

(11) EP 3 216 882 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 13.09.2017 Bulletin 2017/37

(21) Application number: 15856211.6

(22) Date of filing: 04.11.2015

(51) Int Cl.:

C22C 1/02 (2006.01) C22B 9/20 (2006.01)

C22B 9/10 (2006.01) C22C 21/00 (2006.01)

(86) International application number:

PCT/JP2015/081093

(87) International publication number:

WO 2016/072434 (12.05.2016 Gazette 2016/19)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 04.11.2014 JP 2014224360

07.04.2015 JP 2015078626 12.08.2015 JP 2015159315

(71) Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Kobe-shi, Hyogo 651-8585 (JP)

(72) Inventors:

 MATSUWAKA Daisuke Kobe-shi, Hyogo 651-2271 (JP) KUDO Fumiaki Kobe-shi, Hyogo 651-2271 (JP)

 DEURA Tetsushi Kobe-shi,

Hyogo 651-2271 (JP)
• ISHIDA Hitoshi
Kobe-shi,

Hyogo 651-2271 (JP)

 SAKAMOTO Koichi Kobe-shi, Hyogo 651-2271 (JP)

(74) Representative: Müller-Boré & Partner

Patentanwälte PartG mbB Friedenheimer Brücke 21 80639 München (DE)

(54) METHOD FOR DEOXIDIZING AI-Nb-Ti ALLOY

(57) To reduce the oxygen content of an Al-Nb-Ti alloy containing 50-75 mass% of Al, 5-30 mass% of Nb, and 80 mass% or less as the total of Al and Nb, the Al-Nb-Ti alloy being produced using an alloy material that comprises an Al material, an Nb material, and a Ti ma-

terial and contains a total of 0.5 mass% or more of oxygen, by using a dissolution method using a water-cooled copper container to dissolve and hold the Al-Nb-Ti alloy in a 1.33 Pa-2.67 x 10^5 Pa atmosphere at a temperature of 1900K or higher.

Description

Technical Field

[0001] The present invention relates to a deoxidation method of an Al-Nb-Ti alloy for removing oxygen from an Al-Nb-Ti alloy manufactured using an alloy material that is composed of an aluminum material, a niobium material and a titanium material and contains oxygen in a total amount of 0.5 mass% or more.

Background Art

10

15

20

30

35

40

45

50

55

[0002] In recent years, demand for a Ti-Al alloy as a metal material for airplanes or automobiles is growing. Among others, demand for a Ti-Al-Nb alloy having more enhanced oxidation resistance by adding Nb to Ti-Al is increasing. When titanium alloy of which main component is titanium that is an active metal, such as Ti-Al-Nb alloy, is produced, it is indispensable to prevent contamination by oxygen during melting, and a melting method such as vacuum arc remelting method (VAR), electron beam melting method (EB), plasma arc melting method (PAM), vacuum induction melting method (VIM) and cold crucible induction melting method (CCIM) has been conventionally employed.

[0003] Among these melting methods, the melting method such as VAR, EB and VIM is a melting method of melting an alloy in a vacuum atmosphere and when such a melting method is employed for melting a Ti-Al-Nb alloy, not only Al or Nb as an alloy element but also Ti are evaporated during melting to cause an element loss. More specifically, it is very difficult in the current industrial process to control the Ti-Al-Nb alloy to have a target composition, resulting in a rise of the production cost.

[0004] For the smelting of a Ti-Al-Nb alloy having a low oxygen content, production of a Ti-Al-Nb alloy by use of a high-grade niobium or titanium material having a low oxygen content is effective, but since the high-grade niobium material is expensive and its price tends to rise particularly in recent years, a need to produce a Ti-Al-Nb alloy by use of a relatively low-grade niobium material having a large oxygen content and being inexpensive, such as lower niobium, niobium oxide ore (Nb₂O₅) and scrap raw material, is increasing day by day. As with the niobium material, a high-grade titanium material is expensive, and needs for use of a relatively low-grade titanium material, such as scrap raw material, is also increasing.

[0005] Ti is an active metal and has a very strong bonding force to oxygen present in the melting atmosphere, and measures to deal with how to decrease the amount of oxygen entering from the outside during melting and prevent contamination have been heretofore taken. However, it is not easy to remove oxygen once dissolved in Ti, and although little is known at present about the effort therefor itself, the related art includes the following proposals.

[0006] Patent Document 1 discloses a method for melting a γ -titanium aluminide, including a step of melting, in a calcium oxide-made crucible, a charging material composed of a titanium aluminide alloy and a metal such as niobium in an amount effective for reducing oxygen intake into the melt, but only a melting method for a Ti-Al-Nb alloy is merely described, and a technique regarding a deoxidation method for a Ti-Al-Nb alloy is neither described nor suggested. In addition, the niobium raw material used is a high-purity material with a purity of 99.9% or more, and the oxygen concentration of the Ti-Al-Nb alloy after melting is a concentration not requiring deoxidation.

[0007] Patent Document 2 describes a production method of a Ti-Al alloy, including melting a Ti-Al alloy in a lime crucible in vacuum or in an inert atmosphere, adding Ca or a Ca-containing alloy to the melted Ti-Al alloy, and performing a deoxidation treatment. Patent Document 2 certainly describes a technique regarding the deoxidation method of a Ti-Al alloy, but even use of a niobium material is neither described nor suggested, let alone use of a niobium material with a high oxygen content.

[0008] Patent Document 3 describes a method for producing a high-purity and low-oxygen Ti-Al alloy by, in the smelting of an alloy containing Ti-Al as its main component, deoxidizing the alloy with Ca, evaporating/removing excess Ca, and performing contamination-free uniform melting. However, in Patent Document 3 as well, even use of a niobium material is not described, and the method for deoxidizing a Ti-Al-Nb alloy is neither described not suggested. In addition, according to the technique described in Patent Document 3, two steps of adding/melting of Ca and melting for removal of Ca and homogenization are required and moreover, remaining Ca cannot be completely removed, raising a concern about the increase in the production cost/time and the change in various properties due to remaining Ca.

Prior Art Document

Patent Document

[0009]

Patent Document 1: JP-A-H05-195102

Patent Document 2: JP-A-H04-120225 Patent Document 3: JP-A-H05-154642

Summary of Invention

Technical Problem

5

10

15

20

30

35

40

45

50

55

[0010] The present invention has been made to solve the above-described conventional problems, and an object of the present invention is, by focusing attention first on the production of an Al-Nb-Ti alloy containing Al as its main component and having a low oxygen content, to provide a deoxidation method of a Al-Nb-Ti alloy, in which a Ti-Al-Nb alloy having a target composition and a low oxygen content can be easily produced without creating a high vacuum atmosphere.

Solution to Problem

[0011] The method for deoxidizing an Al-Nb-Ti alloy in the present invention includes melting and holding an Al-Nb-Ti alloy containing from 50 to 75 mass% of Al, from 5 to 30 mass% of Nb, and 80 mass% or less in total of Al and Nb by a melting method using a water-cooled copper vessel in an atmosphere of 1.33 Pa to 2.67×10^5 Pa at a temperature of 1,900 K or more, thereby decreasing an oxygen content thereof, the Al-Nb-Ti alloy being prepared using an alloy material composed of an aluminum material, a niobium material and a titanium material and containing oxygen in a total amount of 0.5 mass% or more.

[0012] It is preferred that a CaO-CaF₂ flux obtained by blending from 0 mass% to 95 mass% of calcium fluoride with calcium oxide is added during melting of the Al-Nb-Ti alloy by the melting method using the water-cooled copper vessel.

[0013] It is preferred that the melting method using the water-cooled copper vessel is any one of an arc melting method, a plasma arc melting method and an induction melting method.

Advantageous Effects of Invention

[0014] According to the deoxidation method of an Al-Nb-Ti alloy of the present invention, the content of Al in the melt is set to a high concentration of 50 to 75 mass%, so that even when a high vacuum atmosphere is not created, an Al-Nb-Ti alloy having a target composition and a low oxygen content can be easily produced by using a low-grade inexpensive niobium material having a high oxygen content while causing substantially no volatilization loss of Al, Nb and Ti during melting. An appropriate amount of this Al-Nb-Ti alloy having a low oxygen content is mixed with Ti having a low oxygen content, whereby a desired Ti-Al-Nb alloy containing Ti as its main component can be obtained at a relatively low cost.

Brief Description of Drawings

[0015]

[FIG. 1] A graph diagram illustrating the relationship between the Al content in an Al-Nb-Ti alloy and the oxygen content before and after melting.

[FIG. 2] A graph diagram enlarging the region surrounded by a square of FIG. 1 illustrating the relationship between the Al content in an Al-Nb-Ti alloy and the oxygen content before and after melting.

[FIG. 3] A graph diagram illustrating the relationship between the Al content in an Al-Nb-Ti alloy and the oxygen content before and after melting, including addition or no addition of flux.

[FIG. 4] A graph diagram enlarging the region surrounded by a square of FIG. 3 illustrating the relationship between the Al content in an Al-Nb-Ti alloy and the oxygen content before and after melting.

Description of Embodiments

[0016] The present inventors have made intensive studies to obtain a Ti-Al-Nb alloy (a Ti-Al-Nb alloy of which main component being titanium that is an active metal) having a target composition and a low oxygen content by using the above-described low-grade niobium material having a high oxygen content.

[0017] As a result, they have conceived that while it is difficult for technical and cost reasons to reduce the oxygen content in conjunction with previously controlling the alloy to a desired composition, i.e., to an alloy composition containing titanium as its main component, when the process thereof is divided and after an Al-Nb-Ti alloy having a low oxygen content and containing aluminum as its main component is prepared, the Al-Nb-Ti alloy having a low oxygen content is mixed with an appropriate amount of pure Ti having a low oxygen content obtained by a normal production method, a

Ti-Al-Nb alloy having a desired composition and containing titanium as its main component may be obtained relatively in an easy and low-cost manner.

[0018] The present inventors have found that the soluble oxygen concentration (solubility limit) decreases in a composition range of containing high-concentration Al in an alloy, and made intensive studies to find a method where even when a high vacuum atmosphere is not created, an Al-Nb-Ti alloy having a target composition and a low oxygen content can be easily produced by using a low-grade niobium or titanium material containing a lot of oxygen, such as lower niobium, niobium oxide ore (NbO_x) and scrap raw material, while causing no volatilization losses of Al, Nb and Ti.

[0019] More specifically, it has been found that when the content of AI in the melt is set as high as 50 to 75 mass%, even in an AI-Nb-Ti alloy prepared using a low-grade niobium or titanium material, a deoxidation reaction proceeds during melting in a water-cooled copper vessel without creating a high vacuum atmosphere and a low-oxygen AI-Nb-Ti alloy having a target composition can be easily produced while causing substantially no volatilization loss of AI, Nb and Ti. The present invention has been accomplished based on this finding.

[0020] In addition, it has also been found that when a CaO-CaF₂ flux not dissolving in titanium and having a specific component composition is added as a deoxidation reaction accelerator before or during melting of an Al-Nb-Ti alloy, the deoxidation reaction proceeds more unfailingly.

[0021] The present invention is described in more detail below based on embodiments.

10

20

30

35

40

45

50

55

[0022] The deoxidation method of an Al-Nb-Ti alloy of the present invention is a method where an Al-Nb-Ti alloy containing from 50 to 75 mass% of Al, from 5 to 30 mass% of Nb, and 80 mass% or less in total of Al and Nb, prepared using an alloy material composed of an aluminum material, a niobium material and a titanium material and containing oxygen in a total amount of 0.5 mass% or more is melted and held by a melting method using a water-cooled copper vessel, such as arc melting method, plasma arc melting method and induction melting method, in an atmosphere of 1.33 Pa to 2.67×10^5 Pa at a temperature of 1,900 K or more and the oxygen content is thereby decreased. A low-grade niobium material such as lower niobium, niobium oxide ore (NbO_x) and scrap raw material may be used as the niobium material, and titanium oxide (TiO_x), scrap raw material, etc., may be used as the titanium material.

[0023] As the reason why a low-grade niobium material having a high oxygen content, such as lower niobium, niobium oxide ore (NbO_x) and scrap raw material, is used for the preparation of an Al-Nb-Ti alloy, these niobium materials are inexpensive and easy to procure, compared with a high-grade raw material. As the reason why the total content of oxygen in an alloy material composed of an aluminum material, a niobium material and a titanium material is set to be 0.5 mass% or more, when the total content of oxygen in the alloy material is less than 0.5 mass%, the oxygen content is slight and a low-oxygen Al-Nb-Ti alloy can be easily obtained by performing dilution or simple refining. In the present invention, the upper limit of the oxygen content is not specified, but the upper limit of the total content of oxygen actually contained in the alloy material above is considered to be about 30.0 mass%.

[0024] As the reason why in an Al-Nb-Ti alloy prepared using the alloy material composed of an aluminum material, a niobium material and a titanium material, the Al content is set to be from 50 to 75 mass%, the Nb content is set to be from 5 to 30 mass%, and the total content of Al and Nb is set to be 80 mass% or less, when the Al content in the Al-Nb-Ti alloy is 50 mass% or more and the Nb content is 5 mass% or more, a deoxidation reaction of the Al-Nb-Ti alloy is allowed to proceed by a melting method using a water-cooled copper vessel, such as arc melting method, plasma arc melting method and induction melting method, even in an atmosphere of 1.33 Pa to 2.67×10^5 Pa and not in a high vacuum atmosphere. In addition, as the reason why the pressure during melting is set to be from 1.33 Pa to 2.67×10^5 Pa, at the pressure in this range, volatilization loss of Al, Nb and Ti is not caused and reduction in the yield due to scattering of molten metal can be prevented.

[0025] The deoxidation reaction is a phenomenon developed only in a high Al content region with low oxygen solubility, and it is suggested in the following ternary phase diagram of Ti-Al-O (X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. Van Loo, Acta Metall. Mater., 40 [11] 3147-3157 (1992)) that as the Al content is higher, the oxygen solubility limit decreases. In addition, the deoxidation reaction is a phenomenon developed in a liquid phase and in the case of an Al-Nb-Ti alloy, when Al activity in the alloy melt becomes high, the deoxidation reaction proceeds more significantly. When the Al-Nb-Ti alloy has an Al content of 50 to 75 mass%, an Nb content of 5 to 30 mass% and a total amount of Al and Nb of 80 mass% or less, the deoxidation reaction proceeds basically at a temperature of 1,900 K or more.

[0026] In the Al-Nb-Ti alloy, as the reason why the upper limit of the Al content is set to be 75 mass%, the upper limit of the Nb content is set to be 30 mass%, and the total amount of Al and Nb is set to be 80 mass% or less, since the Al-Nb-Ti alloy contains other alloy elements in addition to Nb and Ti or impurities such as oxygen, if the contents of Al and Nb are too large, the proportion of Ti decreases and the alloy cannot be an Al-Nb-Ti alloy.

[0027] The deoxidation method of an Al-Nb-Ti alloy of the present invention is described as a method of reducing the oxygen content without causing substantially no volatilization loss of Al, Nb and Ti, and the term "substantially no volatilization loss" indicates that between before and after melting, the difference in Al content is 1.0 mass% or less and the difference in Nb content is 0.5 mass% or less.

[0028] In the deoxidation of an Al-Nb-Ti alloy, a flux of CaO alone or a CaO-CaF₂ flux obtained by blending more than 0 mass% and 95 mass% or less of calcium fluoride with calcium oxide is added as a deoxidation reaction accelerator,

whereby the deoxidation reaction is more promoted.

[0029] By the addition of a flux of CaO alone or a CaO-CaF $_2$ flux obtained by blending more than 0 mass% and 95 mass% or less of calcium fluoride with calcium oxide, which does not dissolve in the Al-Nb-Ti alloy, Al $_2$ O $_3$ as a deoxidation product produced during melting of the Al-Nb-Ti alloy produces a compound with CaO or dissolves in CaO-CaF $_2$, causing reduction in Al $_2$ O $_3$ activity and in turn, the deoxidation reaction is further promoted.

[0030] In order for the deoxidation reaction to proceed, it is considered that Al_2O_3 present in the Al-Nb-Ti alloy must be put into contact with the added flux. It is presumed that since Nb having high specific gravity is added, the specific gravity of the Al-Nb-Ti alloy is larger than the specific gravity of a Ti-Al binary alloy and separation of the Al-Nb-Ti alloy from Al_2O_3 and the added flux is prompted, consequently facilitating the contact of Al_2O_3 with the flux.

[0031] In the case of 0 mass% of calcium fluoride, i.e., CaO alone, the flux has a high melting point and does not melt at a temperature around the melting point of the Al-Nb-Ti alloy but when put into contact with Al₂O₃ present in the Al-Nb-Ti alloy, produces a CaO-Al₂O₃ compound having a low melting point to reduce the Al₂O₃ activity, making it possible to further promote deoxidation. Accordingly, this flux can be used, though its melting point is higher than that of the Al-Nb-Ti alloy.

[0032] On the other hand, if the blending amount of calcium fluoride exceeds 95 mass%, contamination by fluorine is generated. Accordingly, in the present invention, a flux of CaO alone or a CaO-CaF₂ flux obtained by blending more than 0 mass% and 95 mass% or less of calcium fluoride with calcium oxide is employed.

Examples

20

25

30

35

40

45

50

55

[0033] The present invention is described in greater detail below by referring to Examples, but the present invention is not limited to these Examples and can be implemented by appropriately adding changes as long as they comply with the gist of the present invention, and these changes all are included in the technical scope of the present invention.

(Relationship between Al content in Al-Nb-Ti alloy and oxygen content before and after melting)

[0034] Al-Nb-Ti alloys having an oxygen content of 4 to 30 mass% and having various alloy element contents were prepared using an alloy material composed of an aluminum material, a niobium material and a titanium material (titanium oxide or metallic titanium). Deoxidation of each of the prepared Al-Nb-Ti alloys was conducted by melting and then holding the alloy in a 100 kW plasma arc furnace using a water-cooled copper vessel. Here, only Ar was used as the plasma gas, and the pressure during melting was 1.20×10^5 Pa.

[0035] In order to examine the effect of the Al content of the Al-Nb-Ti alloy on the deoxidation reaction caused by melting, samples were prepared using Al-Nb-Ti alloys having an Al content of 30 mass%, 45 mass%, and 60 mass%, respectively. With respect to the sample using an Al-Nb-Ti alloy having an Al content of 30 mass% or 60 mass%, both a sample using, as the titanium material, titanium oxide and a sample using metallic titanium were made, but with respect to the sample using an Al-Nb-Ti alloy having an Al content of 45 mass%, only a sample using titanium oxide as the titanium material was made. In FIGs. 1 and 2, the sample using titanium oxide and the sample using metallic titanium are denoted by a filled circle mark and a filled square mark, respectively. In these Al-Nb-Ti alloys, as shown in Table 1, the Nb content is from 10 to 20 mass%.

[0036] The relationship between the Al concentration (Al content) in the Al-Nb-Ti alloy and the oxygen concentration (oxygen content) before and after melting is illustrated in FIGs. 1 and 2. The upper side (proximal end side) and the lower side (distal end side) of the arrow indicate before melting and after melting, respectively. In FIGs. 1 and 2, with respect to the sample using an Al-Nb-Ti alloy having an Al content of 30 mass% or 60 mass%, the plots are shifted slightly to the left or right for making the filled circle mark and the filled square mark more visible.

[0037] The Al-Nb-Ti alloy is basically required to have an oxygen content of 0.1 mass% or less, but according to FIGs. 1 and 2, in all of the samples having an Al content of 30 mass% and 45 mass%, the oxygen content after melting is not 0.1 mass% or less, failing in satisfying the condition that the oxygen content is 0.1 mass% or less. On the other hand, in the sample having an Al content of 60 mass%, the oxygen content after melting is 0.1 mass% or less in the case of using titanium oxide as the titanium material as well as in the case of using metallic titanium, thus satisfying the condition that the oxygen content is 0.1 mass% or less.

[0038] The Al deoxidation is governed by Al activity in the titanium alloy, and the Al activity is supposed to have a logarithmic correlation with the Al content. According to M. Maeda et al., Material Science and Engineering, A239-240 (1997), 276-280, the relationship between the oxygen content and the Al content after melting is assumed to become the relationship denoted by the dashed line in FIG. 1. Extrapolating from this dashed line, it is considered that the oxygen content drops to 0.1 mass% or less after peaking at an Al content of 50 mass%.

(Relationship between blended alloy concentration before melting and alloy concentration after nelting)

[0039] In addition, the relationship between the blended alloy concentration before melting (deoxidation) of the Al-Nb-Ti alloy and the alloy concentration after melting (deoxidation) was examined. The relationship between the contents of Al and Nb before melting of the Al-Nb-Ti alloy and the contents of Al and Nb after melting are shown in Table 1. Here, those denoted by No. with suffix "a" indicate a sample using titanium oxide as the titanium material, and those denoted by No. with suffix "b" indicate a sample using metallic titanium as the titanium material.

Table 1

No.	Before Melting (mass%)		After Melting (mass%)		Remarks
	Al	Nb	Al	Nb	
1a	30	10	32	8.6	Comparative Example
1b	30	10	27.8	10.8	Comparative Example
2a	45	15	45.8	15.4	Comparative Example
3a	60	20	59.6	20.2	Invention Example
3b	60	20	60.7	20.3	Invention Example

[0040] In the case of an Al-Nb-Ti alloy having an Al content of 30 mass%, the difference in the content was from 2.0 to 2.2 mass% for Al and from 0.8 to 1.4 mass% for Nb, and deviation from the target composition was thus caused after melting. In the case of an Al-Nb-Ti alloy having an Al content of 45 mass%, the difference in the content was 0.8 mass% for Al and 0.4 mass% for Nb, and the deviation from the target composition was small after melting, but as described above, since the Al content was small, the oxygen content was not reduced to 0.1 mass% or less.

[0041] On the other hand, in the case of an Al-Nb-Ti alloy having an Al content of 60 mass%, the deviation after melting was kept to a level where the change in content was from 0.4 to 0.7 mass% for Al and from 0.2 to 0.3 mass% for Nb. This result indicates that in the case of an Al-Nb-Ti alloy having an Al content of 60 mass%, the Al content was large enough to reduce all Nb oxide.

· Examples with addition of flux

(Relationship between Al content in Al-Nb-Ti alloy and oxygen content before and after melting)

[0042] With respect to each of two kinds of Al-Nb-Ti alloys (Ti-60 mass% Al-20 mass% Nb alloy, Ti-40 mass% Al-10 mass% of Nb alloy), a total of 5 alloys were prepared to have various blended oxygen concentrations as shown in Table 2 by using an alloy material composed of an aluminum material, a niobium material (niobium oxide) and a titanium oxide. The blended oxygen concentration of each alloy is shown in Table 2. Five Al-Nb-Ti alloys prepared were melted in a 10 kW plasma arc furnace using a water-cooled copper vessel, and after adding flux as a deoxidation reaction accelerator to each melt (in No. 1, the flux was not added), they were held to conduct deoxidation of the Al-Nb-Ti alloy. Here, only Ar was used as the plasma gas, and the pressure during melting was 1.20×10^5 Pa.

[0043] As for the flux added, two kinds of fluxes, i.e., a CaO-CaF₂ flux obtained by blending 80 mass% of calcium fluoride with calcium oxide and a flux of CaO alone not blended by calcium fluoride, were used.

[0044] The relationship between the Al concentration (Al content) and the oxygen concentration (oxygen content) after melting of the Al-Nb-Ti alloy is illustrated in FIGs. 3 and 4 and shown in Table 2. In FIGs. 3 and 4, the results of Example without addition of flux are illustrated together, and the results of Example (Ti-33 mass% Al-10 mass% Nb alloy, blended oxygen concentration: 4.0 mass%) without addition of flux, which is not shown in Table 2, are also illustrated.

[0045] As described above, the Al-Nb-Ti alloy is basically required to have an oxygen content of 0.1 mass% or less. In the sample of No. 1 without addition of flux, since the Al content is 60 mass%, the oxygen content after melting is 0.076 mass%, and the condition that the oxygen content is 0.1 mass% or less is satisfied, but in the sample of No. 4 added with a flux of CaO alone, the oxygen content after melting was 0.036 mass% and in the sample of No. 5 added with a CaO-CaF₂ flux obtained by blending 80 mass% of calcium fluoride with calcium oxide, the oxygen content after melting was 0.018 mass%, revealing that deoxidation was further promoted.

6

10

15

20

25

35

10

45

50

55

Table 2

	No.	Alloy Species	Flux	Blended Oxygen Concentration (mass%)	Oxygen Concentration After Melting (mass%)
	1	Ti-60 mass% Al-20 mass% Nb	none	7.3	0.076
	2	Ti-40 mass% Al-10 mass% Nb		2.4	0.16
	3	Ti-40 mass% Al-10 mass% Nb	CaO-CaF ₂ (CaF ₂ : 80 mass%)	0.8	0.14
	4	Ti-60 mass% Al-20 mass% Nb		2.5	0.036
	5	Ti-60 mass% Al-20 mass% Nb	CaO-CaF ₂ (CaF ₂ : 80 mass%)	2.5	0.018

[0046] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.

[0047] This application is based on Japanese Patent Application No. 2014-224360 filed on November 4, 2014, Japanese Patent Application No. 2015-078626 filed on April 7, 2015, and Japanese Patent Application No. 2015-159315 filed on August 12, 2015, the contents of which are incorporated herein by way of reference.

Industrial Applicability

[0048] According to the present invention, an Al-Nb-Ti alloy having a low oxygen content can be produced at a low cost, and this alloy is mixed with Ti having a small oxygen content, whereby a Ti-Al-Nb alloy containing Ti as its main component can be produced at a relatively low cost.

Claims

5

10

15

20

25

30

- 1. A method for deoxidizing an Al-Nb-Ti alloy, comprising melting and holding an Al-Nb-Ti alloy containing from 50 to 75 mass% of Al, from 5 to 30 mass% of Nb, and 80 mass% or less in total of Al and Nb by a melting method using a water-cooled copper vessel in an atmosphere of 1.33 Pa to 2.67×10⁵ Pa at a temperature of 1,900 K or more, thereby decreasing an oxygen content thereof, the Al-Nb-Ti alloy being prepared using an alloy material composed of an aluminum material, a niobium material and a titanium material and containing oxygen in a total amount of 0.5 mass% or more.
 - 2. The method for deoxidizing an Al-Nb-Ti alloy according to claim 1, wherein a flux of CaO alone or a CaO-CaF₂ flux obtained by blending more than 0 mass% and 95 mass% or less of calcium fluoride with calcium oxide is added during melting of the Al-Nb-Ti alloy by the melting method using the water-cooled copper vessel.
 - 3. The method for deoxidizing an Al-Nb-Ti alloy according to claim 1 or 2, wherein the melting method using the water-cooled copper vessel is any one of an arc melting method, a plasma arc melting method and an induction melting method.

45

50

FIG. 1

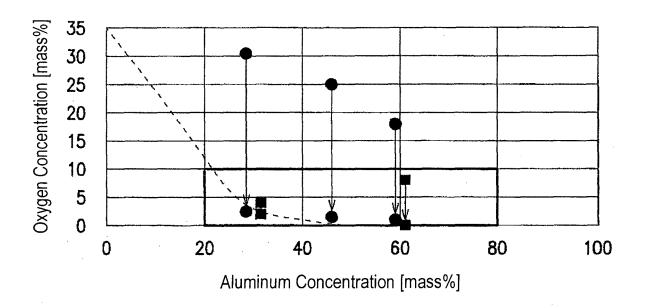


FIG. 2

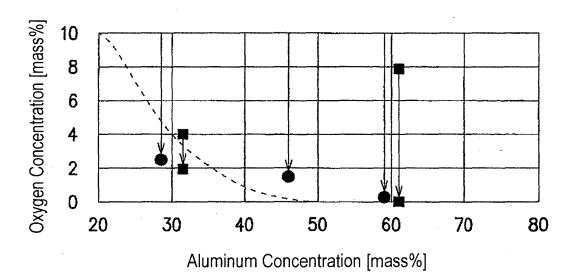


FIG. 3

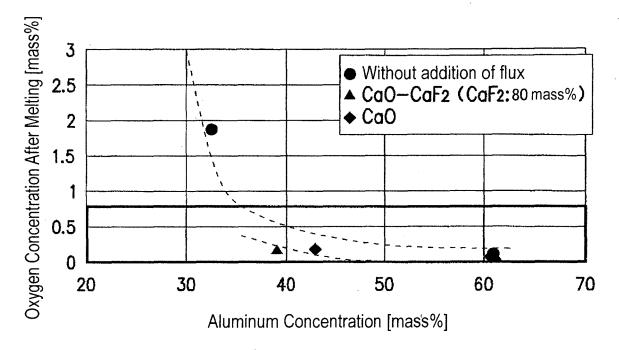
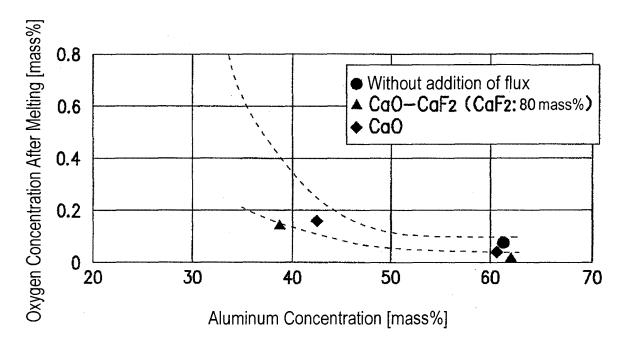



FIG. 4

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2015/081093 CLASSIFICATION OF SUBJECT MATTER C22C1/02(2006.01)i, C22B9/10(2006.01)i, C22B9/20(2006.01)i, C22C21/00 5 (2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 C22C1/02, C22B9/10, C22B9/20, C22C21/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2016 15 Kokai Jitsuyo Shinan Koho 1971-2016 Toroku Jitsuyo Shinan Koho 1994-2016 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages JP 11-293433 A (General Electric Co.), 26 October 1999 (26.10.1999), page 5, right column, line 39 to page 6, left 25 column, line 6; example 15 (Family: none) JP 08-283890 A (Nippon Steel Corp.), 29 October 1996 (29.10.1996), Α 1 - 3paragraphs [0020], [0025] 30 (Family: none) 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier application or patent but published on or after the international filing document which may throw doubts on priority claim(s) or which is 45 cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 19 January 2016 (19.01.16) 26 January 2016 (26.01.16) Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, 55 Tokyo 100-8915, Japan Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP H05195102 A [0009]
- JP H04120225 A [0009]
- JP H05154642 A [0009]

- JP 2014224360 A [0047]
- JP 2015078626 A [0047]
- JP 2015159315 A [0047]

Non-patent literature cited in the description

- X. L. LI; R. HILLEL; F. TEYSSANDIER; S. K.
 CHOI; F. J. J. VAN LOO. Acta Metall. Mater., 1992,
 vol. 40 (11), 3147-3157 [0025]
- M. MAEDA et al. Material Science and Engineering, 1997, vol. 239-240, 276-280 [0038]