FIELD OF THE INVENTION
[0001] This disclosure is directed to acoustic processing, and, more specifically, to a
reconfigurable acoustic processor that is capable of running in real-time or near
real-time.
BACKGROUND
[0002] In general, noise that is present in a listening environment nearly always compromises
the experience of listening to audio through headphones. For instance, in an airplane
cabin, noise from the airplane produces unwanted acoustic waves, i.e., noise, that
travel to the listener's ears, in addition to the audio program. Other examples include
computer and air-conditioning noise of an office or house, vehicle and passenger noise
in public or private transportation, or other noisy environments.
[0003] In an effort to reduce the amount of noise received by the listener, two major styles
of noise reduction have been developed, passive noise reduction and active noise cancellation.
Passive noise reduction refers to a reduction in noise caused by placing a physical
barrier, which are commonly headphones or earplugs, between the ear cavity and the
noisy outside environment. The amount of noise reduced depends on the quality of the
barrier. In general, noise-reduction headphones having more mass provide higher passive
noise reduction. Large, heavy headphones may be uncomfortable to wear for extended
periods, however. For a given headphone, passive noise reduction works better to reduce
the higher frequency noise, while low frequencies may still pass through a passive
noise reduction system.
[0004] Active noise reduction systems, also called active noise cancellation (ANC), refers
to the reduction of noise achieved by playing an anti-noise signal through headphone
speakers. The anti-noise signal is generated as an approximation of the negative of
the noise signal that would be in the ear cavity in absence of ANC. The noise signal
is then neutralized when combined with the anti-noise signal.
[0005] In a general noise cancellation process, one or more sensors (e.g. microphones) monitor
ambient noise or noise in the earcups of headphones in real-time, then the system
generates the anti-noise signal from the ambient or residual noise. The anti-noise
signal may be generated differently depending on factors such as physical shape and
size of the ANC system, (e.g., headphones, etc.), frequency response of the sensor
and a transducer, e.g. speaker, latency of the transducer at various frequencies,
sensitivity of the sensor, and placement of the transducers and sensors, for example.
The variations in the above factors between different sensors and transducers (e.g.,
headphones) and even between the two ear cups of the same headphone system mean that
optimal filter design for generating anti-noise also vary.
[0006] Latency in processing an anti-noise signal prevents Active Noise Cancellation systems
from operating efficiently. For instance, digitizing the sensor signals and processing
the signal at rates common in audio processing, such as 44.1 KHz or 48 KHz introduces
large latency. Because performance of an acoustic processor, such as an ANC, depends
on the ability to detect noise and produce the anti-noise signal soon enough in time
to cancel the noise, a large latency is detrimental to acoustic noise cancellation
processing.
[0007] Embodiments of the invention address this and other limitations of the prior art.
Document
WO2012166273 discloses a personal audio device, such as a wireless telephone, that includes an
adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal
from a reference microphone signal that measures the ambient audio and an error microphone
signal that measures the output of an output transducer plus any ambient audio at
that location and injects the anti-noise signal at the transducer output to cause
cancellation of ambient audio sounds.
Document
US2011007907 discloses an adaptive active noise cancellation apparatus that performs a filtering
operation in a first digital domain and performs adaptation of the filtering operation
in a second digital domain.
Document
GB2455828 discloses a system and method comprising: an adaptive filter for receiving a digital
noise signal at a first sample rate and for generating a noise cancellation signal;
and control circuitry, for generating a control signal at a second sample rate for
application to the adaptive filter so as to adjust a filter characteristic.
Document
US2014112491 discloses a method and apparatus for active noise canceling.
Document
US2011001646 discloses a system and method of emulating characteristics of an output signal of
a first analog-to-digital converter by a second analog-to-digital converter employing
signal processing.
SUMMARY
[0008] Embodiments of the invention are set out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009]
Fig. 1 is a circuit diagram illustrating conventional topology of feedforward Active
Noise Cancellation.
Fig. 2 is a circuit diagram illustrating conventional topology of feed-back Active
Noise Cancellation.
Fig. 3 is a circuit diagram illustrating conventional topology of a combined feed-forward
and feed-back Active Noise Cancellation.
Fig. 4 is a block diagram of an audio system including a reconfigurable acoustic processor
according to embodiments of the invention.
Fig. 5 is a functional block diagram of an example reconfigurable acoustic processor
of Fig. 4.
Fig. 6 is a block diagram that illustrates the reconfigurable acoustic processor of
Fig. 4 configured to implement combined feed-forward and feed-back Active Noise Cancellation
operations.
Fig. 7 is a functional block diagram of components of an example reconfigurable acoustic
processer of Fig. 4, according to embodiments of the invention.
DETAILED DESCRIPTION
[0010] Embodiments of the invention are directed to a digital acoustic processor, such as
a Reconfigurable Acoustic Processor (RAP) for use in audio systems that use digitized
sensor inputs.
[0011] There are three major types of Active Noise Cancellation (ANC), which are distinguished
based on sensor, or microphone placement within the system. In feed-forward ANC, the
sensor senses ambient noise but does not appreciably sense signal produced by a transducer,
such as a speaker. Such a system is illustrated in Fig. 1. With reference to Fig.
1, a feed-forward ANC system 10 includes a sensor 12 that senses ambient noise, but
does not monitor the signal directly from a transducer 14. The output from the sensor
12 is filtered in a feed-forward filter 16 and the filter output coupled to a feed-forward
mixer 18, where the filtered signal is mixed with an input audio signal. The filtered
signal from the filter 16 is an anti-noise signal produced from the output of the
sensor 12. When the anti-noise signal is mixed with the desired signal in the mixer
18, the output of the transducer 14, which is a combination of an input signal mixed
with the filtered, anti-noise signal, has less noise than if there were no anti-noise
signal generated.
[0012] In feedback ANC, the sensor is placed in a position to sense the total audio signal
present in the ear cavity. In other words, the sensor senses the sum of both the ambient
noise as well as the audio played back by the transducer. Such a system is illustrated
in Fig. 2. With reference to Fig. 2, in a feedback ANC system 20, a sensor 32 directly
monitors output from the transducer 24. The output from the sensor 32 is mixed with
the audio input signal in a feedback mixer 30, and then the combined signal sent to
a feedback filter 34 where the combined signal is filtered to produce an anti-noise
signal. This anti-noise signal from the filter 34 is mixed with the original audio
signal in a mixer 28, the combined output of which is then fed to the transducer 24.
The feedback ANC system 20 also reduces the noise heard by the listener of the speaker
24.
[0013] A combined feed-forward and feedback ANC system uses two or more sensors, the first
position for sensors being in the feed-forward path as illustrated in Fig. 1, and
the second position of sensors being in the feedback path as illustrated in Fig. 2.
A combined feed-forward and feedback ANC system 40 is illustrated in Fig. 3, and includes
sensor positions 42, 52, and one or multiple transducers at the position illustrated
in Fig. 44. A signal sensed from the feedback sensor(s) at position 52 is mixed in
a feedback mixer 50 and the combined signal filtered by a feedback filter 54. Similarly,
a signal sensed from the feed-forward sensors(s) at position 42 is filtered in a feed-forward
filter 46 and the filtered signal combined with the incoming audio signal in a feed-forward
mixer 48. The output of the transducer(s) at position 44 has reduced noise by the
filtering and mixing operations.
[0014] Whereas existing systems used fixed topologies and filters, embodiments of the invention
use a selectable system to cover many different applications, as described in detail
below.
[0015] Typical audio processing rates are 44.1 kHz or 48 kHz, which is based on the frequency
range of typical human hearing. At these sample rates, the sampling time period is
around 20 µs. The digitizing and the filtering in ANC systems invariably take multiple
samples. At these rates, the resulting delay is in order of hundreds of microseconds.
Because any delay in processing degrades generation of the anti-noise signal, this
significantly lower ANC performance. This usually manifests itself as limiting the
maximum noise frequency that may be cancelled.
[0016] Fig. 4 is a block diagram of an audio system 100 including a low-latency or ultra-low
latency acoustic processor. In some embodiments the acoustic processor may be reconfigurable,
and is referred to as a Reconfigurable Audio Processor (RAP) 150. The audio system
in Fig. 4 is divided into three general portions - an analog portion 102, a digital
portion 104 running at a rate of an Analog to Digital Converter (ADC), and a digital
portion 106 running at a standard audio sample rate of 48 KHz. These portions may
also be referred to as domains.
[0017] The analog portion 102 does not require a clock, and typically signals in this portion
are generally continuous, analog, signals. For example a transducer or speaker 110
may produce an analog audio signal such as from headphones or other speakers. A sensor,
such as a digital microphone 112 automatically generates a digital output from an
analog input signal, while a standard analog sensor, such as microphone 114, may be
combined with an ADC 124 to generate a digital signal from the analog sensor 114.
A sensor 116, such as a microphone, may be placed in the feedback position, and coupled
to an ADC 126. The ADCs 124, 126 may use sigma-delta processing, for example. In other
embodiments the ADCs 124, 126 may be of Pulse Code Modulation (PCM) or Successive
Approximation Register (SAR) type. A single sensor 112, 114, 116 may be used for multiple
purposes, such as sampling ambient noise while also serving as an input microphone
for a telephone, for example. One or more filters 128 may be present to filter outputs
from the ADCs 124, 126, but are not required in all embodiments.
[0018] A Digital Signal Processor (DSP) 130 or other audio source operates in the digital
portion 106 and at a frequency of a standard audio sample rate. Typically the operating
frequency of the digital portion 106 of the audio system 100 is 48 KHz.
[0019] The operating frequency of the digital portion 104, conversely, may operate from
a low of approximately 50 KHz to a rate of approximately 100 MHz, and preferably within
a range such as 2-100 MHz. In some embodiments the digital portion 104 may operate
at 50 KHz, 96 KHz, within a range of hundreds of KHz, at frequencies in the low MHz
range, such as 1-6, in the 10s of MHz range, such as 10-20 MHz, up to approximately
100MHz. In embodiments of the invention, each of the components of the particular
domain operates at the frequency of the domain. For example, with reference to Fig.
4, the ADCs 124, 126 operate at the same frequency as the audio processor or RAP 150.
This is quite different than previous systems that typically use decimation filters
to downsample sensor signals before processing in an audio processor.
[0020] An interpolator 140 converts audio signals from the DSP 130, operating at 48 KHz,
to audio signals operating at 3 MHz or 6 MHz as an input signal to the RAP 150. In
reverse, a decimator 144, which need not be present in all audio systems 100, converts
signals from the RAP 150 at, for instance 3 or 6 MHz, to the operating frequency of
the digital portion 106. The resulting latency of the RAP 150 is extremely low, for
example less than 2.5 µs, and preferably less than 0.5 µs, because the RAP 150 processes
signals at the same rate as they are generated by the sensors, or microphones 112,
114, 116, whether or not the sensors are digital microphones or whether the sensor
signals are converted by the ADCs 124, 126 to digital signals.
[0021] As described in more detail below, the RAP 150 controls acoustic signals, for example
emitted from the transducer 110, in real time. As described above, the RAP 150 is
structured to operate on raw sensor samples from the microphones 112, 114, and/or
116 without any intermediate processing, like a decimation filter or other sample
rate converters. This allows responding to microphone signals with zero or near zero
computational delay in the RAP 150, which enables implementation of real-time audio
processing algorithms. The effect of using real-time sensor sampling is that delay
from the decimation filter of previous systems is eliminated, which in turn dramatically
increases the responsiveness of the control loop.
[0022] The sample rate of the digital portion 104 may be varied according to a sample rate
of the digital sensor 112, or the ADC 124 coupled to the analog sensor 114. There
is a linear tradeoff between the sample rate and the amount of processing that may
be processed per sample.
[0023] Fig. 5 is a functional block diagram of an example reconfigurable acoustic processor
(RAP) 250, which may be an embodiment of the RAP 150 of Fig. 4. The RAP 250 of Fig.
5 includes six chains of bi-quadratic, or bi-quad filters, BQ0-BQ6, the functions
of which are described below. Bi-quad filters are well known in electrical processing,
especially audio processing. Bi-quad filters typically include 2 zeros and 2 poles.
The bi-quad chains BQ0-BQ6 each include a cascade of bi-quad filters. In some embodiments
the chains BQ0-BQ6 may include 4, 6, 8, 12, or 16 cascaded bi-quad filters, with 8
being preferred. The bi-quad filter chains BQ0-BQ6 are programmable, so that their
filtering values may be changed according to a desired implementation. They may also
be set to a pass-through, or unity, setting, which means they do not appreciably affect
the signal passing through them.
[0024] Connected to each bi-quad filter chain BQ0-BQ6 are gain units, M0-M6, respectively,
with an additional gain unit M7, the purpose of which is described below. The gain
units M0-M7 are programmable, in that the amount of gain produced between their inputs
and outputs is controllable. Output of particular bi-quad filter chains BQ0-BQ6 may
be controlled by its coupled gain unit M0-M6. Setting the gain of any of the gain
units M0-M6 to zero effectively turns off that particular circuit branch. It is not
strictly necessary to maintain a one-to-one relationship between bi-quad filter chains
and gain units, but maintaining that relationship provides flexibility for setting
up the RAP. The RAP 250 of Fig. 5 shows a single audio channel. For two or more channels,
such as for stereo processing, additional hardware would be used.
[0025] By programming particular filter coefficients in the bi-quad filter chains BQ0-BQ6
and particular gain values in the gain units M0-M6, different audio applications may
be performed in the RAP 250, such as audio noise cancellation, as described below.
[0026] Also coupled to the RAP 250 may include inputs from digital sensors, 212, 214, which
may be microphones, a decimator 218, and an interpolator 220. Either or both of the
sensor inputs 212, 214 may be created by having an analog microphone coupled to an
ADC. The decimator 218 and interpolator 220 operate as described with reference to
Fig. 4.
[0027] In operation, the RAP 250 accepts input from the sensor 212 at bi-quad filter chains
BQ0 and BQ3, and accepts input from the sensor 214 at bi-quad filter chains BQ1 and
BQ5. An audio signal is accepted at the bi-quad filter chains BQ2 and BQ6. In some
embodiments, an audio signal is not strictly necessary. For example, in noise cancellation
headphones for hunters or industry, no audio signal may be present.
[0028] The gain unit M7 may be used as a controllable gain for the processed audio signal
before its final combination in a combiner A2 with the unprocessed audio signal from
the interpolator 220. The gain unit M7 may be controlled to increase its gain gradually,
so that noise cancelation or other processing may be added to the unprocessed audio
signal gradually, to eliminate pops or other fast changes in the output audio signal,
which may be uncomfortable for a listener.
[0029] Adders or combiners A0, A1, and A2 combine intermediate signal outputs from the bi-quad
filter chains, as illustrated in Fig. 5.
[0030] In one embodiment, the RAP 350 operates at 49.152 MHz, which is a standard rate for
audio processing. The input sample rate is typically 3.072 Msps, and the filter portion
may also operate at the same rate.
[0031] A straightforward example of operation of the RAP 250 is a simple audio processor,
without using input from either of the sensors 212, 214. In such an example, the gain
unit M7 is set to 0, i.e., turned off, while the audio signal from the interpolator
is filtered by the bi-quad filter chain BQ6. Controlling the gain unit M6 controls
an output signal level of the filtered audio signal, which is sent to the transducer
210, which may be a speaker, or other transducer output.
[0032] In a more complex example, the RAP 250 may be configured as a feed-forward/feedback
ANC, having the same functionality as the feed-forward and feed-back ANC circuit illustrated
in Fig. 3. Fig. 6 illustrates how the RAP 250 is set for such a configuration. In
this configuration, the gain units M0 and M5 are set to 0, which is illustrated in
Fig. 6 as having an "x", which indicates they do not contribute anything to the processing.
The gain units M2, M4, M6 and M7 are set to 1. Gain units M1 and M3 are set to -1,
which means their outputs are subtracted. Bi-quad filter chains BQ1, BQ2, and BQ6
are set to pass-through settings. With reference to Figs. 3 and 6, the Bi-quad filter
chain BQ3 has the role of the feed-forward filter 46, while Bi-quad filter chain BQ4
has the role of the feedback filter 54.
[0033] By configuring the RAP 250, and particularly the gain units M0-M7 and bi-quad filter
chains BQ1-BQ6, the RAP may be configured to perform most any type of audio processing.
For instance, the RAP 250 may be configured as an ANC processor for active noise cancellation
headphones, in either feedback, feed-forward, or combined feed-forward feedback configurations.
The RAP 250 may be used for active noise cancellation in phone handsets by using input
from the handset microphone and producing audio output for one or more speakers in
the handset. The RAP 250 may further enhance an input audio signal while simultaneously
performing noise cancellation. The RAP 250 may also be used for ambient sound enhancement
by accepting an ambient sound at one of the microphone inputs, modifying it through
one or more bi-quad filter chains, setting an appropriate gain level, then outputting
the modified ambient signal.
[0034] In practice, the RAP 250 of Fig. 6 or RAP 150 of Fig. 5 includes functions, processes,
or operations for modifying an audio signal input. In practice these functions may
be implemented by specially formed hardware circuits, as programmed functions operating
on a general-purpose or special-purpose processor, such as a Digital Signal Processor
( DSP), or may be implemented in Field Programmable Gate Arrays (FPGAs) or Programmable
Logic Devices (PLDs). Other variations are also possible.
[0035] Fig. 7 is a functional block diagram of components of an example reconfigurable acoustic
processor of Fig. 4, according to embodiments of the invention. In Fig. 7, a RAP 350
includes a bi-quad engine 310 and a multiplier accumulator 320. The multiplier accumulator
320 implements all of the multipliers and adders in the functional block diagram of
Figs. 5 and 6. In one embodiment there are seven multiply-add operations per sample.
The bi-quad engine 310 includes inputs from one or more sensors, such as microphones,
as well as an input of the audio signal to be processed. The biquad engine may also
accept input from the multiplier-accumulator output. The inputs from the sensors are
clocked at the same rate as the biquad engine. In other words, the sensor inputs may
be processed without any decimation or rate reduction. The bi-quad engine 310 may
be sized to operate on 16 bi-quad filters. A bi-quad descriptor section 330 contains
filter values for implementing the bi-quad filter chains, while bi-quad state memory
332 is memory for storing intermediate values during bi-quad processing. A gain table
322 stores values for the gain units, while feathering control, such as provided by
gain unit M7 of Fig. 5, is provided separately by a feathering control 334. The RAP
350 is programmed and configured by writing particular values into the bi-quad descriptors
330 and gain tables 322, as illustrated in Fig. 7.
[0036] By using such programmable techniques, filters may be chosen to enhance, rather than
reduce certain sounds or noises. For instance, instead of bi-quad chain filter parameters
chosen for their ability to reduce sounds sensed by a particular microphone, as described
above, parameters may be chosen that enhance particular sounds. For example, a person
may be using noise cancellation headphones in a noisy work environment with a variety
of rumbling machinery, but still wants to be able to speak to a co-worker without
removing the noise reducing headphones. Using the adaptive filter coefficients, when
microphones detected noise in the vocal band, different parameters may be automatically
loaded to the RAP system that enhanced the voice of the co-worker. Thus the listener
would have noise-canceling headphones that adaptively enhanced particular sounds.
Sounds such as voices, audio television signals, and traffic, for example, may be
enhanced. When such sounds went away, for example the co-worker stopped speaking,
the standard filtering coefficients could again be dynamically loaded into the filters
of the RAP system.
[0037] Embodiments of the invention may be incorporated into integrated circuits such as
sound processing circuits, or other audio circuitry. In turn, the integrated circuits
may be used in audio devices such as headphones, mobile phones, portable computing
devices, sound bars, audio docks, amplifiers, speakers, etc.
[0038] Having described and illustrated the principles of the invention with reference to
illustrated embodiments, it will be recognized that the illustrated embodiments may
be modified in arrangement and detail without departing from such principles, and
may be combined in any desired manner. And although the foregoing discussion has focused
on particular embodiments, other configurations are contemplated.
[0039] In particular, even though expressions such as "according to an embodiment of the
invention" or the like are used herein, these phrases are meant to generally reference
embodiment possibilities, and are not intended to limit the invention to particular
embodiment configurations. As used herein, these terms may reference the same or different
embodiments that are combinable into other embodiments.
[0040] Consequently, in view of the wide variety of permutations to the embodiments described
herein, this detailed description and accompanying material is intended to be illustrative
only, and should not be taken as limiting the scope of the invention, which is defined
by the appended claims.
1. A reconfigurable noise cancellation system (100) comprising:
an interpolator (140) for converting a digital audio signal generated by a digital
signal processor (130) from a first sample rate of 48 kHz to a second sample rate
of 3 or 6 MHz;
at least one sensor (112; 114; 116; 212; 214) producing a raw sensor signal at the
second sample rate; and
a reconfigurable acoustic processor, RAP (150; 250), coupled to the interpolator (140)
and to the at least one sensor (112; 114; 116; 212; 214), operating at the second
sample rate and including a plurality of programmable filters (BQ0-BQ6), a plurality
of controllable gain stages (M0-M6) coupled to respective ones of the plurality of
programmable filters, adders (A0-A2) structured to combine outputs of the plurality
of controllable gain stages (M0-M6), and an audio output (110; 210) coupled to at
least one of the adders (A0-A2) for outputting an output audio signal modified by
the raw sensor signal received by the RAP (150; 250) from the at least one sensor
(112; 114; 116; 212; 214) without any intermediate processing in real-time with a
maximum computational delay of 2.5 µs.
2. The reconfigurable noise cancellation system (100) of claim 1 wherein the at least
one sensor comprises a digital sampling microphone (112; 212) operating at the second
sample rate.
3. The reconfigurable noise cancellation system (100) of claim 1 or 2 wherein the at
least one sensor comprises an analog microphone (114, 116; 214) coupled to an Analog
to Digital Converter, ADC (124, 126), operating at the second sample rate.
4. The reconfigurable noise cancellation system (100) of claim 3 wherein the ADC (124,
126) is configured to perform Sigma-Delta processing.
5. The reconfigurable noise cancellation system (100) of claim 1 wherein the programmable
filters are configured to be programmed during operation of the noise cancellation
system; and/or at least some of the plurality of controllable gain stages are configured
to be updated during operation of the noise cancellation system.
6. A method of operating a reconfigurable acoustic processor, RAP (150; 250), comprising:
converting a digital audio signal generated by a digital signal processor (130) from
a first sample rate of 48 kHz to a second sample rate of 3 or 6 MHz that is higher
than the first sample rate;
receiving one or more raw sensor signals of a monitored environment at the second
sample rate through one or more sensors (112; 114; 116; 212; 214);
configuring a filter parameter section of a plurality of programmable filters in the
RAP (150; 250) which operates at the second sample rate and receives the one or more
raw sensor signals from the at least one sensor (112; 114; 116; 212; 214) without
any intermediate processing in real-time and with a maximum computational delay of
2.5 µs;
configuring a plurality of controllable gain stages in the RAP (150; 250) so that
at least some of the plurality of controllable gain stages are coupled respectively
to at least some of the plurality of programmable filters; and
mixing, at the second sample rate, selected of the outputs of the plurality of controllable
gain stages with the digital audio signal to produce an audio signal output modified
by the one or more raw sensor signals received by the RAP (150; 250).
7. The method of claim 6, further comprising:
outputting the audio signal output to a transducer (110; 210).
8. The method of claim 6 further comprising:
sending the digital audio signal to the digital signal processor (130) at the first
sample rate.
9. The method of claim 6 further comprising:
modifying the configuration of the filter parameter section of the plurality of programmable
filters during operation of the RAP (150; 250).
10. The method of claim 6 wherein the one or more sensors comprise at least one digital
sampling microphone (112; 212) operating at the second sample rate.
1. Rekonfigurierbares Geräuschunterdrückungssystem (100), umfassend:
einen Interpolator (140) zum Umwandeln eines digitalen Audiosignals, das von einem
digitalen Signalprozessor (130) erzeugt wird, von einer ersten Abtastrate von 48 kHz
in eine zweite Abtastrate von 3 oder 6 MHz;
mindestens einen Sensor (112; 114; 116; 212; 214), der ein Sensor-Rohsignal mit der
zweiten Abtastrate erzeugt; und
einen rekonfigurierbaren Akustikprozessor (reconfigurable acoustic processor, RAP)
(150; 250), der mit dem Interpolator (140) und dem mindestens einen Sensor (112; 114;
116; 212; 214) gekoppelt ist, mit der zweiten Abtastrate arbeitet und mehrere programmierbare
Filter (BQ0-BQ6), mehrere steuerbare Verstärkungsstufen (M0-M6), die mit den jeweiligen
der mehreren programmierbaren Filter gekoppelt sind, Addierer (A0-A2), die aufgebaut
sind, um Ausgänge der mehreren steuerbaren Verstärkungsstufen (M0-M6) zu kombinieren,
und einen Audioausgang (110; 210) aufweist, der mit mindestens einem der Addierer
(A0-A2) gekoppelt ist, um ein Ausgangsaudiosignal auszugeben, das durch das Sensor-Rohsignal
modifiziert ist, das von dem RAP (150; 250) von dem mindestens einen Sensor (112;
114; 116; 212; 214) ohne jegliche Zwischenverarbeitung in Echtzeit mit einer maximalen
Rechenverzögerung von 2,5 us empfangen wird.
2. Rekonfigurierbares Geräuschunterdrückungssystem (100) nach Anspruch 1, wobei der mindestens
eine Sensor ein digitales Abtastmikrofon (112; 212) umfasst, das mit der zweiten Abtastrate
arbeitet.
3. Rekonfigurierbares Geräuschunterdrückungssystem (100) nach Anspruch 1 oder 2, wobei
der mindestens eine Sensor ein analoges Mikrofon (114, 116; 214) umfasst, das mit
einem Analog-Digital-Wandler (analog to digital converter, ADC) (124, 126), gekoppelt
ist, der mit der zweiten Abtastrate arbeitet.
4. Rekonfigurierbares Geräuschunterdrückungssystem (100) nach Anspruch 3, wobei der ADC
(124, 126) eingerichtet ist, eine Sigma-Delta-Verarbeitung durchzuführen.
5. Rekonfigurierbares Geräuschunterdrückungssystem (100) nach Anspruch 1, wobei die programmierbaren
Filter eingerichtet sind, um während des Betriebs des Geräuschunterdrückungssystems
programmiert zu werden; und/oder zumindest einige der mehreren steuerbaren Verstärkungsstufen
eingerichtet sind, um während des Betriebs des Geräuschunterdrückungssystems aktualisiert
zu werden.
6. Verfahren zum Betreiben eines rekonfigurierbaren Akustikprozessors (reconfigurable
acoustic processor, RAP) (150; 250), umfassend:
Umwandeln eines digitalen Audiosignals, das von einem digitalen Signalprozessor (130)
erzeugt wird, von einer ersten Abtastrate von 48 kHz in eine zweite Abtastrate von
3 oder 6 MHz, die höher ist als die erste Abtastrate;
Empfangen eines oder mehrerer Sensor-Rohsignale einer überwachten Umgebung mit der
zweiten Abtastrate durch einen oder mehrere Sensoren (112; 114; 116; 212; 214);
Konfigurieren eines Filterparameterabschnitts von mehreren programmierbaren Filtern
in dem RAP (150; 250), der mit der zweiten Abtastrate arbeitet und das eine oder die
mehreren Sensor-Rohsignale von dem mindestens einen Sensor (112; 114; 116; 212; 214)
ohne jegliche Zwischenverarbeitung in Echtzeit und mit einer maximalen Rechenverzögerung
von 2,5 us empfängt;
Konfigurieren mehrerer steuerbarer Verstärkungsstufen in dem RAP (150; 250), so dass
mindestens einige der mehreren steuerbaren Verstärkungsstufen jeweils mit mindestens
einigen der mehreren programmierbaren Filter gekoppelt sind; und
Mischen, bei der zweiten Abtastrate, ausgewählter Ausgänge der mehreren steuerbaren
Verstärkungsstufen mit dem digitalen Audiosignal, um einen Audiosignalausgang zu erzeugen,
der durch das eine oder die mehreren Sensor-Rohsignale modifiziert ist, die von dem
RAP (150; 250) empfangen werden.
7. Verfahren nach Anspruch 6, ferner umfassend:
Ausgeben des Audiosignalausgangs an einen Wandler (110; 210) .
8. Verfahren nach Anspruch 6, ferner umfassend:
Senden des digitalen Audiosignals an den digitalen Signalprozessor (130) mit der ersten
Abtastrate.
9. Verfahren nach Anspruch 6, ferner umfassend:
Modifizieren der Konfiguration des Filterparameterabschnitts der mehreren programmierbaren
Filter während des Betriebs des RAP (150; 250).
10. Verfahren nach Anspruch 6, wobei der eine oder die mehreren Sensoren mindestens ein
digitales Abtastmikrofon (112; 212) umfassen, das mit der zweiten Abtastrate arbeitet.
1. Système d'atténuation de bruit reconfigurable (100) comprenant :
un interpolateur (140) pour convertir un signal audio numérique généré par un processeur
de signal numérique (130) d'une première fréquence d'échantillonnage de 48 kHz à une
seconde fréquence d'échantillonnage de 3 ou 6 MHz ;
au moins un capteur (112 ; 114 ; 116 ; 212 ; 214) produisant un signal de capteur
brut à la seconde fréquence d'échantillonnage ; et
un processeur acoustique reconfigurable (reconfigurable acoustic processor, RAP) (150
; 250), couplé à l'interpolateur (140) et à au moins un capteur (112 ; 114 ; 116 ;
212 ; 214), fonctionnant à la seconde fréquence d'échantillonnage et comportant une
pluralité de filtres programmables (BQ0- BQ6), une pluralité d'étages à gain pouvant
être commandé (M0-M6) couplés aux filtres respectifs de la pluralité de filtres programmables,
des additionneurs (A0-A2) structurés pour combiner des sorties de la pluralité d'étages
à gain pouvant être commandé (M0-M6), et une sortie audio (110 ; 210) couplée à au
moins un des additionneurs (A0-A2) pour produire un signal audio de sortie modifié
par le signal de capteur brut reçu par le RAP (150 ; 250) en provenance du au moins
un capteur (112 ; 114 ; 116 ; 212 ; 214) sans aucun traitement intermédiaire en temps
réel avec un retard de calcul maximal de 2,5 us.
2. Système d'atténuation de bruit reconfigurable (100) selon la revendication 1, dans
lequel le au moins un capteur comprend un microphone d'échantillonnage numérique (112
; 212) fonctionnant à la seconde fréquence d'échantillonnage.
3. Système d'atténuation de bruit reconfigurable (100) selon la revendication 1 ou 2,
dans lequel le au moins un capteur comprend un microphone analogique (114, 116 ; 214)
couplé à un convertisseur analogique-numérique (analog to digital converter, ADC)
(124, 126), fonctionnant à la seconde fréquence d'échantillonnage.
4. Système d'atténuation de bruit reconfigurable (100) selon la revendication 3, dans
lequel l'ADC (124, 126) est configuré pour réaliser un traitement sigma-delta.
5. Système d'atténuation de bruit reconfigurable (100) selon la revendication 1, dans
lequel les filtres programmables sont configurés pour être programmés pendant le fonctionnement
du système d'atténuation de bruit ; et/au moins certains étages de la pluralité d'étages
à gain pouvant être commandé sont configurés pour être mis à jour pendant le fonctionnement
du système d'atténuation de bruit.
6. Procédé de fonctionnement d'un processeur acoustique reconfigurable (reconfigurable
acoustic processor, RAP) (150 ; 250), comprenant de :
convertir un signal audio numérique généré par un processeur de signal numérique (130)
d'une première fréquence d'échantillonnage de 48 kHz à une seconde fréquence d'échantillonnage
de 3 ou 6 MHz qui est supérieure à la première fréquence d'échantillonnage ;
recevoir un ou plusieurs signaux de capteur bruts d'un environnement surveillé à la
seconde fréquence d'échantillonnage par l'intermédiaire d'un ou plusieurs capteurs
(112 ; 114 ; 116 ; 212 ; 214) ;
configurer une section de paramètres de filtre d'une pluralité de filtres programmables
dans le RAP (150 ; 250) qui fonctionne à la seconde fréquence d'échantillonnage et
reçoit le ou les signaux de capteur bruts provenant du au moins un capteur (112 ;
114 ; 116 ; 212 ; 214) sans aucun traitement intermédiaire en temps réel et avec un
retard de calcul maximal de 2,5 µs ;
configurer une pluralité d'étages à gain pouvant être commandé dans le RAP (150 ;
250) de sorte qu'au moins certains étages de la pluralité d'étages à gain pouvant
être commandé sont respectivement couplés à au moins certains filtres de la pluralité
de filtres programmables ;
et
mélanger, à la seconde fréquence d'échantillonnage, des sorties sélectionnées parmi
les sorties de la pluralité d'étages à gain pouvant être commandé avec le signal audio
numérique pour produire une sortie de signal audio modifiée par le ou les signaux
de capteur bruts reçus par le RAP (150 ; 250).
7. Procédé selon la revendication 6, comprenant en outre de :
transmettre la sortie de signal audio à un transducteur (110 ; 210).
8. Procédé selon la revendication 6, comprenant en outre de :
envoyer le signal de sortie audio au processeur de signal numérique (130) à la première
fréquence d'échantillonnage.
9. Procédé selon la revendication 6, comprenant en outre de :
modifier la configuration de la section de paramètres de filtre de la pluralité de
filtres programmables pendant le fonctionnement du RAP (150 ; 250).
10. Procédé selon la revendication 6, dans lequel le ou les capteurs comprennent au moins
un microphone d'échantillonnage numérique (112 ; 212) fonctionnant à la seconde fréquence
d'échantillonnage.