(11) EP 3 199 420 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 02.08.2017 Bulletin 2017/31

(21) Application number: 16854975.6

(22) Date of filing: 15.10.2016

(51) Int Cl.: **B61F 19/04** (2006.01)

(86) International application number: PCT/CN2016/102231

(87) International publication number: WO 2017/063600 (20.04.2017 Gazette 2017/16)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

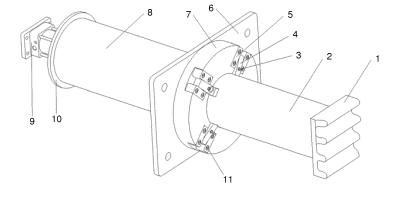
Designated Extension States:

BAMF

Designated Validation States:

MA MD

(30) Priority: 16.10.2015 CN 201510666711


- (71) Applicant: Central South University Changsha, Hunan 410083 (CN)
- (72) Inventor: GAO, Guangjun Changsha Hunan 410083 (CN)
- (74) Representative: White, Andrew John et al Mathys & Squire LLP The Shard
 32 London Bridge Street
 GB-London SE1 9SG (GB)

(54) TELESCOPIC ENERGY-ABSORBING DEVICE FOR RAIL VEHICLE COLLISIONS

(57) Disclosed is a telescopic type collision energy absorption device for a rail vehicle, which includes two sets of mechanisms functioned individually. The two sets of mechanisms are mounted respectively on either side of end portion of the vehicle. Each set of the mechanism includes an anti-climber, an energy absorption circular tube, pull rings, cutters, cutter fixing blocks, a mounting base, a cutter base, a guide cartridge, a double-acting type air cylinder, a base, bolts, torsional springs, pins, locating slots, a double-acting type solenoid valve, a controller and air storage tank. When the energy absorption device is in a non-operating state, the double-acting type air cylinder is in a state of tension where it pulls the energy

absorption circular tube in such a way that the energy absorption circular tube is retracted into the interior of the guide cartridge, the cutters are pressed against the outer wall of the energy absorption circular tube. Before a collision of the vehicle, the double-acting type air cylinder under the effect of the high-pressure air pushes the second tube in such a way that the second tube is ejected outwards, the cutters are pressed against the locating slots of the energy absorption circular tube under the effect of spring force. The cutters cut the energy absorption structure and absorb the energy when the energy absorption circular tube is subjected to an external force and retracts towards the interior of the guide cartridge.

Fig. 1

EP 3 199 420 A1

TECHNICAL FIELD

[0001] The disclosure relates to the field of the passive safety of a rail vehicle, and in particular to an energy absorption device for use in a vehicle collision.

1

BACKGROUND

[0002] With the development of the railway transportation and a continuous increase in the operating speed of rail vehicles, vehicle running safety has received increasing attention. Despite of an emergency braking is performed before a collision of a rail vehicle against an obstacle, collision accidents often arise because of the large inertia and the high speed of the rail vehicle. Once a collision accident occurs, it may cause disastrous effects resulting in damage of a rail vehicle and casualties. A countermeasure that has gained significant popularity all over the world lies in that an energy absorption structure is mounted at an end portion of the vehicle so that the energy absorption structure can absorb energy in case of a collision accident of a vehicle, thereby ensuring the safety of passengers and the vehicle.

[0003] Chinese utility model Publication No. CN201989738U entitled "Pneumatic Telescopic Type Collision-buffering Energy Absorption Device of Automobile" proposes a telescopic energy absorption structure which can slide back and forth in a casing. The energy absorption structure can be pushed out quickly and achieves a reliable self-locking. Upon a collision, the energy absorption structure suffers from collapse deformation to absorb the energy. When there is no collision, the energy absorption structure can be retracted by pulling out a self-locking bolt.

[0004] Chinese Patent Publication No. CN102107664A entitled "Vehicle Cutting Energy Absorption Device For Rail Locomotive" proposes a cutting energy absorption device in which: a test-piece to be cut is fixed and a cutter head is located on a cutter bar. When a collision is applied to the cutter bar, the cutter head cuts the test-piece to be cut to absorb the energy.

[0005] A collapse deformation is employed in the afore-described pneumatic telescopic type collision-buffering energy absorption device of automobile. Although the energy absorption structure is hidden within the casing before deformation and does not occupy the outer space, there may be a residual deformation after the collapse deformation of the energy absorption structure, this would make inefficient use of the deformation stroke.

[0006] Cutting energy absorption is employed in the afore-described vehicle cutting energy absorption device for rail locomotive. The energy absorption structure is exposed to an exterior of the energy absorption device and occupies the outer space, but the cutter bar may intrude into the interior of the energy absorption device, thus there is no residual deformation of the structure, and

the deformation stroke is fully used.

[0007] There are also energy absorption structures which occupy a front space before the deformation and have residual deformation after the deformation.

[0008] To this end, the disclosure provides a telescopic type collision energy absorption device for a rail vehicle. An energy absorption element is hidden within the energy absorption device in normal times and does not occupy the outer space. When a collision occurs, the rapidly projected energy absorption structure employs cutting energy absorption and can be fully retracted into the interior of the energy absorption device, the residual deformation is not generated and the effective deformation stroke is fully used.

SUMMARY

15

30

40

[0009] In order to improve the passive safety and aesthetic appearance of the rail vehicle, the disclosure provides a telescopic type collision energy absorption device for a rail vehicle exclusively used in the case of a collision of the rail vehicle. The device is hidden within vehicle when the vehicle is running normally and does not negatively impact the aesthetic properties of the vehicle; the energy absorption structure of the energy absorption device may project rapidly and absorb the energy when a collision occurs, there is no residual deformation generated in the collision, and the deformation stroke can be fully used.

[0010] A collapse type energy absorption structure fixed at an outer end of the vehicle is used in most of the existing locomotives and vehicles, which negatively impact the aesthetic properties of the vehicle. The curving performance of the vehicle is compromised in case of a longly projected energy absorption structure. Thus, the length of structure is limited. In this case, if the collapse type energy absorption structure which generates the residual deformation is used, the energy absorption ability of the structure will be compromised. Although there is an existing telescopic type energy absorption structure which does not compromise the aesthetic properties of the vehicle in normal times, it also use the collapse type energy absorption structure which may causes the residual deformation and compromises the energy absorption ability of the whole structure. The disclosure provides a telescopic type collision cutting energy absorption device for a rail vehicle, an energy absorption structure of which is hidden within vehicle in normal times and does not compromise the aesthetic properties of the vehicle. During a collision, the energy absorption structure can project sufficiently and produce no residual deformation, thereby fully using the deformation stroke thereof and improving the energy absorption ability of the structure effectively.

[0011] The technical solutions of the disclosure are implemented as follows.

[0012] There is provided a telescopic type collision energy absorption device for a rail vehicle, including: a first

tube and a second tube that can telescope within the first tube, the first tube is mounted with a cutting mechanism for cutting an outer wall of the second tube, the energy absorption device includes a telescopic mechanism connected with the second tube by passing through the first tube.

when the energy absorption device is in a non-operating state, the telescopic mechanism pulls the second tube in such a way that the second tube is retracted into the interior of the first tube, in a state prior to the collision of the vehicle, the telescopic mechanism under the effect of a high-pressure air pushes the second tube in such a way that the second tube is ejected outwards, the cutting mechanism is pressed against locating slots of the second tube under the effect of a spring force, the cutting mechanism cuts the second tube and absorbs energy when the second tube is subjected to an external force and retracts towards the interior of the first tube; after the energy absorption circular tube is damaged by a collision, only the energy absorption structure is replaced during maintenance rather than replacement of the entire device; When subjecting to a certain vertical or lateral force, the energy absorption structure may occur a stable longitudinal deformation and move longitudinally along the guide cartridge.

[0013] In an embodiment, the telescopic mechanism is driven by a double-acting type air cylinder, a double-acting type hydraulic cylinder, or an electric motor that drives a gear rack.

[0014] When the telescopic mechanism is driven by the double-acting type air cylinder, the telescopic mechanism comprises the double-acting type air cylinder, a double-acting type solenoid valve, an air storage tank and a controller; in the non-operating state, the controller activates a second position of the double-acting type solenoid valve in such a way that a second position of the double-acting type air cylinder is inflated by the highpressure air in the air storage tank via a gas circuit, such that the double-acting type air cylinder is in a state of tension where it pulls and retracts the second tube into the interior of the first tube; in the state prior to the collision of the vehicle, the controller activates a first position of the double-acting type solenoid valve in such a way that a first position of the double-acting type air cylinder is inflated by the high-pressure air in the air storage tank via a gas circuit, and the second tube is pushed by the double-acting type air cylinder under the effect of the high-pressure air and is ejected outwards.

[0015] In an embodiment, the cutting mechanism comprises cutters and a cutter base; in the non-operating state, the cutting mechanism is pressed against the outer wall of the second tube by the cutters; in the state prior to the collision of the vehicle, the cutters mounted on the cutter base are capable of rotating and separating from the second tube, such that the cutters are again pressed, under the effect of the spring force, against the locating slots of the second tube ejected outwards.

[0016] In an embodiment, the cutting mechanism fur-

ther comprises cutter fixing blocks, bolts, torsional springs and pins, each cutter is connected with two of the cutter fixing blocks by one of the pins, a counter bore is provided on each of the cutter fixing blocks on one side of a pin bore, each torsional spring is wrapped around a corresponding pin, the torsional spring is connected at one end to the cutter and at other end to one of the two cutter fixing blocks, the cutters are pressed against the second tube by spring force of the torsional springs; the cutter fixing blocks are fixed on the cutter base by the bolts.

[0017] In an embodiment, each cutter is rotated and separated from the second tube by using a pull ring or an air cylinder below the cutter for jacking up the cutter; the pull ring is mounted on the cutter, the cutters on the cutter base can be rotated and separated from the second tube by being pulled through the pull rings, so as to allow a replacement of the cutters after being damaged. [0018] In an embodiment, the first tube comprises a guide cartridge which is a hollow circular tube, the guide cartridge is provided at one end with a first flange part through which the guide cartridge is fixed to the cutter base, and the other end of the guide cartridge is connected to a base of the energy absorption device.

[0019] In an embodiment, an inner end of the second tube is provided with a second flange part, the cutter base is provided with a third flange part embedded within the first tube, the second flange part is in clearance fit with an inner wall of the first tube, the position of the second flange part is limited by the third flange part.

[0020] In an embodiment, an outer end of the second tube is provided with an anti-climber, an inner end of which is embedded in an inner chamber of the first tube, and the locating slots are provided on an outer wall in the second tube.

[0021] There is further provided a rail vehicle, the rail vehicle is mounted with the telescopic type collision energy absorption device for a rail vehicle according to any one of the above solutions, the energy absorption device is mounted on a rail vehicle driven by a high-pressure air of the rail vehicle itself or on a tool requiring energy absorption, which requires an additional provision of the high-pressure air; and the energy absorption device is automatically controlled by a sensor mounted on the rail vehicle, or controlled manually.

[0022] In a preferred embodiment of the rail vehicle, two sets of the energy absorption devices are provided on the rail vehicle, and the two sets of the energy absorption devices are mounted respectively on either side of an end portion of the vehicle.

[0023] The disclosure has the following beneficial effects: the telescopic type collision energy absorption device for a rail vehicle is hidden within the vehicle body when it does not work, and does not compromise the entirety aesthetic; when a collision occurs, the telescopic type collision energy absorption device for a rail vehicle may project rapidly, and absorb the energy by generating a large deformation, the deformation stroke of the struc-

40

45

40

45

ture can be fully used for absorbing the energy, the safety of the vehicles and passengers is ensured, an energy absorption structure of the telescopic type collision energy absorption device for a rail vehicle may also be retracted into the interior of the vehicle when the structure is triggered improperly. Furthermore, the device has a simple structure, is convenient to be replaced in case of damage, and can be controlled automatically.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The present disclosure will be further explained with reference to the drawings, in which:

Figure 1 is a structural schematic diagram of an energy absorption device according to the disclosure.

Figure 2 is an installation schematic diagram of a cutter structure of the disclosure.

Figure 3 is a top view of an energy absorption device according to the disclosure.

Figure 4 is a sectional view along a line A-A of Figure 3.

Figure 5 is a principle diagram of the disclosure under a non-operating state.

Figure 6 is a principle diagram of the disclosure under an operating state.

DETAILED DESCRIPTION

[0025] The objectives, solutions and advantages of embodiments of the disclosure will become clearer upon reading the following detail description of the solutions in the embodiments of the disclosure, given with reference to the accompanying drawings. The embodiments described herein are part of the embodiments of the disclosure but not all of the embodiments.

[0026] The disclosure proposes a telescopic type collision energy absorption device for a rail vehicle, which includes two sets of mechanisms functioning individually. The two sets of mechanisms are mounted respectively on either side of end portion of the vehicle. As shown in Figures 1 and 2, the mechanical structure of the energy absorption device includes an anti-climber 1, an energy absorption circular tube 2, pull rings 3, cutters 4, cutter fixing blocks 5, a mounting base 6, a cutter base 7, a guide cartridge 8, a double-acting type air cylinder 9, a rear base 10, bolts 11, torsional springs 12 and pins 13. The energy absorption device is mounted on a vehicle body by the mounting base 6 which is fixed on the vehicle body by bolts. The mounting base can be individually manufactured based on various different types of structures of the vehicle body, or can be previously mounted on the vehicle during manufacture of the vehicle. A base

of the double-acting type air cylinder 9 is fixed on the vehicle body by bolts. The double-acting type air cylinder 9 may also be a double-acting type hydraulic cylinder, or is driven by an electric motor that drives a gear rack.

[0027] Each of the cutters 4 is connected with two of the cutter fixing blocks 5 through each of the pins 13. Counter bore is provided on each of the cutter fixing blocks 5 on the side of pin bore. Each torsional spring 12 is wrapped around a corresponding pin 13. The torsional spring 12 is connected at one end to the cutter 4 and at its other end to the cutter one of the two fixing blocks 5. The cutter installation structure is fixed on the cutter base by the bolts 11. The cutters 4 are tightly pressed against an outer wall of the energy absorption circular tube 2 by spring force of the torsional springs 12. Each pull ring 3 is mounted on a corresponding cutter 4. When mounting the energy absorption circular tube 2 or when the doubleacting type air cylinder 9 pulls the energy absorption circular tube 2 to the interior of the guide cartridge 8, the energy absorption circular tube 2 may be separated from the cutters 4 by pulling the cutter 4 through the pull ring 3. Alternatively, an air cylinder for jacking up a cutter 4 may be mounted below the cutter 4 to separate the energy absorption circular tube 2 from the cutter 4. The cutters 4 mounted on the cutter base 7 are capable of rotating and separating from the energy absorption structure so that the cutters can be replaced after being damaged.

[0028] With reference to Figures 3 and 4, the mounting base 6 is connected to the cutter base 7 by bolts 16. One end of the guide cartridge 8 is welded on the cutter base 7 and the other end of the guide cartridge is connected to the base 10 by bolts 17. A piston end of the doubleacting type air cylinder 9 is connected with the anti-climber 1 by pin 15. The anti-climber 1 is mounted at the front end of the energy absorption circular tube 2 mating with an inner hole of the cutter base 7, a rear end boss of the energy absorption circular tube is in clearance fit with the interior of the guide cartridge 8. The energy absorption circular tube 2 may move in a longitudinal direction. The energy absorption circular tube 2 and the guide cartridge 8 may be circular or other shapes so long as a clearance fit is provided between them. Locating slots 14 that are in clearance fit with the cutters 4 are provided on the energy absorption circular tube 2. The cutters 4 may be tightly pressed in the locating slots 14 after the projection of the energy absorption circular tube 2. The energy absorption circular tube 2 can be made of aluminium or steel. After the energy absorption circular tube 2 is damaged by a collision, the energy absorption structure may simply be replaced during maintenance, without having to replace the entire device. When subjecting to a certain vertical or lateral force, the energy absorption circular tube 2 may undergo a stable longitudinal deformation and move longitudinally along the guide cartridge 8.

[0029] As shown in Figure 5, a control system of the energy absorption device includes a double-acting type solenoid valve 18, a controller 19 and an air storage tank

20

25

30

35

40

45

50

55

20. In a non-operating state, the high-pressure air already existing in the vehicle is used as a source power, the controller 19 activates a second position of the double-acting type solenoid valve 18, a second position of the double-acting type air cylinder 9 is inflated by the high-pressure air in the air storage tank 20 via a gas circuit, such that the double-acting type air cylinder 9 is in a state of tension where it pulls and hides the energy absorption circular tube 2 into the interior of the guide cartridge 8, the cutters 4 are pressed against the outer wall of the energy absorption circular tube 2.

[0030] As shown in Figure 6, before the collision of the vehicle, the controller 19 activates a first position of the double-acting type solenoid valve 18, a first position of the double-acting type air cylinder 9 is inflated by the high-pressure air in the air storage tank 20 via the gas circuit, the energy absorption circular tube 2 is pushed by the double-acting type air cylinder 9 under the effect of the high-pressure air and is ejected outwards, the cutters 4 are pressed against the locating slots 14 of the energy absorption circular tube 2 under the effect of spring force, the cutters 4 cut the energy absorption circular tube 2 and absorb the momentum of the collision when the energy absorption circular tube 2 is subjected to an external force and retracts towards the interior of the guide cartridge 8. When the energy absorption circular tube 2 is subjected to an external pressure, there is no air pressure in the second position of the double-acting type air cylinder 9. If the energy absorption circular tube 2 is not subjected to the collision after it projects, the energy absorption circular tube 2 may be separated from the cutters 4 by pulling of the cutters 4 by the doubleacting type air cylinder 9 to the interior of the guide cartridae 8.

[0031] The energy absorption device may be mounted on the rail vehicle and driven by the high-pressure air of the vehicle itself, or it may be mounted on a tool that requires the energy absorption, but this requires an additional provision of the high-pressure air.

[0032] An automatic control of the entire structure of the energy absorption device may be achieved by sensors mounted on the vehicle, or a manual control of it may also be implemented.

Claims

- A telescopic type collision energy absorption device for a rail vehicle, comprising a first tube and a second tube that can telescope within the first tube, the first tube being mounted with a cutting mechanism for cutting an outer wall of the second tube, wherein the energy absorption device comprises a telescopic mechanism connected with the second tube by passing through the first tube,
 - when the energy absorption device is in a non-operating state, the telescopic mechanism pulls the second tube in such a way that the second tube is

- retracted into the interior of the first tube; in a state prior to the collision of the vehicle, the telescopic mechanism under the effect of a high-pressure air pushes the second tube in such a way that the second tube is ejected outwards, the cutting mechanism is pressed against locating slots of the second tube under the effect of a spring force, the cutting mechanism cuts the second tube and absorbs energy when the second tube is subjected to an external force and retracts towards the interior of the first tube.
- 2. The telescopic type collision energy absorption device for a rail vehicle according to claim 1, wherein the telescopic mechanism is driven by a double-acting type air cylinder, a double-acting type hydraulic cylinder, or an electric motor that drives a gear rack, when the telescopic mechanism is driven by the double-acting type air cylinder, the telescopic mechanism comprises the double-acting type air cylinder, a double-acting type solenoid valve, an air storage tank and a controller; in the non-operating state, the controller activates a second position of the doubleacting type solenoid valve in such a way that a second position of the double-acting type air cylinder is inflated by the high-pressure air in the air storage tank via a gas circuit, such that the double-acting type air cylinder is in a state of tension where it pulls and retracts the second tube into the interior of the first tube; in the state prior to the collision of the vehicle, the controller activates a first position of the double-acting type solenoid valve in such a way that a first position of the double-acting type air cylinder is inflated by the high-pressure air in the air storage tank via a gas circuit, and the double-acting type air cylinder under the effect of the high-pressure air pushes the second tube in such a way that the second tube is ejected outwards.
- 3. The telescopic type collision energy absorption device for a rail vehicle according to claim 1, wherein the cutting mechanism comprises cutters and a cutter base; in the non-operating state, the cutting mechanism is pressed against the outer wall of the second tube by the cutters; in the state prior to the collision of the vehicle, the cutters mounted on the cutter base are capable of rotating and separating from the second tube, such that the cutters are again pressed, under the effect of the spring force, against the locating slots of the second tube ejected outwards.
- 4. The telescopic type collision energy absorption device for a rail vehicle according to claim 3, wherein the cutting mechanism further comprises cutter fixing blocks, bolts, torsional springs and pins, each cutter is connected with two of the cutter fixing blocks by one of the pins, a counter bore is provided on each of the two cutter fixing blocks on one side of a

pin bore, each torsional spring is wrapped around a corresponding pin, the torsional spring is connected at one end to the cutter and at other end to one of the two cutter fixing blocks, the cutters are pressed against the second tube by spring force of the torsional springs; the cutter fixing blocks are fixed on the cutter base by the bolts.

- 5. The telescopic type collision energy absorption device for a rail vehicle according to claim 4, wherein each cutter is rotated and separated from the second tube by a pull ring or an air cylinder below the cutter for jacking up the cutter; the pull ring is mounted on the cutter, the cutter can be separated from the second tube by being pulled through the pull ring.
- 6. The telescopic type collision energy absorption device for a rail vehicle according to claim 3, wherein the first tube comprises a guide cartridge which is a hollow circular tube, the guide cartridge is provided at one end with a first flange part through which the guide cartridge is fixed to the cutter base, and the other end of the guide cartridge is connected to a base of the energy absorption device.
- 7. The telescopic type collision energy absorption device for a rail vehicle according to claim 6, wherein an inner end of the second tube is provided with a second flange part, the cutter base is provided with a third flange part embedded within the first tube, the second flange part is in clearance fit with an inner wall of the first tube, the position of the second flange part is limited by the third flange part.
- 8. The telescopic type collision energy absorption device for a rail vehicle according to one of claims 1-7, wherein an outer end of the second tube is provided with an anti-climber, an inner end of which is embedded in an inner chamber of the first tube, and the locating slots are provided on an outer wall of the inner end of the second tube.
- 9. A rail vehicle, wherein the rail vehicle is mounted with the telescopic type collision energy absorption device for a rail vehicle according to one of claims 1-8, the energy absorption device is mounted on a rail vehicle driven by a high-pressure air of the rail vehicle itself, or on a tool requiring energy absorption, which requires an additional provision of the high-pressure air; and the energy absorption device is automatically controlled by a sensor mounted on the rail vehicle, or controlled manually.
- 10. The rail vehicle according to claim 9, wherein two sets of the energy absorption devices are provided on the rail vehicle, and the two sets of the energy absorption devices are mounted respectively on either side of an end portion of the vehicle.

Fig. 1

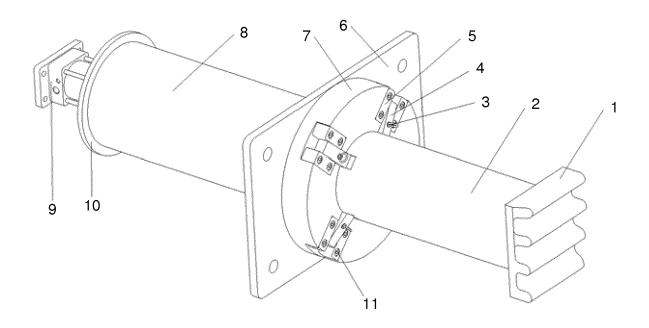


Fig. 2

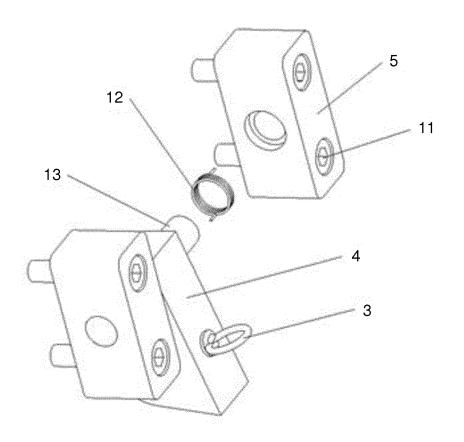


Fig. 3

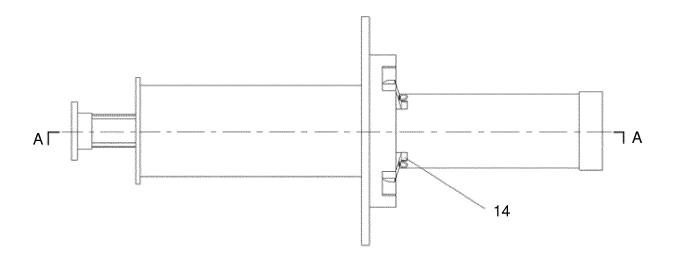


Fig. 4

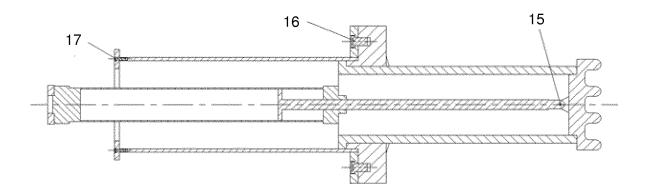


Fig. 5

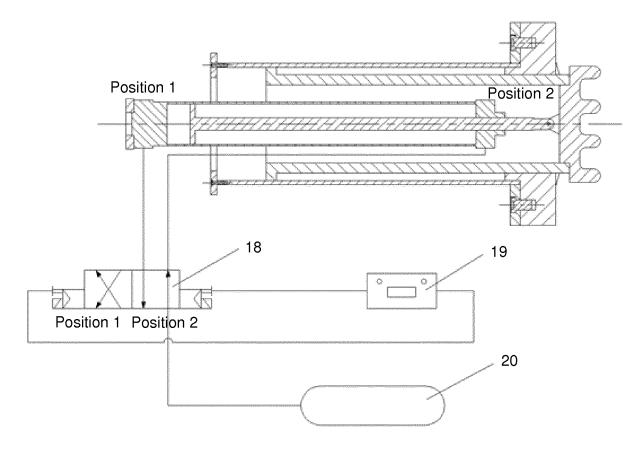
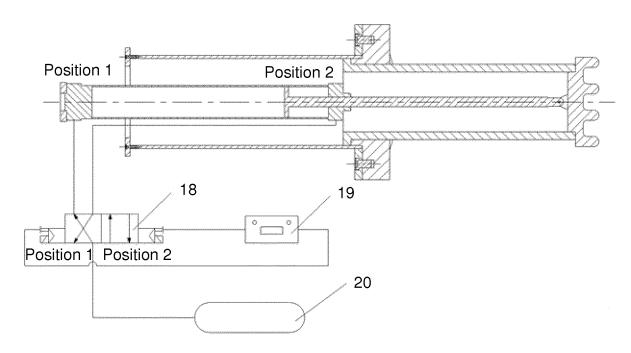



Fig. 6

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2016/102231

A. C	LASS	IFICATION OF SUBJECT MATTER					
Accord	ding to	B61F 19/0 D International Patent Classification (IPC) or to both na	04 (2006. 01) i ational classification ar	nd IPC			
В.	FIELD	OS SEARCHED					
Minim	num do	ocumentation searched (classification system followed	by classification symb	pols)			
		B61F; B6	60R; B61G				
Docur	nentati	ion searched other than minimum documentation to th	e extent that such docu	ments are included	in the fields searched		
Electro	onic da	ata base consulted during the international search (nan	ne of data base and, wh	ere practicable, sear	rch terms used)		
CNP	CNPAT, WPI, EPODOC, CNKI: central south university, gao guangjun, flexible, protrude, retraction, slide, cut, planning, broaching,						
energ	energy absorption, anti crawling, knife, valve, track, vehicle, difunctional, collide, buffer, position, lock, telsecopic, absorb+, suck+,						
anti+, cut+, pipe, bumper, extend+, spring, air, piston, staff, shaft, mov+							
C. D	OCUI	MENTS CONSIDERED TO BE RELEVANT					
Catego	ory*	Citation of document, with indication, where a	ppropriate, of the releva	ant passages	Relevant to claim No.		
Y		CN 201989738 U (CHANGSHA LIZHONG AUTOMOBILE DESIGN&DEVELOPMENT CO., LTD.) 28 September 2011 (28.09.2011) description, paragraphs [0015]-[0047], and figures 1-13			1-10		
Y		CN 104925080 A (CSR SIFANG LOCOMOTIVE & ROLLING STOCK CO., LTD.) 23 September 2015 (23.09.2015) description, paragraphs [0004]-[0048], and figures 1-6			1-10		
A		CN 103863351 A (CENTRAL SOUTH UNIVERSITY) 18 June 2014 (18.06.2014) the whole document			1-10		
A		CN 2647679 Y (LEI, Zhengbao) 13 October 2004 (13	1-10				
A		CN 102107664 A (CENTRAL SOUTH UNIVERSITY) 29 June 2011 (29.06.2011) the whole document			1-10		
\boxtimes	Furthe	er documents are listed in the continuation of Box C.	See patent fa	mily annex.			
*	Spec	ial categories of cited documents:			international filing date		
		nent defining the general state of the art which is not lered to be of particular relevance		and not in conflict with the application but stand the principle or theory underlying the			
	interna	application or patent but published on or after the ational filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
	" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; cannot be considered to involve an document is combined with one or		n inventive step when th		
"O"		nent referring to an oral disclosure, use, exhibition or	documents, such combination being skilled in the art		ng obvious to a person		
	but lat	nent published prior to the international filing date er than the priority date claimed	"&"document member of the same patent family				
Date o	ate of the actual completion of the international search		Date of mailing of the international search report				
Noma	04 January 2017 une and mailing address of the ISA			11 January 201			
State I	Intelle	ctual Property Office of the P. R. China	Authorized officer				
		heng Road, Jimenqiao trict, Beijing 100088, China	ZHANG, Yi Telephone No. (86-10) 62413096				
h		(86-10) 62019451					

INTERNATIONAL SEARCH REPORT

5

35

40

45

50

55

International application No. PCT/CN2016/102231

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 10 CN 201472283 U (CHANGSHA SCIENCE & TECHNOLOGY UNIVERSITY) 19 May 1-10 A 2010 (19.05.2010) the whole document A US 4182529 A (TAYCO DEVELOPMENTS INCORPORATION) 08 January 1980 1-10 (08.01.1980) the whole document 15 20 25 30

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/CN2016/102231

5

	Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
10	CN 201989738 U	28 September 2011	None	
	CN 104925080 A	23 September 2015	None	
	CN 103863351 A	18 June 2014	None	
15	CN 2647679 Y	13 October 2004	None	
	CN 102107664 A	29 June 2011	None	
	CN 201472283 U	19 May 2010	None	
00	US 4182529 A	08 January 1980	None	
20				
25				
30				
35				
40				
45				
45				
50				

⁵⁵ Form PCT/ISA/210 (patent family annex) (July 2009)

EP 3 199 420 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 201989738 U [0003]

CN 102107664 A [0004]