor for operating as a condenser to cool the refrigerant in a heating mode and operating as an evaporator to vaporize the refrigerant in a cooling mode, a throttling device downstream of the first heat exchanger for lowering the pressure of the refrigerant, and a second heat exchanger downstream of the throttling device for operating as an evaporator in the heating mode and operating as a condenser in the cooling mode. A reversing valve is disposed in the refrigerant circuit between the compressor and the first/second heat exchanger for selectively reversing the refrigerant flow therein. A sensor combination for being used to calculate a present superheating degree, wherein the sensor combination includes a temperature sensor for detecting a temperature of the refrigerant after leaving from the second heat exchanger and before entering the reversing valve and a second sensor for being used to measure a saturated temperature of the refrigerant at a low pressure side. Since the temperature sensor is so positioned that it detects the temperature of the refrigerant before entering the four-way valve, the influence of the reversing valve in determining the super-heating degree can be avoided, thereby assuring the refrigerant evaporation is completely done in the second heat exchanger and no refrigerant in liquid state is sucked into the compressor. Moreover, the system can work more efficiently, because a relatively lower target super-heating degree can be defined.

[0007] Preferably, the temperature sensor is disposed

55

20

40

in the refrigerant circuit between the second heat exchanger and the reversing valve.

[0008] In one embodiment, the second sensor is a pressure sensor disposed in the refrigerant circuit at the compressor suction side.

[0009] In a second embodiment, the second sensor is a pressure sensor disposed in the refrigerant circuit between the second heat exchanger and the reversing valve.

[0010] In a third embodiment, the second sensor is a pressure sensor disposed in the refrigerant circuit between the second heat exchanger and the throttling device

[0011] In a fourth embodiment, the second sensor is another temperature sensor disposed in the refrigerant circuit between the second heat exchanger and the throttling device.

[0012] Preferably, the reversing valve is a four-way valve operable to switch from one channel of the refrigerant flowing from the compressor to the first heat exchanger to another channel of the refrigerant flowing from the compressor to the second heat exchanger.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

Fig. 1 is a diagram showing the configuration of a heat pump system in accordance with a first embodiment of present invention;

Fig. 2 is a diagram showing the configuration of a heat pump system in accordance with a second embodiment of present invention;

Fig. 3 is a diagram showing the configuration of a heat pump system in accordance with a third embodiment of present invention;

Fig. 4 a diagram showing the configuration of a heat pump system in accordance with a fourth embodiment of present invention;

Fig. 5 is a diagram showing the configuration of a heat pump system in the state of art.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0014] Reference will now be made to the drawing figures to describe the preferred embodiments of the present invention in detail. However, the embodiments can not be used to restrict the present invention. Changes such as structure, method and function obviously made to those of ordinary skill in the art are also protected by

the present invention.

[0015] Refer to Fig.1, a heat pump system according to a first embodiment of present invention is capable of performing either space heating or space cooling by using a heating cycle principle for circulating a refrigerant through a refrigerant circuit and a cooling cycle principle for circulating the refrigerant through the refrigerant circuit in a reverse direction. The refrigerant circuit typically includes a compressor 10, a first heat exchanger 20, a throttling device 30, and a second heat exchanger 40. Wherein, the first heat exchanger 20 operates as a condenser in a heating mode and operates as an evaporator in a cooling mode; and the second heat exchanger 40 operates as an evaporator in the heating mode and operates as a condenser in the cooling mode. These components are generally serially connected via conduits or piping, and the operations of these components exemplified in the heating mode will subsequently be described in great detail.

[0016] The compressor 10 generally uses electrical power to compress a refrigerant from a low pressure gas state to a high pressure gas state thereby increasing the temperature, enthalpy and pressure of the refrigerant. The refrigerant leaves from the compressor 10 at a gas state of super-heating degree beyond the saturated state, and then flows through the first heat exchanger 20 for being condensed at a substantially constant pressure to a saturated liquid state. The throttling device 30 can take form of an expansion valve for being used to control the amount of refrigerant entering into the second heat exchanger 40. The liquid refrigerant from the first heat exchanger 20 flows through the expansion valve 30, result in the pressure of the liquid is decreased. In the process, the refrigerant evaporates partially causing the refrigerant to change to a mixed liquid-gas state, reducing its temperature down to a value that makes possible heat exchanges in the second heat exchanger. The second heat exchanger 40 is a heat exchanger where the heat energy available in a secondary flow, such as an external air flow, passes through it and transfers to the refrigerant flow that evaporates inside from liquid to gas. The gas refrigerant discharged from the second heat exchanger 40 is sucked into the compressor 10 and again becomes a gas state of supper-heating degree that has evaporated beyond the saturated state.

[0017] The heat pump system also includes a reversing valve 50 disposed in the refrigerant circuit for inversion of the refrigerant cycle. The reversing valve can be in form of a four-way valve placed after the compressor 10 and before the first or the second heat exchanger 20, 40. The four-way valve 50 can be a solenoid operated valve. When the valve is deenergized, the system is in the heating mode, and the refrigerant passes through the four-way valve via a channel from the compressor 10 to the first heat exchanger 20. When the four-way valve is energized, the system works at the cooling mode, and inside of the four-way valve, the channel from the compressor 10 to the first heat exchanger 20 is switched to

another channel from the compressor 10 to the second heat exchanger 40.

[0018] The heat pump system further includes a sensor combination for being used to compute a present superheating degree. The sensor combination includes a temperature sensor 70 for detecting a temperature of the refrigerant after leaving from the second heat exchanger 40 and before entering the reversing valve 50, and a second sensor 61 for being used to measure a saturated temperature of the refrigerant at a low pressure side. In this embodiment, the temperature sensor 70 is placed in an outlet pipe of the second heat exchanger 40. The second sensor 61 is a pressure sensor placed in the suction pipe of the compressor 10 for detecting the low pressure. and then the detected low pressure is converted into a saturated temperature at the low pressure side. The present super-heating degree can be calculated from a difference between the temperature of the refrigerant at the outlet of the second heat exchanger 70 and the saturated temperature of the refrigerant at the low pressure side.

[0019] Since the temperature sensor 70 is so positioned that it detects the temperature of the refrigerant before entering the four-way valve, the influence of the reversing valve in determining the super-heating degree can be avoided, thereby assuring the refrigerant evaporation is completely done in the second heat exchanger and no refrigerant in liquid state is sucked into the compressor. Moreover, the system can work more efficiently, because a relatively lower target super-heating degree can be defined. For example, the minimum steady superheating degree can be set at 4K in this case, compared with that (3K) of a normal heat pump system without a four-way valve, it may be a little bit higher, nevertheless, if compared with that (7K) of a traditional heat pump system with a four-way valve, the minimum steady superheating degree become much lower. Furthermore, this relatively lower target super-heating degree makes the system to be easily reach and maintain it, which results in the superheating becomes more steady, and improving the performance of the compressor accordingly.

[0020] Fig.2 shows a second embodiment of the heat pump system, and the only difference with respect to the first embodiment is that the location of the pressure sensor is moved from the compressor suction side to the position between the second heat exchanger 40 and the reversing valve 50, preferably, the pressure sensor 62 is located in the outlet pipe of the second heat exchanger 40. Fig.3 shows another alternative position of the pressure sensor, wherein, a pressure sensor 63 is positioned between the second heat exchanger 40 and the throttling device 30. Fig.4 shows a fourth embodiment of the system, and the only change with respect to the third embodiment is that the pressure sensor is replaced with another temperature sensor 64 that is able to directly detect the saturated temperature at the low pressure side.

[0021] It is to be understood, however, that even

though numerous, characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosed is illustrative only, and changes may be made in detail, especially in matters of number, shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broadest general meaning of the terms in which the appended claims are expressed.

Claims

15

20

25

35

45

50

55

1. A heat pump system comprising:

a refrigerant circuit comprising a compressor (10) for compressing a refrigerant, a first heat exchanger (20) downstream of the compressor for operating as a condenser to cool the refrigerant in a heating mode and operating as an evaporator to vaporize the refrigerant in a cooling mode, a throttling device (30) downstream of the first heat exchanger for lowering the pressure of the refrigerant, and a second heat exchanger (40) downstream of the throttling device for operating as an evaporator in the heating mode and operating as a condenser in the cooling mode;

a reversing valve (50) disposed in the refrigerant circuit between the compressor (10) and the first/second heat exchanger (20/40) for selectively reversing the refrigerant flow therein; a sensor combination for being used to calculate a present super-heating degree, said sensor combination comprising a temperature sensor (70) for detecting a temperature of the refrigerant after leaving from the second heat exchanger and before entering the reversing valve and a second sensor (61, 62, 63, 64) for being used to measure a saturated temperature of the refrigerant at a low pressure side.

- A heat pump system according to claim 1, wherein said temperature sensor is disposed in the refrigerant circuit between the second heat exchanger and the reversing valve.
- 3. A heat pump system according to claim 1, wherein said second sensor is a pressure sensor (61) disposed in the refrigerant circuit at the compressor suction side.
- **4.** A heat pump system according to claim 1, wherein said second sensor is a pressure sensor (62) disposed in the refrigerant circuit between the second heat exchanger and the reversing valve.
- 5. A heat pump system according to claim 1, wherein

said second sensor is a pressure sensor (63) disposed in the refrigerant circuit between the second heat exchanger and the throttling device.

- **6.** A heat pump system according to claim 1, wherein said second sensor is another temperature sensor (64) disposed in the refrigerant circuit between the second heat exchanger and the throttling device.
- 7. A heat pump system according to claim 1, wherein said reversing valve is a four-way valve operable to switch from one channel of the refrigerant flowing from the compressor to the first heat exchanger to another channel of the refrigerant flowing from the compressor to the second heat exchanger.

10

15

20

25

30

35

40

45

50

55

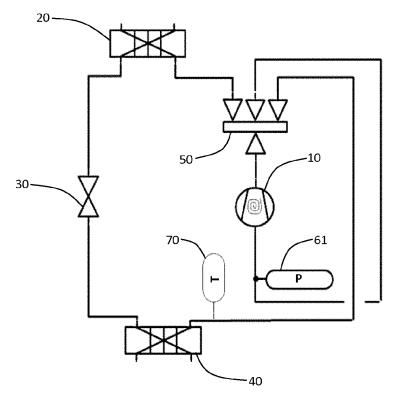


Fig. 1

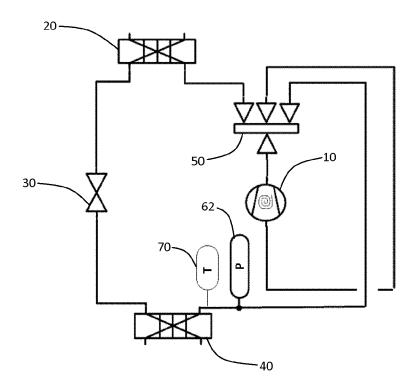


Fig. 2

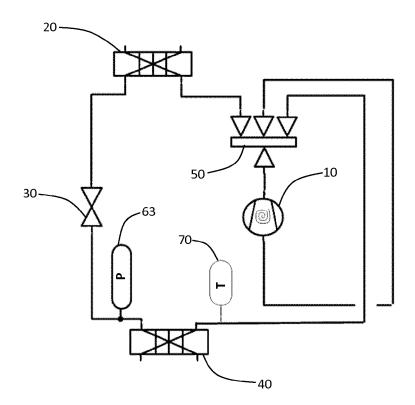


Fig. 3

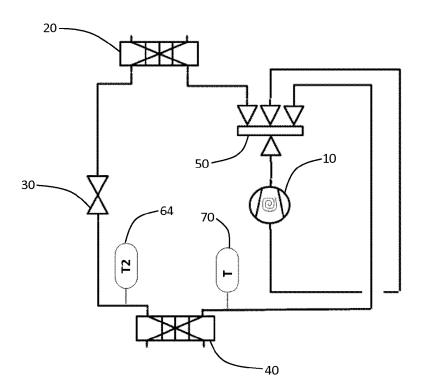


Fig. 4

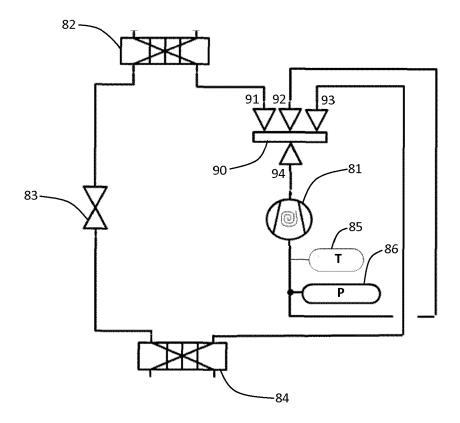


Fig. 5 (state of art)

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 16 15 2194

10	

Category	Citation of document with inc of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Χ	EP 1 647 783 A2 (MIT [JP]) 19 April 2006 * paragraphs [0015] [0066]; figure 1 *	TSUBISHI ELECTRIC CORI (2006-04-19) - [0017], [0061],	P 1-7	INV. F25B13/00 F25B40/06 F25B49/02
Х	EP 2 806 233 A1 (DAI 26 November 2014 (20 * & corresponding de paragraph [0054]; fi	014-11-26) escription;	1-5,7	
Х	EP 2 261 580 A1 (DA) 15 December 2010 (20 * the whole document	010-12-15)	1-7	
Х	EP 2 270 405 A1 (DA) 5 January 2011 (2011 * the whole document	L-01-05)	1-7	
X	US 2007/033955 A1 (I 15 February 2007 (20 * & corresponding de paragraph [0023]; fi	007-02-15) escription;	1-7	TECHNICAL FIELDS SEARCHED (IPC) F25B
	The present search report has be	•		
	Place of search Munich	Date of completion of the search 22 June 2016	Gas	Examiner Sper, Ralf
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anothe ument of the same category innological backgroundwritten disclosure rmediate document	E : earlier patent after the filing er D : document cite L : document cite	ed in the application of for other reasons	shed on, or

EP 3 196 569 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 15 2194

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-06-2016

l l	Patent document ted in search report		Publication date		Patent family member(s)		Publication date
EP	1647783	A2	19-04-2006	EP EP EP EP JP JP US US	2119984 2224187 4459776 2006112753 RE43805	A2 A2 A2 A2 B2 A E1 E1	19-04-2006 18-11-2009 18-11-2009 18-11-2009 01-09-2010 28-04-2010 27-04-2006 20-11-2012 19-02-2013 20-04-2006
EP	2806233	A1	26-11-2014	AU AU CN EP JP JP KR US WO	2012361734 2016202855 104024764 2806233 5447499 2013139924 20140103352 2014373564 2013099898	A1 A1 B2 A A A	07-08-2014 26-05-2016 03-09-2014 26-11-2014 19-03-2014 18-07-2013 26-08-2014 25-12-2014 04-07-2013
EP	2261580	A1	15-12-2010	CN EP JP US WO	101978227 2261580 2009229012 2011011125 2009119023	A1 A A1	16-02-2011 15-12-2010 08-10-2009 20-01-2011 01-10-2009
EP	2270405	A1	05-01-2011	CN EP JP JP US WO	101981389 2270405 5045524 2009243810 2011023534 2009122706	A1 B2 A A1	23-02-2011 05-01-2011 10-10-2012 22-10-2009 03-02-2011 08-10-2009
US	2007033955	A1	15-02-2007	US WO	2007033955 2008018968		15-02-2007 14-02-2008
FORM P0459		-					

© Lorentz Control Cont