

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 197 463 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)

Corrections, see

**Description Paragraph(s) 15, 17, 30, 39, 41,
47**

(51) Int Cl.:

**A61K 31/7056 (2006.01) A61K 31/407 (2006.01)
A61K 33/24 (2019.01) A61K 31/4745 (2006.01)
A61K 31/496 (2006.01) A61K 31/505 (2006.01)
A61K 31/517 (2006.01) A61K 35/00 (2006.01)
A61P 35/00 (2006.01)**

(48) Corrigendum issued on:

02.09.2020 Bulletin 2020/36

(86) International application number:

PCT/EP2015/071976

(45) Date of publication and mention
of the grant of the patent:

10.06.2020 Bulletin 2020/24

(87) International publication number:

WO 2016/046316 (31.03.2016 Gazette 2016/13)

(21) Application number: **15778625.2**

(22) Date of filing: **24.09.2015**

(54) ANTITUMOR ACTIVITY OF MULTI-KINASE INHIBITORS IN COLORECTAL CANCER

ANTITUMORAKTIVITÄT VON MULTIKINASEINHIBTOREN BEI KOLOREKTALKARZINOM

ACTIVITÉ ANTITUMORALE D'INHIBITEURS MULTIKINASES DANS LE CANCER COLORECTAL

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **26.09.2014 US 201462055949 P**

(43) Date of publication of application:

02.08.2017 Bulletin 2017/31

(73) Proprietor: **EntreChem, S.L.**

33006 Oviedo (ES)

(72) Inventors:

- OCAÑA FERNÁNDEZ, Alberto
E-02006 Albacete (ES)**
- PANDIELLA ALONSO, Atanasio
E-37007 Salamanca (ES)**
- MORÍS VARAS, Francisco
E-33006 Oviedo (ES)**

(74) Representative: **Manuel Illescas y Asociados, S.L.
C/ Príncipe de Vergara 197, Oficina 1ºA
28002 Madrid (ES)**

(56) References cited:

EP-A1- 1 201 668 EP-A1- 2 277 885

- CÉSAR SÁNCHEZ ET AL: "Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles", CHEMICAL COMMUNICATIONS, no. 27, 1 January 2009 (2009-01-01), page 4118, XP055029584, ISSN: 1359-7345, DOI: 10.1039/b905068j**

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

EP 3 197 463 B9

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**Field of the Invention**

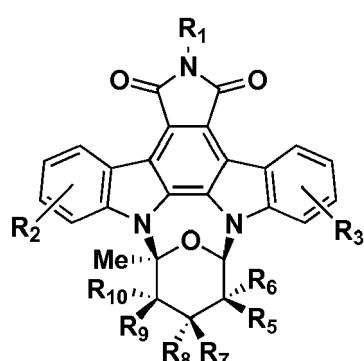
5 [0001] The present invention relates to the provision of a composition for use in the prevention and/or treatment of colorectal cancer comprising a) a multi-kinase inhibitor; and b) at least one chemotherapeutic agent. Furthermore, the present invention also discloses a pharmaceutical composition comprising the aforementioned composition, for use in the prevention and/or treatment of colorectal cancer in a patient.

10 **Background to the Invention**

15 [0002] Different molecular alterations have been described in colorectal cancer. Among them, the irregular activation of protein kinases plays a central role. Several protein kinases have been associated with the initiation, maintenance and progression of this tumor type, including receptor tyrosine kinases (RTK) or downstream mediators. An example is the aberrant activation of the Epidermal Growth Factor Receptor (EGFR) and the Vascular Endothelial Growth Factor (VEGFR) in colon cancer. In addition, agents against them have reached a clinical setting, thus demonstrating clinical benefit.

20 [0003] Taken in consideration that solid tumors, and in particular colorectal cancers, are heterogeneous diseases, the understanding of the kinase profile of this disease could help in the selection of relevant therapeutic strategies. This approach has been explored recently in prostate cancer by evaluating the activated state of different kinases from several patients and metastatic sites, observing a high inter-patient heterogeneity but similar activation within metastatic sites in the same patient.

25 [0004] This data, in addition to the increased therapeutic efficacy of the concomitant inhibition of several kinases compared with single kinase inhibition, suggests that the identification of tyrosine kinase inhibitors with a broad inhibitory effect can present a higher antitumor effect against colorectal cancer.


30 [0005] Several signaling routes are clearly activated in colon cancer and linked with oncogenic transformation. Some of them include the PI3K/mTOR pathway, the MAPK kinase route, angiogenesis pathways or routes associated with migration such as the FAK family of kinases. The concomitant targeting of some of these functions to concomitantly inhibit progression, migration or survival could have a broader effect. EP 2277885 A1 and Cesar Sanchez et al. (Chemical Communications No. 27, January 2009, 4118) describe multi-kinase inhibitors compounds included in the compositions of present invention. Patent document EP 1201668 A1 describes the use of staurosporin derivatives for the treatment of tumors. Thus, it is a problem of the present invention to explore the kinase profile of primary colorectal tumors and identify tyrosine kinase inhibitors with anti-proliferative effect by pharmacological screening.

35 [0006] Moreover, it is the problem of the present invention to provide improved means of preventing and/or treating colorectal cancer, but also provides an anti-proliferative, tumor-specific effect, such that it does not exhibit adverse side effects.

Brief Description of the Invention

40 [0007] The present invention relates to a composition for use in the prevention and/or treatment of colorectal cancer in a patient comprising:

a) a compound of Formula (I)

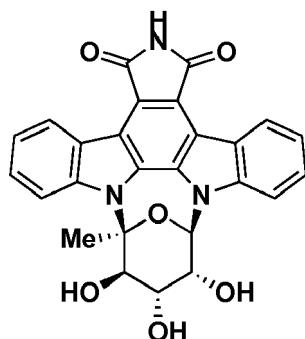
Formula (I)

or a salt, co-crystal or solvate thereof, where

5 R_1 , R_2 , and R_3 are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

10 R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} are, each one and independently, hydrogen, hydroxyl or an $-OR_4$ group, where R_4 is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof;

15 wherein said chemotherapeutic agent is fluorouracil; and

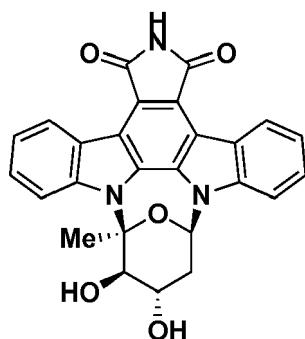

wherein said composition comprises a molar ratio of the compound of formula (I) to the at least one chemotherapeutic agent from 1:10 to 1:36.

[0008] In a preferred embodiment, the composition for use of the present invention described in the foregoing comprises a compound of Formula (I) selected from Formula (II), Formula (III) and Formula (IV):

20

25

30

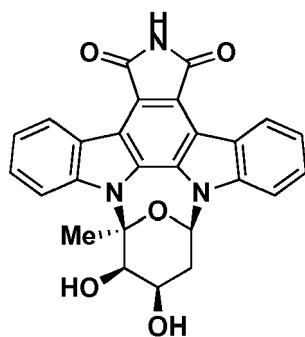


Formula (II)

35

40

45


Formula (III)

50

55

5

10

Formula (IV).

15

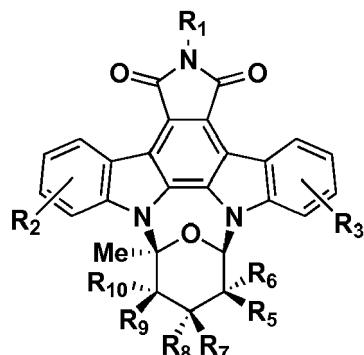
[0009] Throughout the present specification the compound of Formula (III) has been used for exemplifying the claimed effects.

[0010] Moreover, the present invention also relates to a pharmaceutical composition for use in the prevention and/or treatment of colorectal cancer in a patient comprising:

20

- a) a compound of Formula (I), as described herein; and
- b) at least one chemotherapeutic agent.

[0011] The present invention additionally relates to a kit-of-parts for use in the prevention and/or treatment of colorectal cancer comprising:


25

- a) a compound of Formula (I),

30

35

40

Formula (I)

45

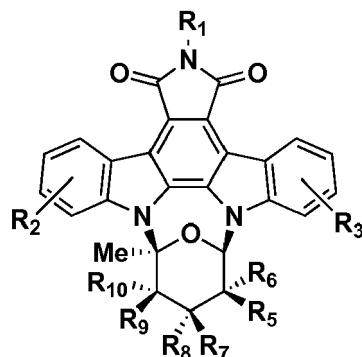
or a salt, co-crystal or solvate thereof where

50

R₁, R₂, and R₃ are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

55

R₅, R₆, R₇, R₈, R₉ and R₁₀ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and


60

- b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said chemotherapeutic agent is 5-fluorouracil, and

wherein in said kit-of-parts the molar ratio of the compound of Formula (I) to the at least one chemotherapeutic agent is from 1:10 to 1:36.

[0012] Furthermore, the present invention relates to a compound of Formula (I),

5

10
15
20
25
30
35
40
45
50
55
20
Formula (I)

or a salt, co-crystal or solvate thereof where

R₁, R₂, and R₃ are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

R₅, R₆, R₇, R₈, R₉ and R₁₀ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said chemotherapeutic agent is 5-fluorouracil; and

wherein the molar ratio of the compound of Formula (I) to the at least one chemotherapeutic agent is from 1:10 to 1:36;

for use in a method of preventing and/or treating colorectal cancer in a patient, wherein said compound of Formula (I), or a salt, co-crystal or solvate thereof, and said at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof are administered simultaneously, sequentially or at independent times from each other, to said patient.

Brief Description of the Figures

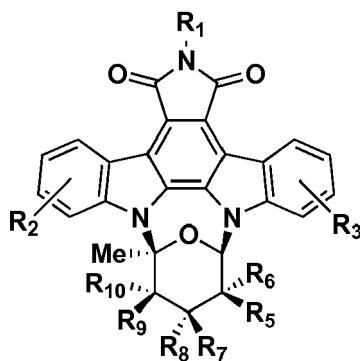
[0013]

Reference figure 1. **A.** Dose-dependent anti-proliferative effect of Formula (III) and six tyrosine kinase inhibitors [namely lapatinib which inhibits EGFR and ErbB2; sunitinib which inhibits VEGFR2 (Flk-1) and PDGFR β ; crizotinib which inhibits c-Met and ALK; BEZ235 which inhibits P110alpha, Mtor (p70S6K) and ATR; NVP-BSK805 which inhibits JAK2; and dasatinib which inhibits BCR/Abl and Src] on SW620 cells cultured in DMEM 10% FBS, determined as percentage of MTT metabolism [metabolization, measured as a function of absorbance at 562 nm (A₅₆₂)] at doses of from 0 to 2 μ M after 72 h; **B.** Dose-dependent anti-proliferative effect of Formula (III) and six tyrosine kinase inhibitors [namely lapatinib which inhibits EGFR and ErbB2; sunitinib which inhibits VEGFR2 (Flk-1) and PDGFR β ; crizotinib which inhibits c-Met and ALK; BEZ235 which inhibits P110alpha, Mtor (p70S6K) and ATR; NVP-BSK805 which inhibits JAK2; and dasatinib which inhibits BCR/Abl and Src] on HT29 cells cultured in DMEM 10% FBS, determined as percentage of MTT metabolism [metabolization, measured as a function of absorbance at 562 nm (A₅₆₂)] over 6 days; **C.** Effect of Formula (III) (0.3 μ M) and dasatinib (0.1 μ M) on cell migration in SW620 and HT29 cultures after 24 h.

Figure 2. **A.** Dose-dependent anti-proliferative effect of Formula (III), irinotecan, oxaliplatin, 5-fluorouracil as com-

5 parative examples or of compositions comprising Formula (III) in combination with irinotecan, oxaliplatin or 5-fluorouracil disclosed in present description on SW620 cells cultured in DMEM 10% FBS, measured as percentage of MTT metabolism (metabolization) with respect to an untreated control (for which the mean absorbance values were taken as 100%); **B.** Dose-dependent anti-proliferative effect of Formula (III), irinotecan, oxaliplatin, 5-fluorouracil as comparative examples or of compositions comprising Formula (III) in combination with irinotecan, oxaliplatin or 5-fluorouracil disclosed in present description on HT29 cells cultured in DMEM 10% FBS, measured as percentage of MTT metabolism (metabolization) with respect to an untreated control (for which the mean absorbance values were taken as 100%); **C.** Combination indices calculated using Calcsyn software with doses in the micromolar range of Formula (III) in combination with irinotecan, oxaliplatin or 5-fluorouracil disclosed in present description on SW620 or HT29 cells cultured in DMEM 10% FBS; **D.** apoptosis measured as mean percentage of SW620 cells positive or negative to Annexin staining after culturing said cells in DMEM 10% FBS in the presence of Formula (III), irinotecan, oxaliplatin, 5-fluorouracil as comparative examples or of compositions comprising Formula (III) in combination with irinotecan, oxaliplatin or 5-fluorouracil disclosed in present description at different concentrations in the micromolar range; **E.** Apoptosis measured as mean percentage of HT29 cells positive or negative to Annexin staining after culturing said cells in DMEM 10% FBS in the presence of Formula (III), irinotecan, oxaliplatin, 5-fluorouracil as comparative examples or of compositions comprising Formula (III) in combination with irinotecan, oxaliplatin or 5-fluorouracil disclosed in present description at different concentrations in the micromolar range; **F.** DNA damaging effect of Formula (III), irinotecan or oxaliplatin, as comparative examples or of compositions comprising Formula (III) in combination with irinotecan or oxaliplatin disclosed in present description vs. a control determined using a Western Blot of phosphorylated γ H2AX (pH2AX) and arp-1 (parp-1) as markers of said damage in SW620 cells, normalized to GADPH expression; **G.** DNA damaging effect of Formula (III), irinotecan or oxaliplatin as comparative examples, or compositions comprising Formula (III) in combination with irinotecan or oxaliplatin disclosed in present description vs. a control determined using a Western Blot of phosphorylated γ H2AX (pH2AX) and PARP-1 (parp-1) as markers of said damage in HT29 cells, normalized to GADPH expression.

25 **Reference Figure 3.** **A.** Flow cytometry analysis of dose-dependent effect of Formula (III) in SW620 and HT29 cells cultured in DMEM 10% FBS on cell cycle measured as mean percentage of cells of the different phases (Sub G0, G0/G1, S and G2/M) of cell cycle progression measured by flow cytometry after 24 hours of treatment and staining with propidium iodide (PI); **B.** Flow cytometry analysis of dose-dependent effect of Formula (III) in SW620 and HT29 cells cultured in DMEM 10% FBS on apoptosis measured as mean percentage of cells positive or negative to Annexin staining with Annexin V after 48 hours of treatment; **C.** DNA damaging effect of Formula (III) determined using a Western Blot of phosphorylated γ H2AX (p-H2AX), Chk2 (p-Chk2) and PARP-1 (parp-1) as load protein control in SW620 and HT29 cells prior to initial treatment (C) to 24 h after treatment.


35 **Reference Figure 4.** **A.** Dot blot analyses of the effect of Formula (III) on phosphorylation activity of Erk1/2 (pErk1/2), S6 Rib (pS6 Rib), T^{308} Akt (p T^{308} Akt), S473Akt (pS473Akt), Sr (pSr) and Lck (pLck) kinases in SW620 and HT29 cells prior to initial treatment (untreated) to 24 hours after treatment; **B.** Western blot analyses of the effect of Formula (III) on expression of pS6, pSrc, pS473Akt, p T^{308} Akt, AKT, pErk1/2 and Erk1/2 vs. GADPH in SW620 and HT29 cells prior to initial treatment (C) to 24 hours after treatment.

40 **Reference Figure 5.** **A.** Phospho-kinase profile in human primary colorectal cancer: activation status of receptor tyrosine kinases and intracellular cytoplasmatic kinases in tumor samples from 18 patients diagnosed with colorectal cancer; **B. (i) and (ii)** Dot blot analyses of the phosphorylation of 43 intracellular and 49 receptor tyrosine kinases in tumor samples from 18 patients diagnosed with colorectal cancer using two human phospho-RTK array kits (Human Phospho-Kinase Array and Phospho-Receptor Tyrosine Kinase Array); **C.** Phospho-kinase profile in human primary colorectal cancer: activation status of EGFR, RYK, FGFR1, InsulinR, EphA10, Akt(thr308), Erk1/2 and S6 Rib in primary colorectal tumor samples and metastatic colorectal tumor samples vs. non-tumor tissue.

Detailed Description

50 **[0014]** The present description relates to a composition for use in the prevention and/or treatment of colorectal cancer in a patient comprising:

55 a) a compound of Formula (I)

Formula (I)

15

or a salt, co-crystal or solvate thereof, where

R₁, R₂, and R₃ are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, a 20 alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

R₅, R₆, R₇, R₈, R₉ and R₁₀ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an 25 alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

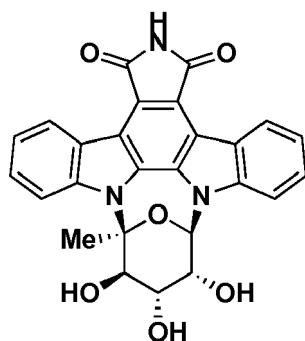
b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof.

30

[0015] Preferably, the composition for use of the present description comprises a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH, R₁₀ is hydrogen, and R₅, R₆, R₇ and R₈ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an ester group, a carboxylic acid group, an aldehyde group, a ketone group, a silyl group, a sulfoxide group or a combination thereof.

[0016] In the present description the R₄ group (moiety) is preferably selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof, furthermore preferably an alkyl group.

[0017] Still more preferably, the composition for use of the present description comprises a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH, R₁₀ is hydrogen, and R₅, R₆, R₇ and R₈ are, each one and independently, hydrogen or hydroxyl. Furthermore preferably, the composition for use of the present description comprises a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH and R₁₀ is hydrogen, wherein one of R₇ or R₈ is hydrogen, and the other is hydroxyl, and R₅ and R₆ are, each one and independently, hydrogen or hydroxyl.

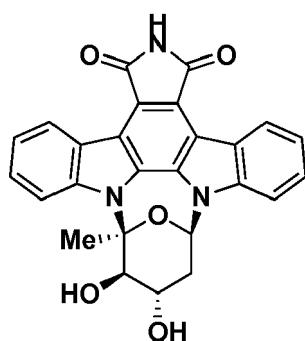

[0018] In a preferred embodiment the composition for use of the present description comprises a compound of Formula (I) selected from Formula (II), Formula (III) and Formula (IV), or a salt, co-crystal or solvate thereof.

50

55

5

10

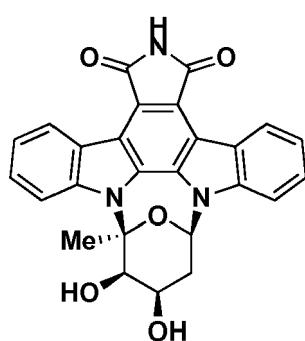


Formula (II)

15

20

25



Formula (III)

30

35

40

Formula (IV)

45

50

55

[0019] Formula (III) is one such preferred hybrid indolocarbazole molecule falling under the structure herein defined by Formula (I). Formula (III) is obtained from genetically modified bacteria by combinatorial biosynthesis of Rebeccamycin and Staurosporine biosynthesis pathways and produced by fermentation [Chem. Commun. (Camb.) 2009: 4118-20]. Formula (III) shows affinity towards and inhibits the activity of a range of tyrosine and serine/threonine kinases in biochemical assays at the nanomolar and subnanomolar range, shows antitumoral activity in a wide range of solid tumors both in proliferation and sphere assays, and inhibits key signaling nodes at submicromolar range, concentrations well below plasmatic levels in experimental animals. Thus, Formula (III) is a multikinase inhibitor, more specifically a serine/threonine kinase inhibitor. Studies in animal models showed the anti-tumoral activity of Formula (III) *in vivo* with no evidence of toxicities. In fact, Formula (III) has completed its safety evaluation in animals and is about to initiate its clinical development. Nevertheless, the limited specificity of Formula (III) led to the inhibition of relevant pathways like the JAK/STAT route that is involved in the genesis of breast tumors with stem cell properties [J. Clin. Invest. 2011; 121:2723-2735].

[0020] In another preferred embodiment, the present description comprises a composition for use, according to any

of the foregoing, wherein the at least one chemotherapeutic agent is a chemotherapeutic agent suitable for use in treating colorectal cancer for use in colorectal cancer in a patient. In a further preferred embodiment, the at least one chemotherapeutic agent is selected from platinum-based antineoplastic agents, type I topoisomerase inhibitors or thymidylate synthase inhibitors.

5 [0021] In another preferred embodiment of the present description, the at least one chemotherapeutic agent is a chemotherapeutic agent used for colorectal cancer, preferably selected from platinum-based antineoplastic agents, type I topoisomerase inhibitors or thymidylate synthase inhibitors.

10 [0022] In yet another preferred embodiment of the present description, the at least one chemotherapeutic agent is a platinum-based antineoplastic agent selected from cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin, triplatin and lipoplatin, more preferably oxaliplatin.

15 [0023] Alternatively, in another preferred embodiment of the present description, the at least one chemotherapeutic agent is a type I topoisomerase inhibitor selected from irinotecan, topotecan, camptothecin, CRLX101, exatecan and lurtotecan, more preferably irinotecan.

20 [0024] Furthermore, in another alternative preferred embodiment of the present description, the at least one chemotherapeutic agent is a thymidylate synthase inhibitor selected from 5-fluorouracil, raltitrexed, BGC-945, OSI-7904 and OSI-7904L, more preferably 5-fluorouracil.

[0025] The present description also relates to a composition, as disclosed in present description, for use in the prevention and/or treatment of colorectal cancer in a patient.

25 [0026] In addition, the present description also relates to a use of a composition, as described herein, in the manufacture of a medicament for the prevention and/or treatment of colorectal cancer, preferably primary colorectal cancer, more preferably primary colorectal adenocarcinoma.

[0027] In other preferred embodiments of the present description, the composition for use according to the foregoing, comprises at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said at least one chemotherapeutic agent is:

- 25 a) a platinum-based antineoplastic agent selected from cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin, triplatin tetraniitrate and lipoplatin;
- b) a type I topoisomerase inhibitor selected from irinotecan, topotecan, camptothecin, CRLX101, exatecan and lurtotecan; and/or
- 30 c) a thymidylate synthase inhibitor selected from 5-fluorouracil, raltitrexed, BGC-945, OSI-7904 and OSI-7904L.

[0028] In another preferred embodiment, the present description comprises a composition for use according to any of the foregoing, wherein the at least one chemotherapeutic agent is oxaliplatin. In yet another preferred embodiment, the present description comprises a composition, for use according to any of the foregoing, wherein the at least one chemotherapeutic agent is irinotecan. In still another preferred embodiment, the present description comprises a composition, for use according to any of the foregoing, wherein the at least one chemotherapeutic agent is 5-fluorouracil.

[0029] Preferably, the at least one chemotherapeutic agent, according to any of the foregoing, is selected from oxaliplatin, irinotecan or 5-fluorouracil.

40 [0030] Thus, one preferred embodiment described relates to a composition for use according to the foregoing comprising:

- 45 a) a compound of Formula (I), where R₁, R₂, and R₃ are hydrogen, R₉ is OH, R₁₀ is hydrogen, and R₅, R₆, R₇ and R₈ are, each one and independently, hydrogen or hydroxyl, or a salt, co-crystal or solvate thereof; and
- b) at least one chemotherapeutic agent selected from cisplatin, carboplatin, oxaliplatin, nedaplatin, lipoplatin, irinotecan, topotecan, camptothecin, 5-fluorouracil, raltitrexed and OSI-7904, or a salt, co-crystal or solvate thereof.

[0031] Another preferred embodiment disclosed in present description relates to a composition for use according to the foregoing comprising:

50 a) a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH and R₁₀ is hydrogen, wherein one of R₇ or R₈ is hydrogen, and the other is hydroxyl, and R₅ and R₆ are, each one and independently, hydrogen or hydroxyl, or a salt, co-crystal or solvate thereof; and

b) at least one chemotherapeutic agent selected from cisplatin, carboplatin, oxaliplatin, lipoplatin, irinotecan, topotecan, camptothecin, 5-fluorouracil and raltitrexed, or a salt, co-crystal or solvate thereof.

55 [0032] In a particularly preferred embodiment of the foregoing composition for use of the description, the molar ratio of the compound of the Formula (I) to the at least one chemotherapeutic agent is from 1:0.1 to 1:100. More preferably described, the molar ratio of the compound of the Formula (I) to the at least one chemotherapeutic agent is from 1:1 to

1:50, still more preferably described 1:10 to 1:36.

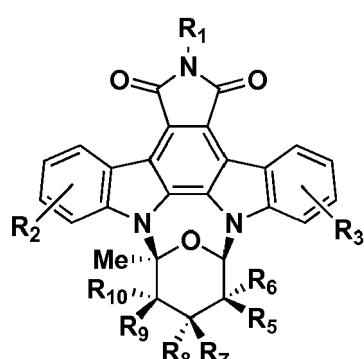
[0033] In another particularly preferred embodiment of the foregoing, the present description relates to a composition for use according to the foregoing, comprising a compound of the Formula (III) and at least one chemotherapeutic agent, wherein said at least one chemotherapeutic agent is:

5 a) a platinum-based antineoplastic agent, preferably oxaliplatin, wherein the molar ratio of the compound of the Formula (III) to said platinum-based antineoplastic agent is from 1:1 to 1:100, yet more preferably 1:10;

10 b) a type I topoisomerase inhibitor, preferably irinotecan, wherein the molar ratio of the compound of the Formula (III) to said type I topoisomerase inhibitor is from 1:1 to 1:100, yet more preferably 1:10;

c) a thymidylate synthase inhibitor, preferably 5-fluorouracil, wherein the molar ratio of the compound of the Formula (III) to said thymidylate synthase inhibitor is from 1:1 to 1:100, yet more preferably 1:10 to 1:30.

[0034] The present description relates to a composition, according to any of the foregoing, for use in the prevention and/or treatment of colorectal cancer in a patient. In other words, the present description also relates to the use of a composition, according to any of the foregoing, in the manufacture of a medicament for the prevention and/or treatment of colorectal cancer. Preferably, said colorectal cancer is primary colorectal cancer, more preferably primary colorectal adenocarcinoma.


[0035] The present description also relates to a pharmaceutical composition for use in the prevention and/or treatment of colorectal cancer in a patient comprising:

20 a) a compound of Formula (I) according to any of the foregoing; and

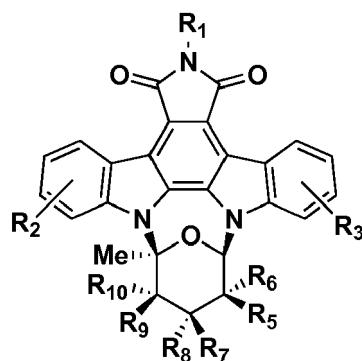
b) at least one chemotherapeutic agent.

[0036] The present description also relates to a kit-of-parts for use in the prevention and/or treatment of colorectal cancer comprising:

a) a compound of Formula (I),

40 Formula (I)

45 or a salt, co-crystal or solvate thereof, where


R₁, R₂, and R₃ are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxylalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

50 R₅, R₆, R₇, R₈, R₉ and R₁₀ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

55 b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof.

[0037] In the kit-of-parts of present description, said compound of Formula (I) and said at least one chemotherapeutic agent are preferably comprised in separate compositions and/or containers. Said compositions described are preferably pharmaceutical compositions and more preferably each independently comprise an excipient and/or carrier, wherein the excipient and/or carrier is selected from a diluent, bulking agent, filler, anti-adherent, binder, coating, colour, disintegrant, flavour, glidant, lubricant, preservative, sorbent, sweetener or vehicle. Moreover, such compositions can be in crystalline, powder, granular, compacted solid, liquid, solution, suspension, elixir, syrup, emulsion, cream, gel, droplet, mist, vapor or spray form. Said container is preferably a sealable container selected from a cavity/pocket of a blister pack, capsule, ampoule, sachet, bottle, vial, syringe or nebulizer or combinations thereof, more preferably, said container is a cavity/pocket of a blister pack, a capsule, an ampoule, a bottle or a syringe, furthermore preferably a cavity/pocket of a blister pack, an ampoule or a bottle, most preferably a cavity/pocket of a blister pack, wherein when the compound of Formula (I) and at least one chemotherapeutic agent, or salts, co-crystals or solvates thereof are each comprised in separate cavities/pockets of a blister pack, said separate cavities/pockets are part of the same blister pack or part of different blister packs.

[0038] The present description also relates to a mode of administration, wherein said mode of administration relates to a compound of Formula (I),

30 Formula (I)

or a salt, co-crystal or solvate thereof where

35 R_1 , R_2 , and R_3 are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

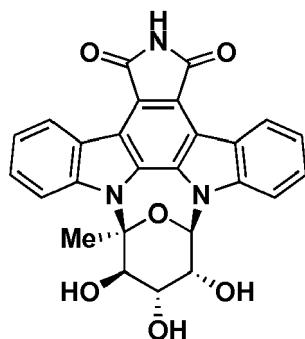
40 R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} are, each one and independently, hydrogen, hydroxyl or an $-OR_4$ group, where R_4 is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

45 at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof,

50 for use in a method of preventing and/or treating colorectal cancer in a patient, wherein said compound of Formula (I), or a salt, co-crystal or solvate thereof, and said at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof are administered simultaneously, sequentially or at independent times from each other, to said patient.

[0039] Preferably, the kit-of-parts and the mode of administration of the present description comprise a compound of Formula (I) where R_1 , R_2 , and R_3 are hydrogen, R_9 is OH, R_{10} is hydrogen, and R_5 , R_6 , R_7 and R_8 are, each one and independently, hydrogen, hydroxyl or an $-OR_4$ group, where R_4 is selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an ester group, a carboxylic acid group, an aldehyde group, a ketone group, a silyl group, a sulfoxide group or a combination thereof, more preferably R_4 is an alkyl group.

[0040] In the present description the R_4 protector group is preferably selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof, furthermore preferably an alkyl group.

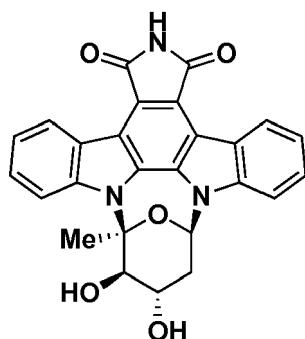

[0041] Still more preferably, the composition for use according to the present description comprises a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH, R₁₀ is hydrogen, and R₅, R₆, R₇ and R₈ are, each one and independently, hydrogen or hydroxyl. Furthermore preferably, the composition of the present invention comprises a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH and R₁₀ is hydrogen, wherein one of R₇ or R₈ is hydrogen, and the other is hydroxyl, and R₅ and R₆ are, each one and independently, hydrogen or hydroxyl.

[0042] In a preferred embodiment of the kit-of-parts and the mode of administration of the present description comprise a compound of Formula (I) selected from Formula (II), Formula (III) and Formula (IV), more preferably Formula (III), or a salt, co-crystal or solvate thereof:

10

15

20

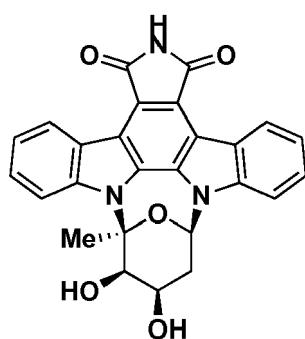


Formula (II)

25

30

35



Formula (III)

40

45

50

Formula (IV).

[0043] In another preferred embodiment, the present description comprises the kit-of-parts and the mode of administration, according to any of the foregoing, wherein the at least one chemotherapeutic agent is a chemotherapeutic agent suitable for use in treating colorectal cancer for use in colorectal cancer in a patient. In a further preferred embodiment, the at least one chemotherapeutic agent is selected from platinum-based antineoplastic agents, type I topoisomerase

inhibitors or thymidylate synthase inhibitors.

[0044] In other preferred embodiments of the present description, the kit-of-parts and the mode of administration comprises at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said at least one chemotherapeutic agent is:

5 a) a platinum-based antineoplastic agent selected from cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin, triplatin tetraniitrate and lipoplatin;
 b) a type I topoisomerase inhibitor selected from irinotecan, topotecan, camptothecin, CRLX101, exatecan and lurtotecan; and/or
 10 c) a thymidylate synthase inhibitor selected from 5-fluorouracil, raltitrexed, BGC-945, OSI-7904 and OSI-7904L.

[0045] In another preferred embodiment, the present description comprises the kit-of-parts and the mode of administration according to any of the foregoing, wherein the at least one chemotherapeutic agent is oxaliplatin. In yet another preferred embodiment, the present description comprises the kit-of-parts and the mode of administration, according to any of the foregoing, wherein the at least one chemotherapeutic agent is irinotecan. In still another preferred embodiment, the present description comprises the kit-of-parts and the mode of administration, according to any of the foregoing, wherein the at least one chemotherapeutic agent is 5-fluorouracil.

[0046] Preferably described, the at least one chemotherapeutic agent, according to any of the foregoing, is selected from oxaliplatin, irinotecan or 5-fluorouracil.

[0047] Thus, one preferred embodiment of present description relates to the kit-of-parts and the mode of administration comprising:

25 a) a compound of Formula (I), where R₁, R₂, and R₃ are hydrogen, R₉ is OH, R₁₀ is hydrogen, and R₅, R₆, R₇ and R₈ are, each one and independently, hydrogen or hydroxyl, or a salt, co-crystal or solvate thereof; and
 b) at least one chemotherapeutic agent selected from cisplatin, carboplatin, oxaliplatin, nedaplatin, lipoplatin, irinotecan, topotecan, camptothecin, 5-fluorouracil, raltitrexed and OSI-7904, or a salt, co-crystal or solvate thereof.

[0048] Another preferred embodiment of present description relates to the kit-of-parts and the mode of administration comprising:

30 a) a compound of Formula (I) where R₁, R₂, and R₃ are hydrogen, R₉ is OH and R₁₀ is hydrogen, wherein one of R₇ or R₈ is hydrogen, and the other is hydroxyl, and R₅ and R₆ are, each one and independently, hydrogen or hydroxyl, or a salt, co-crystal or solvate thereof; and
 b) at least one chemotherapeutic agent selected from cisplatin, carboplatin, oxaliplatin, lipoplatin, irinotecan, topotecan, camptothecin, 5-fluorouracil and raltitrexed, or a salt, co-crystal or solvate thereof.

[0049] In a particularly preferred embodiment of the foregoing kit-of-parts and mode of administration of the description, the molar ratio of the compound of the Formula (I) to the at least one chemotherapeutic agent is from 1:0.1 to 1:100. More preferably described, the molar ratio of the compound of the Formula (I) to the at least one chemotherapeutic agent is from 1:1 to 1:50, still more preferably described 1:10 to 1:36.

[0050] In another particularly preferred embodiment of the foregoing, the present description relates to the kit-of-parts and the mode of administration comprising a compound of the Formula (III) and at least one chemotherapeutic agent, wherein said at least one chemotherapeutic agent is:

45 a) a platinum-based antineoplastic agent, preferably oxaliplatin, wherein the molar ratio of the compound of the Formula (III) to said platinum-based antineoplastic agent is from 1:1 to 1:100, yet more preferably 1:10;
 b) a type I topoisomerase inhibitor, preferably irinotecan, wherein the molar ratio of the compound of the Formula (III) to said type I topoisomerase inhibitor is from 1:1 to 1:100, yet more preferably 1:10;
 c) a thymidylate synthase inhibitor, preferably 5-fluorouracil, wherein the molar ratio of the compound of the Formula (III) to said thymidylate synthase inhibitor is from 1:1 to 1:100, yet more preferably 1:10 to 1:30.

[0051] A last embodiment of the description is to provide a method of prevention and/or treatment of patients suffering from colorectal cancer, preferably primary colorectal cancer, more preferably primary colorectal adenocarcinoma, which comprises the administration to a patient in need of or to a subject with risk of suffering from colorectal cancer, preferably primary colorectal cancer, more preferably primary colorectal adenocarcinoma, of an effective dose or amount of the combination of active compounds of the invention or of a composition comprising the same, particularly represented by the combination of a compound of formula I, and most preferably of a compound selected from formula (II), formula (III) or formula (IV); with at least one chemotherapeutic agent, wherein the at least one chemotherapeutic agent is a platinum-

based antineoplastic agent selected from cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin, triplatin and lipoplatin, more preferably cisplatin or carboplatin; an anti-mitotic chemotherapeutic agent selected from taxanes and vinca alkaloids, more preferably selected from vinorelbine, docetaxel, paclitaxel, vinblastine and vincristine, furthermore preferably vinorelbine or docetaxel; or a PARP inhibitor selected from olaparib, rucaparib and veliparib, more preferably olaparib.

[0052] Examples of the compositions of the present description and representative processes for their isolation, use, and manufacture appear below.

Examples

I) Material and Methods

a) Cell culture and drug compounds

[0053] SW620, HT29 and SW48 were grown in DMEM; this medium was purchased from Sigma Aldrich, supplemented with 10% FBS, 100 mU/mL penicillin, 100 µg/mL streptomycin and 2 mM L-glutamine, in a 5% CO₂ atmosphere at 37 °C. These colorectal cancer cell lines were obtained from the American Type Culture Collection Cell Biology Collection (ATCC) (Manassas, VA). The medium was changed every 2 days.

[0054] The multi-tyrosine kinase inhibitor Formula (III) was provided by Entrechem S.L. Oxaliplatin was purchased from Sanofi-Aventis, irinotecan was purchased from Pfizer, and 5-fluorouracil was purchased from Sigma-Aldrich.

b) MTT metabolism

[0055] Cell proliferation and growth experiments were carried out using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake assays, where MTT is reduced to purple formazan by the mitochondria of living cells. Increase in cell number is detected by augmented MTT metabolism, and decrease in cell number is reflected by a decrease. SW620, HT29 and SW48 cells were plated at a density of 1×10^4 cells per well in 24-well plates and cultured overnight in DMEM supplemented with 10% FBS. The cells were treated with the drug at different concentrations to plot the dose-response curves in all cancer cell lines using in the study. Time-response curve was performed using the IC₅₀ dose of 500nM. After treatment, each well was replaced with 250 µL of fresh medium containing MTT (0.5 µg/mL) and incubated for 1 hour. The medium was then removed and 500 µL of dimethyl sulfoxide was added to each well. The plate was agitated in the dark for 5 minutes to dissolve the MTT-formazan crystals. The absorbance of the samples was recorded at 562 nm in a multi-well plate reader (BMG labtech). Results were plotted as the mean values of quadruplicates from a representative experiment that was repeated at least two independent times.

[0056] To determine whether Formula (III) combined to other chemotherapy drugs was synergistic, additive, or antagonist, the CalcuSyn v2.0 software programme (Biosoft, Ferguson, MO) was used. This program allows the calculation of the combination index (CI) based on the algorithm of Chou and Talalay [Cancer Res. 2010; 70: 440-446]. Combination index values less than 1 indicate synergism, values equal to 1 indicate an additive effect, whereas values greater than 1 indicate antagonism. Combination index values from three independent experiments were generated.

c) Cell Cycle and Apoptosis Assays

[0057] Cell cycle analyses and evaluation of apoptosis were performed by flow cytometry using propidium iodide and Annexin V, respectively.

[0058] For cell cycle analyses, SW620 and HT29 cells were cultured in 100-mm culture dishes, grown to 70% confluence, and treated with 500nM Formula (III) for 24 h. Cell monolayers were then incubated in trypsin-EDTA and resuspended in 1 mL of PBS. After three washes with PBS, the cell pellets were resuspended in ice cold 70% ethanol for 2 min and centrifuged 5 min at 1800 rpm. The cell pellets were treated with 1 mL of propidium iodide (PI) staining solution (PBS containing 50 µg/mL of PI, 0.5% Tween 20, 0.1 µg/mL RNase A) (BD Biosciences) and incubated in the dark for 1 h. DNA content and cell cycle analyses were performed by using a FACS canto II flow cytometer and the CellQuest software (BD Biosciences).

[0059] For apoptosis analyses, SW620 and HT29 cell monolayers were incubated in trypsin-EDTA, washed twice with cold PBS, and then resuspended in binding buffer (10 mM HEPES free acid [pH 7.4], 140 mM NaCl, 2.5 mM CaCl₂) at a concentration of 1×10^6 cells per mL. A total of 1×10^5 cells were incubated for 15 minutes in the dark with Annexin V-APC (BD Biosciences) and propidium iodide (PI) staining solution (5 µL Annexin V-fluorescein isothiocyanate, 10 µL of PI [5 µL/mL final concentration], 400 µL binding buffer).

d) Western Blotting and antibody array

[0060] Western-blot and phospho-array kits were used for evaluation of signaling intermediates.

[0061] SW620 and HT29 cell lines were grown in DMEM 10% of FBS and at 70% confluence were treated with Formula (III) at 500nM for 6, 12 and 24 hours. Cells were washed with phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄, 1.5 mM KH₂PO₄) and lysed in ice-cold lysis buffer (20 mM Tris-HCl [pH 7.0], 140 mM NaCl, 50 mM EDTA, 10% glycerol, 1% Nonidet P-40, 1 µM pepstatin, 1 µg/mL aprotinin, 1 µg/mL leupeptin, 1 mM phenylmethyl sulfonyl fluoride, 1 mM sodium orthovanadate). Lysates were centrifuged at 10000 g at 4 °C for 10 minutes. The protein level in the supernatants was quantified using BCA protein assay (Sigma Aldrich). A total of 50 µg of protein of each sample was used for analysis. Samples were then boiled in electrophoresis sample buffer and placed on 6%-15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, depending on the molecular weight of the proteins to be analyzed. Briefly, after electrophoresis, proteins in gels were transferred to polyvinylidene difluoride membranes (Millipore Corporation). Membranes were blocked in Tris-buffered saline with Tween (TBST) (100 mM Tris [pH 7.5], 150 mM NaCl, 0.05% Tween 20) containing 1% of bovine serum albumin for 1 h and then incubated overnight with the corresponding antibody. Anti-AKT, anti-p^{S473}-AKT and anti-p^{T308}-AKT were purchased from Santa Cruz; Anti-pS6, and anti-GADPH were purchased from Cell Signalling Technology; anti-p-H2AX were purchased from BD Biosciences. After washing with TBST, membranes were incubated with HRP-conjugated anti-mouse or anti-rabbit secondary antibodies (1:5000 dilution) for 1 hour and bands were visualized by using ECL Plus Western Blotting Detection System (GE Healthcare, Buckinghamshire, United Kingdom).

[0062] To perform the dot blot analyses with commercial arrays, two human phospho-RTK array kits were used following the respective manufacturer's instructions. The Human Phospho-Kinase Array (Catalog ARY003B) detects the relative site-specific phosphorylation of 43 intracellular kinases. The Phospho-Receptor Tyrosine Kinase (RTK) Array Kit (Catalog ARY001B) detects the phosphorylation of 49 different RTKs.

II) Results

a) Reference example: Antitumor effect of Formula (III)

[0063] To explore the effect of Formula (III) on proliferation, a panel of colorectal cancer cell lines which included SW620 and HT29 were used in this reference example. The effect of six tyrosine kinase inhibitors (namely lapatinib, sunitinib, crizotinib, BEZ235, NVP-BSK805 and dasatinib) which inhibit the most activated kinases, as well as the effect of the multi-tyrosine kinase inhibitor of Formula (III), on colorectal cancer cell proliferation was determined. Formula (III), in particular, had a strong effect in the colon cell lines studied [namely SW620 (Figure 1A) and HT29 (Figure 1B)], compared with other inhibitors. Treatment with Formula (III) inhibited the MTT metabolism in a dose and time dependent manner (Figures 1A, 1B). It reached a half-maximal inhibitory effect in the nanomolar range and doses in the submicromolar (nanomolar) range were able to produce more than 80% of growth inhibition (i.e. reduced proliferation) in both cell lines studied.

[0064] Furthermore, Formula (III) at the IC₅₀ dose induced a similar effect as dasatinib, with a significant effect on the src kinase, on the inhibition of cell migration in SW620 and HT29 (Figure 1C).

b) Effect of Formula (III) in combination with chemotherapy agents

[0065] As success in cancer therapy is based on drug combinations, the effect of Formula (III) in association with chemotherapy agents used in the clinical setting for colorectal cancers, including oxaliplatin, irinotecan and 5-fluorouracil, was investigated. A dose response curve was first obtained for these chemotherapies in order to select doses around the IC₅₀. Next, Formula (III) was combined with these agents (cf. Tables 1 - 9). In general, administration of Formula (III) with oxaliplatin, irinotecan and 5-fluorouracil, using a fixed dose, according to present description, increased the anti-proliferative effect of each agent given alone (Figures 2A, 2B).

[0066] To identify synergistic interactions several doses of Formula (III) in the nanomolar range were combined with doses of these agents around or below the IC₅₀ in SW620 and HT29. For this purpose the Chou-Talay algorithm for combination index analysis [Cancer Res. 2010; 70: 440-446] was used. Formula (III) synergizes with chemotherapy agents through induction of both apoptosis and DNA damage. In particular, compositions of the description comprising Formula (III) and irinotecan, oxaliplatin or 5-fluorouracil were synergistic in inhibiting cell proliferation in SW620 and HT29 cancer cell lines (Figures 2A to 2C). In addition, Formula (III) synergically induced apoptosis (Figures 2D, 2E) and DNA damage (Figures 2F, 2G) when combined according to present description with irinotecan, oxaliplatin or with 5-fluorouracil at the claimed molar ratios according to present invention. Those results demonstrate that synergism of the compositions of present description with cancer chemotherapy agents was unexpected either qualitative with regard to the type of chemotherapy compounds or, when synergism did appear, also quantitative, for each one of any of the

chemotherapy agents comprised in the compositions of present description, to be considered for synergistic combination.

Reference example: Table 1. Effect of Formula (III), oxaliplatin and combinations thereof on inhibition of SW48 cell proliferation.

Quantity of drug			Combination Index	Ratio Formula (III)/Oxaliplatin
Formula (III) (μ M)	Oxaliplatin (μ M)	Formula (III) (μ M) + Oxaliplatin (μ M)		
0.10	1.0	0.1 + 1.0	0.730	0.1
0.25	2.5	0.25 + 2.5	1.235	0.1
0.50	5.0	0.50 + 5.0	1.307	0.1
0.75	7.5	0.75 + 7.5	2.000	0.1
1.00	10.0	1.00 + 10.0	2.000	0.1
1.20	12.5	1.20 + 12.5	2.000	0.1

Reference example: Table 2. Effect of Formula (III), irinotecan and combinations thereof on inhibition of SW48 cell proliferation.

Quantity of drug			Combination Index	Ratio Formula (III)/Irinotecan
Formula (III) (μ M)	Irinotecan (μ M)	Formula (III) (μ M) + Irinotecan (μ M)		
0.1	1	0.1 + 1	0.910	0.1
0.3	3	0.3 + 3	1.945	0.1
0.5	5	0.5 + 5	2.000	0.1
0.7	7	0.7 + 7	2.000	0.1
0.9	9	0.9 + 9	2.000	0.1
1.2	12	1.2 + 12	2.000	0.1

Table 3. Effect of Formula (III), 5-fluorouracil and combinations thereof on inhibition of SW48 cell proliferation.

5
10
15
20
25
30
35
40
45
50
55

	Quantity of drug			Combination Index	Ratio Formula (III)/5-Fluorouracil
	Formula (III) (μM)	5-Fluorouracil (μM)	Formula (III) (μM) + 5-Fluorouracil (μM)		
Reference example	0.3	1	0.3 + 1	1.669	0.300
Example of the invention	0.5	5	0.5 + 5	0.822	0.100
Example of the invention	0.7	10	0.7 + 10	0.293	0.070
Example of the invention	0.9	25	0.9 + 25	0.800	0.036

Reference example: Table 4. Effect of Formula (III), oxaliplatin and combinations thereof on inhibition of SW620 cell proliferation.

Quantity of drug			Combination Index	Ratio Formula (III)/Oxaliplatin
Formula (III) (μM)	Oxaliplatin (μM)	Formula (III) (μM) + Oxaliplatin (μM)		
0.10	1.0	0.1 + 1.0	1.013	0.1
0.25	2.5	0.25 + 2.5	1.318	0.1
0.50	5.0	0.50 + 5.0	0.338	0.1
0.75	7.5	0.75 + 7.5	0.518	0.1
1.00	10.0	1.00 + 10.0	0.466	0.1
1.20	12.5	1.20 + 12.5	0.559	0.1

Reference example: **Table 5.** Effect of Formula (III), irinotecan and combinations thereof on inhibition of SW620 cell proliferation.

5

10

15

20

25

30

		Quantity of drug		Combination Index	Ratio Formula (III)/ Irinotecan
		Formula (III) (μM)	Irinotecan (μM)		
	0.1	1	0.1 + 1	0.704	0.1
	0.3	3	0.3 + 3	0.285	0.1
	0.5	5	0.5 + 5	0.234	0.1
	0.7	7	0.7 + 7	0.191	0.1
	0.9	9	0.9 + 9	0.262	0.1
	1.2	12	1.2 + 12	0.344	0.1

Table 6. Effect of Formula (III), 5-fluorouracil and combinations thereof on inhibition of SW620 cell proliferation.

35

40

45

50

55

	Quantity of drug			Combination Index	Ratio Formula (III)/5-Fluorouracil
	Formula (III) (μM)	5-Fluorouracil (μM)	Formula (III) (μM) + 5-Fluorouracil (μM)		
Reference example	0.3	1	0.3 + 1	0.115	0.300
Example of the invention	0.5	5	0.5 + 5	0.338	0.100
Example of the invention	0.7	10	0.7 + 10	0.095	0.070
Example of the invention	0.9	25	0.9 + 25	0.114	0.036

Reference example: **Table 7.** Effect of Formula (III), oxaliplatin and combinations thereof on inhibition of HT29 cell proliferation

5
10
15
20
25
30
35
40
45
50
55

Quantity of drug			Combination Index	Ratio Formula (III)/Oxaliplatin
Formula (III) (μM)	Oxaliplatin (μM)	Formula (III) (μM) + Oxaliplatin (μM)		
0.10	1.0	0.1 + 1.0	1.379	0.1
0.25	2.5	0.25 + 2.5	1.196	0.1
0.50	5.0	0.50 + 5.0	0.404	0.1
0.75	7.5	0.75 + 7.5	0.717	0.1
1.00	10.0	1.00 + 10.0	0.575	0.1
1.20	12.5	1.20 + 12.5	0.336	0.1

Reference example: **Table 8.** Effect of Formula (III), irinotecan and combinations thereof on inhibition of HT29 cell proliferation

Quantity of drug			Combination Index	Ratio Formula (III)/Irinotecan
Formula (III) (μM)	Irinotecan (μM)	Formula (III) (μM) + Irinotecan (μM)		
0.1	1	0.1 + 1	0.435	0.1
0.3	3	0.3 + 3	0.624	0.1
0.5	5	0.5 + 5	0.474	0.1
0.7	7	0.7 + 7	0.350	0.1
0.9	9	0.9 + 9	0.501	0.1
1.2	12	1.2 + 12	0.474	0.1

Table 9. Effect of Formula (III), 5-fluorouracil and combinations thereof on inhibition of HT29 cell proliferation

	Quantity of drug			Combination Index	Ratio Formula (III)/5-Fluorouracil
	Formula (III) (μM)	5-Fluorouracil (μM)	Formula (III) (μM) + 5-Fluorouracil (μM)		
Reference example	0.3	1	0.3 + 1	1.197	0.300
Example of the invention	0.5	5	0.5 + 5	0.716	0.100
Example of the example	0.7	10	0.7 + 10	0.578	0.070
Example of the invention	0.9	25	0.9 + 25	0.207	0.036

e) Effects on cell cycle and apoptosis

[0067] To identify the mechanism of action of Formula (III), the effect of the drug on cell cycle and induction of apoptosis was explored as a reference example. To this end SW620 and HT29 were treated with Formula (III) at 500 nM or Formula (III) in combination with a chemotherapeutic agent analyzed using flow after incubation. It was observed that Formula (III) induced a strong arrest in G2/M phase at 24 h (Reference Figure 3A).

[0068] The effect of Formula (III) on cell cycle and apoptosis was also studied as a reference example. The drug induced a strong arrest in G2/M phase at 24 hours (Reference Figure 3A) and induction of apoptosis at 48 hours, as shown by Annexin staining (Figure 3B) and biochemical evaluation of poly adenosine diphosphate ribose polymerase (PARP) degradation (Figure 3C). In addition, Formula (III) treatment induced DNA damage as was observed by the accumulation of pH2AX and p-chk2 (Figure 3C).

[0069] Annexin V staining was also used to explore the effect of Formula (III) on induction of apoptosis as a reference example, whereby an increase at 48 hours was observed (Reference Figure 3B). This was also evidenced by biochemical evaluation of PARP-1 degradation as a reference example (Reference Figure 3C). In addition, treatment with Formula (III) induced DNA damage as was observed as a reference example by the accumulation of pH2AX and p-chk2 (Reference Figure 3C).

[0070] The effect of Formula (III) on the kinase profile (i.e. the phosphorylation/activation status of kinases) of colorectal cancer cell lines SW620 and HT29 before and after treatment with Formula (III) was analyzed as a reference example (Reference Figure 4A). In SW620, the kinases pS6, AKT, Src and Lck were strongly inhibited at 6 hours or 12 hours. In HT29, the activation status of kinases was lower in untreated cells compared to SW620, however pS6 and Src were inhibited at 6 hours (Reference Figures 4A, 4B). Similarly, the activation (phosphorylation) of receptor tyrosine kinases and intracellular kinases by Formula (III) was confirmed as a reference example by Western Blot, whereby it was shown that said compound inhibits pS6 and Src kinases as well as components of the PI3K/mTOR/AKT and ERK pathways (Reference Figure 4B).

[0071] The activation status (i.e. phosphokinase profile) of receptor tyrosine kinases and intracellular cytoplasmatic kinases was evaluated as a reference example in tumor samples from 18 human patients diagnosed with colorectal cancer [Reference Figures 5A, 5B(i), 5B(ii)] shows that the most phosphorylated proteins in said samples include members of the ErbB receptor, the VEGFR family and FGFR. Moreover, phosphorylation of signalling regulators includes

components of the PI3K/mTOR/AKT pathway, STAT1 and Alk. Thus, it may be concluded that Formula (III) acts against colorectal cancer by inhibition of kinases.

[0072] In addition, since there was a high correlation in this reference example between metastatic and non-metastatic tumors in the expression of the most activated proteins (EGFR, AKT/thr308, pS6 and STAT1; Reference Figure 5C), Formula (III) may be used to inhibit both metastatic and non-metastatic forms of colorectal cancer.

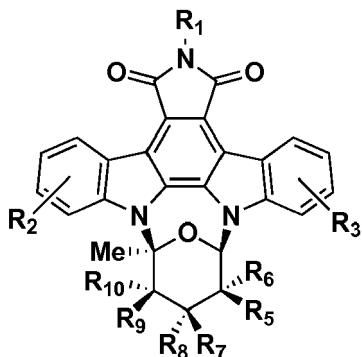
[0073] The effect of the combination of cancer chemotherapy agents, such as oxaliplatin, irinotecan or 5-fluorouracil with compounds according to present description, such as Formula (III), on apoptosis was evaluated. The administration of Formula (III) with oxaliplatin, irinotecan or 5-fluorouracil according to present description clearly induced apoptosis at 48 h (Figure 2D) in SW620 cells. A similar, but less evident, effect was observed with Formula III combinations with oxaliplatin, irinotecan or 5-fluorouracil according to present description (Figure 2E) in HT29 cells. These findings suggest that the addition of some chemotherapies to Formula (III) produced an increase in cell death that was not obtained with the kinase inhibitor alone.

[0074] As DNA damage agents (cancer chemotherapy agents) induce apoptosis by producing breaks in DNA strands, the effect of the combinations of present description on p γ H2AX, a marker of double strand break [FEBS Lett. 2010; 584:3717-3724], were investigated.

[0075] Among reasons that produce an arrest at G2/M phase is the presence of lesions in the DNA and the subsequent intent to repair and maintain its integrity. To investigate if the molecular explanation behind the inhibition of the G2/M transition is secondary to DNA damage, the levels of phosphorylated γ H2AX were analyzed. It is known that this protein is required for checkpoint-mediated cell cycle arrest and DNA repair following doublestranded DNA breaks. Treatment with Formula (III) in SW620 and HT29 in a reference assay showed an increase in the phosphorylated levels of γ H2AX in a time dependent manner (Reference Figure 3C). In response to DNA double-strand breaks (DSBs), ATM phosphorylates multiple substrates including, Chk2, parp-1, and γ H2AX. It was observed in said reference assay that Formula (III) induced the phosphorylation of PARP-1 and chk2, suggesting that Formula (III) induces G2/M arrest by producing DNA damage. Overall, these results in this reference assay show that treatment with Formula (III) induces DNA damage that causes cell cycle arrest in an attempt by the cell to maintain DNA integrity.

[0076] As shown in Figures 2F and 2G of present description administration of Formula (III) with irinotecan or oxaliplatin according to present description increased p γ H2AX in SW620 and HT29 cells compared with each agent given alone, thus demonstrating that the concomitant administration of both drugs increases the effect on DNA integrity.

[0077] In the experiments disclosed in present description, doses of the drug in the micromolar range were able to produce growth inhibition in a panel of colorectal cancer cell lines at the same dose that inhibited efficiency of the mentioned routes. When combined with chemotherapies according to present description, Formula (III) produced a synergistic effect with, in particular, irinotecan, oxaliplatin and 5-flurouracil, thus rendering these agents clinically applicable.


[0078] When the mechanism of action was evaluated, administration of Formula (III) at short times was observed to induce DNA damage measured by the phosphorylation of γ H2AX, and of other proteins including the phosphorylated form of parp-1 and Chk2. The increased expression of apoptosis that was observed at 48 hours suggested that cells unable to repair DNA underwent cell death, and this effect was reinforced when Formula (III) was given in combination with chemotherapy according to present description.

[0079] Globally, combination of the kinase inhibitors of present description with chemotherapy agents as disclosed in present description produced an increase in apoptosis secondary to an induction of DNA damage. In addition, Formula (III) synergizes with chemotherapy agents as disclosed in present description, currently used in the treatment of colorectal cancer, thereby rendering such synergic combinations of present description suitable for use in the clinical setting and hence, industrially applicable.

Claims

1. A composition for use in the prevention and/or treatment of colorectal cancer in a patient, comprising:

a) a compound of Formula (I)

Formula (I)

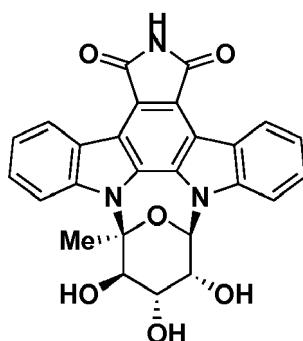
15

or a salt, co-crystal or solvate thereof, where

20

R₁, R₂, and R₃ are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof,

25

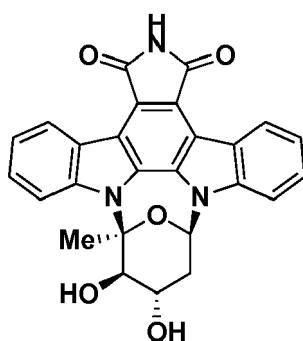

R₅, R₆, R₇, R₈, R₉ and R₁₀ are, each one and independently, hydrogen, hydroxyl or an -OR₄ group, where R₄ is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

30

b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said chemotherapeutic agent is 5-fluorouracil; and
wherein said composition comprises a molar ratio of the compound of Formula (I) to the at least one chemotherapeutic agent from 1:10 to 1:36.

35

2. A composition for use, according to claim 1, wherein the compound of Formula (I) is selected from Formula (II), Formula (III) and Formula (IV):



Formula (II)

55

5

10

Formula (III)

15

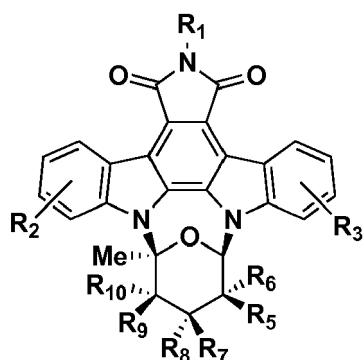
20

25

Formula (IV).

30

3. A pharmaceutical composition for use, according to any of claims 1 to 2, in the prevention and/or treatment of colorectal cancer in a patient comprising:


35 a) a compound of Formula (I); and
 b) at least one chemotherapeutic agent, wherein said chemotherapeutic agent is 5-fluorouracil; and wherein
 said pharmaceutical composition comprises a molar ratio of the compound of Formula (I) to the at least one
 chemotherapeutic agent from 1:10 to 1:36.

40 4. A kit-of-parts for use in the prevention and/or treatment of colorectal cancer comprising:

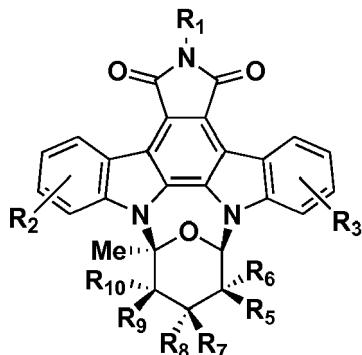
45 a) a compound of Formula (I),

50

55

Formula (I)

or a salt, co-crystal or solvate thereof where


R_1 , R_2 , and R_3 are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} are, each one and independently, hydrogen, hydroxyl or an $-OR_4$ group, where R_4 is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

b) at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said chemotherapeutic agent is 5-fluorouracil, and

wherein in said kit-of-of parts the molar ratio of the compound of Formula (I) to the at least one chemotherapeutic agent is from 1:10 to 1:36.

5. A compound of Formula (I),

Formula (I)

or a salt, co-crystal or solvate thereof where

R_1 , R_2 , and R_3 are, each one and independently, hydrogen or a moiety selected from an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a urethane group, a silyl group, a sulfoxide group or a combination thereof;

R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} are, each one and independently, hydrogen, hydroxyl or an $-OR_4$ group, where R_4 is a moiety selected from an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an aldehyde group, a sulfoxide group or a combination thereof, more preferably an alkyl group, a cycloalkyl group, a halogenated alkyl group, an alkenyl group, an alkynyl group, or a combination thereof; and

at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof, wherein said chemotherapeutic agent is 5-fluorouracil; and

wherein the molar ratio of the compound of Formula (I) to the at least one chemotherapeutic agent is from 1:10 to 1:36;

for use in a method of preventing and/or treating colorectal cancer in a patient, wherein said compound of Formula (I), or a salt, co-crystal or solvate thereof, and said at least one chemotherapeutic agent, or a salt, co-crystal or solvate thereof are administered simultaneously, sequentially or at independent times from each other, to said patient.

Patentansprüche

1. Zusammensetzung zur Verwendung bei der Vorbeugung und/oder Behandlung von Kolorektalkarzinom bei einem

Patienten, umfassend:

a) eine Verbindung der Formel (I)

5

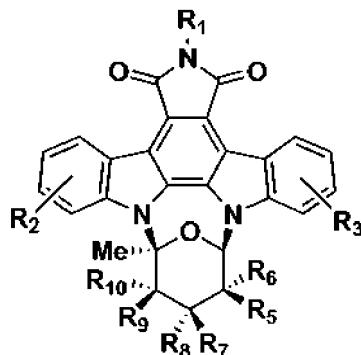
10

15

20

25

30


35

40

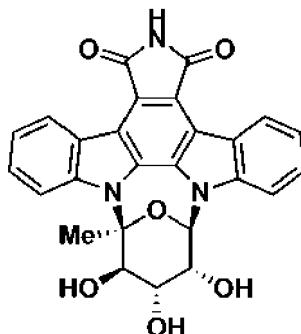
45

50

55

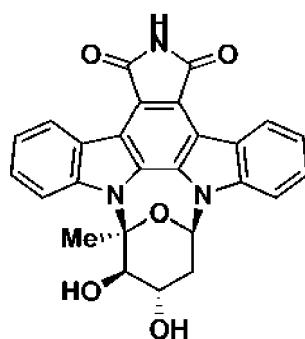
Formel (I)

oder ein Salz, Co-Kristall oder Solvat davon, wobei

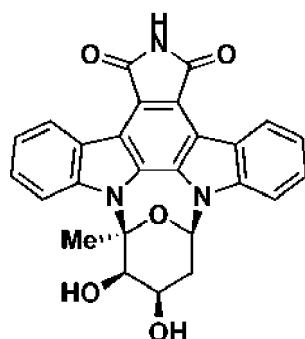

R₁, R₂ und R₃ jeweils unabhängig voneinander Wasserstoff oder ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer heterocyclischen Cycloalkylgruppe, einer Hydroxyalkylgruppe, einer halogenierten Alkylgruppe, einer Alkoxyalkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Alkylarylgruppe, einer Estergruppe, einer Carbonatgruppe, einer Carbonsäuregruppe, einer Aldehydgruppe, einer Ketongruppe, einer Urethangruppe, einer Silylgruppe, einer Sulfoxidgruppe oder einer Kombination davon, sind,

R₅, R₆, R₇, R₈, R₉ und R₁₀ jeweils unabhängig voneinander Wasserstoff, Hydroxyl oder eine -OR₄-Gruppe sind, wobei R₄ ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Aldehydgruppe, einer Sulfoxidgruppe oder einer Kombination davon, vorzugsweise aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe oder einer Kombination davon, ist; und

b) mindestens ein Chemotherapeutikum oder ein Salz, Co-Kristall oder Solvat davon, wobei das Chemotherapeutikum 5-Fluoruracil ist; und


wobei die Zusammensetzung ein Molverhältnis der Verbindung der Formel (I) zu dem mindestens einen Chemotherapeutikum von 1:10 bis 1:36 umfasst.

2. Zusammensetzung zur Verwendung nach Anspruch 1, wobei die Verbindung der Formel (I) ausgewählt ist aus Formel (II), Formel (III) und Formel (IV):


Formel (II)

5

10

15

20

25

Formel (IV)

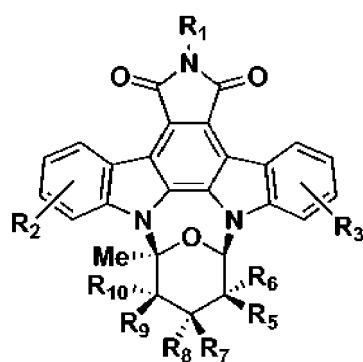
30

3. Pharmazeutische Zusammensetzung zur Verwendung nach einem der Ansprüche 1 bis 2 bei der Vorbeugung und/oder Behandlung von Kolorektalkarzinom bei einem Patienten, umfassend:

a) eine Verbindung der Formel (I); und

35

b) mindestens ein Chemotherapeutikum, wobei das Chemotherapeutikum 5-Fluoruracil ist; und wobei die pharmazeutische Zusammensetzung ein Molverhältnis der Verbindung der Formel (I) zu dem mindestens einen Chemotherapeutikum von 1:10 bis 1:36 umfasst.


4. Kit zur Verwendung bei der Vorbeugung und/oder Behandlung von Kolorektalkarzinom, umfassend:

40

a) eine Verbindung der Formel (I).

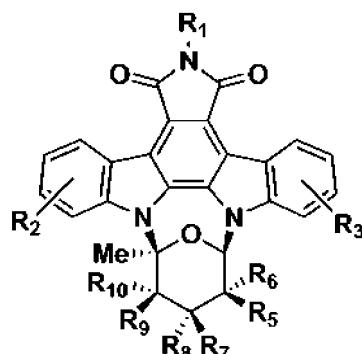
45

50

55

Formel (I)

oder ein Salz, Co-Kristall oder Solvat davon, wobei


5 R_1 , R_2 und R_3 jeweils unabhängig voneinander Wasserstoff oder ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer heterocyclischen Cycloalkylgruppe, einer Hydroxyalkylgruppe, einer halogenierten Alkylgruppe, einer Alkoxyalkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Alkylarylgruppe, einer Estergruppe, einer Carbonatgruppe, einer Carbonsäuregruppe, einer Aldehydgruppe, einer Ketongruppe, einer Urethangruppe, einer Silylgruppe, einer Sulfoxidgruppe oder einer Kombination davon, sind;

10 R_5 , R_6 , R_7 , R_8 , R_9 und R_{10} jeweils unabhängig voneinander Wasserstoff, Hydroxyl oder eine $-OR_4$ -Gruppe sind, wobei R_4 ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Aldehydgruppe, einer Sulfoxidgruppe oder einer Kombination davon, vorzugsweise aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe oder einer Kombination davon, ist; und

15 b) mindestens ein Chemotherapeutikum oder ein Salz, Co-Kristall oder Solvat davon, wobei das Chemotherapeutikum 5-Fluoruracil ist, und

20 wobei das Molverhältnis der Verbindung der Formel (I) zu dem mindestens einen Chemotherapeutikum in dem Kit 1:10 bis 1:36 beträgt.

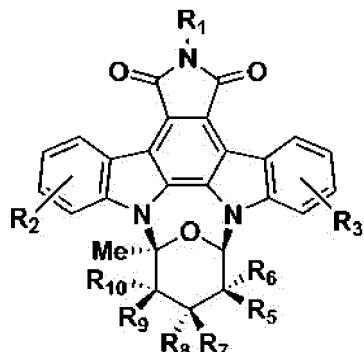
25 5. Verbindung der Formel (I),

30 35 Formel (I)

35 oder ein Salz, Co-Kristall oder Solvat davon, wobei

40 R_1 , R_2 und R_3 jeweils unabhängig voneinander Wasserstoff oder ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer heterocyclischen Cycloalkylgruppe, einer Hydroxyalkylgruppe, einer halogenierten Alkylgruppe, einer Alkoxyalkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Alkylarylgruppe, einer Estergruppe, einer Carbonatgruppe, einer Carbonsäuregruppe, einer Aldehydgruppe, einer Ketongruppe, einer Urethangruppe, einer Silylgruppe, einer Sulfoxidgruppe oder einer Kombination davon, sind;

45 R_5 , R_6 , R_7 , R_8 , R_9 und R_{10} jeweils unabhängig voneinander Wasserstoff, Hydroxyl oder eine $-OR_4$ -Gruppe sind, wobei R_4 ein Rest, ausgewählt aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Arylgruppe, einer heterocyclischen Arylgruppe, einer Aldehydgruppe, einer Sulfoxidgruppe oder einer Kombination davon, vorzugsweise aus einer Alkylgruppe, einer Cycloalkylgruppe, einer halogenierten Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe oder einer Kombination davon, ist; und


50 mindestens ein Chemotherapeutikum oder ein Salz, Co-Kristall oder Solvat davon, wobei das Chemotherapeutikum 5-Fluoruracil ist; und wobei das Molverhältnis der Verbindung der Formel (I) zu dem mindestens einen Chemotherapeutikum 1:10 bis 1:36 beträgt;

55 zur Verwendung in einer Methode zur Vorbeugung und/oder Behandlung von Kolorektalkarzinom bei einem Patienten, wobei die Verbindung der Formel (I) oder ein Salz, Co-Kristall oder Solvat davon und das mindestens eine Chemotherapeutikum oder ein Salz, Co-Kristall oder Solvat davon gleichzeitig, nacheinander oder zu voneinander unabhängigen Zeitpunkten an den Patienten verabreicht werden.

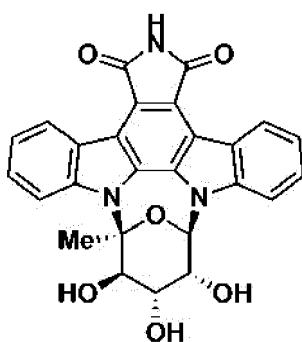
Revendications

1. Composition pour utilisation dans la prévention et/ou le traitement du cancer colorectal chez un patient, comprenant :

5 a) un composé de Formule (I),

Formule (1)

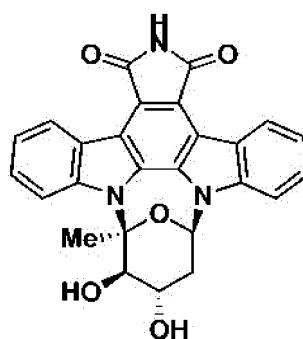
ou un sel, cocristal ou solvate de ce dernier, où


R1, R2 et R3 sont, chacun et indépendamment, hydrogène ou une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe cycloalkyle hétérocyclique, un groupe hydroxyalkyle, un groupe alkyle halogéné, un groupe alkoxyalkyle, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe alkylaryle, un groupe ester, un groupe carbonate, un groupe acide carboxylique, un groupe aldéhyde, un groupe cétone, un groupe uréthane, un groupe silyle, un groupe sulfoxyde ou une de leurs combinaisons.

R5, R6, R7, R8, R9 et R10 sont, chacun et indépendamment, hydrogène, hydroxyle ou un - groupe -OR4, où R4 est une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe aldéhyde, un groupe sulfoxyde ou une de leurs combinaisons, de préférence un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, ou une de leurs combinaisons ; et

b) au moins un agent chimiothérapeutique, ou un sel, cocristal ou solvate de ce dernier, dans lequel ledit agent chimiothérapeutique est 5-fluorouracil ; et

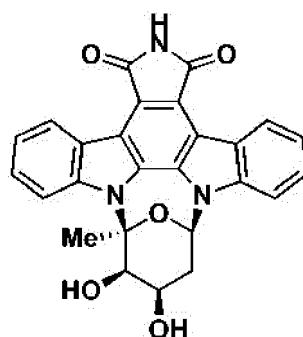
dans laquelle ladite composition comprend un rapport molaire du composé de Formule (I) au au moins un agent chimiothérapeutique de 1:10 à 1:36.


2. Composition pour utilisation, selon la revendication 1, dans laquelle le composé de Formule (I) est sélectionné parmi Formule (II), Formule (III) et Formule (IV) :

Formule (II)

5

10



Formule (III)

15

20

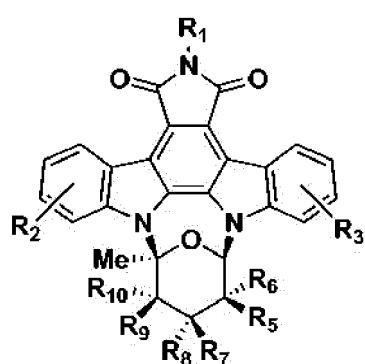
25

Formule (IV)

30

3. Composition pharmaceutique pour utilisation, selon l'une des revendications 1 à 2, dans la prévention et/ou le traitement du cancer colorectal chez un patient, comprenant :

35 a) un composé de Formule (I) ; et
 b) au moins un agent chimiothérapeutique, dans lequel ledit agent chimiothérapeutique est 5-fluorouracil ; et
 dans laquelle ladite composition pharmaceutique comprend un rapport molaire du composé de Formule (I) au au moins un agent chimiothérapeutique de 1:10 à 1:36.


40 4. Ensemble de composants pour utilisation dans la prévention et/ou le traitement du cancer colorectal comprenant :

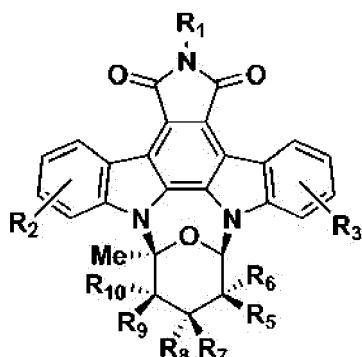
a) un composé de Formule (I),

45

50

55

Formule (I)


ou un sel, cocrystal ou solvate de ce dernier, où

5 R1, R2 et R3 sont, chacun et indépendamment, hydrogène ou une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe cycloalkyle hétérocyclique, un groupe hydroxyalkyle, un groupe alkyle halogéné, un groupe alkoxyalkyle, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe alkylaryl, un groupe ester, un groupe carbonate, un groupe acide carboxylique, un groupe aldéhyde, un groupe cétone, un groupe uréthane, un groupe silyle, un groupe sulfoxyde ou une de leurs combinaisons ;

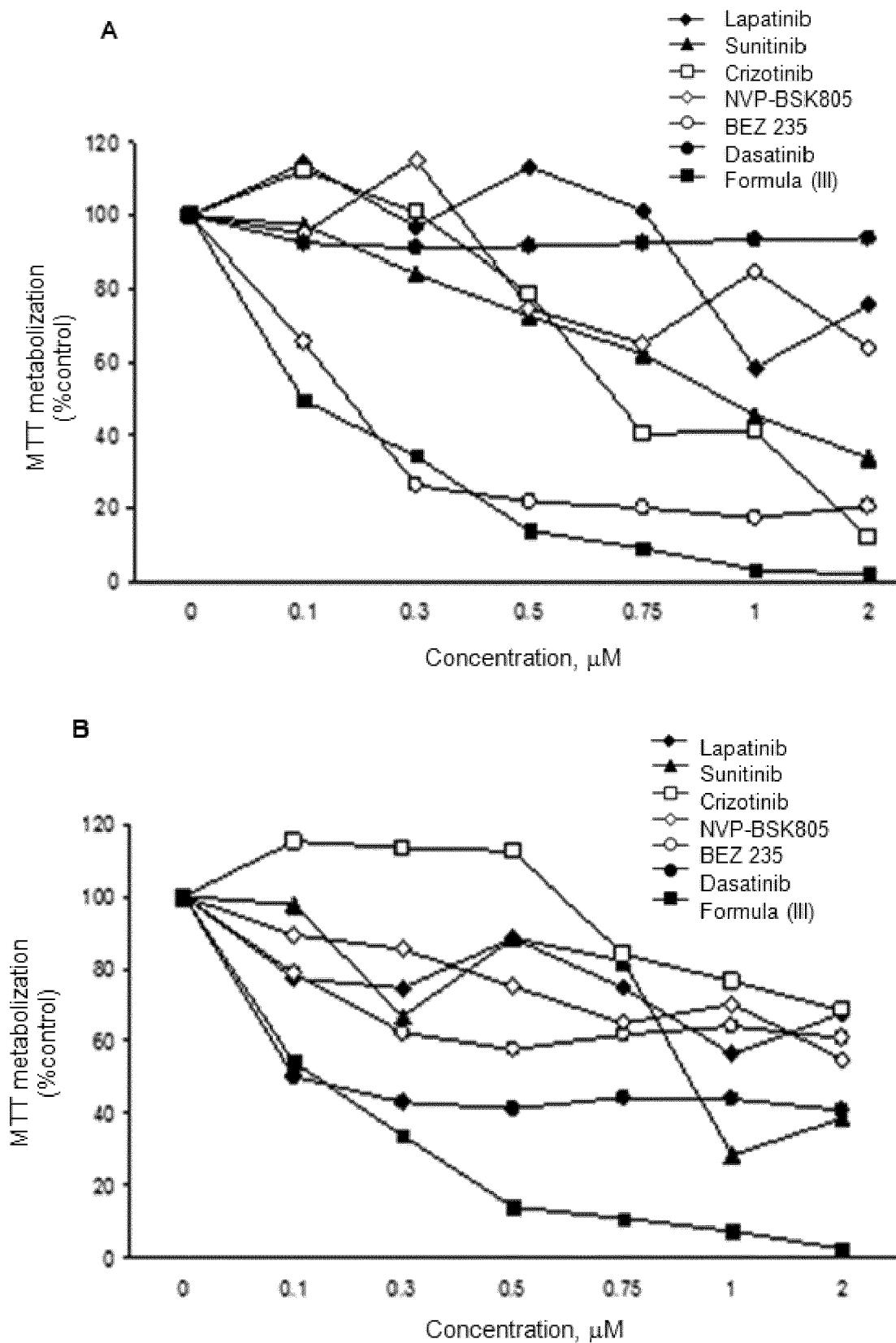
10 R5, R6, R7, R8, R9 et R10 sont, chacun et indépendamment, hydrogène, hydroxyle ou un -groupe -OR4, où R4 est une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe aldéhyde, un groupe sulfoxyde ou une de leurs combinaisons, de préférence un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, ou une de leurs combinaisons ; et

15 b) au moins un agent chimiothérapeutique, ou un sel, cocristal ou solvate de ce dernier, dans lequel ledit agent chimiothérapeutique est 5-fluorouracil, et
dans laquelle dans ladite trousse de composants le rapport molaire du composé de Formule (I) au au moins un agent chimiothérapeutique est de 1:10 à 1:36.

20 5. Un composé de formule (I),

35 Formule (I)

35 ou un sel, cocristal ou solvate de ce dernier, où


40 R1, R2 et R3 sont, chacun et indépendamment, hydrogène ou une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe cycloalkyle hétérocyclique, un groupe hydroxyalkyle, un groupe alkyle halogéné, un groupe alkoxyalkyle, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe alkylaryl, un groupe ester, un groupe carbonate, un groupe acide carboxylique, un groupe aldéhyde, un groupe cétone, un groupe uréthane, un groupe silyle, un groupe sulfoxyde ou une de leurs combinaisons ;

45 R5, R6, R7, R8, R9 et R10 sont, chacun et indépendamment, hydrogène, hydroxyle ou un -groupe -OR4, où R4 est une fraction sélectionnée parmi un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, un groupe aryle, un groupe aryle hétérocyclique, un groupe aldéhyde, un groupe sulfoxyde ou une de leurs combinaisons, de préférence un groupe alkyle, un groupe cycloalkyle, un groupe alkyle halogéné, un groupe alcényle, un groupe alcynyle, ou une de leurs combinaisons ; et au moins un agent chimiothérapeutique, ou un sel, cocristal ou solvate de ce dernier, dans lequel ledit agent chimiothérapeutique est 5-fluorouracil ; et

50 dans laquelle le rapport molaire du composé de Formule (I) au au moins un agent chimiothérapeutique est de 1:10 à 1:36 ;

55 pour utilisation dans un procédé de prévention et/ou traitement du cancer colorectal chez un patient, dans lequel ledit composé de Formule (I), ou un sel, cocristal ou solvate de ce dernier, et ledit au moins un agent chimiothérapeutique, ou un sel, cocristal ou solvate de ce dernier sont administrés simultanément, séquentiellement ou à des temps indépendants l'un de l'autre, audit patient.

Reference Figure 1

Reference Figure 1 continued

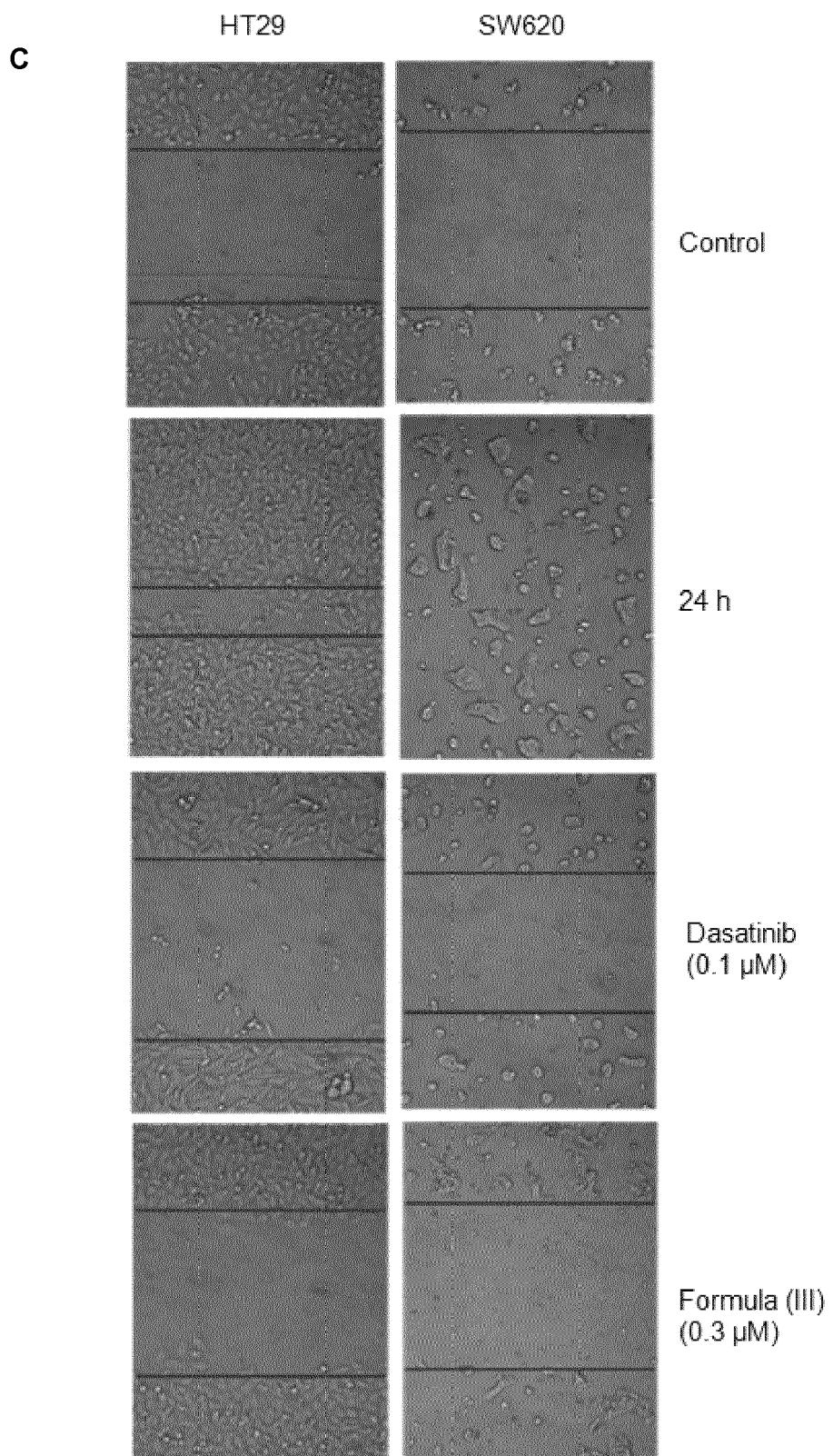
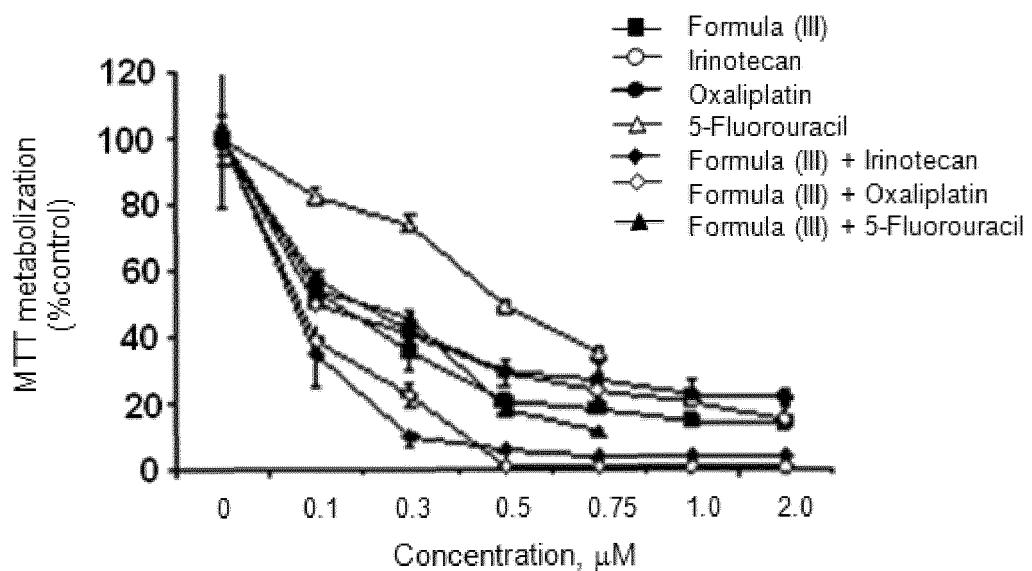



Figure 2

A

B

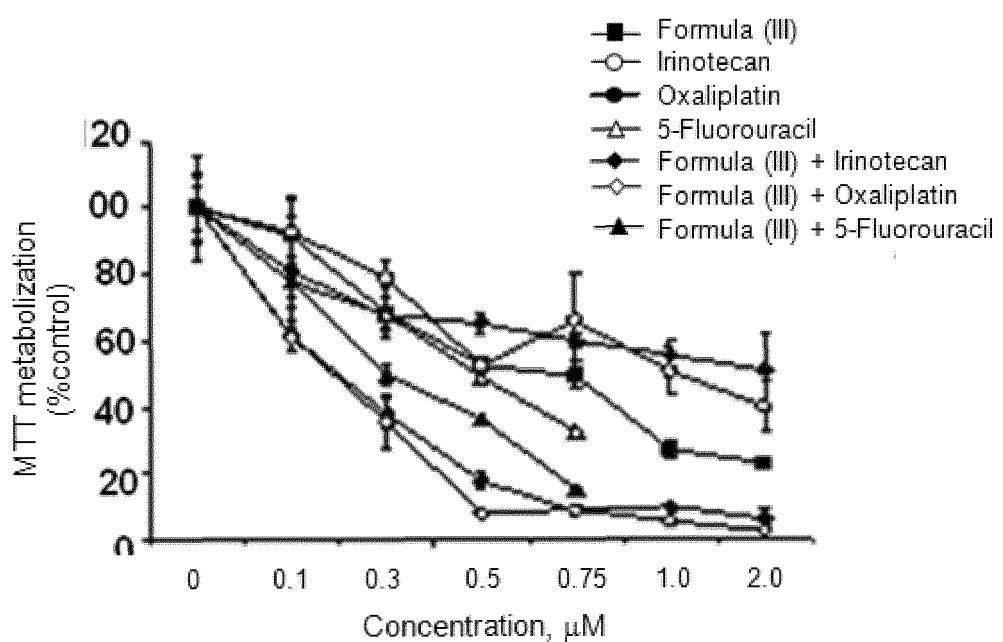


Figure 2 continued

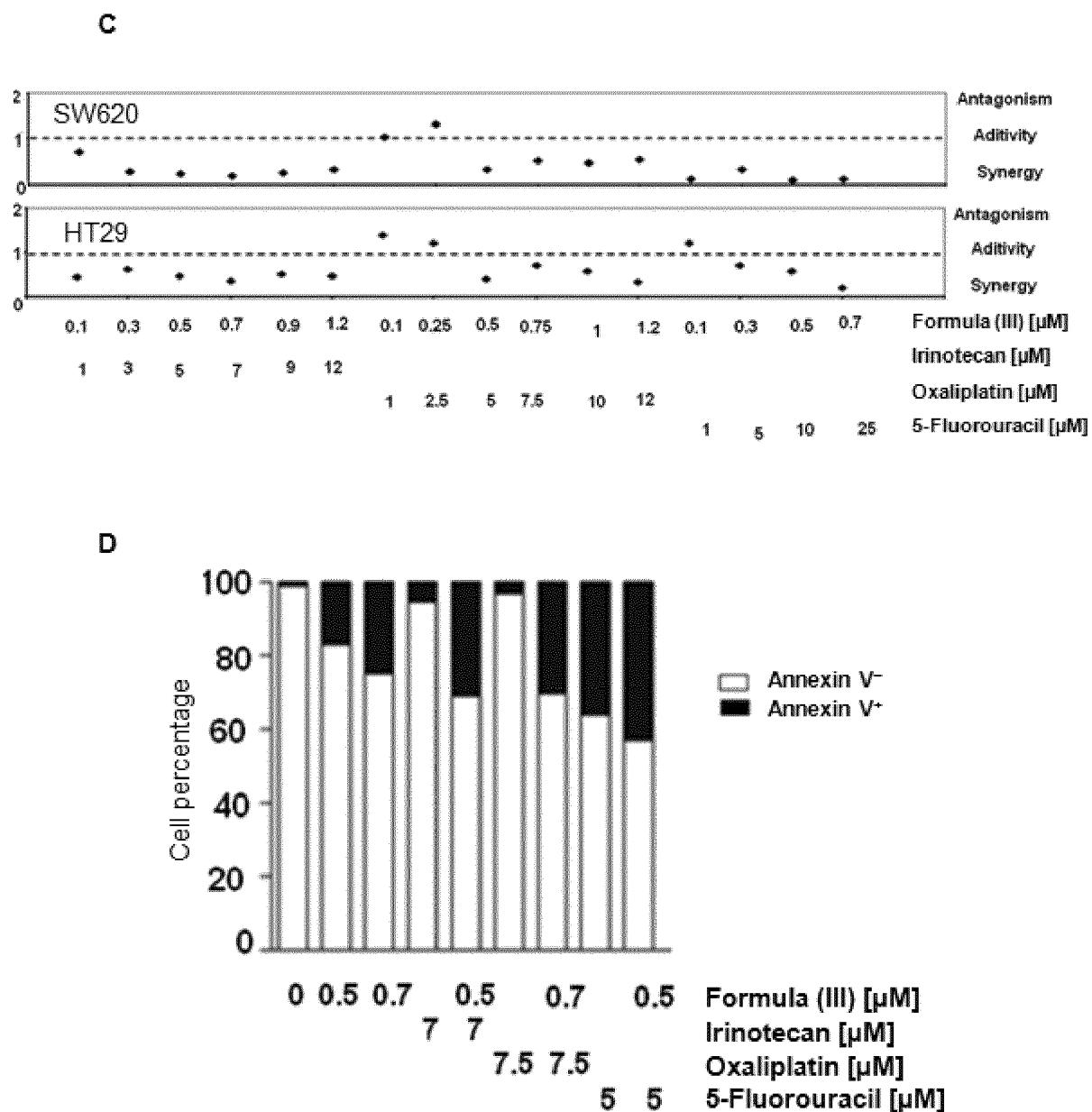
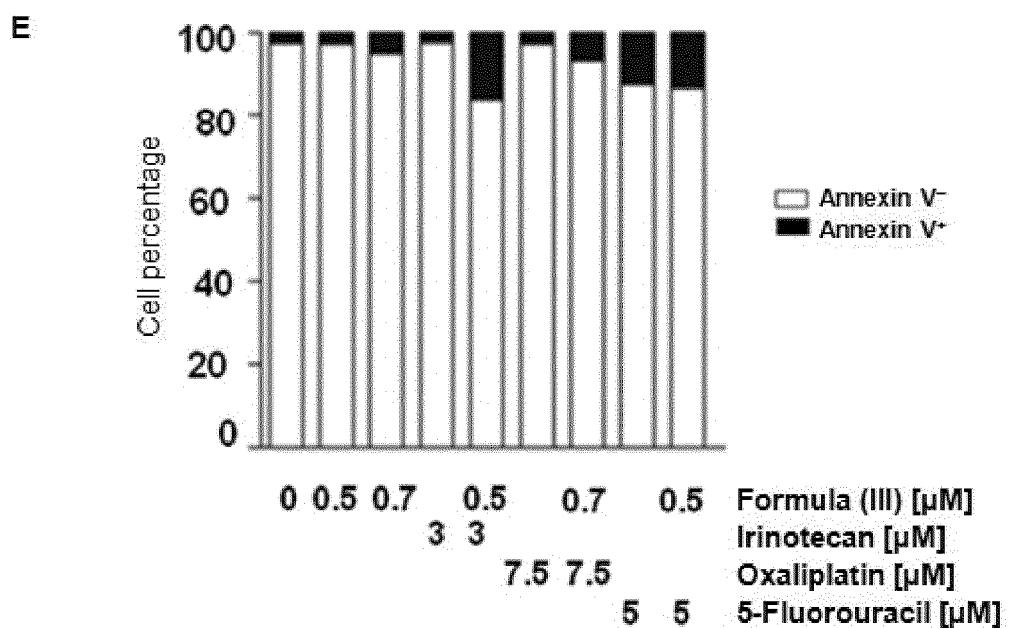
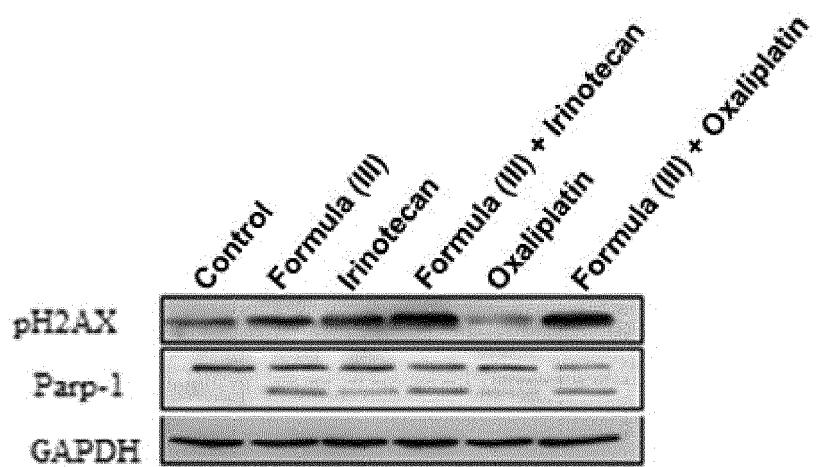
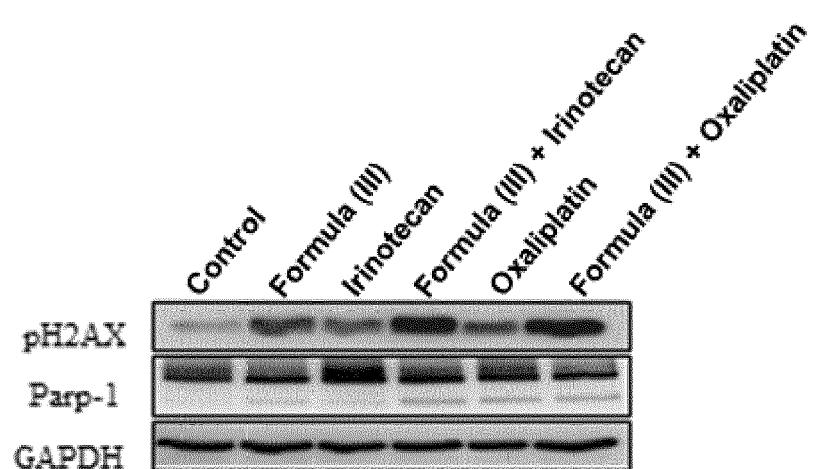
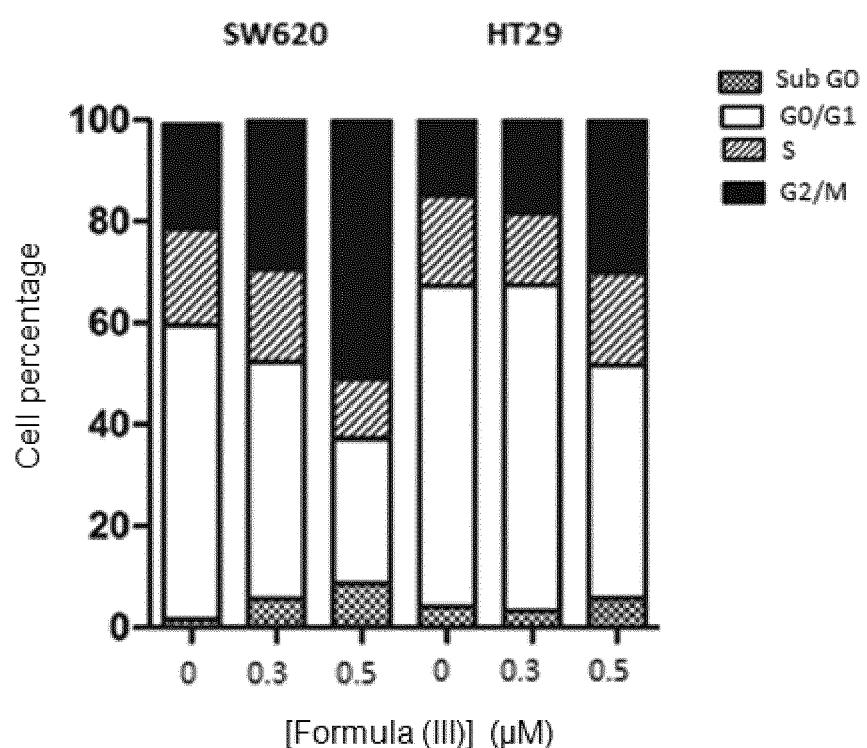
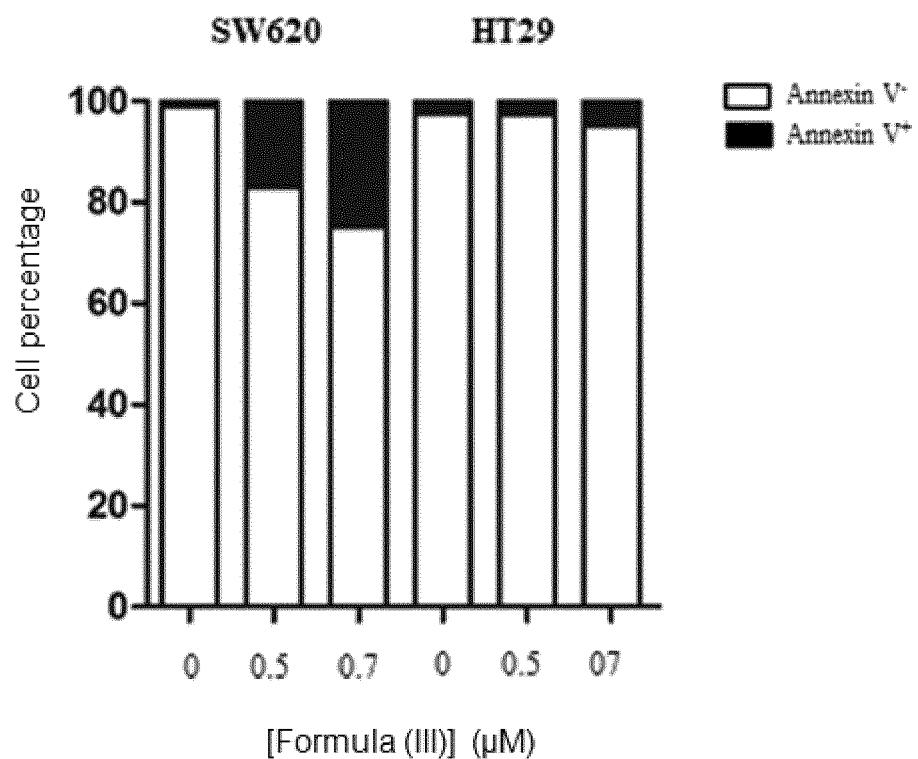
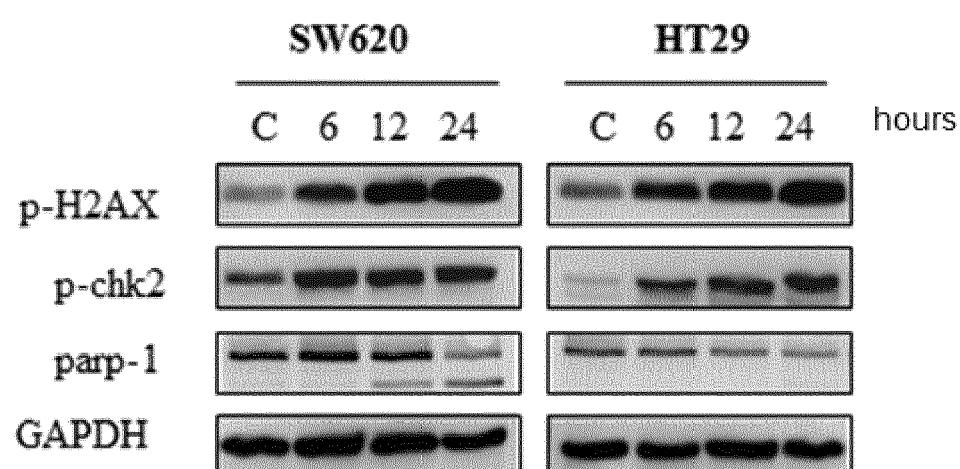






Figure 2 continued

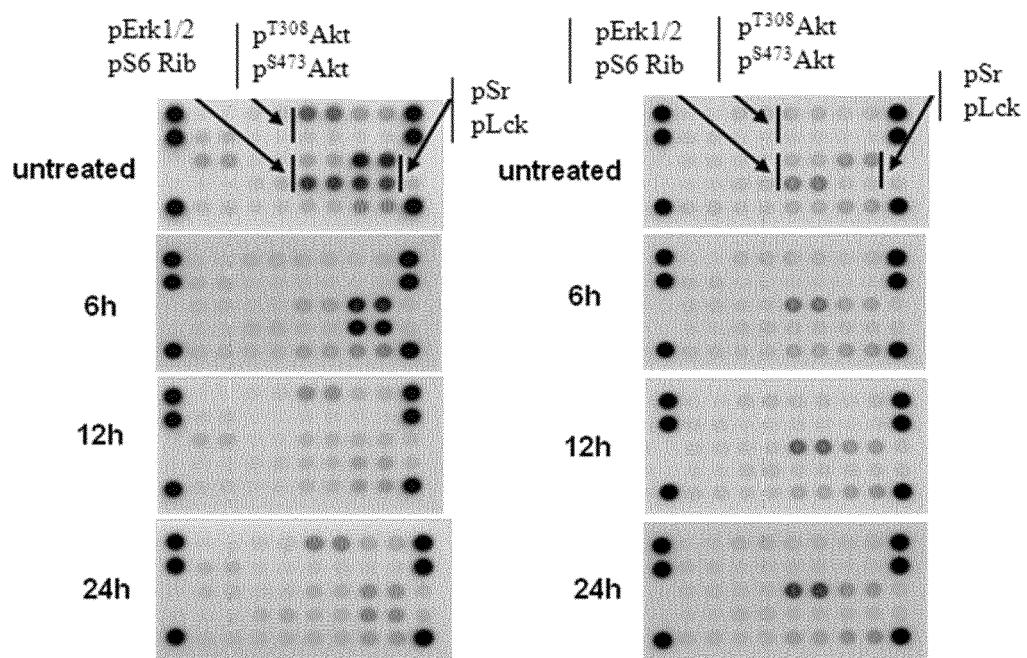

F**G**

Reference Figure 3

A

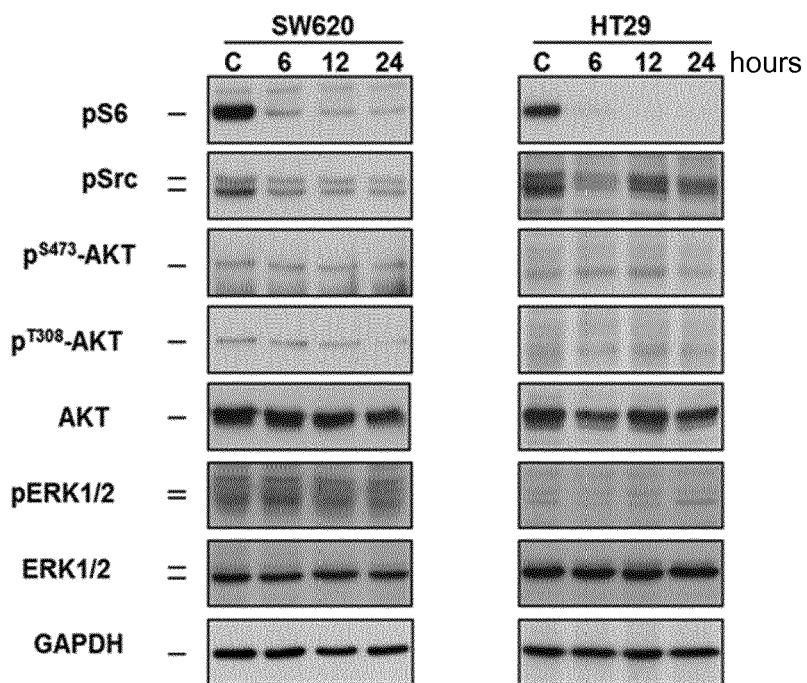


B



Reference Figure 3 continued

C



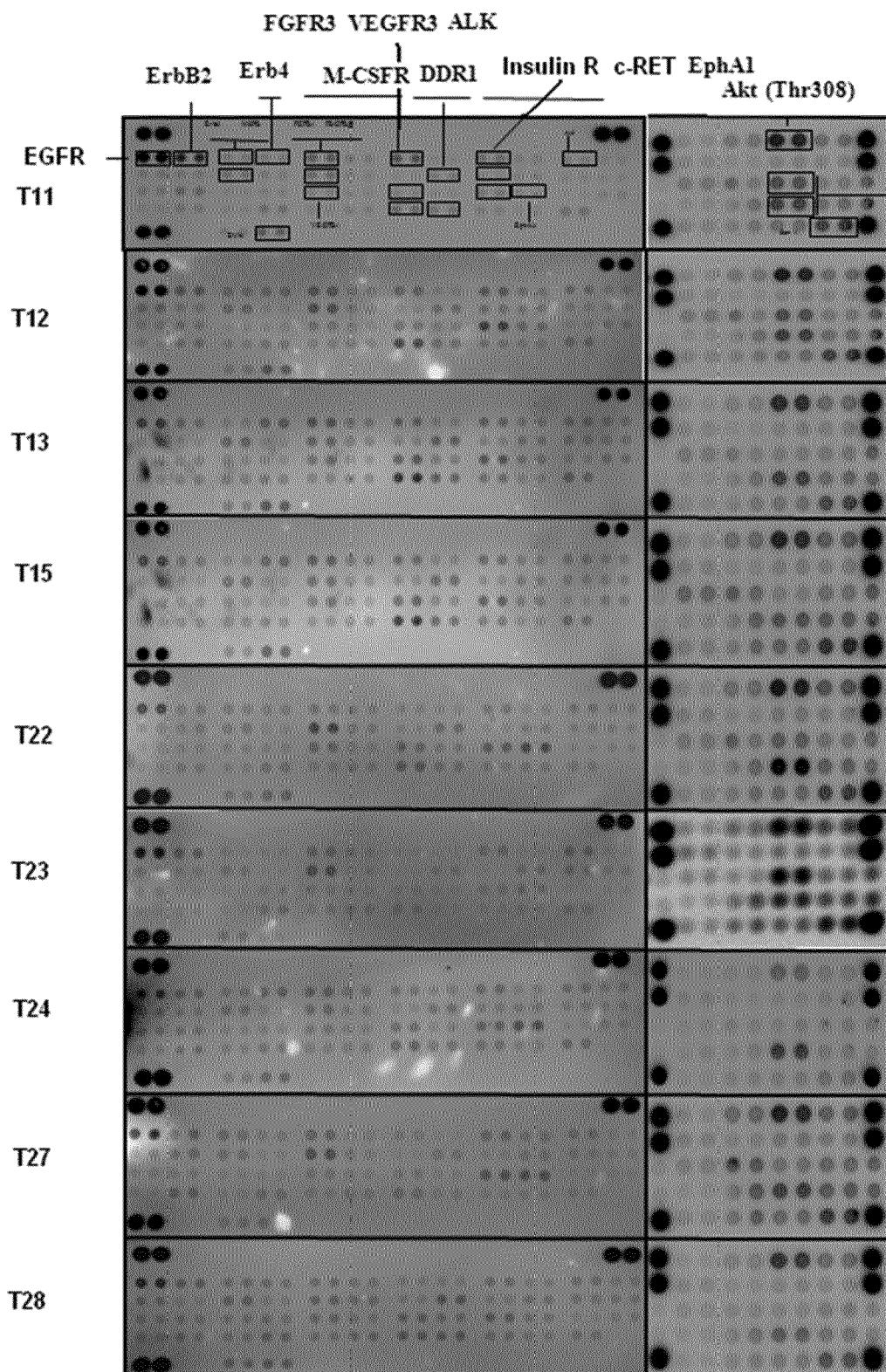
Reference Figure 4

A

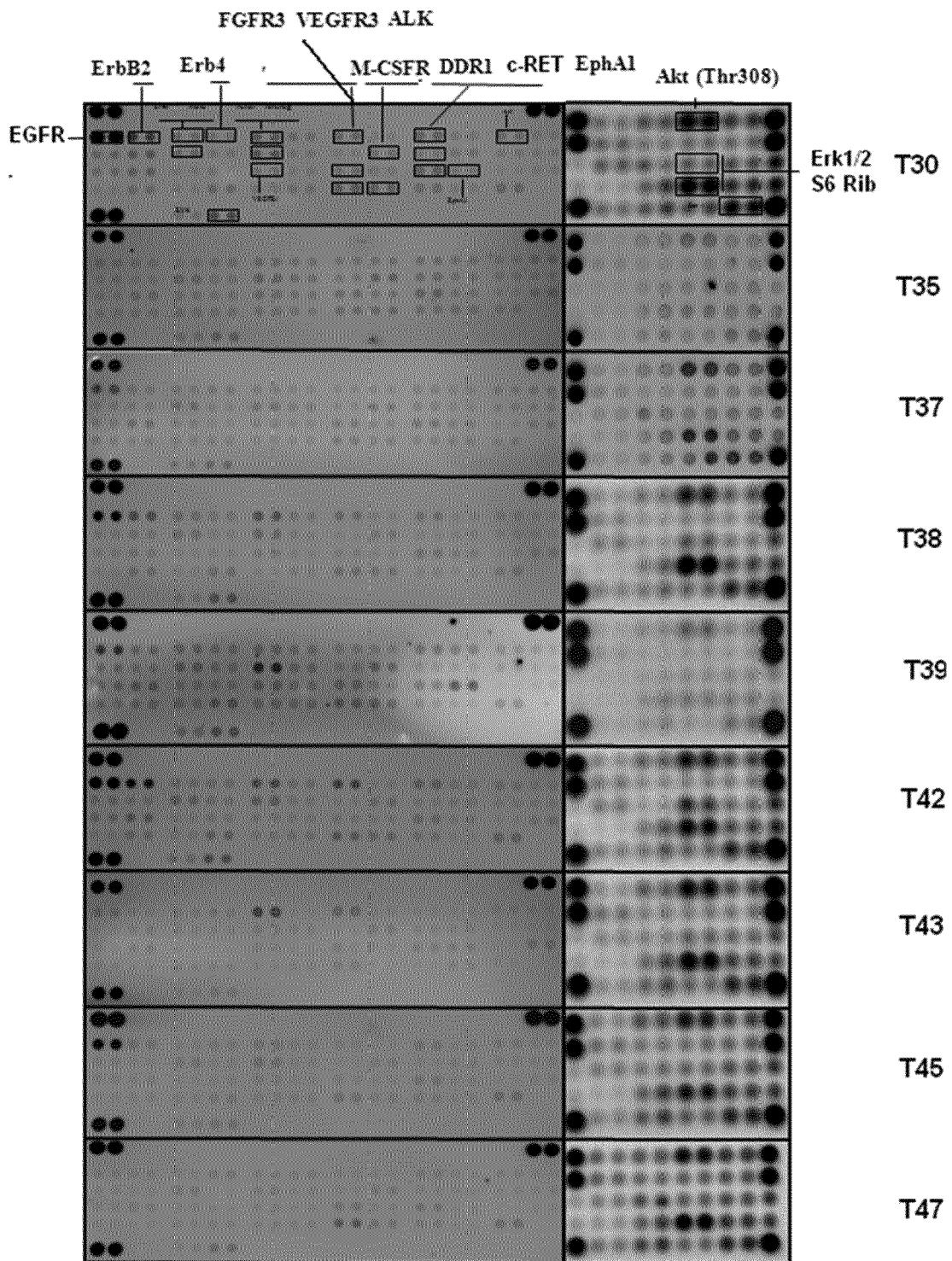

SW620

HT29

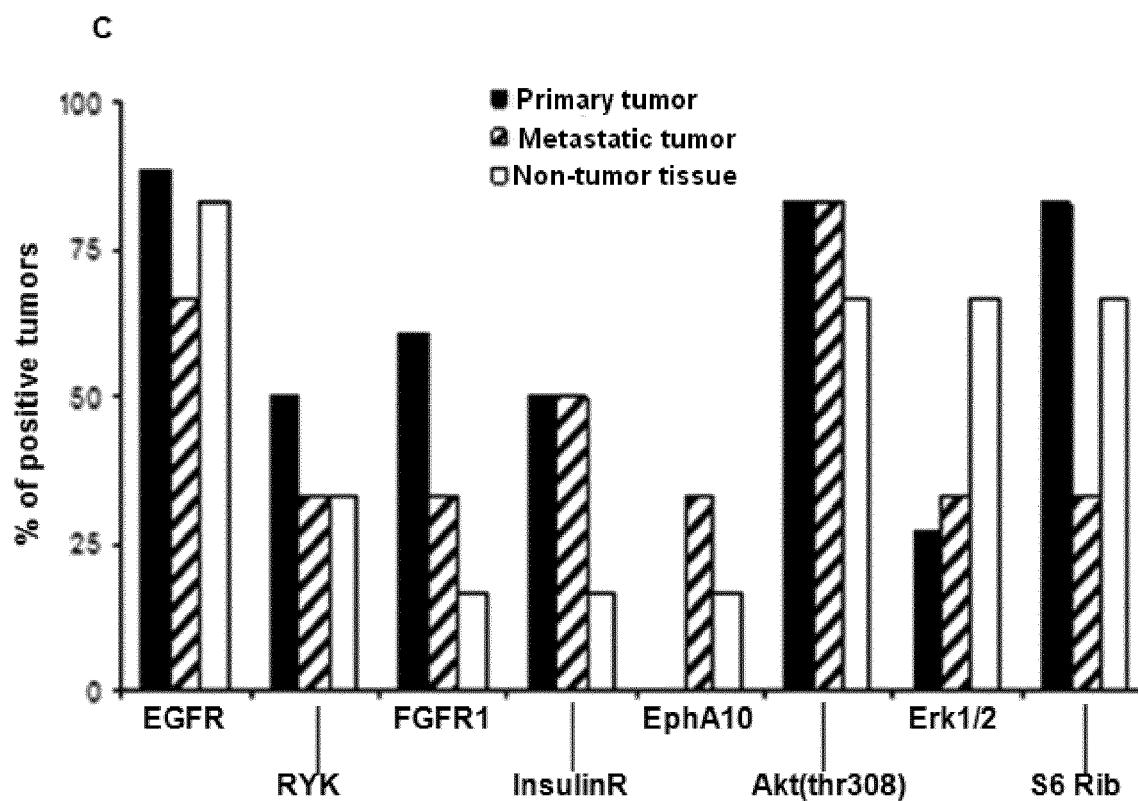
B


Reference Figure 5

A


Reference Figure 5 continued

B(i)



Reference Figure 5 continued

B(ii)

Reference Figure 5 continued

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 2277885 A1 [0005]
- EP 1201668 A1 [0005]

Non-patent literature cited in the description

- CESAR SANCHEZ et al. *Chemical Communications*, January 2009, 4118 [0005]
- *Chem. Commun.*, 2009, 4118-20 [0019]
- *J. Clin. Invest.*, 2011, vol. 121, 2723-2735 [0019]
- CHOU ; TALALAY. *Cancer Res.*, 2010, vol. 70, 440-446 [0056]
- *Cancer Res.*, 2010, vol. 70, 440-446 [0066]
- *FEBS Lett.*, 2010, vol. 584, 3717-3724 [0074]